JPS5919595A - Treatment of dithonic acid-contg. waste water - Google Patents
Treatment of dithonic acid-contg. waste waterInfo
- Publication number
- JPS5919595A JPS5919595A JP57127478A JP12747882A JPS5919595A JP S5919595 A JPS5919595 A JP S5919595A JP 57127478 A JP57127478 A JP 57127478A JP 12747882 A JP12747882 A JP 12747882A JP S5919595 A JPS5919595 A JP S5919595A
- Authority
- JP
- Japan
- Prior art keywords
- methane
- treatment
- dithionic acid
- liquid
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 27
- 238000011282 treatment Methods 0.000 title claims description 27
- RMGVZKRVHHSUIM-UHFFFAOYSA-N dithionic acid Chemical compound OS(=O)(=O)S(O)(=O)=O RMGVZKRVHHSUIM-UHFFFAOYSA-N 0.000 claims abstract description 36
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000007788 liquid Substances 0.000 claims abstract description 20
- 150000003839 salts Chemical class 0.000 claims abstract description 16
- 239000010802 sludge Substances 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229940075933 dithionate Drugs 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 58
- 238000000926 separation method Methods 0.000 claims description 6
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 claims description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims description 4
- NEHMKBQYUWJMIP-UHFFFAOYSA-N anhydrous methyl chloride Natural products ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 2
- 238000005342 ion exchange Methods 0.000 claims description 2
- 150000007524 organic acids Chemical class 0.000 claims description 2
- 235000005985 organic acids Nutrition 0.000 claims description 2
- 238000011197 physicochemical method Methods 0.000 claims description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims description 2
- JYQIXRIZIOZHEP-UHFFFAOYSA-N C.Br.Br.Br Chemical compound C.Br.Br.Br JYQIXRIZIOZHEP-UHFFFAOYSA-N 0.000 claims 2
- PBYMHCSNWNVMIC-UHFFFAOYSA-N C.F.F Chemical compound C.F.F PBYMHCSNWNVMIC-UHFFFAOYSA-N 0.000 claims 1
- NEHMKBQYUWJMIP-OUBTZVSYSA-N chloromethane Chemical group Cl[13CH3] NEHMKBQYUWJMIP-OUBTZVSYSA-N 0.000 claims 1
- ZMVAWNCSXGFEDX-UHFFFAOYSA-N methane hydrobromide Chemical compound Br.C[H] ZMVAWNCSXGFEDX-UHFFFAOYSA-N 0.000 claims 1
- UNRFQJSWBQGLDR-UHFFFAOYSA-N methane trihydrofluoride Chemical compound C.F.F.F UNRFQJSWBQGLDR-UHFFFAOYSA-N 0.000 claims 1
- UUXZFMKOCRKVDG-UHFFFAOYSA-N methane;hydrofluoride Chemical compound C.F UUXZFMKOCRKVDG-UHFFFAOYSA-N 0.000 claims 1
- 230000000813 microbial effect Effects 0.000 claims 1
- 235000000346 sugar Nutrition 0.000 claims 1
- 150000008163 sugars Chemical group 0.000 claims 1
- 238000000354 decomposition reaction Methods 0.000 abstract description 26
- 239000000126 substance Substances 0.000 abstract description 13
- 238000002156 mixing Methods 0.000 abstract description 5
- -1 methane halide Chemical class 0.000 abstract description 3
- 239000000654 additive Substances 0.000 abstract description 2
- 239000012295 chemical reaction liquid Substances 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract 2
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- 230000000050 nutritive effect Effects 0.000 abstract 1
- 239000005416 organic matter Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 7
- 238000006477 desulfuration reaction Methods 0.000 description 6
- 230000023556 desulfurization Effects 0.000 description 6
- 244000005700 microbiome Species 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 5
- 229910052815 sulfur oxide Inorganic materials 0.000 description 5
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000005273 aeration Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000006065 biodegradation reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- AXSSDWHFEGMMQR-UHFFFAOYSA-N S(=O)(=O)(O)S(=O)(=O)O.N Chemical compound S(=O)(=O)(O)S(=O)(=O)O.N AXSSDWHFEGMMQR-UHFFFAOYSA-N 0.000 description 1
- 238000005276 aerator Methods 0.000 description 1
- 241001148470 aerobic bacillus Species 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 125000004119 disulfanediyl group Chemical group *SS* 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005949 ozonolysis reaction Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y02W10/12—
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はジチオン酸のような難分解性COD成分を含む
排水の生物学的処理法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for biological treatment of wastewater containing persistent COD components such as dithionic acid.
