JPS6048196A - Method for removing phosphorus from organic waste liquid - Google Patents

Method for removing phosphorus from organic waste liquid

Info

Publication number
JPS6048196A
JPS6048196A JP59089486A JP8948684A JPS6048196A JP S6048196 A JPS6048196 A JP S6048196A JP 59089486 A JP59089486 A JP 59089486A JP 8948684 A JP8948684 A JP 8948684A JP S6048196 A JPS6048196 A JP S6048196A
Authority
JP
Japan
Prior art keywords
phosphorus
liquid
tank
sludge
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59089486A
Other languages
Japanese (ja)
Inventor
Yoshitaka Matsuo
松尾 吉高
Toshihiro Tanaka
俊博 田中
Akiko Miya
晶子 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP59089486A priority Critical patent/JPS6048196A/en
Publication of JPS6048196A publication Critical patent/JPS6048196A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To remove stably the phosphorus with high efficiency by releasing a part of phosphorus contained in returned activated sludge into a soln. to form a liquid mixture contg. high-concn. soluble phosphorus, and removing the phosphorus chemically from a part of the mixture. CONSTITUTION:The phosphorus is substantially removed by separating the flow with a distribution vessel 2. Namely the amt. of entrained soluble phosphorus is decreased by the amt. corresponding to the amt. of the phosphorus introduced into a chemical phosphorus removing stage. Since the activated sludge in an aeration tank 5 has surplus capacity for removing phosphorus after reabsorbing the entrained soluble phosphorus, the phosphorus can be removed surely even with the comparatively small-capacity aeration tank 5. A liquid mixture 39 flowing out from the aeration tank is introduced into the final settling pond 10 wherein the activated sludge is separated by settling and concentrated to obtain a treated liquid 40. At least a part of the activated sludge which is separated by settling and concentrated is returned to an anaerobic tank 1 and treated as returned sludge 32.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、都市下水など、リンをとりわけ低濃度に含む
有機性廃液からBODとともにリンを除去する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for removing phosphorus together with BOD from organic wastewater containing particularly low concentrations of phosphorus, such as municipal sewage.

〔従来技術〕[Prior art]

都市下水や有機性工場廃水は、一般には標準活性汚泥法
で処理されているが、BODに比べて過剰に存在する窒
素やリンは十分に除去できず、処理液の受容水体である
湖沼や海彎に富栄養化をもたらし、漁業や観光業に甚大
な被害を与えている。
Municipal sewage and organic industrial wastewater are generally treated using the standard activated sludge method, but nitrogen and phosphorus, which are present in excess compared to BOD, cannot be sufficiently removed, and lakes and oceans, which are the receiving water bodies for the treated liquid, cannot be sufficiently removed. This is causing eutrophication in the area, causing severe damage to the fishing and tourism industries.

そして、その多くが溶解性のリン酸Cpo41−3とし
て存在するリンの除去技術としては、凝集沈殿法がある
が、被処理液のリン濃度を富栄養化防止に効果をあげる
ほど十分に低くするためには多量の凝集剤を必要とし、
それ自身多大な経済的負担であると同時にそれに伴って
発生する難脱水性の凝集沈殿汚泥の処理処分に困難をも
たらしている。このような欠点を有する凝集沈殿法の代
替技術として検刺されている有力なリン除去技術として
は、(1)Uン鉱石生成の原理を応用した「接触脱リン
法」および、(2)活性汚泥法に修正を加えて、特殊な
微生物によるリン代謝を利用しなからBODとリンを同
時に除去する「生物学的脱リン法」の2法がある。この
生物学的脱リン法は更に「脱リン横付活性汚泥法」と「
嫌気−好気式活性汚泥法の2方式に分けられる。
A technique for removing phosphorus, most of which exists as soluble phosphoric acid Cpo41-3, is the coagulation-precipitation method, but the phosphorus concentration in the liquid to be treated must be sufficiently low to be effective in preventing eutrophication. This requires a large amount of flocculant,
This itself is a huge economic burden, and at the same time it brings about difficulties in the treatment and disposal of the coagulated and settled sludge that is generated along with it and is difficult to dewater. As an alternative to the flocculation-sedimentation method, which has these disadvantages, the effective phosphorus removal technologies are (1) "catalytic dephosphorization method" that applies the principle of U ore formation, and (2) activated sludge. There are two methods that have been modified to remove BOD and phosphorus at the same time, using phosphorus metabolism by special microorganisms: the ``biological dephosphorization method.'' This biological dephosphorization method is further divided into "dephosphorization side activated sludge method" and "
It is divided into two methods: anaerobic-aerobic activated sludge method.

このうち、接触脱リン法は、本質的には高濃度のリン含
有廃液に適した技術であって、都市下水のように低濃度
のリン含有廃液に適用してなお高効率のリン除去を達成
するには多量のカルシウム剤が必要であるとともにアル
カリ度調整が重要となって、都市下水などの低濃度のリ
ン含有廃液処理には不向きな技術である。
Among these, the catalytic dephosphorization method is essentially a technology suitable for high-concentration phosphorus-containing wastewater, and even when applied to low-concentration phosphorus-containing wastewater such as urban sewage, it still achieves highly efficient phosphorus removal. To do this, a large amount of calcium agent is required, and alkalinity adjustment is important, making this technology unsuitable for treating wastewater containing low concentrations of phosphorus, such as urban sewage.

生物学的膜りン法は、従来の活性汚泥法系のいずれかに
嫌気性槽を設けることにより脱リン菌ともいうべき特殊
なリン代謝を行なう微生物を活性汚泥微生物の中の優占
種として淘汰し、その微生物をして有機物とともにリン
をも同時に除去し、場合によっては脱窒をも行なわせる
方法である。
The biological membrane phosphorization method uses microorganisms that perform a special phosphorus metabolism, which can be called dephosphorizing bacteria, as the dominant species among activated sludge microorganisms by installing an anaerobic tank in any of the conventional activated sludge systems. This method involves culling the microorganisms to remove phosphorus as well as organic matter, and in some cases also performs denitrification.

通常の活性汚泥法の暢気槽で被処理液中のリンを活性汚
泥に吸収させ、最終沈殿池からの返送汚泥もしくは返送
汚泥の一部を嫌気性状態(より正確には呼吸不能な状態
)に維持された濃縮槽状の脱リン槽に導き、ここで返送
汚泥を再濃縮すると同時にその汚泥からリンを放出させ
、再濃縮した返送汚泥はリン放出済汚泥として曝気槽に
返送され、リンを濃厚に含む濃縮上澄液は石灰凝集沈殿
法で処理する脱リン横付活性汚泥法は、脱リン槽での返
送汚泥滞留時間を非常に長くとらなければならないとい
う欠点があり、また、このように返送汚泥を長時間嫌気
性に放置するために脱リン菌以外の活性汚泥微生物が死
滅分解し易く、それを曝気槽に返送した際に異常発泡が
生じるなどの運転上の難点がある。
Phosphorus in the liquid to be treated is absorbed into the activated sludge in the aeration tank of the normal activated sludge method, and the returned sludge or a portion of the returned sludge from the final settling tank is made into an anaerobic state (more precisely, a non-breathable state). The returned sludge is guided to a maintained thickening tank-like dephosphorization tank, where the returned sludge is reconcentrated and at the same time phosphorus is released from the sludge. The activated sludge dephosphorization method, in which the concentrated supernatant liquid contained in the dephosphorization tank is treated by the lime coagulation sedimentation method, has the disadvantage that the return sludge must remain in the dephosphorization tank for a very long time. Since the returned sludge is left in an anaerobic state for a long time, activated sludge microorganisms other than dephosphorizing bacteria are likely to die and decompose, and there are operational difficulties such as abnormal foaming occurring when the returned sludge is returned to the aeration tank.

通常の活性汚泥微生物において曝気槽の前に02の存在
もNOx−の存在も許容しない小容量の嫌気性槽を設け
て、ここで被処理液と最終沈殿池より返送される活性汚
泥を接触混合し、活性汚泥に含まれる脱リン菌の特殊な
リン代謝と有機物代謝を利用して、被処理液のBODの
少なくとも一部を活性汚泥に非酸化的に摂取させながら
活性汚泥からリンを淡側に放出させ、生成された高濃度
の溶解性リンを含有する混合液は後続の前記曝気槽に導
き、ここで溶液側に残留するBODと活性汚泥に摂取貯
留されていた細胞内有機物を生物酸化するとともに、被
処理液に含まれていたリンをも含めて溶液側に存在する
リンを活性汚泥に再吸収しようとする、嫌気−好気式活
性汚泥法には本発明者らが実験及び理論上鏝た知見によ
れば薬品としてBOD物質を添加しない限り、被処理液
に含まれるB OD : IJン比が一定数値以下であ
れば相当短い汚泥日令で運転しても完全なリン除去を望
めないし、汚泥日◆を長くするとリン除去が不十分にな
るという欠点を有するものである。
In the case of normal activated sludge microorganisms, a small-capacity anaerobic tank that does not tolerate the presence of 02 or NOx- is installed in front of the aeration tank, and here the liquid to be treated and the activated sludge returned from the final settling tank are mixed by contact. By utilizing the special phosphorus metabolism and organic matter metabolism of dephosphorizing bacteria contained in activated sludge, phosphorus is removed from activated sludge while allowing at least a portion of the BOD of the treated liquid to be absorbed into activated sludge in a non-oxidative manner. The resulting mixed solution containing a high concentration of soluble phosphorus is led to the subsequent aeration tank, where the BOD remaining on the solution side and the intracellular organic matter ingested and stored in the activated sludge are biooxidized. At the same time, the present inventors have used experiments and theory to develop the anaerobic-aerobic activated sludge method, which attempts to reabsorb the phosphorus present in the solution, including the phosphorus contained in the liquid to be treated, into the activated sludge. According to recent knowledge, unless BOD substances are added as chemicals, if the BOD:IJ ratio contained in the liquid to be treated is below a certain value, complete phosphorus removal cannot be achieved even if the sludge is operated at a fairly short daily sludge period. However, if the sludge days ◆ are increased, phosphorus removal becomes insufficient.

〔発明の目的〕[Purpose of the invention]

本発明の第1の目的は、化学的リン除去法と組み合わせ
ることによって、BODニリン比が小さな被処理液に対
しても安定かつ高い効率でリン除去が達成できる方法を
提供することにある。第2の目的は、より簡単な施設で
、かつ運転面でもより容易に活性汚泥を媒体として被処
理液に含まれる低濃度リンを小容量液に濃縮する方法を
提供することにある。
A first object of the present invention is to provide a method that can stably and highly efficiently remove phosphorus even from a liquid to be treated having a small BOD-nilin ratio by combining it with a chemical phosphorus removal method. The second objective is to provide a method for concentrating low concentration phosphorus contained in a liquid to be treated into a small volume liquid using activated sludge as a medium using simpler facilities and easier operation.

