JPS638840B2 - - Google Patents

Info

Publication number
JPS638840B2
JPS638840B2 JP12747882A JP12747882A JPS638840B2 JP S638840 B2 JPS638840 B2 JP S638840B2 JP 12747882 A JP12747882 A JP 12747882A JP 12747882 A JP12747882 A JP 12747882A JP S638840 B2 JPS638840 B2 JP S638840B2
Authority
JP
Japan
Prior art keywords
methane
wastewater
dithionic acid
treatment
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12747882A
Other languages
Japanese (ja)
Other versions
JPS5919595A (en
Inventor
Kaneaki Endo
Takayuki Suzuki
Yoshitaka Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57127478A priority Critical patent/JPS5919595A/en
Publication of JPS5919595A publication Critical patent/JPS5919595A/en
Publication of JPS638840B2 publication Critical patent/JPS638840B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明はジチオン酸のような難分解性COD成
分を含む排水の生物学的処理法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for biological treatment of wastewater containing persistent COD components such as dithionic acid.

排煙脱硫排水の如くのジチオン酸(塩)を含む
廃水のCOD除去法は古くから種々検討されてい
るものの、省エネルギー・省コストたる方法とし
てはいまだ技術的に完成されていない。これは、
ジチオン酸等の硫黄酸化物がきわめて安定な化合
物であつて、強力な酸化分解の手法である塩素分
解、オゾン分解等によつても容易には分解されな
いためである。したがつて、これらの処理法とし
て現在一般的にとられているのは、湿式燃焼法等
の熱分解によるものである。しかるにこの方法
は、焼却のための燃料消費、大規模施設の必要性
等必ずしも効率のよい方法とはいえない欠点を有
している。
Although various methods for removing COD from wastewater containing dithionic acid (salt), such as flue gas desulfurization wastewater, have been studied for a long time, no energy-saving or cost-saving method has yet been technically perfected. this is,
This is because sulfur oxides such as dithionic acid are extremely stable compounds and are not easily decomposed even by strong oxidative decomposition methods such as chlorine decomposition and ozonolysis. Therefore, the currently commonly used treatment method for these is thermal decomposition such as a wet combustion method. However, this method has drawbacks such as the consumption of fuel for incineration and the need for large-scale facilities, which prevent it from being an efficient method.

本発明は、上記従来法の問題点に鑑みて、ジチ
オン酸等の難分解性COD成分を、微生物のもつ
生化学的な分解能力を利用して分解除去せしめる
方法、すなわち嫌気性微生物によつてジチオン酸
又はジチオン酸塩を含む排水の嫌気性分解を進行
せしめる際の分解効率を高める方法を提供するこ
とを目的とするものである。
In view of the problems of the above-mentioned conventional methods, the present invention proposes a method of decomposing and removing persistent COD components such as dithionic acid by utilizing the biochemical decomposition ability of microorganisms, that is, using anaerobic microorganisms. The object of the present invention is to provide a method for increasing the decomposition efficiency when proceeding with anaerobic decomposition of wastewater containing dithionic acid or dithionate.

本発明は、少なくともジチオン酸又はジチオン
酸塩を含む排水にBOD源とハロゲン化メタンを
添加して嫌気性生物処理することを特徴とする含
ジチオン酸排水の処理方法である。
The present invention is a method for treating wastewater containing dithionic acid, which comprises adding a BOD source and halogenated methane to wastewater containing at least dithionic acid or a dithionate salt, and subjecting the wastewater to anaerobic biological treatment.

以下に実施例を踏まえて、本発明の方法とそれ
による効果について詳細に説明する。
The method of the present invention and its effects will be described in detail below based on Examples.