排煙脱硫排水の如くの・ジチオン酸(塩)を含む廃水の
COD除去法は古くから種々横側されているものの、省
エネルギー・省コストたる方法としてはいまだ技術的に
完成されていない。これは、ジチオン酸等の硫黄酸化物
がきわめて安定な化合物であって、強力な酸化分解の手
法である塩素分解。Although various methods for removing COD from wastewater containing dithionic acid (salt), such as flue gas desulfurization wastewater, have been proposed for a long time, no energy-saving or cost-saving method has yet been technically perfected. This is because sulfur oxides such as dithionic acid are extremely stable compounds, and chlorine decomposition is a powerful oxidative decomposition method.
オゾン分解等によっても容易には分解されないためであ
る。しだがって、これらの処理法として現在一般的にと
られているのけ、湿式燃焼法等の熱分解によるものであ
る。しかるにこの方法は、焼却のための燃料消費、大規
模施設の必要性等必ずしも効率のよい方法とはいえない
欠点を有している。This is because it is not easily decomposed by ozone decomposition or the like. Therefore, the only treatment method commonly used at present is thermal decomposition such as a wet combustion method. However, this method has drawbacks such as the consumption of fuel for incineration and the need for large-scale facilities, which prevent it from being an efficient method.
本発明は、上記従来法の問題点に鑑みて、ジチオン酸等
の難分解性COD成分を、微生物のもつ生化学的な分解
能力を利用して分解除去せしめる方法、すなわち嫌気性
微生物によってジチメン酸又はジチオン酸塩を含む排水
の嫌気性分解を進行せしめる際の分解効率を高める方法
を提供するととを目的とするものである。In view of the above-mentioned problems of the conventional method, the present invention proposes a method for decomposing and removing refractory COD components such as dithionic acid by utilizing the biochemical decomposition ability of microorganisms. Another object of the present invention is to provide a method for increasing the decomposition efficiency when proceeding with anaerobic decomposition of wastewater containing dithionate.
本発明は、少なくともジチオン酸又はジチオン酸塩を含
む排水にBOD源とノ・ロゲン化メタンを添加して嫌気
性生物処理することを特徴とする含ジチオン酸排水の処
理方法である。The present invention is a method for treating wastewater containing dithionic acid, which comprises adding a BOD source and norogenated methane to wastewater containing at least dithionic acid or a dithionate salt, and subjecting the wastewater to anaerobic biological treatment.
以下に実施例を踏まえて、本発明の方法とそれによる効
果圧ついて詳細に説明する。The method of the present invention and the effective pressure resulting therefrom will be explained in detail below based on Examples.
好気性細菌である硫黄酸化細菌(Tb1obaci ]
lus属等)や嫌気性細菌である硫酸還元菌(Desu
lfovibri。Sulfur-oxidizing bacteria (Tb1obacii), which are aerobic bacteria
lus, etc.) and anaerobic bacteria such as sulfate-reducing bacteria (Desu
lfovibri.