〔発明の構成〕[Structure of the invention]

本発明は、被処理液と返送活性汚泥とを溶存酸素、硝酸
、亜硝酸のいずれもが実質的に存在しない状態のもとて
接触混合し、前記返送活性汚泥に含まれるリンの一部を
溶解性リンとして溶液中に放出せしめて溶解性リンを濃
厚に含有する混合液を生成し、該混合液の一部を化学的
リン除去工程に導いて液中の溶解性リンを除去し、その
化学的リン除去済液の少なくとも一部と前記混合液の残
部とを酸素、硝酸、亜硝酸のいずれか少なくとも−at
と接触混合し、液中の有機物を生物酸化処理する一方で
、溶解性リンを活性汚泥に吸収せしめてその一部を前記
返送活性汚泥とすることを特徴とする有機性廃液からの
リン除去法である。
In the present invention, a liquid to be treated and returned activated sludge are contacted and mixed in a state where dissolved oxygen, nitric acid, and nitrous acid are substantially absent, and a part of the phosphorus contained in the returned activated sludge is removed. Release the soluble phosphorus into the solution to produce a mixture rich in soluble phosphorus, and introduce a portion of the mixture to a chemical phosphorus removal process to remove the soluble phosphorus in the solution. At least a part of the chemically phosphorus-removed liquid and the remainder of the mixed liquid are treated with at least one of oxygen, nitric acid, and nitrous acid.
A method for removing phosphorus from an organic waste liquid, which comprises contacting and mixing the organic matter in the liquid with biological oxidation treatment, while absorbing soluble phosphorus into activated sludge and using a part of it as the returned activated sludge. It is.

〔実施例〕〔Example〕

本発明の実施態様の一例として1本発明を有機物とリン
の除去を主目的とした活性汚泥法へ適用した場合の典型
的なフローシートを第1図に示す。
As an example of an embodiment of the present invention, FIG. 1 shows a typical flow sheet when the present invention is applied to an activated sludge method whose main purpose is to remove organic matter and phosphorus.

また窒素除去をも包含する循環式硝化脱窒法へ適用した
場合のフローシートを第2図に示す。
FIG. 2 shows a flow sheet when applied to a cyclic nitrification-denitrification method that also includes nitrogen removal.

次に本発明の特徴を、第1図に示す実施態様を説明しな
がら更に詳細に述べる。
Next, the features of the present invention will be described in more detail while explaining the embodiment shown in FIG.

最初沈殿池(図示せず)などを経由してきた都市下水な
どの被処理液31は最終固液分離工程である最終沈殿池
10より返送される返送汚泥32とともに嫌気性状態に
維持されている嫌気性槽1に導かれ混合接触される。こ
こで「嫌気性状態」とは、溶存酸素〔DO〕もNOx−
(硝酸又は亜硝酸)も実質的に存在せず微生物の呼吸代
謝ができない「呼吸不能状態Jを意味する。DoやNO
x−の具体的濃度は指定しないが、酸化還元電位(:0
RP)が−130mV以下になるべき濃度以下に保たれ
ることが好ましい。返送汚泥32には往々にしてNOx
−が含まれることがあり、少量のNOx−であれば被処
理液31と混合されるとただちに消費され問題はないが
、多量に含まれることは嫌気性槽lの嫌気性状態を損う
ので好ましくない。これに対する対策としては、最終沈
殿池10における沈殿汚泥の滞留時間を長くすることも
一法であるが、返送汚泥の経路に曝気をしないか又は曝
気力が弱い返送汚泥貯槽23を設け、そこで脱窒を行な
わせる方策が望才しい。それでもNOx−が混入する場
合には、図示例にみられるように嫌気性槽1を2画室以
上に仕切るか、もしくは流下方向lζ長い槽にして、槽
内混合液の混合型を擬似栓流となして、嫌気性槽1の少
なくとも後半部に嫌気性状態が実現されるべく工夫すれ
ばよい。もつともこの場合、被処理液(槽内混合液)の
BODの一部が脱窒に消費され、それだけ脱リン菌に対
する淘汰力が弱まる。したがってNOx−の流入を根絶
することが最も望ましい対策である。嫌気性槽lの構造
としては従前より硝化脱窒法の脱窒槽に使われてきた技
術がそのま才転用できる。大気中からの02の混入を防
ぐためにも、被処理液に含まれる臭気成分の放散を防止
するためにも気密構造が好ましいが、それに限定する必
要はない。混合接触のために要する攪拌技術も脱室槽で
使用されてきたガス攪拌9機械攪拌、液流攪拌などが利
用できる。
The liquid to be treated 31 such as urban sewage that has passed through the initial settling tank (not shown) is maintained in an anaerobic state together with the return sludge 32 that is returned from the final settling tank 10 which is the final solid-liquid separation step. They are led to sex tank 1 and mixed and contacted. Here, "anaerobic state" means that dissolved oxygen [DO] and NOx-
(Nitric acid or nitrous acid) is also substantially absent and microorganisms cannot perform respiratory metabolism.
Although the specific concentration of x- is not specified, the redox potential (:0
RP) is preferably kept below a concentration that should be -130 mV or below. The returned sludge 32 often contains NOx.
- may be included, and if it is a small amount of NOx -, it will be consumed immediately when mixed with the liquid to be treated 31 and there will be no problem, but if it is contained in a large amount, it will impair the anaerobic state of the anaerobic tank 1. Undesirable. As a countermeasure against this, one method is to lengthen the residence time of the settled sludge in the final settling tank 10, but a return sludge storage tank 23 with no aeration or with a weak aeration force is installed in the return sludge route, and the return sludge is removed there. I hope that there is a way to make nitrogen work. If NOx- still gets mixed in, divide the anaerobic tank 1 into two or more compartments as shown in the example shown, or make the tank longer in the flow direction lζ, and change the mixing type of the mixed liquid in the tank to a pseudo plug flow. What is necessary is to devise measures to realize an anaerobic state at least in the latter half of the anaerobic tank 1. Of course, in this case, a part of the BOD of the liquid to be treated (mixed liquid in the tank) is consumed for denitrification, and the selection power against dephosphorizing bacteria is weakened accordingly. Therefore, eradicating the influx of NOx is the most desirable countermeasure. As for the structure of the anaerobic tank, the technology that has been used for denitrification tanks of the nitrification and denitrification method can be directly applied. Although an airtight structure is preferable in order to prevent 02 from being mixed in from the atmosphere and to prevent the dispersion of odor components contained in the liquid to be treated, it is not necessary to be limited thereto. As for the stirring technology required for mixed contact, gas stirring 9 mechanical stirring, liquid flow stirring, etc., which have been used in the venting tank, can be used.

以上のような条件を備えた嫌気性槽1に後続する曝気槽
5を連結させた活性汚泥法施設では、容易に脱リン菌を
主成微生物種とする活性汚泥が生成する。この活性汚泥
は嫌気性槽1で被処理液に含まれるBODの少なくとも
一部を非酸化的に摂取し、細胞内有機物として貯留する
一方で細胞内のリン(その多くはytr IJ IJン
酸果粒である)を細胞外、すなわち淡側に溶解性リンと
して放出する。
In an activated sludge method facility in which the anaerobic tank 1 and the subsequent aeration tank 5 are connected to each other with the above conditions, activated sludge containing dephosphorizing bacteria as the main microbial species is easily produced. This activated sludge ingests at least a part of the BOD contained in the liquid to be treated in the anaerobic tank 1 in a non-oxidative manner, and stores it as intracellular organic matter. granules) is released as soluble phosphorus outside the cell, that is, on the pale side.

嫌気性槽lにおける活性汚泥からのリン放出はBOD摂
取と共役しているために、高速かつ確実に行なわれる。
Phosphorus release from the activated sludge in the anaerobic tank 1 is coupled with BOD intake, so it is carried out quickly and reliably.

都市下水を被処理液とした場合、条件によって多少の差
はあるが、被処理液リン量の5倍程度が2時間以内に放
出きれ、それに対応して混合液の溶解性リン濃度も被処
理液リン濃度の6倍程度まで増大するとともに、汚泥中
のリン含率もそれだけ低下する。すなわち、このように
して得られた嫌気性槽流出混合液33は、リンを放出し
て低リン含率iこなったリン放出済活性汚泥とその放出
リン量と被処理液リン量の和に相応する溶解性リンを含
んでいる。
When urban sewage is used as the liquid to be treated, approximately five times the amount of phosphorus in the liquid to be treated can be released within two hours, although there are some differences depending on the conditions, and the soluble phosphorus concentration of the mixed liquid can be released within two hours. The phosphorus concentration in the sludge increases to about 6 times the liquid phosphorus concentration, and the phosphorus content in the sludge decreases accordingly. That is, the anaerobic tank effluent mixed liquid 33 obtained in this way is the sum of the phosphorus-released activated sludge that has released phosphorus and has a low phosphorus content i, the amount of released phosphorus, and the amount of phosphorus in the liquid to be treated. Contains corresponding soluble phosphorus.

そして、この嫌気性槽流出混合液33は分配槽2に流下
し、ここで曝気槽5へ直接流下する主流混合液34と分
流混合液35に分けられる。分流混合液35は中間固液
分離工程である中間沈殿池3に導かれ、ここで濃厚なリ
ンを含有する分離液36と、随伴している溶解性リン量
が相対的に少量な、しかもリン放出済の中間濃縮汚泥3
7が得られる。この中間固液分離操作は、重力沈降濃縮
のほか加圧浮上分離装置や遠心沈降機などを用いた機械
的沈降濃縮であってもよい。しかし、おおむね活性汚泥
法ないし硝化脱窒法で生成される活性汚泥はきわめて沈
降濃縮性が良いので、通常の重力沈降濃縮で十分である
。中間沈殿池3で得られた中間濃縮汚泥37は中間濃縮
汚泥用ポンプ4を経由して曝気槽6に流下してゆき、分
離液36は化学的リン除去工程へ送られる。
Then, this anaerobic tank outflow mixed liquid 33 flows down to the distribution tank 2, where it is divided into a mainstream mixed liquid 34 and a branched mixed liquid 35, which flow directly down to the aeration tank 5. The divided mixed liquid 35 is led to the intermediate settling tank 3, which is an intermediate solid-liquid separation step, where it is separated into a separated liquid 36 containing concentrated phosphorus and an accompanying phosphorus containing a relatively small amount of soluble phosphorus. Released intermediate thickened sludge 3
7 is obtained. This intermediate solid-liquid separation operation may be not only gravity sedimentation concentration but also mechanical sedimentation concentration using a pressure flotation separator, a centrifugal sedimentation machine, or the like. However, since the activated sludge produced by the activated sludge method or the nitrification-denitrification method has extremely good sedimentation and concentration properties, ordinary gravity sedimentation and concentration is sufficient. The intermediate thickened sludge 37 obtained in the intermediate settling tank 3 flows down to the aeration tank 6 via the intermediate thickened sludge pump 4, and the separated liquid 36 is sent to a chemical phosphorus removal process.