好気性細菌である硫黄酸化細菌(Thiobacillus
属等)や嫌気性細菌である硫酸環元菌
(Desulfovibrio属等)その他の微生物がジチオン
酸のような不完全硫黄酸化物を生物分解できるこ
とは従来の研究によつてよく知られている。本発
明による方法においては、このうちの嫌気性細菌
群によるジチオン酸の如くの物質を分解する能力
を利用するものである。嫌気性菌によるこの分解
には有機物の存在が必要不可欠であつて、ジチオ
ン酸等は有機物のもつ還元力によつて還元分解さ
れる。このために例えば排煙脱硫排水のような有
機物含量の少ない排水におけるジチオン酸の嫌気
性生物分解においては、有機性廃水、廃汚泥、市
販有機物等を添加することによつて分解反応を進
行せしめている。しかし、これらの添加有機物
は、ジチオン酸分解微生物以外の共存する嫌気性
従属栄養性の微生物によつても発酵分解される。
Thiobacillus is an aerobic bacterium.
It is well known from previous studies that anaerobic bacteria such as sulfate ring bacteria (genus Desulfovibrio, etc.) and other microorganisms can biodegrade incomplete sulfur oxides such as dithionic acid. The method according to the present invention utilizes the ability of anaerobic bacteria to decompose substances such as dithionic acid. The presence of organic matter is essential for this decomposition by anaerobic bacteria, and dithionic acid and the like are reductively decomposed by the reducing power of the organic matter. For this reason, for example, in anaerobic biodegradation of dithionic acid in wastewater with low organic matter content, such as flue gas desulfurization wastewater, the decomposition reaction is allowed to proceed by adding organic wastewater, waste sludge, commercially available organic matter, etc. There is. However, these added organic substances are also fermented and decomposed by coexisting anaerobic heterotrophic microorganisms other than dithionate-degrading microorganisms.

本発明は、このような添加有機物をジチオン酸
等の硫黄酸化物の還元分解に優先的に利用させる
方法を見い出すことに成功して完成されものであ
る。以下に実験例を示し、本発明の効果を明らか
にする。
The present invention was completed by successfully discovering a method for preferentially utilizing such added organic substances for the reductive decomposition of sulfur oxides such as dithionic acid. Experimental examples are shown below to clarify the effects of the present invention.

ジチオン酸、アンモニウム塩、リン酸塩、その
他の栄養塩を含む合成排水を調整し、これをジチ
オン酸によつて前培養された嫌気性細菌の混合培
養槽に連続的に流入させる一方、グルコース(そ
の他の糖類)を含む溶液を連続的に供給し混合培
養槽の温度を15℃、滞留時間を6日〜8日に保つ
たところ、徐々にジチオン酸の分解除去がはじま
り、経過日数30日目頃からほぼ定常的に95%以上
のジチオン酸が除去される結果を得た。次に温度
を30℃に保つて同様の実験を行なつたところ滞留
時間を3.0日にまで減少させてもジチオン酸を分
解することはできたが、3.0日〜8日のいずれの
滞留時間でもジチオン酸の分解率は55%を越える
ことはなかつた。
Synthetic wastewater containing dithionic acid, ammonium salts, phosphates, and other nutrients is prepared and fed continuously into a mixed culture tank of anaerobic bacteria preincubated with dithionic acid, while glucose ( When a solution containing (other sugars) was continuously supplied and the temperature of the mixed culture tank was maintained at 15℃ and the residence time was maintained for 6 to 8 days, dithionic acid gradually began to be decomposed and removed, and after 30 days elapsed. Since then, results have been obtained in which more than 95% of dithionic acid is almost constantly removed. Next, when we conducted a similar experiment while keeping the temperature at 30°C, we were able to decompose dithionic acid even if we reduced the residence time to 3.0 days, but we found that dithionic acid could be decomposed even if the residence time was reduced to 3.0 days. The decomposition rate of dithionic acid never exceeded 55%.