属等)その他の微生物がジチメン酸のような不完全硫黄
酸化物を生物分解できることは従来の研究によってよく
知られている。本発明による方法においては、このうち
の嫌気性細菌群によるジチオン酸の如くの物質を分解す
る能力を利用するものである。嫌気性菌によるこの分解
には有機物の存在が必要不可欠であって、ジチオン酸等
は有機物のもつ還元力によって還元分解される。このた
めK例えば排煙脱硫排水のような有機物含量の少ない排
水におけるジチオン酸の嫌気性生物分解においては、有
機性廃水、廃汚泥、市販有機物等を添加することによっ
て分解反応を進行せしめている。It is well known from previous studies that other microorganisms (genus, etc.) can biodegrade incomplete sulfur oxides such as dithimenic acid. The method according to the present invention utilizes the ability of anaerobic bacteria to decompose substances such as dithionic acid. The presence of organic matter is essential for this decomposition by anaerobic bacteria, and dithionic acid and the like are reductively decomposed by the reducing power of the organic matter. For this reason, in the anaerobic biodegradation of dithionic acid in wastewater with a low organic matter content, such as flue gas desulfurization wastewater, the decomposition reaction is progressed by adding organic wastewater, waste sludge, commercially available organic matter, etc.
しかし、これらの添加有機物は、ジチオン酸分解微生物
以外の共存する嫌気性従属栄養性の微生物によっても発
酵分解される。However, these added organic substances are also fermented and decomposed by coexisting anaerobic heterotrophic microorganisms other than dithionate-degrading microorganisms.
本発明は、このような添加有機物をジチオン酸等の硫黄
酸化物の還元分解に優先的に利用させる方法を見い出す
ことに成功して完成されたものである。以下に実験例を
示し、本発明の効果を明らかにする。The present invention was completed by successfully discovering a method for preferentially utilizing such added organic substances for the reductive decomposition of sulfur oxides such as dithionic acid. Experimental examples are shown below to clarify the effects of the present invention.
ジチオン酸1アンモニウム塩、リン酸塩、その他の栄養
塩を含む合成排水を調整し、これをジチオン酸によって
前培養された嫌気性細菌の混合培養槽に連続的に流入さ
せる一方、グルコース(その他の糖類)を含む溶液を連
続的に供給し混合培養槽の温度を15℃、滞留時間を6
日〜8日に保ったところ、徐々にジチオン酸の分解除去
がはじまり、経過日数30日目頃からほぼ定常的に95
%以上のジチオン酸が除去される結果を得た。次に温度
を30℃に保って同様の実験を行なったところ滞留時間
を30日にまで減少させてもジチオン酸を分解すること
はできたが、3.0日〜8日のいずれの滞留時間でもジ
チオン酸の分解率は55係を越えることはなかった。Synthetic wastewater containing monoammonium dithionate, phosphate, and other nutrients is prepared and fed continuously into a mixed culture tank of anaerobic bacteria preincubated with dithionate, while glucose (and other A solution containing saccharides) was continuously supplied, the temperature of the mixing culture tank was kept at 15℃, and the residence time was 6 days.
When kept for 8 days to 8 days, the decomposition and removal of dithionic acid gradually began, and from around the 30th day, 95%
% or more of dithionic acid was removed. Next, when we conducted a similar experiment while keeping the temperature at 30°C, we were able to decompose dithionic acid even if we reduced the residence time to 30 days. However, the decomposition rate of dithionic acid never exceeded 55%.
次に30℃でのこの実験培養t!に槽内濃度で約0.0
5〜3.0mMとなるようにクロロポルムを添加して引
き続き前記合成排水を培養したところ直ちにジチオン酸
の分解率は増加し、滞留時間2.0日においても95係
以上のジチオン酸除去率が得られ、処理水のCOD濃度
も減少しかつ処理性も安定していた。これと同様のクロ
ロホルムの添加効果が25℃〜40℃、45℃〜65℃
の実験においても確認でき、クロロポルムを同程度濃度
のフン化メタン、ニフッ化メタン、三フッ化メタン、四
フッ化炭素、クロルメタン、ニクロルメタン、四塩化炭
素、臭化メタン、三臭化メタン、三臭化メタン、四臭化
炭素のいずれに代えても同等の効果のみもれることが知
られた。まだ、添加有機物の種類は前記グルコースに限
定されるものでなく、各種有機性排水。Next, this experimental culture at 30°C! The concentration in the tank is approximately 0.0.