分離液36に含まれるリン濃度は嫌気性槽流出混合液3
3に含まれる溶解性リン濃度と同等ないし、これよりも
やや上・回る種度で、被処理液31の水質や嫌気性槽1
の操作条件に支配されるが、5 rQ/ 11 as 
P程度のリンを含有する平均的な都市下水を被処理液と
した場合には25〜30 m971asP程度のリン濃
度が期待できる。このように相対的に高濃度リンを含有
する分離液36の化学的リン除去法としては、凝集沈殿
法、その他の方法を排除するものではないが、接触脱リ
ン法が好才しい。その理由は、(1)汚泥処理を不要と
する、(2)リン酸塩鉱物資源が回収できる、の2利点
に加えて、接触脱リン法がとりわけこの種の高濃度リン
溶解に適した技術だからである。たとえば都市下水を被
処理液3!とした場合、分離液36は高濃度のリンを含
有しているにもかかわらず、そのアルカリ度は120 
ml// l as CaCO3前後とリンに比して低
く、通常必要とされているアルカリ度調整を施さなくて
も、モル比で2倍程度のCl1(OH)2を添加するだ
けで容易に90%以上のリン除去率が期待できる。また
、たとえアルカリ度調整を行なうとしても分離液36の
水量は被処理液3103〜25%であるので、その経済
的負担は微少である。
The phosphorus concentration contained in the separated liquid 36 is the same as that of the anaerobic tank effluent mixed liquid 3.
The concentration of soluble phosphorus contained in 3 is equivalent to, or slightly higher than, the water quality of the liquid to be treated 31 and the anaerobic tank 1.
subject to the operating conditions of 5 rQ/11 as
When the liquid to be treated is average urban sewage containing phosphorus of about P, a phosphorus concentration of about 25 to 30 m971asP can be expected. As a method for chemically removing phosphorus from the separated liquid 36 containing such a relatively high concentration of phosphorus, a catalytic dephosphorization method is preferable, although the coagulation-precipitation method and other methods are not excluded. The reason for this is that in addition to the two advantages of (1) eliminating the need for sludge treatment and (2) recovering phosphate mineral resources, the catalytic dephosphorization method is particularly suitable for this type of high-concentration phosphorus dissolution. That's why. For example, urban sewage is the liquid to be treated! In this case, although the separated liquid 36 contains a high concentration of phosphorus, its alkalinity is 120.
ml// l as CaCO3, which is lower than phosphorus, and can be easily increased to 90% by simply adding about twice the molar ratio of Cl1(OH)2, without the normally required alkalinity adjustment. % or higher phosphorus removal rate can be expected. Furthermore, even if the alkalinity is adjusted, the amount of water in the separated liquid 36 is 3103 to 25% of the liquid to be treated, so the economic burden is minimal.

そして、分離液36はアルカリ調整を行なうことなく、
分離液供給ポンプ12を経由してカルシウム剤混和槽1
3に導かれ、ここでCa(OJ()2あるいはCaCA
2などのカルシウム剤14と混和され、さらに脱リン塔
15へと導かれる。この脱リン塔15の構造・操作は、
従前より接触脱リン法で提案されてきた技術内容がその
まま利用できる。即ち、脱リン塔は、流動層式のものを
用いているが、これは分離液36のリンが濃厚なために
、維持管理の容易な流動層式でも十分なリン除去が可能
だからである。もちろん脱リン塔16の形式は流動層に
限定されるものではなく、固定床であってもよく、流動
層と固定床とを連結したものであってもよい。才だ分離
液36をリン酸塩鉱物を充填した脱リン塔と接触させる
ときの分離液の一城はpl(6〜11の範囲が好ましい
Then, the separated liquid 36 is not subjected to alkaline adjustment,
Calcium agent mixing tank 1 via separated liquid supply pump 12
3, where Ca(OJ()2 or CaCA
It is mixed with a calcium agent 14 such as No. 2, and further led to a dephosphorization tower 15. The structure and operation of this dephosphorization tower 15 are as follows:
The technical content that has been proposed for the catalytic dephosphorization method can be used as is. That is, a fluidized bed type dephosphorization tower is used because phosphorus in the separated liquid 36 is concentrated, so that sufficient phosphorus removal is possible even with a fluidized bed type which is easy to maintain. Of course, the type of the dephosphorization tower 16 is not limited to a fluidized bed, but may be a fixed bed or a combination of a fluidized bed and a fixed bed. When the separated liquid 36 is brought into contact with a dephosphorization tower filled with phosphate minerals, the value of the separated liquid is pl (preferably in the range of 6 to 11).

以上のようにして化学的方法でリン除去を受けた分離液
36は、化学的脱リン処理液38となる。
The separated liquid 36 that has undergone phosphorus removal by the chemical method as described above becomes a chemical dephosphorization treatment liquid 38.

この化学的脱リン処理液38は、残留するBODとリン
を更に除去するためlこ、曝気槽5へ流下させるが、曝
気槽5には、主流混合液34と中間濃縮汚泥37も流入
する。
This chemical dephosphorization treatment liquid 38 is allowed to flow down to the aeration tank 5 in order to further remove residual BOD and phosphorus, but the mainstream mixed liquid 34 and intermediate thickened sludge 37 also flow into the aeration tank 5 .

この場合、曝気槽5の構造・形態、および操作要件とし
ては、従前より活性汚泥法で使用されてきた技術が利用
できる。混合形式からみた種形状は、流入液の短絡流を
防止する点からも、沈降濃縮性のよい活性汚泥を生成す
る点からも、完全混合よりも擬似栓流になる形状が好ま
しい。したがって、流下方向に長延な矩形槽もしくは画
室化した矩形槽が考えられる。この場合主流混合液34
は、曝気清流出口から最も遠隔点に流入させ出来るだけ
長い滞留時間をとらせることが好ましいが、中間濃縮汚
泥37及び化学的脱リン処理液38の流入点は必ずしも
主流混合液34の流入点と同じである必要はない。
In this case, as for the structure and form of the aeration tank 5 and the operational requirements, techniques that have been conventionally used in activated sludge methods can be used. From the viewpoint of the mixing type, the seed shape is preferably a shape that results in a pseudo plug flow rather than complete mixing, both from the viewpoint of preventing short-circuit flow of the inflow liquid and from the viewpoint of producing activated sludge with good sedimentation and concentration properties. Therefore, a rectangular tank that is elongated in the downstream direction or a rectangular tank that has compartments is conceivable. In this case, the mainstream mixed liquid 34
It is preferable that the intermediate thickened sludge 37 and the chemical dephosphorization treatment liquid 38 flow into the farthest point from the aeration and purification outlet to take as long a residence time as possible, but the inflow point of the intermediate thickened sludge 37 and the chemical dephosphorization treatment liquid 38 is not necessarily the inflow point of the mainstream mixed liquid 34. It doesn't have to be the same.

曝気槽混合液の−は6.5〜8.5の範囲に制御するこ
とが好ましいが、6,0〜9.0まで許容し得る。
It is preferable to control the - of the aeration tank mixture within the range of 6.5 to 8.5, but a range of 6.0 to 9.0 is permissible.

溶存酸素〔BODは全槽にわたって2mF//1以上存
在することが好ましいが、主流混合液34や中間濃縮汚
泥37の流入点近傍でそれ以下のDOになることはやむ
を得ない。酸素供給方法も従前の活性汚泥法で利用され
てきた技術が全て使い得る。
Dissolved oxygen (BOD) is preferably present at 2 mF//1 or more throughout the tank, but it is unavoidable that the DO is lower than this near the inlet points of the mainstream mixed liquid 34 and intermediate thickened sludge 37. As for the oxygen supply method, all the techniques used in the conventional activated sludge method can be used.

すなわち、プロワ16から圧送される空気を微細気泡と
して混合液に吹き込む散気式暢気を利用しているが機械
式曝気でもよい。また酸素源として空気に代えて酸素を
利用する酸素曝気法も使用できる。
That is, although a diffused aeration system is used in which the air pumped from the blower 16 is blown into the liquid mixture in the form of fine bubbles, mechanical aeration may also be used. An oxygen aeration method that uses oxygen instead of air as an oxygen source can also be used.

以上のような設備と環境を備えた曝気槽5に主流混合液
34、化学的脱リン処理液38と中間濃縮汚泥37が流
下すると、含まれる活性汚泥は活発な呼吸代謝を行ない
、細胞外に存在するBOD及び細胞内貯留有機物を生物
酸化するとともに細胞外に存在する溶解性リンを、if
 IJ IJン酸果粒として細胞内に貯留しはじめる。
When the mainstream mixed liquid 34, the chemical dephosphorization treatment liquid 38, and the intermediate thickened sludge 37 flow into the aeration tank 5 equipped with the equipment and environment described above, the activated sludge contained therein undergoes active respiratory metabolism and is released outside the cells. Biologically oxidizes existing BOD and intracellular stored organic matter, as well as soluble phosphorus existing outside the cells, if
IJ IJ acid begins to accumulate in cells as granules.

この溶解性リン吸収の容量と速度は、活性汚泥の限界リ
ン含率とその時点でのリン含率の差に比例する。従って
、主流混合液34などに含有されるリン放出済の活性汚
泥は、曝気槽51こ流入した直後は、激しく溶液側から
溶解性リンを吸収する。しかし、それに対応して活性汚
泥のリン含率が上昇する。すなわち、リン吸収容量が小
さくなってくるとリン吸収速度は衰えてくる。
The capacity and rate of this soluble phosphorus absorption is proportional to the difference between the critical phosphorus content of the activated sludge and the current phosphorus content. Therefore, immediately after the activated sludge contained in the mainstream mixed liquid 34 and the like and which has already released phosphorus, flows into the aeration tank 51, it violently absorbs soluble phosphorus from the solution side. However, the phosphorus content of activated sludge increases correspondingly. That is, as the phosphorus absorption capacity decreases, the phosphorus absorption rate decreases.

嫌気性槽流出混合液33をすべてそのまま曝気槽5に流
入させている従来の嫌気−好気式活性汚泥法では、嫌気
性槽6で放出したリン量を再吸収し終わると、その活性
汚泥のリン吸収容敬はほぼ飽和状態になり、それ以上の
リン量すなわち被処理液31に含まれていたリン量の吸
収は、曝気槽5でのわずかの増加分すなわち余剰活性汚
泥が保有するリン吸収容量に依存せざるを得ない。その
ために曝気槽5のとりわけ後半部におけるリン吸収は遅
々たるものであり、往々ζごして実質的なリン除去を行
なわないことさえある。
In the conventional anaerobic-aerobic activated sludge method, in which all of the anaerobic tank effluent mixed liquid 33 flows directly into the aeration tank 5, once the amount of phosphorus released in the anaerobic tank 6 has been reabsorbed, the activated sludge Phosphorus absorption is almost saturated, and the amount of phosphorus beyond that, that is, the amount of phosphorus contained in the liquid to be treated 31, is absorbed by the slight increase in the aeration tank 5, that is, the amount of phosphorus absorbed by the excess activated sludge. It has to depend on capacity. For this reason, phosphorus absorption, particularly in the latter half of the aeration tank 5, is slow, and in some cases, phosphorus is not even substantially removed.

本発明ではこの問題を、分配槽2による分流によって解
消している。すなわち、化学的リン除去工程へ導かれた
リン量に相当する分だけ随伴する溶解性リン量は減少し
χいる。したがって、曝気槽5での活性汚泥は、その随
伴溶解性リンを再吸収し終えてもなおそのリン吸収容量
に余裕があるので、比較的小容量の曝気槽5でも確実に
リン除去が行なわれ、処理液40のリン濃度は安定して
低い。
In the present invention, this problem is solved by dividing the flow using the distribution tank 2. That is, the amount of accompanying soluble phosphorus decreases by an amount corresponding to the amount of phosphorus introduced into the chemical phosphorus removal process. Therefore, even after the activated sludge in the aeration tank 5 has finished reabsorbing its accompanying soluble phosphorus, it still has a surplus in its phosphorus absorption capacity, so phosphorus can be removed reliably even in the aeration tank 5 with a relatively small capacity. , the phosphorus concentration of the treatment liquid 40 is stably low.

このような機能及び操作によって、活性汚泥をして溶解
性リンを活性汚泥に吸収させ、またBODも十分に生物
酸化させた後に形成される曝気槽流出混合液39は最終
固液分離工程である最終沈殿池10に導かれ、ここで活
性汚泥を沈降分離・濃縮させながら処理液40を得る。
Through these functions and operations, the aeration tank effluent mixed liquid 39 formed after soluble phosphorus is absorbed into the activated sludge and BOD is sufficiently biooxidized is the final solid-liquid separation process. The activated sludge is guided to a final settling tank 10, where a treated liquid 40 is obtained while the activated sludge is sedimented, separated and concentrated.