次に30℃でのこの実験培養槽に槽内濃度で約
0.05〜3.0mMとなるようにクロロホルムを添加し
て引き続き前記合成排水を培養したところ直ちに
ジチオン酸の分解率は増加し、滞留時間2.0日に
おいても95%以上のジチオン酸除去率が得られ、
処理水のCOD濃度も減少しかつ処理性も安定し
ていた。これと同様のクロロホルムの添加効果が
25℃〜40℃、45℃〜65℃の実験においても確認で
き、クロロホルムを同程度濃度のフツ化メタン、
二フツ化メタン、三フツ化メタン、四フツ化炭
素、クロルメタン、二クロルメタン、四塩化炭
素、臭化メタン、二臭化メタン、三臭化メタン、
四臭化炭素のいずれに代えても同等の効果のみら
れることが知られた。また、添加有機物の種類は
前記グルコースに限定されるものでなく、各種有
機性排水、アルコール類、有機酸類など従来実施
されているものを単独又は適宜に組合わせて利用
することができる。
Next, in this experimental culture tank at 30℃, the concentration in the tank was approximately
When chloroform was added to the concentration of 0.05 to 3.0 mM and the synthetic wastewater was subsequently cultured, the decomposition rate of dithionic acid immediately increased, and a dithionic acid removal rate of 95% or more was obtained even at a residence time of 2.0 days.
The COD concentration in the treated water also decreased and the treatment performance was stable. A similar effect of adding chloroform
This can also be confirmed in experiments at temperatures of 25°C to 40°C and 45°C to 65°C.
Methane difluoride, methane trifluoride, carbon tetrafluoride, chloromethane, dichloromethane, carbon tetrachloride, methane bromide, methane dibromide, methane tribromide,
It was found that the same effect can be seen even if carbon tetrabromide is used instead. Further, the type of organic substance to be added is not limited to the above-mentioned glucose, and conventionally used organic substances such as various organic wastewaters, alcohols, and organic acids can be used alone or in an appropriate combination.

上記のように本発明に至る研究において発見さ
れた現象から、ハロゲン化メタンを加えることに
よつてジチオン酸の分解除去性を高めることがで
きたのは、ハロゲン化メタンが、生物によるジチ
オン酸の還元分解を阻害せずに共存する他の有機
物分解発酵を阻害する作用を有するためと推定さ
れる。
As mentioned above, from the phenomenon discovered in the research leading to the present invention, the addition of halogenated methane was able to improve the decomposition and removal performance of dithionic acid. This is presumed to be because it has the effect of inhibiting the decomposition and fermentation of other coexisting organic substances without inhibiting reductive decomposition.

このように、従来の有機物を添加してジチオン
酸を含む排水を嫌気性生物処理する際に、添加し
た有機物の還元力がジチオン酸の分解にではなく
他の発酵分解に消費されてしまい、それが特に20
℃〜45℃、45℃〜70℃程度の中温処理条件や高温
処理条件で著しかつたがゆえに過剰の有機物を添
加しなければならなかつたのに対して、本発明な
る方法では、ジチオン酸の嫌気性生物による分解
にとつても好適なこれらの温度条件下で、添加し
た有機物のほぼ全量をジチオン酸等の硫黄酸化物
の還元分解のために有効利用させることによつ
て、添加すべき有機物量を大幅に減少せしめるこ
とを可能とするものである。したがつて、ジチオ
ン酸(塩)を含む水の処理コストを大幅に低減せ
しめ、市販有機物のうち比較的高価なものであつ
ても、例えばメタノール、乳酸等のごとくの特に
ジチオン酸の分解にとつて好適な有機物を添加し
つつ処理することを経済的に可能とするものであ
る。
In this way, when conventional anaerobic biological treatment of wastewater containing dithionic acid is performed by adding organic matter, the reducing power of the added organic matter is consumed not for the decomposition of dithionic acid but for other fermentative decomposition processes. especially 20
In contrast, in the method of the present invention, dithionic acid Under these temperature conditions, which are also suitable for decomposition by anaerobic organisms, almost all of the added organic matter is effectively utilized for the reductive decomposition of sulfur oxides such as dithionic acid. This makes it possible to significantly reduce the amount of organic matter. Therefore, the cost of treating water containing dithionic acid (salt) can be significantly reduced, and even relatively expensive commercially available organic substances, such as methanol, lactic acid, etc., are particularly effective for decomposing dithionic acid. This makes it economically possible to carry out the treatment while adding a suitable organic substance.

次に本発明の実施態様の一例を図面に基づいて
詳細に説明する。
Next, an example of an embodiment of the present invention will be described in detail based on the drawings.