When the synthetic wastewater was subsequently cultured after adding chloroporum to a concentration of 5 to 3.0 mM, the decomposition rate of dithionic acid immediately increased, and even at a residence time of 2.0 days, a dithionic acid removal rate of 95 coefficients or higher was obtained. The COD concentration of the treated water was reduced, and the treatment performance was stable. The same effect of adding chloroform is 25℃~40℃, 45℃~65℃
It was also confirmed in experiments that chloroporum was detected in similar concentrations of fluorinated methane, difluorided methane, trifluorided methane, carbon tetrafluoride, chloromethane, nichloromethane, carbon tetrachloride, bromated methane, tribromated methane, and trifluorinated methane. It has been found that the same effect can be obtained even if methane or carbon tetrabromide is used instead. However, the types of organic substances added are not limited to the above-mentioned glucose, but may also include various organic wastewaters.
アルコール類、有機酸類など従来実施されているものを
単独又は適宜に組合わせて利用することができる。Conventionally used alcohols, organic acids, and the like can be used alone or in appropriate combinations.
上記のように本発明に至る研究において発見された現象
から、ハロゲン化メタンを加えることによってジチオン
酸の分解除去性を高めることができだのけ、ノ・ロゲン
化メタンが、生物によるジチオン酸の還元分解を阻害せ
ずに共存する他の有機物分解発酵を阻害する作用を有す
るためと推定される。As mentioned above, from the phenomenon discovered in the research that led to the present invention, it was found that adding halogenated methane can improve the decomposition and removal properties of dithionic acid. This is presumed to be because it has the effect of inhibiting the decomposition and fermentation of other coexisting organic substances without inhibiting reductive decomposition.
このように、従来の有機物を添加してジチオン酸を含む
排水を嫌気性生物処理する際に、添加した有機物の還元
力がジチオン酸の分解にではなく他の発酵分解に消費さ
れてしまい、それが特に20℃〜45℃、45℃〜70
℃程度の中温処理条件や高温処理条件で著しかったがゆ
えに過剰の有機物を添加しなければならなかったのに対
して、本発明なる方法では、ジチオン酸の嫌気性生物に
よる分解にとっても好適なこれらの温度条件下で、添加
した有機物のほぼ全景をジチオン酸等の硫黄酸化物の還
元分解のために有効利用させることによって、添加すべ
き有機物量を大幅に減少せしめることを可能とするもの
である。しだがって、ジチオン酸(塩)を含む排水の処
理コストを大幅に低減ぜしめ、市販有機物のうち比較的
高価なものであっても、例えばメタノール、乳酸等のど
とくの特にジチオン酸の分解にとって好適な有機物を添
加しつつ処理することを経済的に可能とするものである
。In this way, when conventional anaerobic biological treatment of wastewater containing dithionic acid is performed by adding organic matter, the reducing power of the added organic matter is consumed not for the decomposition of dithionic acid but for other fermentative decomposition processes. is especially 20℃~45℃, 45℃~70℃
In contrast, in the method of the present invention, it was necessary to add an excessive amount of organic matter because it was significant under medium-temperature treatment conditions or high-temperature treatment conditions of about By effectively utilizing almost the entire area of the added organic matter for reductive decomposition of sulfur oxides such as dithionic acid under temperature conditions of . Therefore, the cost of treating wastewater containing dithionic acid (salt) can be significantly reduced, and even relatively expensive commercially available organic substances, such as methanol and lactic acid, can be decomposed, especially dithionic acid. This makes it economically possible to carry out the treatment while adding organic substances suitable for the treatment.