処理液4oはそのまま放流してもよく、才だ必要とあれ
ば更に高度の処理を受けてもよい。一方、沈降分離しa
縮した活性汚泥の少なくとも一部は、返送汚泥32とし
て汚泥返送用ポンプ1!を経由して嫌気性槽1に返送処
理される。残余は余剰汚泥41として系外に排出される
が、必要とあればその一部を短絡返送汚泥42として曝
気槽6に直接返送してもよい。余剰汚泥の排出点は、前
記最終沈殿池1゜としているが、それに拘束される必要
はなく、曝気槽6から流出する混合液の一部を余剰汚泥
としてもよい。また中間沈殿池3で沈降濃縮した場合に
は中間濃縮汚泥37の一部を余剰汚泥としてもよい。こ
の場合に得られる余剰汚泥はすでに嫌気性槽1でリンを
十分に放出した汚泥なので、余剰汚泥濃縮槽などに長時
間放置してもあまり溶解性リンが放出されず、余剰汚泥
処理系統からのリン返流現象を最少限に抑制するなどの
利点がある。
The treatment liquid 4o may be discharged as is, or may be subjected to more advanced treatment if necessary. On the other hand, sedimentation separation a
At least a portion of the shrunken activated sludge is sent to the sludge return pump 1 as return sludge 32! The water is returned to the anaerobic tank 1 for processing. The remainder is discharged outside the system as surplus sludge 41, but if necessary, a part of it may be directly returned to the aeration tank 6 as short-circuit return sludge 42. Although the discharge point of the surplus sludge is set to the final settling tank 1°, it is not necessary to be restricted thereto, and a portion of the liquid mixture flowing out from the aeration tank 6 may be used as the surplus sludge. Further, when sedimentation and concentration is performed in the intermediate sedimentation tank 3, a part of the intermediate concentration sludge 37 may be used as surplus sludge. The surplus sludge obtained in this case is the sludge that has already released enough phosphorus in the anaerobic tank 1, so even if it is left in the surplus sludge thickening tank for a long time, not much soluble phosphorus will be released, and the sludge will not be released from the surplus sludge treatment system. This has the advantage of minimizing the phosphorus backflow phenomenon.

本発明はBODとともに窓素を除去する硝化脱窒法にも
適用できる。一般に硝化脱室法では、硝化菌の洗出現象
を防止するために汚泥日令を長くする必要があり、従来
の嫌気槽付硝化脱窒法では被処理液のB OD : I
Jン比が十分に大きくないと完全な脱リンは期待できな
い。しかし本発明を用いれば、かなり小さなりOD:I
Jン比の被処理液も処理可能である。第2図例は、いわ
ゆる循環式硝化脱窒法に本発明を適用した一例であるが
、その実施態様と特徴を簡単に記載する。
The present invention can also be applied to a nitrification-denitrification method that removes window elements along with BOD. Generally, in the nitrification-denitrification method, it is necessary to lengthen the sludge age in order to prevent the washout phenomenon of nitrifying bacteria, and in the conventional nitrification-denitrification method with an anaerobic tank, the BOD of the liquid to be treated is
Complete dephosphorization cannot be expected unless the J ratio is sufficiently large. However, if the present invention is used, the OD:I
It is also possible to process liquids with a J-ratio. The example in FIG. 2 is an example in which the present invention is applied to a so-called circulating nitrification-denitrification method, and its embodiment and characteristics will be briefly described.

第2図例においても第1図例と同様に、被処理液31と
返送汚泥32は嫌気性槽lに流入しここで混合接触され
る。完全な脱窒を前提とする第2図例では返送汚泥32
にNOx−が含まれたとしてもその量はわずかなので嫌
気性槽1は完全混合槽で十分である。嫌気性槽1のその
他の要件は第1図例と同じでよく、そこで生起する微生
物反応もまた同じである。嫌気性槽1より流出する嫌気
性槽流出混合液33は分配槽2において主流混合液34
と分流混合液35に分けられ、このうち分流混合液35
は中間固液分離工程である中間沈殿池3に送られ、ここ
で分離液36と中間濃縮汚泥37に分けられる。
In the example shown in FIG. 2, as in the example shown in FIG. 1, the liquid to be treated 31 and the return sludge 32 flow into the anaerobic tank 1, where they are mixed and contacted. In the example in Figure 2, which assumes complete denitrification, the return sludge 32
Even if NOx- is contained in the anaerobic tank 1, a complete mixing tank is sufficient because the amount is small. The other requirements of the anaerobic tank 1 may be the same as in the example of FIG. 1, and the microbial reactions occurring therein are also the same. The anaerobic tank outflow mixed liquid 33 flowing out from the anaerobic tank 1 becomes the mainstream mixed liquid 34 in the distribution tank 2.
and divided mixed liquid 35, of which divided mixed liquid 35
is sent to the intermediate settling tank 3 which is an intermediate solid-liquid separation step, where it is divided into a separated liquid 36 and an intermediate thickened sludge 37.

すなわち、分離液36は生物酸化処理工程である生物酸
化濾過塔18に送られ、ここでBOD酸化除去と好まし
くは硝化を受ける。この操作は後続の脱リン塔15を接
触脱リン法の固定床とする場合には好ましく、この生物
酸化により脱リン材(リン酸塩鉱物)の目づまりをひき
起こす微生物スライムの発生が防止でき、固定床の逆洗
時間間隔を長くすることができる。また、硝化を同時に
行なうことにより分離液36のアルカリ度を低減するこ
とができ、より少ないカルシウム剤で高いリン除去率を
得ることができる。生物酸化処理液18は、細砂を充て
んして底部よりプロワ19により空気を送りこむ曝気固
定床の技術形態を示しているが、これに特定する必要は
なく、細砂などに微生物を付着させて曝気しながら流動
させる曝気流動床、あるいは散水炉床や浸漬炉床などの
技術も十分に利用できる。
That is, the separated liquid 36 is sent to the biological oxidation filter tower 18, which is a biological oxidation treatment step, where it undergoes BOD oxidation removal and preferably nitrification. This operation is preferable when the subsequent dephosphorization tower 15 is used as a fixed bed for catalytic dephosphorization, and this biological oxidation can prevent the generation of microbial slime that causes clogging of the dephosphorization material (phosphate minerals). Fixed bed backwash time intervals can be increased. Further, by performing nitrification at the same time, the alkalinity of the separated liquid 36 can be reduced, and a high phosphorus removal rate can be obtained with a smaller amount of calcium agent. The biological oxidation treatment liquid 18 shows a technical form of an aerated fixed bed in which fine sand is filled and air is sent from the bottom by a blower 19, but there is no need to specify this, and microorganisms are attached to the fine sand etc. Technologies such as an aerated fluidized bed that allows fluidization while being aerated, a sprinkler hearth, and an immersion hearth can also be fully utilized.

生物酸化処理液43は生物酸化処理液供給ポンプ12′
 を経由してカルシウム剤混和槽13に送りこまれ、こ
こでカルシウム剤14と混和したのちに、固定床式の脱
リン塔15に通水される。ここで奸才しくは80%以上
のリン除去率をもって脱リン処理された液、すなわち化
学的脱リン処理液38は許容されるならばそのまま放流
してもよいが、まだそこに残留する少量のリン及び生物
酸化p通塔18で生成されたNOx−を完全に除去する
ために主処理系統である循環式硝化脱室施設に返送する
。この場合、返送箇所は硝化槽7に返送しているが、第
1脱窒槽6.硝化槽7.第2脱窒槽8のいずれでもよい
The biological oxidation treatment liquid 43 is supplied to the biological oxidation treatment liquid supply pump 12'.
The water is sent to a calcium agent mixing tank 13 via the , where it is mixed with a calcium agent 14 , and then passed to a fixed bed type dephosphorization tower 15 . Here, the liquid that has been cleverly dephosphorized with a phosphorus removal rate of 80% or more, that is, the chemical dephosphorization treatment liquid 38, may be discharged as it is if allowed, but a small amount of water that still remains there may be discharged. In order to completely remove phosphorus and NOx generated in the biooxidation p-passage column 18, the NOx is returned to the circulating nitrification and dechambering facility, which is the main treatment system. In this case, the return point is the nitrification tank 7, but the first denitrification tank 6. Nitrification tank7. Either of the second denitrification tanks 8 may be used.

一方、分配槽2で分けられた主流混合液34および中間
沈殿池3で沈降分離・濃縮して得られた中間濃縮汚泥3
7も循環式硝化脱窒施設に導かれる。この場合、主流混
合液84は第1脱窒槽6に流入することが好ましいが、
中間濃縮汚泥37の流入槽は第1脱窒槽6.硝化槽7の
いずれでもよい。
On the other hand, the mainstream mixed liquid 34 separated in the distribution tank 2 and the intermediate concentrated sludge 3 obtained by sedimentation separation and concentration in the intermediate settling tank 3
7 is also led to a circulating nitrification and denitrification facility. In this case, it is preferable that the mainstream mixed liquid 84 flows into the first denitrification tank 6;
The inflow tank for the intermediate thickened sludge 37 is the first denitrification tank 6. Any of the nitrification tanks 7 may be used.

脱リン菌は、脱窒すなわちN Ox−を水素受容体とす
る呼吸代謝も行みうことができ、第1脱窒槽6に流入す
るリン放出済活性汚泥は硝化槽7より循環ポンプ20を
経由してN1脱窒槽6へ送りこまれる循環液44が含有
しているN Ox−を利用し、・これを脱窒しながら細
胞外に存在するBOD及び細胞内有機物を生物酸化し、
それと同時に細胞外の溶解性リンを細胞内に吸収する。
Dephosphorizing bacteria can also perform denitrification, that is, respiratory metabolism using NOx- as a hydrogen acceptor, and the activated sludge that has released phosphorus flowing into the first denitrification tank 6 is passed from the nitrification tank 7 via the circulation pump 20. Using the NOx- contained in the circulating fluid 44 sent to the N1 denitrification tank 6, ・Bioxidize BOD existing outside the cells and intracellular organic matter while denitrifying it.
At the same time, extracellular soluble phosphorus is absorbed into the cell.

このリン吸収反応は第1脱蟹槽6で終了することもある
が、後続の硝化槽7.第2脱窒槽8.更には再曝気槽9
まで継続して行なわれることもある。これらのリン吸収
反応において、相対的に少量の溶解性リンしか随伴して
とないので、その果たす機能と効果は、第1図例の場合
のそれと同様である。
This phosphorus absorption reaction may end in the first decanning tank 6, but the subsequent nitrification tank 7. Second denitrification tank8. Furthermore, the reaeration tank 9
Sometimes it continues until the end. In these phosphorus absorption reactions, only a relatively small amount of soluble phosphorus is involved, so the functions and effects performed are similar to those in the example shown in FIG.

第1脱窒槽6.硝化槽7.第2脱輩槽8.再曝気槽9な
どの6槽の運転要件は、従来の循環式硝化脱蟹法のそれ
とほとんど同一である。第2図には示されていないが、
第2脱窒槽8には脱窒を促進するための補助的な水素供
与体として炭素化合物を加えることもあり得る。この場
合、メタノールは最も好ましい補助水素供与体である。
First denitrification tank6. Nitrification tank7. 2nd shedding tank 8. The operating requirements of the six tanks, such as reaeration tank 9, are almost identical to those of the conventional cyclic nitrification decanning process. Although not shown in Figure 2,
A carbon compound may be added to the second denitrification tank 8 as an auxiliary hydrogen donor to promote denitrification. In this case, methanol is the most preferred auxiliary hydrogen donor.