ジチオン酸(塩)を含む排水8は混合貯留槽1
に導かれ、有機物9その他の栄養塩類等の添加物
とハロゲン化メタン10のいずれか一種(複数種
類を組合わせてもよい)を添加し混合されて混合
水11となり、嫌気性生物反応器2(以下、反応
器と略記する)へと導かれる。
Wastewater 8 containing dithionic acid (salt) is mixed in a storage tank 1
, organic matter 9 and other additives such as nutrient salts and halogenated methane 10 are added and mixed to form mixed water 11, which is then mixed into anaerobic biological reactor 2. (hereinafter abbreviated as reactor).

この反応器2には温度調整装置20とPHセンサ
ー21およびPH調整用薬注口22が設けられてい
る。温度調整装置20は図示の如くの内部加温方
式でもよいが、外部熱交換器方式によつて流入排
水そのものを加温することも、反応液を外部循環
させることによつて加温することも可能であるほ
か、蒸気吹込み等によつて直接加温することも可
能であり、従来の嫌気性消化に取り入れられてい
るいかなる方式をも利用して反応液温を20〜45℃
もしくは45℃〜70℃の一定温度に保つことができ
る。また、この反応器2には撹拌装置6を設ける
ことが反応器2の種類によつては必要とされる
が、この撹拌方式についても、ガス撹拌等の従来
の嫌気性消化に取り入れられているいかなる方式
であつても、ジチオン酸(塩)の分解に望ましい
撹拌効果を発揮しうるものであれば採用可能であ
る。反応器2内の液PHは5.0〜8.5の範囲でジチオ
ン酸の分解が可能であるが、好ましくは6.0〜7.5
の中性付近とするのが分解効率を向上させるうえ
では望ましい。
This reactor 2 is provided with a temperature adjustment device 20, a PH sensor 21, and a PH adjustment chemical inlet 22. The temperature adjustment device 20 may be of an internal heating type as shown in the figure, but it can also be heated by an external heat exchanger type to heat the inflowing wastewater itself, or by externally circulating the reaction liquid. In addition, it is also possible to heat the reaction liquid directly by blowing steam, etc., using any method used in conventional anaerobic digestion to maintain the temperature of the reaction liquid at 20 to 45°C.
Alternatively, it can be maintained at a constant temperature of 45°C to 70°C. Also, depending on the type of reactor 2, it may be necessary to provide a stirring device 6 in this reactor 2, but this stirring method is also incorporated into conventional anaerobic digestion such as gas stirring. Any method can be used as long as it can exhibit a stirring effect desirable for decomposing dithionic acid (salt). The pH of the liquid in the reactor 2 can decompose dithionic acid within the range of 5.0 to 8.5, but preferably 6.0 to 7.5.
It is desirable to keep the temperature near neutrality in order to improve the decomposition efficiency.

上記のような反応条件下で、それらの設定条件
およびジチオン酸(塩)の負荷条件に応じて、流
入排水は通常4時間〜5日程度この反応器2内に
滞留し分解反応を受ける。その後、(嫌気性)生
物処理水12としてこの反応器2より流出する
が、この生物処理水12には低濃度ではあるがハ
ロゲン化メタンが含まれており、放流水域のそれ
らの許容値が満足できる特別の場合を除いて次段
の処理を必要とする。また、この次段の処理の必
要の有無に拘らず、反応器2からの流出水を固液
分離装置3によつて固液分離し、分離液15と汚
泥画分とに分離し汚泥画分の一部を返送汚泥13
として反応器2に返送することは、反応器2を高
率的に運転するうえで効果的である。残余の汚泥
は余剰汚泥14として汚泥の処理・処分にまわさ
れる。
Under the above-mentioned reaction conditions, the inflow wastewater usually remains in the reactor 2 for about 4 hours to 5 days and undergoes a decomposition reaction, depending on the setting conditions and the loading conditions of dithionic acid (salt). Thereafter, it flows out from this reactor 2 as (anaerobic) biologically treated water 12, but this biologically treated water 12 contains halogenated methane, albeit at a low concentration, and these permissible values for the discharge area are satisfied. The next stage of processing is required except in special cases where it is possible. In addition, regardless of whether or not this next stage treatment is necessary, the effluent water from the reactor 2 is separated into solid and liquid by the solid-liquid separator 3 and separated into a separated liquid 15 and a sludge fraction. Part of the sludge returned 13
Returning the reactor 2 to the reactor 2 is effective in operating the reactor 2 at high efficiency. The remaining sludge is used as surplus sludge 14 for sludge treatment and disposal.