次に本発明の実施態様の一例を図面に基づいて詳細に説
明する。Next, an example of an embodiment of the present invention will be described in detail based on the drawings.
シナオン酸(塩)を含む排水8け混合貯留槽]に導かれ
、有機物9その他の栄養塩類等の添加物とハロゲン化メ
タン10のいずれか一部(複数種類を組合わせてもよい
)を添加し混合されて混合水11となり、嫌気性生物反
応器2(以下、反応器と略記する)へと導かれる。Wastewater containing sinaonic acid (salt) is introduced into a mixing storage tank containing 8 containers of sinaonic acid (salt), and any one of additives such as organic matter 9 and other nutrient salts and halogenated methane 10 (multiple types may be combined) is added. The water is mixed to form mixed water 11, which is led to an anaerobic biological reactor 2 (hereinafter abbreviated as reactor).
この反応器2には温度調整装置20とpHセンザー21
およびpH調調整用性注口22設けらり、ている。温度
調整装置20け図示の如くの内部加温方式でもよいが、
外部熱交換器方式によって流入排水そのものを加温する
ことも、反応液を外部循環させることによって加温する
ことも可能であるほか、蒸気吹込み等によって直接加温
することも可能であり、従来の嫌気性消化に取り入れら
れているいかがる方式をも利用して反応液温を20℃〜
45℃もしくば45℃〜70℃の一定温度に保つことが
できる。また、この反応器2には攪拌装置6を設けるこ
とが反応器2の種類によっては必要さ、されるが、この
攪拌方式についても、ガス攪拌等の従来の嫌気性消化に
取り入れられているいかなる方式であっても、ジチオン
酸(塩)の分解に望ましい攪拌効果を発揮しうるもので
あれば採用可能である。反応器2内の液rlHは5.0
〜85の範囲でジチオン酸の分解が可能であるが、好ま
しくは6.0〜7.5の中性付近とするのが分解効率を
向上させるうえでは望せしい。This reactor 2 includes a temperature adjustment device 20 and a pH sensor 21.
Also, a spout 22 for pH adjustment is provided. Although the temperature adjustment device 20 may be an internal heating system as shown in the figure,
It is possible to heat the inflowing wastewater itself using an external heat exchanger method, to heat it by circulating the reaction liquid externally, and to heat it directly by blowing steam, etc. Using the same method used in anaerobic digestion, the temperature of the reaction solution was kept at 20°C.
The temperature can be maintained at a constant temperature of 45°C or 45°C to 70°C. In addition, depending on the type of reactor 2, it may be necessary to provide a stirring device 6 in this reactor 2, but this stirring method can also be adapted to any method that has been incorporated into conventional anaerobic digestion, such as gas stirring. Any method can be adopted as long as it can exhibit a stirring effect desirable for decomposing dithionic acid (salt). Liquid rlH in reactor 2 is 5.0
Although it is possible to decompose dithionic acid within the range of 85 to 85, it is preferable to set it at around neutrality of 6.0 to 7.5 in order to improve the decomposition efficiency.