なぜなら、メタノールは脱リン菌にとって不活性な物質
であるために、流入するNOx−量の対応量以上に添加
して残留してもリン再放出の促進因子とならないからで
ある。また従来の循環式硝化脱蟹法では往々、たとえば
BOD:窒素比が逼度に低い廃水を被処理液とする場合
、第1脱窒槽6に炭素化合物を添加することがあるがむ
しろ嫌気性槽lに添加すべきである。なぜなら、その炭
素化合物は、リン放出の促進剤になり、ひいては脱リン
菌の淘汰選択に寄与するからである。そしてこの場合の
炭素化合物は、メタノールでなくエタノール、酢酸など
の有機酸、低分子糖類などが好ましい。
This is because methanol is an inactive substance for dephosphorizing bacteria, so even if it is added in an amount greater than the amount corresponding to the inflowing NOx amount and remains, it will not become a factor promoting phosphorus re-release. Furthermore, in conventional circulating nitrification and decanning methods, when the liquid to be treated is wastewater with a very low BOD:nitrogen ratio, carbon compounds are often added to the first denitrification tank 6, but rather an anaerobic tank is used. should be added to l. This is because the carbon compound becomes a promoter of phosphorus release and, in turn, contributes to the selection of dephosphorizing bacteria. In this case, the carbon compound is preferably ethanol, an organic acid such as acetic acid, a low molecular sugar, etc., instead of methanol.

硝化槽7のDoは、ブロワ16より送られる空気を吹き
込むことによって維持されている。一方、再曝気槽9は
密閉槽になっており、その酸素供給は酸素発生装置21
より送られる精製酸素を送り込むことによってなされて
いる。このような酸素曝気を再曝気槽9のDO保持に利
用する利点は2点ある。第1の利点は非常に沈降濃縮性
のよい(往々そのSVIは50以下になることさえある
)活性汚泥が生成されることである。@2の利点は、最
終沈殿池lOで沈殿濃縮した活性汚泥の酸化還元電位[
ORP]の降下が遅くなり、その活性汚泥からのリン再
放出を最少限Iこ抑制できる点てある。しかしこの場合
、再曝気槽9に過量の酸素を供給して再曝気槽流出混合
液46のDOを過度に高めることは不経済であるうえに
返送汚泥32にDoを残すことにもなる。返送汚泥32
にDOが残ると嫌気性槽1の呼吸不能状態を破壊し、本
技術の根幹である脱リン菌の淘汰選択を損うことになり
かねない。このような事態を防止するためには最終沈殿
池10の汚泥沈殿部位もしくは返送汚泥32の径路中途
にORP計もしくは溶存酸素計などのモニタ22を設置
して、その出力信号によって酸素発生装置21からの酸
素供給量を制御するなどの方策もある。なお、再曝気槽
9の酸素供給は酸素曝気である必要はなく通常の空気を
用いた曙気技術も十分利用できる。
Do of the nitrification tank 7 is maintained by blowing air from a blower 16. On the other hand, the reaeration tank 9 is a closed tank, and its oxygen supply is carried out by an oxygen generator 21.
This is done by pumping in purified oxygen. There are two advantages to using such oxygen aeration to maintain DO in the reaeration tank 9. The first advantage is that activated sludge is produced which has very good sedimentation and thickening properties (often with an SVI of even less than 50). The advantage of @2 is that the redox potential [
ORP] is slowed down, and the re-release of phosphorus from the activated sludge can be suppressed to a minimum. However, in this case, supplying an excessive amount of oxygen to the reaeration tank 9 to excessively increase the DO of the reaeration tank effluent mixed liquid 46 is not only uneconomical but also leaves Do in the returned sludge 32. Returned sludge 32
If DO remains in the anaerobic tank 1, it may destroy the unbreathable state of the anaerobic tank 1 and impair the selection and selection of dephosphorizing bacteria, which is the basis of this technology. In order to prevent such a situation, a monitor 22 such as an ORP meter or a dissolved oxygen meter is installed in the sludge settling part of the final settling tank 10 or in the middle of the route of the return sludge 32, and the output signal is used to monitor the flow from the oxygen generator 21. There are also measures such as controlling the amount of oxygen supplied. Note that the oxygen supply to the reaeration tank 9 does not need to be oxygen aeration, and a dawn aeration technique using normal air can also be used.

以上のような硝化脱窒工程から流出する再曝気槽流出混
合液45は最終固液分離工程である最終沈殿池10に導
かれ、ここで活性汚泥の沈殿分離をして処理液40が得
られる。沈殿分離した活性汚泥の大部分は返送汚泥32
として嫌気槽1へ送られる一方、小部分は余剰汚泥41
として系外へ排出される。
The reaeration tank effluent mixed liquid 45 flowing out from the nitrification and denitrification process as described above is led to the final settling tank 10 which is the final solid-liquid separation process, where the activated sludge is separated by sedimentation to obtain the treated liquid 40. . Most of the precipitated and separated activated sludge is returned sludge 32
While a small portion is sent to the anaerobic tank 1 as surplus sludge 41
is discharged from the system as

図中、51は被処理液供給ポンプ、52は分流混合液用
ポンプ、53は化学的脱リン処理液供給ポンプ、54は
余剰汚泥引抜ポンプである。
In the figure, 51 is a pump for supplying a liquid to be treated, 52 is a pump for a divided mixed liquid, 53 is a pump for supplying a chemical dephosphorization treatment liquid, and 54 is a pump for drawing out excess sludge.

本発明を第1図例のごとく活性汚泥法に適用するにせよ
、あるいは第2図例のごとく硝化脱窒法に適用するにせ
よ、本発明を実施する際の重要な設計・運転要件は、生
物学的リン除去量と化学的リン除去量の配分である。
Whether the present invention is applied to an activated sludge process as shown in the example in Figure 1 or to a nitrification-denitrification process as shown in the example in Figure 2, the important design and operational requirements when implementing the present invention are This is the distribution of chemical phosphorus removal amount and chemical phosphorus removal amount.

嫌気−好気式活性汚泥法におけるリン除去量は、余剰汚
泥発生量とその余剰汚泥に含まれるリン含率によって決
定される。一方、余剰汚泥発生量はBOD除去量と汚泥
日令の関数なので、リン除去量とリン含率の関係は次式
のようになる。
The amount of phosphorus removed in the anaerobic-aerobic activated sludge method is determined by the amount of surplus sludge generated and the phosphorus content contained in the surplus sludge. On the other hand, since the amount of surplus sludge generated is a function of the amount of BOD removed and the daily sludge age, the relationship between the amount of phosphorus removed and the phosphorus content is as shown in the following equation.

ここで、 φ:余剰汚泥のリン含率(1IP−P/%−V S S
 :)θ:汚泥日令 〔日〕 ΔPニリン除去量 〔命−P/日〕 △S : BOD除去量 〔ルー〇OD7日〕K:汚泥
の1衰係数 〔−/日〕 Y:BOD汚泥転換係数 本発明における生物学的リン除去量、すなわち全リン除
去量と化学的リン除去量の差も■式と同様の次式で示さ
れる。
Here, φ: Phosphorus content of excess sludge (1IP-P/%-VSS
:) θ: Sludge daily age [day] ΔP Nilin removal amount [life-P/day] △S: BOD removal amount [Lu〇OD7 days] K: Sludge one-decay coefficient [-/day] Y: BOD sludge conversion Coefficient The biological amount of phosphorus removed in the present invention, that is, the difference between the total amount of phosphorus removed and the amount of chemically removed phosphorus, is also expressed by the following equation similar to equation (2).

ここで ΔP0:化学的リン除す景(Ij−P/日〕上記■式と
■式の相違は、従来の嫌気−好気式活性汚泥と本発明の
本質的な相違を意味している。すなわち、完全なリン除
去をはかろうとした場合、■式に示されるように従来の
嫌気−好気式活性汚泥法で生成される余剰汚泥すなわち
曝気槽端末の活性汚泥のリン含率は、汚泥日◆でしか制
御できない。これに対して本発明では、化学的リン除去
量を増減することにより容易にそのリン含率を制御する
ことができる。
Here, ΔP0: chemical phosphorus removal rate (Ij-P/day) The difference between the above equations (1) and (2) means the essential difference between the conventional anaerobic-aerobic activated sludge and the present invention. In other words, when attempting to completely remove phosphorus, the phosphorus content of the surplus sludge produced by the conventional anaerobic-aerobic activated sludge method, that is, the activated sludge at the end of the aeration tank, is In contrast, in the present invention, the phosphorus content can be easily controlled by increasing or decreasing the amount of chemically removed phosphorus.

嫌気−好気式活性汚泥法における曝気槽での活性汚泥の
リン吸収速度は、その限界リン含率とその時点でのリン
含率の落差に比例する。従って、曝気槽端末まで高いリ
ン吸収活性を維持しようとするならば余剰汚泥のリン含
率は限界リン含率と比較的大きな差をつけるべきである
。そうすれば十分に安定して低濃度リンの処理液を生成
できる。
The phosphorus absorption rate of activated sludge in the aeration tank in the anaerobic-aerobic activated sludge process is proportional to the difference between the critical phosphorus content and the phosphorus content at that point. Therefore, if a high phosphorus absorption activity is to be maintained up to the end of the aeration tank, the phosphorus content of excess sludge should have a relatively large difference from the critical phosphorus content. By doing so, it is possible to generate a treatment solution with a low concentration of phosphorus in a sufficiently stable manner.

本発明は、余剰汚泥中のリン含率な特に指定するもので
はないが、限界リン含率の95%以下、できることなら
ば80チ程度に抑えることが好ましい。この場合、■式
から化学的リン除去量は次式によって決定される。
Although the present invention does not particularly specify the phosphorus content in excess sludge, it is preferable to suppress the limit phosphorus content to 95% or less, preferably about 80%. In this case, the amount of chemically removed phosphorus is determined by the following equation from equation (1).

ここで φC:限界リン含率CRt−p/Ky−vs s )以
上のようにして化学的リン除去量を決定すれば、分離液
36の溶解性リン濃度を知ることにより分離液36の流
量ひいては分流混合液35の流量が決定される。
Here, φC: Critical phosphorus content CRt-p/Ky-vs s) If the amount of chemically removed phosphorus is determined as described above, by knowing the soluble phosphorus concentration of the separation liquid 36, the flow rate of the separation liquid 36 and the The flow rate of the divided mixed liquid 35 is determined.

次に本発明の具体的な実施例を示す。Next, specific examples of the present invention will be shown.

本発明者らは、F市在所のKM社従業員用集合住宅排水
を被処理液として、当初、従来の嫌気−好気式活性汚泥
法の実証試験を行なったが、その処理成績が思わしくな
いので本発明に処理方法を切り換えた。
The present inventors initially conducted a demonstration test of the conventional anaerobic-aerobic activated sludge method using wastewater from a housing complex for KM employees in City F as the liquid to be treated, but the treatment results were not satisfactory. Therefore, the treatment method was changed to the present invention.