本発明なる方法において、ジチオン酸(塩)を
含む排水の嫌気性生物処理水12の中に含まれる
ハロゲン化メタンの除去法としては、加熱追い出
し、蒸気または空気によるストリツピング、オゾ
ン分解処理、活性炭による吸着処理およびこれら
の組合わせ処理等従来のハロゲン化メタンの除去
法に採用されている処理法であればいかなる方式
および条件であつてもそのまま用いることがで
き、これらの多くは残留CODの除去をも目的と
して適用することができる。
In the method of the present invention, methods for removing halogenated methane contained in the anaerobic biologically treated water 12 of wastewater containing dithionic acid (salt) include heating expulsion, stripping with steam or air, ozone decomposition treatment, and activated carbon treatment. Any treatment method and conditions adopted for conventional halogenated methane removal methods, such as adsorption treatment and combination treatments, can be used as is, and many of these methods are effective for removing residual COD. It can also be applied as a purpose.

しかしハロゲン化メタンの処理法として、次段
に、図示のごとくの曝気装置などを備えた好気性
生物反応器4を設けて処理する方法は、特に本法
のように前段の嫌気性生物反応において有機物と
ハロゲン化メタンを同時に添加した場合のよう
に、ハロゲン化メタンのほかにも有機物が残存す
る可能性の高い方式においては有効となる。スト
リツピング法、吸着法、オゾン分解法等の物理化
学的方法においては、残存有機物によるCOD濃
度が高い場にはエネルギー消費、薬品使用量等が
急増しきわめて不経済となるため、これに代る上
記の好気性生物処理を選択することができる。通
常この好気性生物反応器4にはブロワー7から空
気23が強制的に吹き込まれるが、曝気方法とし
てはこれに限られるものではなく表面曝気方式、
水中エアレータ方式、回転円板方式等であつても
ハロゲン化メタンの生物分解にとつて十分な酸素
供給能力を持つものであれば採用しうる。
However, as a treatment method for halogenated methane, a method in which an aerobic biological reactor 4 equipped with an aeration device as shown in the figure is installed in the next stage for treatment is particularly important in the anaerobic biological reaction in the first stage as in this method. This is effective in systems where there is a high possibility that organic substances will remain in addition to the halogenated methane, such as when organic substances and halogenated methane are added at the same time. Physicochemical methods such as stripping, adsorption, and ozonolysis methods are extremely uneconomical due to rapid increase in energy consumption and chemical consumption in areas where the COD concentration due to residual organic matter is high. Aerobic biological treatment can be selected. Normally, air 23 is forcibly blown into this aerobic bioreactor 4 from a blower 7, but the aeration method is not limited to this, and the surface aeration method,
Submersible aerator systems, rotating disk systems, etc. may be used as long as they have sufficient oxygen supply capacity for biodegradation of halogenated methane.

好気性生物反応器4からの流出水16は、通常
固液分離装置5によつて固液分離され、分離液1
9は直接もしくはさらなる無害化処理をなされた
後水域へと放流される。沈殿汚泥画分の一部は返
送汚泥17として好気性生物反応器4に返送さ
れ、残りは余剰汚泥18として別途処理処分され
る。
The effluent water 16 from the aerobic biological reactor 4 is normally separated into solid and liquid by the solid-liquid separator 5, and the separated liquid 1
9 is discharged into water bodies either directly or after further detoxification treatment. A part of the settled sludge fraction is returned to the aerobic biological reactor 4 as return sludge 17, and the rest is separately processed and disposed of as surplus sludge 18.