上記のような反応条件下で、それらの設定条件およびジ
チオン酸(塩)の負荷条件に応じて、流入排水は通常4
時間〜5日程度この反応器2内に滞留し分解反応を受け
る。その後、(Iti、気性)生物処理水12としてこ
の反応器2より流出するが、この生物処理水12には低
濃度ではあるがハロゲン化メタンが含まれており、放流
水域のそれらの許容値が満足できる特別の場合を除いて
次段の処理を必要とする。また、この次段の処理の必要
の有無に拘らず、反応器2からの流出水を固液分離装置
3によって固液分離し、分離液15と汚泥画分とに分離
し汚泥画分の一部を返送汚泥13として反応器2に返送
することは、反応器2を高率的に運転するうえで効果的
である。残余の汚泥は余剰汚泥14として汚泥の処理・
処分にまわされる。Under reaction conditions as described above, depending on their settings and dithionate (salt) loading conditions, the influent effluent is usually 4
It stays in this reactor 2 for about 5 days to undergo a decomposition reaction. Thereafter, it flows out from this reactor 2 as (Iti, temperament) biologically treated water 12, but this biologically treated water 12 contains halogenated methane, albeit at a low concentration, and the permissible values of these in the discharge area are The next stage of processing is required except in satisfactory special cases. In addition, regardless of whether or not this next stage treatment is necessary, the water flowing out from the reactor 2 is separated into solid and liquid by the solid-liquid separator 3, separated into a separated liquid 15 and a sludge fraction, and one of the sludge fractions is separated. Returning the sludge to the reactor 2 as return sludge 13 is effective in operating the reactor 2 at a high efficiency. The remaining sludge is treated as surplus sludge 14.
It will be disposed of.
本発明なる方法において、ジチオ/酸く塩)を含む排水
の嫌気性生物処理水12の中に含まれるハロゲン化メタ
ンの除去法としては、加熱追い出し。In the method of the present invention, the method for removing halogenated methane contained in the anaerobic biologically treated wastewater 12 containing dithio/acid salts is heat expulsion.
蒸気まだは空気によるストリッピング、:Aシン分解処
理、活性炭による吸着処理およびこれらの組合わせ処理
等従来のハロゲン化メタンの除去法に採用されている処
理法であればいかなる方式および条件であってもそのま
ま用いることができ、これらの多くは残留CODの除去
をも目的として適用することができる。Any method and conditions may be used as long as it is a conventional method for removing halogenated methane, such as stripping with steam or air, A-sin decomposition treatment, adsorption treatment with activated carbon, and combination treatments thereof. can be used as is, and many of these can also be applied for the purpose of removing residual COD.
しかしハロゲン化メタンの処理法として、次段に、図示
のととくの曝気装置などを備えた好気性生物反応器4を
設けて処理する方法は、特に本法のように前段の嫌気性
生物反応において有機物とハロゲン化メタンを同時に添
加した場合のように、・・ロゲン化メタンのほかにも有
機物が残存する可能性の高い方式においては有効となる
。ストリッピング法、吸着法、オゾン分解法等の物理化
学的方法においては、残存有機物によるCOD濃度が高
い場VCFiIネルギ〜消費、薬品使用量等が急増しき
わめて不経済となるだめ、これに代る上記の好気性生物
処理を選択することができる。通常この好気性生物反応
器4にはブロワ−7から空気23が強制的に吹き込まれ
るが、曝気方法としてはこれに限られるものではなく表
面曝気方式、水中エアレータ方式9ロ転円板方式等であ
ってもハロゲン化メタンの生物分解圧とって十分な酸素
供給能力を持つものであれば採用しうる。However, as a treatment method for halogenated methane, a method in which an aerobic biological reactor 4 equipped with a special aeration device as shown in the figure is installed in the next stage to treat the halogenated methane is particularly important because of the anaerobic biological reaction in the previous stage as in this method. This is effective in systems where there is a high possibility that organic substances will remain in addition to halogenated methane, such as when organic substances and halogenated methane are added at the same time. In physical-chemical methods such as stripping methods, adsorption methods, and ozonolysis methods, when the COD concentration due to residual organic matter is high, VCFiI energy consumption, chemical usage, etc. rapidly increase, making them extremely uneconomical. The above aerobic biological treatments can be selected. Normally, air 23 is forcibly blown into this aerobic biological reactor 4 from a blower 7, but the aeration method is not limited to this, and may include a surface aeration method, an underwater aerator method, a 9-rotation disk method, etc. Even if there is, it can be adopted as long as it has sufficient oxygen supply capacity to meet the biodecomposition pressure of halogenated methane.