実験処理施設は第1図例とほぼ同様の構成がとられてい
る。嫌気性槽は直列に配した硬質塩化ビニル製の円筒型
密閉槽2基よりなる。各種には減速器付モータで毎分6
00回転る攪拌用インペラが取り付けられている。各種
の容量は140Lで、全体では280Lである。中間沈
殿池も硬質塩化ビニル製で、形状は円形清澄槽(タラリ
ファイヤ)形である。その直径は約280龍で容量はお
よそ902である。底部には減速器付モータで毎分2回
転するレーキがとりつけられている。曝気槽は鋼板矩形
槽で4画窒化されている。各画室の容量は160Qで全
体では640jlである。各画室には散気多孔管が配さ
れ、小型ブロワよりその多孔管を経由して通気されてい
る。通気量は曝気槽全体に対して120〜15017分
である。最終沈殿池も鋼板製で、やはり円形清澄槽(ク
ラリファイヤ)形をしており、直径800闘で容量はお
よそ300λである。その底部には減速器付モータで毎
分0.5回転するレーキが取り付けられている。
The experimental processing facility has almost the same configuration as the example shown in FIG. The anaerobic tank consists of two cylindrical closed tanks made of hard vinyl chloride arranged in series. 6/min for each type with a motor with a speed reducer
A stirring impeller with 00 rotations is attached. The capacity of each type is 140L, and the total capacity is 280L. The intermediate sedimentation tank is also made of hard vinyl chloride and has a circular clarifier shape. Its diameter is about 280 dragons and its capacity is about 902 dragons. Attached to the bottom is a rake that rotates twice per minute using a motor with a speed reducer. The aeration tank is a rectangular steel plate tank and is nitrided on four sides. The capacity of each compartment is 160Q, and the total capacity is 640jl. Each compartment is equipped with a perforated diffuser tube, through which ventilation is supplied by a small blower. The amount of aeration is 120 to 15017 minutes for the entire aeration tank. The final settling tank is also made of steel plate and is in the form of a circular clarifier, with a diameter of 800mm and a capacity of approximately 300λ. At its bottom is a rake that rotates 0.5 revolutions per minute using a motor with a speed reducer.

被処理液供給用ポンプと汚泥返送用ポンプにはスネーク
ポンプを用い、分流混合液用ポンプ、中間濃縮汚泥用ポ
ンプ、化学的脱リン処理液供給ポンプおよび余剰汚泥引
抜ポンプにはチューブポンプを利用した。汚泥量◆を正
確に制御するために、余剰汚泥は曝気槽最終画室より混
合液のまま引き抜いた。この場合、汚泥量◆は曝気槽容
量と日当たり引抜汚泥量の比になる。
Snake pumps were used for the treated liquid supply pump and sludge return pump, and tube pumps were used for the divided mixed liquid pump, intermediate thickened sludge pump, chemical dephosphorization treatment liquid supply pump, and excess sludge extraction pump. . In order to accurately control the sludge amount ◆, excess sludge was pulled out as a mixed liquid from the final compartment of the aeration tank. In this case, the sludge amount ◆ is the ratio of the aeration tank capacity and the daily drawn sludge amount.

化学的リン除去施設としては接触脱リン法のモデルプラ
ントを利用した。この場合、得られる分離液量が小容量
なので固定床式脱すン塔を採用したが、それでも24時
間通水のためにけ大きすぎ、やむを得ず1日数時間だけ
運転することとした。
A model plant of catalytic dephosphorization method was used as the chemical phosphorus removal facility. In this case, since the amount of separated liquid obtained was small, a fixed-bed desulfurization tower was adopted, but it was still too large for 24-hour water flow, so it was unavoidable to operate it for only a few hours a day.

24時間で分離排出される分離液を5002のグイライ
ト槽に貯留し、それを翌日数時間内で処理し、処理液も
500Qグイライト槽に貯留して24時間に平均化して
一気槽の第1画室に返送した。
The separated liquid that is separated and discharged in 24 hours is stored in the 5002 gilite tank and processed within a few hours the next day.The treated liquid is also stored in the 500Q gilite tank and averaged over 24 hours, and then transferred to the first compartment of the tank. It was sent back to .

分析に供される被処理液および処理液の試料は全てコン
ポジット試料として採取された。分離液と化学的脱リン
処理液の試料は接触脱リン処理の前後に採取した。また
、混合液と返送汚泥の試料はおおむね朝9時に採水した
ものである。
All samples of the treated liquid and treated liquid used for analysis were collected as composite samples. Samples of the separated solution and chemical dephosphorization solution were collected before and after the catalytic dephosphorization treatment. In addition, samples of the mixed liquid and returned sludge were sampled at approximately 9:00 in the morning.

以上のような実験施設を用いて汚泥日◆5.6日で長期
間運転したが、このうち本発明に関する2実験について
紹介する。
Using the above-mentioned experimental facility, we operated for a long period of time with sludge days of ◆5.6 days, and we will introduce two experiments related to the present invention.

第1実験の流量要件は第1表の通りでこの実験は5週間
継続した。
The flow requirements for the first experiment were as shown in Table 1 and the experiment lasted for 5 weeks.

第1表 第1実験の流量要件 この時の曝気槽端末の平均MLSSは3320my/n
、 ML V S 82830 me/ Qであった。
Table 1 Flow rate requirements for the 1st experiment The average MLSS at the terminal of the aeration tank at this time was 3320 my/n
, ML V S 82830 me/Q.

返送汚泥のMLSSとMLVSSはそれぞit、162
00ダ/lおよび139001#/ftであった。中間
濃縮汚泥のMLSSとMLVS Sもそれに近く、それ
ぞれ13400ダ/2および11120yy/uであっ
た。
MLSS and MLVSS of returned sludge are IT, 162 respectively.
00 Da/l and 139001 #/ft. The MLSS and MLVS S of the intermediate thickened sludge were also close to that, 13400 da/2 and 11120 yy/u, respectively.

他方、接触脱リン法のモデルプラントは第2表のような
条件で運転して、排出された分離液を全量処理し、その
すべてを曝気槽に返送した。
On the other hand, the model plant for the catalytic dephosphorization method was operated under the conditions shown in Table 2, and the entire discharged separated liquid was treated, and all of it was returned to the aeration tank.

−第2表 接触脱リン法運転条件 このような運転状態のもとで運転された5週間の最後の
12日間に得た被処理液、処理液、分離液および接触脱
リン処理液の分析データ平均値を第3表に示す。
-Table 2 Catalytic dephosphorization process operating conditions Analytical data of the treated liquid, treated liquid, separated liquid, and catalytic dephosphorized liquid obtained during the last 12 days of the 5 weeks of operation under these operating conditions The average values are shown in Table 3.

結果1.!はぼ満足のゆくものである。曝気槽端末力)
ら引き抜かれる余剰汚泥のリン含率は、この期間52〜
55ffl&−P/、!9−VSS に維持されていた
Result 1. ! It's very satisfying. Aeration tank terminal power)
The phosphorus content of the excess sludge extracted from the
55ffl&-P/,! It was maintained at 9-VSS.

また、嫌気性情流出混合液に含まれるリン含率は、43
〜45η−P/、9−VSSで余剰汚泥より20%程度
低かった。この時のリン収支は、流入全リン量が28.
8,9/日、流出リン量が2.297日で除去率は92
%であった。系内で除去された全リン[26,6p7日
のうち、接触脱リン法で30%に相当する8、3g1日
が除去されたので、余剰汚泥とともにta、3.!?/
日が引き抜かれたことになる。
In addition, the phosphorus content contained in the anaerobic effluent mixture is 43
~45η-P/, 9-VSS, which was about 20% lower than that of excess sludge. The phosphorus balance at this time is that the total amount of phosphorus flowing in is 28.
8.9/day, effluent phosphorus amount is 2.297 days, removal rate is 92
%Met. Of the total phosphorus removed in the system [26.6p7 days, 8.3g per day, which is equivalent to 30%, was removed by the catalytic dephosphorization method, so ta, 3. ! ? /
It means that the day has been withdrawn.

日平均の引抜余剰汚泥は34(1/日なので、これより
められる余剰汚泥のリン含率は53m9−P/g−vs
s で、この結果は前述の分析結果とよく一致する。
The average daily excess sludge drawn is 34 (1/day), so the phosphorus content of the surplus sludge determined from this is 53 m9-P/g-vs.
s, this result is in good agreement with the results of the previous analysis.

この期間に、嫌気性槽流出混合液と曝気槽第1画室から
第4画室才での混合液に含すれる溶解性リン一度を測定
したところ、それぞれ26.5゜10.2 、4.2 
、0,2 、0.1ml//lであった。このことから
、おおむね曝気槽の第31f!I室でリン吸収が終了し
ていたと推定される。
During this period, the soluble phosphorus contained in the mixed liquid flowing out of the anaerobic tank and the mixed liquid in the first to fourth compartments of the aeration tank was measured and found to be 26.5°10.2 and 4.2, respectively.
, 0.2, and 0.1 ml//l. From this, it is roughly the 31st f of the aeration tank! It is presumed that phosphorus absorption had finished in the I chamber.

第2実験では分流混合液置き分離液量を増大して化学的
リン除去量を増大させた場合の影響を調べた。流i要件
は第4表に示す通りである。
In the second experiment, the effect of increasing the amount of chemically removed phosphorus by increasing the amount of separated liquid in the divided mixed liquid was investigated. The flow requirements are shown in Table 4.

第4表 第2実験の流量要件 曝気槽、返送汚泥のMLSS、MLVSSは第1寅験と
大差はないが、中間濃縮汚泥の汚泥濃度はやや低下して
いる。これらを第5表にまとめる。
Table 4 Flow rate requirements for the second experiment The aeration tank, MLSS, and MLVSS of the returned sludge are not much different from the first experiment, but the sludge concentration of the intermediate thickened sludge has decreased slightly. These are summarized in Table 5.

第5表 MLSSとMLVSS 接触脱リン法の処理条件にも変更はないが、処理量が増
大したのでca(oH)2の日消費量は90g/日と増
大した。
Table 5: MLSS and MLVSS Although the treatment conditions of the catalytic dephosphorization method were not changed, the amount of treatment increased, so the daily consumption of ca(oH)2 increased to 90 g/day.

p42実験の分析データ平均値は第6表に示すとおりで
ある。これに見る通り、処理成績そのものはf:fli
実験とほとんど有意差がみられない。しかし、余剰汚泥
のリン含率は42〜45 rn9− P/、9−VSS
とかなり低下している。それに対応して嫌気性槽でのリ
ン放出もやや少なくなっている。しかし、曝気槽でのリ
ン吸収は第1実験の鳴合より速くなっている。すなイつ
ち、嫌気性槽流出混合液と曝気第1画室から第4画室ま
での混合液に含まれる溶解リン濃度はそれぞれ23.8
 、5.9 、0.1 、0.1゜o、 t my7 
iで、リン吸収は第2画室でリン吸収を完全に終えてい
る。
The average values of the analytical data of the p42 experiment are shown in Table 6. As you can see, the processing result itself is f:fli
There is almost no significant difference from the experiment. However, the phosphorus content of excess sludge is 42-45 rn9-P/, 9-VSS
It has decreased considerably. Correspondingly, phosphorus release in the anaerobic tank is also slightly lower. However, phosphorus absorption in the aeration tank is faster than in the first experiment. In other words, the dissolved phosphorus concentration contained in the anaerobic tank effluent mixed liquid and the mixed liquid from the aeration compartment 1 to the 4th compartment are each 23.8.
, 5.9 , 0.1 , 0.1゜o, t my7
At i, phosphorus absorption has completed completely in the second compartment.