以上示した如く、本発明の一実施態様において
は嫌気性生物処理反応器2と、それに引き続く好
気性生物反応器4を設けたものであるが、これら
の反応器の型式は一般には単なる混合槽型反応器
とすることが多いが、充填床固定床方式、流動媒
体を入れた流動床方式等を採用することも可能で
あつて、従来報告されている生物反応器であれば
運転条件の設定を適切に選択することによつてほ
ぼすべて採用しうるものとなる。また図示した2
つの固液分離装置3および5も、単なる沈殿池方
式とすることが最も安価ではあるが建設費、運転
費、必要土地面積などの制約によつては遠心分
離、浮上分離等の従来のいかなる固液分離法を採
用してもかまわないが、生物体を返送する関係上
微生物を失活させるような方法はとり入れること
ができない。
As shown above, one embodiment of the present invention is provided with an anaerobic biological treatment reactor 2 and an aerobic biological reactor 4 following it, but the type of these reactors is generally a simple mixing tank. Although it is often a type reactor, it is also possible to adopt a packed bed fixed bed system, a fluidized bed system containing a fluidized medium, etc. If it is a conventionally reported bioreactor, it is possible to set the operating conditions. By selecting appropriately, almost all of them can be adopted. Also shown in the diagram is 2
For the solid-liquid separators 3 and 5, it is cheapest to use a simple sedimentation tank system, but depending on constraints such as construction costs, operating costs, and required land area, conventional solid-liquid separation systems such as centrifugal separation and flotation separation may be used. Although a liquid separation method may be used, methods that would inactivate the microorganisms cannot be used because the living organisms must be returned.

本発明による嫌気性生物反応器に、この反応器
内におけるジチオン酸(塩)等の硫黄化合物の分
解過程で生成される硫化水素を除去しつつ生物分
解を行なわせしめる方法を取り入れることは、本
発明の効果をさらに高めるうえで有効である。こ
れは、既知のごとく硫黄酸化物の分解経路におい
て多量の硫化水素が生成され、それが特にジチオ
ン酸の分解を阻害することからも知られるよう
に、本発明による方法によつて高速度でのジチオ
ン酸(塩)の分解を進行せしめた際には、特に大
量の硫化水素が集積し嫌気性生物によるジチオン
酸等の還元分解に著しい悪影響を及ぼす。脱硫化
水素によつてこれを防止することができるため、
脱硫化水素を行なうことの効果は従来法に比較し
てきわめて高いものとなる。
The present invention incorporates into the anaerobic biological reactor according to the present invention a method for performing biodegradation while removing hydrogen sulfide generated during the decomposition process of sulfur compounds such as dithionic acid (salt) in the reactor. This is effective in further enhancing the effects of This is because, as is known, a large amount of hydrogen sulfide is produced in the decomposition pathway of sulfur oxides, which particularly inhibits the decomposition of dithionic acid. When the decomposition of dithionic acid (salt) progresses, a particularly large amount of hydrogen sulfide accumulates, which has a significant adverse effect on the reductive decomposition of dithionic acid and the like by anaerobic organisms. This can be prevented by hydrogen desulfurization, so
The effect of performing hydrogen desulfurization is extremely high compared to conventional methods.

脱硫化水素の方法としては従来から報告されて
いるもの、たとえば液体吸収剤もしくは固体吸収
剤による吸収法、消化ガスの脱硫に用いられてい
るタカハツクス法やサイロツク法などを、そのま
ま採用すれば十分で、本発明なる方法にとつて特
別の方式というものを必要とするものではない点
は、装置構成を従来以上に複雑なものとしないこ
とで製作上も運転管理上も利点となる。
It is sufficient to adopt conventionally reported methods for desulfurizing hydrogen, such as the absorption method using liquid or solid absorbents, the Takahatsu method and the Silotsu method used for desulfurization of digestion gas, as they are. The fact that the method of the present invention does not require any special system is advantageous in terms of manufacturing and operation management since the device configuration does not become more complicated than before.

また、このような脱硫化水素の効果は、排水中
のジチオン酸の濃度が高い場合に特に大である。
したがつて、流入する排水中のジチオン酸(塩)
の濃度が低い場合には少なくとも300〜500mg/
以上となるように、予めイオン交換処理その他の
物理化学的方法による濃縮工程によつてジチオン
酸(塩)を濃縮することが有効となる。
Moreover, the effect of such hydrogen desulfurization is particularly large when the concentration of dithionic acid in the waste water is high.
Therefore, dithionic acid (salt) in the incoming wastewater
If the concentration of
As described above, it is effective to concentrate dithionic acid (salt) in advance through a concentration step using ion exchange treatment or other physicochemical methods.