好気性生物反応器4からの流出水16は、通常固液分離
装置5によって固液分離され、分離液19け直接もしく
はさらなる無害化処理をなされた後水域へと放流される
。沈殿汚泥画分の一部は返送汚泥17として好気性生物
反応器4に返送され、残りは余剰汚泥18として別途処
理処分される。The effluent water 16 from the aerobic biological reactor 4 is usually separated into solid and liquid by a solid-liquid separator 5, and the separated liquid 19 is discharged into a water body directly or after further detoxification treatment. A part of the settled sludge fraction is returned to the aerobic biological reactor 4 as return sludge 17, and the rest is separately treated and disposed of as surplus sludge 18.
以上示した如く、本発明の一実施態様においては嫌気性
生物処理反応器2と、それに引き続く好気性生物反応器
4を設けたものであるが、これらの反応器の型式は一般
には単なる混合槽型反応器とすることが多いが、充填床
固定床方式、流動媒体を入れた流動床方式等を採用する
ことも可能であって、従来報告されている生物反応器で
あれば運転条件の設定を適切に選択することによってほ
ぼすべて採用しうるものとなる。また図示した2つの固
液分離装置3および5も、単なる沈殿池方式とすること
が最も安価ではあるが建設費、運転費、必要土地面積な
どの制約によっては遠心分離。As shown above, one embodiment of the present invention is provided with an anaerobic biological treatment reactor 2 and an aerobic biological reactor 4 following it, but the type of these reactors is generally a simple mixing tank. Although a type reactor is often used, it is also possible to adopt a packed bed fixed bed system, a fluidized bed system containing a fluidized medium, etc. If it is a conventionally reported bioreactor, it is possible to set the operating conditions. By selecting appropriately, almost all of them can be adopted. Also, the two solid-liquid separators 3 and 5 shown in the figure may be of a simple sedimentation tank type at the lowest cost, but depending on constraints such as construction costs, operating costs, and required land area, centrifugal separation may be preferable.
浮上分離等の従来のいかなる固液分離法を採用してもか
1わないが、生物体を返送する関係上微生物を失活させ
るような方法はとり入れることができない。Any conventional solid-liquid separation method such as flotation separation may be used, but methods that inactivate microorganisms cannot be used because the living organisms must be returned.
本発明による嫌気性生物反応器に、この反応器内におけ
るジチオン酸(塩)等の硫黄化合物の分解過程で生成さ
れる硫化水素を除去しつつ生物分解を行なわせしめる方
法を取り入れることは、本発明の効果をさらに高めるう
えで有効である。The present invention incorporates into the anaerobic biological reactor according to the present invention a method for performing biodegradation while removing hydrogen sulfide generated during the decomposition process of sulfur compounds such as dithionic acid (salt) in the reactor. This is effective in further enhancing the effects of
これは、既知のごとく硫黄酸化物の分解経路において多
量の硫化水素が生成され、それが特にジチオン酸の分解
を阻害することからも知られるように、本発明による方
法によって高速度でのジチオン酸(塩)の分解を進行せ
しめた際には、特に大量の硫化水素が集積し嫌気性生物
によるジチオン酸等の還元分解に著しい悪影響を及ぼす
。脱硫化水素によってこれを防止することができるため
、脱硫化水素を行なうことの効果は従来法洗比較してき
わめて高いものとなる。This is because, as is known, a large amount of hydrogen sulfide is produced in the decomposition pathway of sulfur oxides, which particularly inhibits the decomposition of dithionic acid. When the decomposition of (salt) progresses, a particularly large amount of hydrogen sulfide accumulates, which has a significant negative effect on the reductive decomposition of dithionic acid and the like by anaerobic organisms. Since this can be prevented by hydrogen desulfurization, the effect of hydrogen desulfurization is much higher than that of conventional cleaning methods.