第1実験、第2実験を通して接触脱リン法のCa(OH
)2添加率は分離液量に対してt5o〃y/4に固定し
た。この値は分離液に含まれるリンに対し2.5倍モル
程度である。被処理液量あたりに換算するき、第1実験
がCa(OH)2として11 m9/IL。
Through the first and second experiments, Ca(OH) of the catalytic dephosphorization method was
)2 addition rate was fixed at t5oy/4 with respect to the amount of separated liquid. This value is about 2.5 times the mole of phosphorus contained in the separated liquid. When converted to the amount of liquid to be treated, the first experiment was 11 m9/IL as Ca(OH)2.

第6表 第2実験の分析データ平均値 また第2実験が211n9/lで、いずれもその添加率
は都市下水二次処理水を直接に接触脱リン処理した場合
に比べてはるかに小さい。
Table 6 Average analysis data of the second experiment The addition rate of the second experiment was 211 n9/l, both of which were much smaller than when the secondary treated urban sewage water was subjected to direct catalytic dephosphorization treatment.

なお比較のために、これらの実験の前に行なった従来の
嫌気−好気式活性汚泥法の処理成績を第7表に示す。こ
の処理実験の流量条件も前記2実験と全く同一である。
For comparison, Table 7 shows the treatment results of the conventional anaerobic-aerobic activated sludge method conducted before these experiments. The flow rate conditions of this treatment experiment were also exactly the same as those of the above two experiments.

この時の余剰汚泥のリン含率は60〜611V−P/I
!−VSSで、それ以上は増大しなかった。また、嫌気
性情流出混合液と曝気槽m1画室から第4画室までの混
合液の溶解性第7表 従来の嫌気−好気式活性汚泥法に
よる運転成績 (単位nyi/IJ) リン濃度は、30.2 、14.3 、5.2 、1.
9 、1.8my/lで、第1画室と第2画室ではかな
りの速度でリン吸収を行なっているが、第3画室以後は
かなりのリンが存在するにもかかわらずリン吸収は停止
してしまう傾向がみられた。
The phosphorus content of excess sludge at this time is 60 to 611V-P/I
! -VSS did not increase further. In addition, the solubility of the anaerobic effluent mixed liquid and the mixed liquid from the aeration tank m1 compartment to the 4th compartment Table 7 Operation results by conventional anaerobic-aerobic activated sludge method (unit: nyi/IJ) Phosphorus concentration is 30 .2, 14.3, 5.2, 1.
9. At 1.8 my/l, phosphorus absorption occurs at a considerable rate in the first and second compartments, but from the third compartment onward, phosphorus absorption stops despite the presence of a considerable amount of phosphorus. There was a tendency to put it away.

さらに、前記第1.第2実験に継続して、本発明の第2
図例に対応する硝化脱室を含めた第3実験を行なった。
Furthermore, the above-mentioned No. 1. Continuing from the second experiment, the second experiment of the present invention
A third experiment including nitrification and dechambering corresponding to the illustrated example was conducted.

硝化槽には第1実験、第2実験で用いた曝気槽を転用し
たが、第1脱窒槽および再曝気槽付第2脱蟹槽は新たl
こ製作した。これら新設の槽は鋼板製の矩形密閉槽で、
それぞれ3画窒化され、各画室の容量は1601で全体
では4801である。再曝気槽付第2脱窒槽の最後の1
画室は、気相部についても他の画室と遮断されており、
酸素を利用した再曝気槽として利用され、第2画室が第
2脱窒槽として使用された。各脱窒槽の構内液の攪拌混
合はエアポンプを利用して発生ガスを循環するガス攪拌
で行なった。また、再曝気槽は酸素ボンベから酸素ガス
を定速で供給しながらガス攪拌を行なう方法により、混
合攪拌と酸素溶解を同時に遂行した。硝化槽から第1脱
窒槽への循環ポンプとしては、サント9パイパ′Ii1
ポンプを用いた。第2脱窒槽への補助水素供与体として
はメタノールを使用し、この供給用ポンプとしては小型
のチューブポンプを用いた。その他の実験施設は全て第
1実験、第2実験で用いたものをそのまま使用した。こ
の実験施設では、第2図例と異なり、分離液は生物酸化
処理を経ないで直接に接触脱リン法で処理し、その処理
液は硝化槽の第1画室に注入した。
The aeration tank used in the first and second experiments was reused as the nitrification tank, but the first denitrification tank and the second decanning tank with reaeration tank were newly constructed.
I made this. These newly installed tanks are rectangular closed tanks made of steel plates.
Three compartments are each nitrided, and the capacity of each compartment is 1601, for a total of 4801. The last one of the second denitrification tank with reaeration tank
The compartment is also isolated from other compartments regarding the gas phase.
It was used as a reaeration tank using oxygen, and the second compartment was used as a second denitrification tank. The internal liquids in each denitrification tank were stirred and mixed by gas agitation that circulated the generated gas using an air pump. In addition, the reaeration tank performed mixing and stirring and oxygen dissolution at the same time by stirring the gas while supplying oxygen gas from an oxygen cylinder at a constant rate. As a circulation pump from the nitrification tank to the first denitrification tank, Santo 9 Piper'Ii1 is used.
A pump was used. Methanol was used as the auxiliary hydrogen donor to the second denitrification tank, and a small tube pump was used as the supply pump. All other experimental facilities used in the first and second experiments were used as they were. In this experimental facility, unlike the example in Figure 2, the separated liquid was directly treated by the catalytic dephosphorization method without undergoing biological oxidation treatment, and the treated liquid was injected into the first compartment of the nitrification tank.

第3実験は以上のような施設を用い18週間運転した。The third experiment was conducted for 18 weeks using the facility described above.

このうち、ここに紹介するデータを得た約3週間の流量
要件は第8表の通りである。
Among these, the flow rate requirements for about three weeks from which the data introduced here were obtained are shown in Table 8.

@8表 第3実験の流量要件 この実験で得られた活性汚泥の沈降濃縮性はきわめてよ
く、返送汚泥のMLSSとMLVSSの平均値は、それ
ぞれzt5oomg/#と16600my/lであった
。このために返送率は35%と余り高くないにもかかわ
らず硝化槽末端混合液のMLSSとMLVSSはそれぞ
れ5380ダ/1前後および4200〜/1前後に維持
された。一方、中間濃縮汚泥のMLSSおよびMLVS
Sは、それぞれ189001ng/lと14500ダ/
lであった。なお、第3実験の流量要件のうち、余剰汚
泥量は完全硝化を達成するに十分な汚泥日令から計算し
て決定した。この汚泥日令は硝化槽保持汚泥量をベース
にして約13日とした。接触脱リン法の運転要件は、第
1.第2実験と基本的には変わりがない。ただし、分離
液のリン濃度がやや高いためにca(OH)2の分離液
に対する注入率は180my/lと増大させ、その結果
Ca(OH)2の日当たり消費量は9597日となった
@Table 8 Flow rate requirements for the third experiment The sedimentation and concentration properties of the activated sludge obtained in this experiment were extremely good, and the average values of MLSS and MLVSS of the returned sludge were zt5oomg/# and 16,600 my/l, respectively. For this reason, although the return rate was not very high at 35%, the MLSS and MLVSS of the mixed liquid at the end of the nitrification tank were maintained at around 5380 Da/1 and around 4200-4200 Da/1, respectively. On the other hand, MLSS and MLVS of intermediate thickened sludge
S is 189,001 ng/l and 14,500 da/l, respectively.
It was l. Note that among the flow rate requirements for the third experiment, the amount of excess sludge was determined by calculating from the sludge age sufficient to achieve complete nitrification. The sludge age was approximately 13 days based on the amount of sludge held in the nitrification tank. The operating requirements for the catalytic dephosphorization method are as follows. There is basically no difference from the second experiment. However, since the phosphorus concentration of the separated liquid was somewhat high, the injection rate of Ca(OH)2 into the separated liquid was increased to 180 my/l, resulting in a daily consumption of Ca(OH)2 of 9597 days.

以上のような条件下で得た被処理液、硝化槽末端混合液
の遠沈上澄液(硝化液)、処理液1分離□液および接触
脱リン処理液の分析データ平均値を第9表に示す。得ら
れた処理液水質は、BOD。
Table 9 shows the average values of the analytical data for the treated liquid, the centrifuged supernatant liquid (nitrification liquid) of the mixed liquid at the end of the nitrification tank, the treated liquid 1 separated □ liquid, and the catalytic dephosphorization treated liquid obtained under the above conditions. . The quality of the obtained treated liquid was BOD.

リン、窒素環、全ての水質項目からみても満足すべきも
のであった。余剰汚泥中のリン含率は58η−P/、1
it−VSS前後と前記2実験より高くなったが、第1
0表にみるようにリン吸収は硝化槽末端でほぼ終了して
いた。第2脱窒素槽でやや汚泥からリン放出がみられる
が、それも再曝気槽で完全に吸収されていた。リン収支
を計算すると流入リン量の57%が接触脱リン法で除去
され、残りが余剰汚泥に含まれるリンとして系外へ排除
されていたことになる。このように、接触脱リン法への
依存度が高くなったのは、完全硝化を達成するために汚
泥日令を比較的長日数に制御する関係から、余剰汚泥量
を少量にせざるを得なかったからである。確認実験は行
なっていないが、この@3実験でもし接触脱リン法によ
るリン除去を省略したならば被処理液のリン濃度ははる
かに高くなったであろう。
All water quality items, including phosphorus and nitrogen rings, were satisfactory. The phosphorus content in excess sludge is 58η-P/, 1
Although it was higher than before and after it-VSS and the previous two experiments, the first
As shown in Table 0, phosphorus absorption was almost completed at the end of the nitrification tank. Although some phosphorus was released from the sludge in the second denitrification tank, it was completely absorbed in the reaeration tank. Calculating the phosphorus balance, it means that 57% of the inflowing phosphorus was removed by the catalytic dephosphorization method, and the rest was eliminated from the system as phosphorus contained in excess sludge. The reason for the increased reliance on the catalytic dephosphorization method is that in order to achieve complete nitrification, the sludge age has to be controlled to a relatively long number of days, so the amount of surplus sludge has to be kept small. This is because the. Although a confirmation experiment was not conducted, if phosphorus removal by the catalytic dephosphorization method had been omitted in this @3 experiment, the phosphorus concentration in the treated liquid would have been much higher.