以上述べたように、本発明によれば簡潔なプロ
セス、簡単な装置により極めて省エネルギー的、
経済的にかつ高効率でジチオン酸(塩)を分解除
去することができ、運転管理も簡便に行なえるな
ど、多大の効果をもたらすものである。
As described above, according to the present invention, a simple process and a simple device result in extremely energy saving.
This method brings many benefits, such as being able to decompose and remove dithionic acid (salt) economically and with high efficiency, and making operation management easy.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施態様を示すフローシート
である。 1……混合貯留槽、2……反応器、3,5……
固液分離装置、4……好気性生物反応器、6……
撹拌装置、7……ブロワー、8……排水、9……
有機物、10……ハロゲン化メタン、11……混
合水、12……生物処理水、13,17……返送
汚泥、14,18……余剰汚泥、15……分離
液、16……流出水、19……分離液、20……
温度調整装置、21……PHセンサー、22……PH
調整用薬注口、23……空気。
The drawing is a flow sheet showing one embodiment of the invention. 1... Mixing storage tank, 2... Reactor, 3, 5...
Solid-liquid separator, 4...Aerobic biological reactor, 6...
Stirring device, 7...Blower, 8...Drainage, 9...
Organic matter, 10... Halogenated methane, 11... Mixed water, 12... Biologically treated water, 13, 17... Returned sludge, 14, 18... Excess sludge, 15... Separated liquid, 16... Runoff water, 19...Separated liquid, 20...
Temperature adjustment device, 21...PH sensor, 22...PH
Adjustment medicine spout, 23...Air.

Claims (1)

【特許請求の範囲】 1 少なくともジチオン酸又はジチオン酸塩を含
む排水にBOD源とハロゲン化メタンを添加して
嫌気性生物処理することを特徴とする含ジチオン
酸排水の処理方法。 2 前記嫌気性生物処理を、該生物処理水を固液
分離処理して得られる微生物汚泥を返送して行な
う特許請求の範囲第1項記載の方法。 3 前記固液分離処理により得られる分離水を好
気性生物処理する特許請求の範囲第2項記載の方
法。 4 前記ハロゲン化メタンがクロルメタン、二ク
ロルメタン、クロロホルム、四塩化炭素、フツ化
メタン、二フツ化メタン、三フツ化メタン、四フ
ツ化炭素、臭化メタン、二臭化メタン、三臭化メ
タン、四臭化炭素よりなる1群中から任意に選ん
だものである特許請求の範囲第1項、第2項又は
第3項記載の方法。 5 前記嫌気性生物処理を、該処理過程において
発生する硫化水素を除去しながら行なう特許請求
の範囲第1項、第2項又は第3項記載の方法。 6 前記排水が、予めイオン交換処理などの物理
化学的方法により濃縮してジチオン酸又はジチオ
ン酸塩の濃度を高めたものである特許請求の範囲
第1項、第2項、第3項又は第5項記載の方法。 7 前記嫌気性生物処理を、反応液のPHを6.0〜
7.5に維持して行なう特許請求の範囲第1項記載
の方法。 8 前記BOD源が糖類、有機性排水、アルコー
ル類、有機酸類よりなる1群中から任意に選んだ
ものである特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. A method for treating dithionic acid-containing wastewater, which comprises adding a BOD source and halogenated methane to wastewater containing at least dithionic acid or a dithionate salt, and subjecting the wastewater to anaerobic biological treatment. 2. The method according to claim 1, wherein the anaerobic biological treatment is performed by returning microbial sludge obtained by subjecting the biologically treated water to solid-liquid separation treatment. 3. The method according to claim 2, wherein the separated water obtained by the solid-liquid separation treatment is subjected to aerobic biological treatment. 4 The halogenated methane is chloromethane, dichloromethane, chloroform, carbon tetrachloride, methane fluoride, methane difluoride, methane trifluoride, carbon tetrafluoride, methane bromide, methane dibromide, methane tribromide, The method according to claim 1, 2 or 3, wherein the carbon tetrabromide is selected arbitrarily from the group consisting of carbon tetrabromide. 5. The method according to claim 1, 2, or 3, wherein the anaerobic biological treatment is performed while removing hydrogen sulfide generated during the treatment process. 6. Claims 1, 2, 3, or 6, wherein the wastewater has been concentrated in advance by a physicochemical method such as ion exchange treatment to increase the concentration of dithionic acid or dithionate salt. The method described in Section 5. 7 Perform the anaerobic biological treatment at a pH of 6.0 to 6.0.
7.5. 8. The method according to claim 1, wherein the BOD source is arbitrarily selected from the group consisting of sugars, organic wastewater, alcohols, and organic acids.
JP57127478A 1982-07-23 1982-07-23 Treatment of dithonic acid-contg. waste water Granted JPS5919595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57127478A JPS5919595A (en) 1982-07-23 1982-07-23 Treatment of dithonic acid-contg. waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57127478A JPS5919595A (en) 1982-07-23 1982-07-23 Treatment of dithonic acid-contg. waste water

Publications (2)

Publication Number Publication Date
JPS5919595A JPS5919595A (en) 1984-02-01
JPS638840B2 true JPS638840B2 (en) 1988-02-24

Family

ID=14960926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57127478A Granted JPS5919595A (en) 1982-07-23 1982-07-23 Treatment of dithonic acid-contg. waste water

Country Status (1)

Country Link
JP (1) JPS5919595A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277815A (en) * 1992-05-04 1994-01-11 E. I. Du Pont De Nemours And Company In situ biodegradation of groundwater contaminants
US5518619A (en) * 1992-05-26 1996-05-21 Paques B. V. Process for removing sulphur compounds from water
NL9200927A (en) * 1992-05-26 1993-12-16 Pacques Bv METHOD FOR REMOVING SULFUR COMPOUNDS FROM WATER.

Also Published As

Publication number Publication date
JPS5919595A (en) 1984-02-01

Similar Documents

Publication Publication Date Title
WO2003093178A1 (en) Organic slurry treatment process
WO2014146439A1 (en) Biochemical method for treating synthetic leather wastewater comprising dimethylformamide
US6033571A (en) Activated sludge treatment method and apparatus
CN109354347A (en) A kind of processing method of neomycinsulphate production waste water
JP3122654B2 (en) Method and apparatus for treating highly concentrated wastewater
CN1326786C (en) Method and apparatus for treating organic waste
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
KR100479649B1 (en) The procces and apparatus of Livestock wastewater treatment.
JP2004097856A (en) Equipment and method for waste liquid treatment
KR20220096414A (en) Apparatus for treating waste water using iron oxide powder
KR100497810B1 (en) System of circulated sequencing batch Reactor with media containing zeolite for organic matters, nitrogen and phosphorus removal in sewage and waste waters
JP4329359B2 (en) Denitrification method
JPH0698358B2 (en) Treatment method for human waste
JPS638840B2 (en)
KR102340961B1 (en) Apparatus for treating waste water using iron oxide powder
JPH05228493A (en) Method for treating waste water using sulfur bacterium and apparatus therefor
KR100311587B1 (en) Batch type apparatus for treating organic wastewater/sewage
JP2002210489A (en) Treating method of waste water containing polyethylene glycol and apparatus therefor
KR19980019537A (en) (N) and phosphorus (P) from the drainage disposal in the rotating disc process,
KR100752332B1 (en) Composting system for sewage sludge using by autothermal thermophilic aerobic digestion
JP2003334589A (en) Wastewater treatment method and treatment apparatus therefor
KR200289075Y1 (en) Apparatus of Livestock wastewater treatment.
CN113104966B (en) Efficient autotrophic nitrogen removal treatment method for urea wastewater
KR100254523B1 (en) Natural purification method and apparatus thereof
KR100291240B1 (en) Method of removing nitrogen and phosphorus from wastewater and sewage using rotating biological contactor