本発明は、従来の嫌気−好気式活性汚泥法に対しては(
1)被処理液のB OD : IJン比に制約されずに
リン負荷量を軽減し、(2)自由をこ汚泥日令を選択で
き、(3)活性汚泥のリン吸収活性を曝気槽の端末まで
高く維持でき、(4)その結果として十分に低濃度リン
の処理液を安定して生成できるなどの利点がある。また
、在来の接触脱リン法に対しては、比較的低濃度リンの
被処理液から少ないカルシウム剤量で、アルカリ度調整
を行なうことがなくとも効果的にリン酸塩鉱物資源を回
収できるなどの利点を有する。しかしてシステム全体と
しては、低濃度リン含有の都市下水などの有機性廃液に
対して普遍的な技術として、BOD、リン、場合によっ
て−は窒素をも経済的に高い効率で除去する方法を提供
している。
The present invention is different from the conventional anaerobic-aerobic activated sludge method (
1) Reduce the phosphorus load without being restricted by the BOD:IJ ratio of the liquid to be treated, (2) freely select the sludge age, and (3) adjust the phosphorus absorption activity of activated sludge to the aeration tank. (4) As a result, a treatment liquid with a sufficiently low concentration of phosphorus can be stably produced. In addition, compared to the conventional catalytic dephosphorization method, phosphate mineral resources can be effectively recovered from the treated liquid with a relatively low concentration of phosphorus with a small amount of calcium agent and without adjusting the alkalinity. It has the following advantages. Therefore, the system as a whole provides an economical and highly efficient method for removing BOD, phosphorus, and in some cases nitrogen as well, as a universal technology for organic wastewater such as municipal sewage containing low concentrations of phosphorus. are doing.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図及び第2図はそれ
ぞれ本発明の各実施態様を示す系統説明図である。 1・・・・・・嫌気性槽、2・・・・・・分配槽、3・
・・・・・中間沈殿池、4・・・・・・中間濃縮汚泥用
ポンプ、5・・・・・・曝気槽、6・・・・・・第1脱
室槽、7・・・・・・硝化槽、8・・・・・・第2脱室
槽、9・・・・・・再曝気槽、10・・・・・・最終沈
殿池、11・・・・・・汚泥返送用ポンプ、12・・・
・・・分離液供給ポンプ、12′ ・・・・・・生物酸
化処理液供給ポンプ、13・・・・・・カルシウム剤混
和槽、14・・・・・・カルシウム剤、15・・・・・
・脱リン塔、1g・・・用プロワ、18・・・・・・生
物酸化濾過塔、19・・・・・・プロワ、20・・・・
・・循環ポンプ、21・・・・・・酸素発生装置、22
・・・・・・モニタ、23・・・・・・返送汚泥貯槽、
31・・・・・・被処理液、32・・・・・・返送汚泥
、33・・・・・・嫌気性槽流出混合液、34・・・・
・・主流混合液、35・・・分流混合液、36・・・・
・・分離液、37・・・・・・中間濃縮汚泥、38・・
・・・・化学的脱リン処理液、39・・・・・・曝気槽
流出混合液、40・・・・・・処理液、41・・・・・
・余剰汚泥、42・・・・・・短絡返送汚泥、43・・
・・・・生物酸化処理液、44・・・・・・循環液、4
5・・・・・・再曝気槽流出混合液、51・・・・・・
被処理液供給ポンプ、52・・・・・・分流混合液用ポ
ンプ、53・・・・・・化学的脱リン処理液供給ポンプ
、54・・・・・・余剰汚泥引抜ポンプ。 特許出願人 荏原インフィルコ株式会社代理人 弁理士
 高 木 正 行 代理人 弁理士 依 1) 孝 次 部手続補正書 昭和59年8月9日 特許庁長官志賀 学 殿 ■、事件の表示 3、補正をする者 事件との関係 特 許出願人 住所(居所) 氏名(名称) (m)荏原インフィルコ株式会社4、代
理人 6、補正により増加する発明の数 7、補正の対象 明細四企叉 8、補正の内斉 別紙の通り
The drawings show embodiments of the present invention, and FIGS. 1 and 2 are system explanatory diagrams showing each embodiment of the present invention. 1...Anaerobic tank, 2...Distribution tank, 3.
... Intermediate sedimentation tank, 4 ... Intermediate thickened sludge pump, 5 ... Aeration tank, 6 ... First evacuating tank, 7 ... ...Nitrification tank, 8...Second derooming tank, 9...Reaeration tank, 10...Final settling tank, 11...For sludge return Pump, 12...
... Separated liquid supply pump, 12' ... Biological oxidation treatment liquid supply pump, 13 ... Calcium agent mixing tank, 14 ... Calcium agent, 15 ...・
・Dephosphorization tower, 1g... blower, 18... biological oxidation filter tower, 19... blower, 20...
...Circulation pump, 21...Oxygen generator, 22
...Monitor, 23...Return sludge storage tank,
31... Liquid to be treated, 32... Returned sludge, 33... Anaerobic tank effluent mixed liquid, 34...
Mainstream mixed liquid, 35... Branch mixed liquid, 36...
...Separated liquid, 37...Intermediate thickened sludge, 38...
... Chemical dephosphorization treatment liquid, 39 ... Aeration tank effluent mixed liquid, 40 ... Treatment liquid, 41 ...
・Excess sludge, 42...Short circuit return sludge, 43...
... Biological oxidation treatment liquid, 44 ... Circulating liquid, 4
5... Re-aeration tank outflow mixed liquid, 51...
To-be-treated liquid supply pump, 52... Pump for diverted mixed liquid, 53... Chemical dephosphorization treatment liquid supply pump, 54... Excess sludge drawing pump. Patent Applicant Ebara Infilco Co., Ltd. Agent Patent Attorney Masayuki Takagi Agent Patent Attorney Yori 1) Takatsugu Department Procedural Amendment August 9, 1980 Mr. Manabu Shiga, Commissioner of the Japan Patent Office, Indication 3 of Case, Amendment Relationship with the case of the person who filed the patent Patent applicant address (residence) Name (name) (m) Ebara Infilco Co., Ltd. 4, agent 6, number of inventions increased by amendment 7, subject of amendment Part 4 of specification 8, amendment Hitoshi Nouchi As shown in the attached sheet

Claims (1)

【特許請求の範囲】 1、被処理液と返送活性汚泥とを溶存酸素、硝酸、亜硝
酸のいずれもが実質的に存在しない状態のもとて接触混
合し、前記返送活性汚泥に含まれるリンの一部を溶解性
リンとして溶液中に放出せしめて溶解性リンを濃厚に含
有する混合液を生成し、該混合液の一部を化学的リン除
去工程に導いて液中の溶解性リンを除去し、その化学的
リン除去済液の少なくとも一部と前記混合液の残部とを
酸素、硝酸、亜硝酸のいずれか少なくとも一種と接触混
合し、液中の有機物を生物酸化処理する一方で、溶解性
リンを活性汚泥に吸収せしめてその一部を前記返送活性
汚泥とすることを特徴とする有機性廃液からのリン除去
法。 2、前記化学手段が接触腕リン法によるものであって、
前記混合液の一部をカルシウムイオンの存在下、pH6
〜11の範囲内でリン醗カルシウム含有リン酸塩鉱物と
接触通過せしめて処理されるものである特許請求の範囲
M1項記載のリン除去法。 3、前記混合液の一部を予め生物酸化処理してから前記
接触脱リン法により処理する特許請求の範囲第1項又は
第2項記載のリン除去洩
[Claims] 1. The liquid to be treated and the returned activated sludge are contacted and mixed in a state in which dissolved oxygen, nitric acid, and nitrous acid are substantially absent, and the phosphorus contained in the returned activated sludge is A part of the liquid is released into the solution as soluble phosphorus to produce a mixed liquid rich in soluble phosphorus, and a part of the mixed liquid is led to a chemical phosphorus removal process to remove the soluble phosphorus from the liquid. At least a part of the chemically phosphorus-removed liquid and the remainder of the mixed liquid are contacted and mixed with at least one of oxygen, nitric acid, and nitrous acid to biologically oxidize the organic matter in the liquid, A method for removing phosphorus from organic waste liquid, which comprises absorbing soluble phosphorus into activated sludge and using a portion of it as the returned activated sludge. 2. The chemical means is based on the contact arm phosphorus method,
A portion of the mixture was adjusted to pH 6 in the presence of calcium ions.
The method for removing phosphorus according to claim M1, wherein the phosphorus removal method is carried out by contacting and passing through a calcium-containing phosphate mineral within the range of 11 to 11. 3. Phosphorus removal leakage according to claim 1 or 2, wherein a part of the mixed liquid is subjected to a biological oxidation treatment in advance and then treated by the catalytic dephosphorization method.
JP59089486A 1984-05-07 1984-05-07 Method for removing phosphorus from organic waste liquid Pending JPS6048196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59089486A JPS6048196A (en) 1984-05-07 1984-05-07 Method for removing phosphorus from organic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089486A JPS6048196A (en) 1984-05-07 1984-05-07 Method for removing phosphorus from organic waste liquid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56054281A Division JPS5839599B2 (en) 1981-04-13 1981-04-13 Phosphorus removal method from organic waste liquid

Publications (1)

Publication Number Publication Date
JPS6048196A true JPS6048196A (en) 1985-03-15

Family

ID=13972068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089486A Pending JPS6048196A (en) 1984-05-07 1984-05-07 Method for removing phosphorus from organic waste liquid

Country Status (1)

Country Link
JP (1) JPS6048196A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317786U (en) * 1989-06-30 1991-02-21
JPH03146092A (en) * 1989-10-31 1991-06-21 Brother Ind Ltd Sewing machine provided with thread cutting mechanism
JP2000296399A (en) * 1999-04-13 2000-10-24 Maezawa Ind Inc Waste water treating apparatus
JP2006281001A (en) * 2005-03-31 2006-10-19 Kubota Corp Method and apparatus for treating water
JP2008237992A (en) * 2007-03-26 2008-10-09 Sumiju Kankyo Engineering Kk Apparatus and method for wastewater treatment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839599A (en) * 1981-08-31 1983-03-08 三菱電機株式会社 Earth imitation device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839599A (en) * 1981-08-31 1983-03-08 三菱電機株式会社 Earth imitation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317786U (en) * 1989-06-30 1991-02-21
JPH03146092A (en) * 1989-10-31 1991-06-21 Brother Ind Ltd Sewing machine provided with thread cutting mechanism
JP2000296399A (en) * 1999-04-13 2000-10-24 Maezawa Ind Inc Waste water treating apparatus
JP2006281001A (en) * 2005-03-31 2006-10-19 Kubota Corp Method and apparatus for treating water
JP4660247B2 (en) * 2005-03-31 2011-03-30 クボタ環境サ−ビス株式会社 Water treatment method and apparatus
JP2008237992A (en) * 2007-03-26 2008-10-09 Sumiju Kankyo Engineering Kk Apparatus and method for wastewater treatment

Similar Documents

Publication Publication Date Title
JPS5839599B2 (en) Phosphorus removal method from organic waste liquid
JPH10511308A (en) Method and apparatus for treating concentrated wastewater
CN101767901A (en) Mobile sewage treatment device and waste water treatment method thereof
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
JPS6048196A (en) Method for removing phosphorus from organic waste liquid
JPS6324000Y2 (en)
WO2001062676A1 (en) Method for treating organic wastewater
JPS61200893A (en) Method of purifying waste water
JP2000140894A (en) Equipment for treatment of sludge
JPS6075396A (en) Removal of phosphorus from organic waste liquid
JP4547799B2 (en) Biological phosphorus removal equipment
JPH0125633B2 (en)
JPS602917B2 (en) Biological treatment method for wastewater
KR102299760B1 (en) High concentrated organic wastewater treatment system
JP2000140893A (en) Treatment of sludge and equipment therefor
CN211814033U (en) Aerobic MBR (membrane bioreactor) and advanced treatment system for high-concentration organic wastewater
KR102085280B1 (en) Method and system for processing high-dense organic wastewater by sequencing and batch type aeksangbusik process
JPS6041597A (en) Dephosphorization apparatus from organic waste liquid
JPS6041596A (en) Removal method of phosphorus from organic waste liquid
JP2003053377A (en) Method for treating organic waste water and treating device
JP2002320992A (en) Method for treating organic waste water and equipment therefor
JP2001286883A (en) Method and device for treating sewerage flowing into terminal disposal plant
JPH0929282A (en) Method for biological denitrification of wastewater, and device therefor
KR100373136B1 (en) Chemical composition for removing nitrogen and phospate in waste water and method for treating waste water using the same
JPS638840B2 (en)