脱硫化水素の方法としては従来から報告されているもの
、たとえば液体吸収剤も(−<ンま固体吸収剤による吸
収法、消化ガスの脱硫に用いられているタカハックス法
やサイロツク法などを、そのまま採用すれば十分で、本
発明なる方法にとって特別の方式というものを必要とす
るものではない点は、装置構成を従来以上に複雑なもの
としないことで製作上も運転管理上も利点となる。Conventionally reported methods for desulfurizing hydrogen, such as liquid absorbent absorption methods, solid absorbent absorption methods, and the Takahax method and Silotsuk method used for desulfurization of digestion gas, can be used as is. The fact that the method of the present invention does not require any special method is advantageous in terms of manufacturing and operation management since the device configuration does not become more complicated than before.
また、このような脱硫化水素の効果は、排水中のジチオ
ン酸の濃度が高い場合に特に犬である。Also, the effect of such desulfurization is particularly dog when the concentration of dithionic acid in the wastewater is high.
したがって、流入する排水中のジチオン酸(塩)の濃度
が低め場合には少なくとも300〜500 w/1以上
となるように、予めイオン交換処理その他の物理化学的
方法による濃縮工程によってジチオン酸(塩)を濃縮す
ることが有効となる。Therefore, if the concentration of dithionic acid (salt) in the inflowing wastewater is low, the dithionic acid (salt) concentration should be at least 300 to 500 w/1 or more by a concentration process using ion exchange treatment or other physicochemical methods. ) is effective.
以上述べたように、本発明によれば簡潔なプロセス、簡
単な装置により極めて省エネルギー的。As described above, according to the present invention, the simple process and simple equipment result in extremely energy saving.
経済的にかつ高効率でジチオン酸(塩)を分解除去する
ことができ、運転管理も簡便に行なえるなど、多大の効
果をもたらすものである。This method brings many benefits, such as being able to decompose and remove dithionic acid (salt) economically and with high efficiency, and making operation management easy.
図面は本発明の一実施態様を示すフロー7−トである。
1・・・混合貯留槽、2・・・反応器、3,5・・・固
液分離装置、4・・・好気性生物反応器、6・・・攪拌
装置、7・・・ブロワ−38・・排水、9・・・有機物
、1o・・ハロゲン化メタン、11・・・混合水、12
・・生物処理水、13 、17・・・返送汚泥、14
、18・・・余剰汚泥、】5・・・分離液、J6・・・
流出水、19・・・分離液、20・・・温度調整装置、
21・・pHセンザ〜、22・1)H調整用薬注口、2
3・・・空気。
特許出願人 荏原インフィルコ株式会社代理人弁理士
端 山 五 −
同 弁理士 千 1) 捻The drawing is a flowchart showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Mixing storage tank, 2... Reactor, 3, 5... Solid-liquid separation device, 4... Aerobic biological reactor, 6... Stirring device, 7... Blower 38 ...Drainage, 9...Organic matter, 1o...Halogenated methane, 11...Mixed water, 12
... Biologically treated water, 13, 17... Returned sludge, 14
, 18... Surplus sludge, ]5... Separated liquid, J6...
Effluent water, 19...Separated liquid, 20...Temperature adjustment device,
21...pH sensor~, 22.1) H adjustment medicine spout, 2
3...Air. Patent applicant: Patent attorney representing Ebara Infilco Co., Ltd.
Go Hayama - Patent Attorney Sen 1) Neji
Claims (1)
排水の処理方法。 2、 前記嫌気性生物処理を、該生物処理水を固液分離
処理して得られる微生物汚泥を返送して行なう特許請求
の範囲第1項記載の方法。 6 前記固液分離処理により得られる分離水を好気性生
物処理する特許請求の範囲第・2項記載の方法。 4、前記ハロゲン化メタンがクロルメタン、二りロルメ
タン、クロロホルム、四塩化炭素。 フッ化メタン、二フッ化メタン、三フッ化メタン、四フ
ッ化炭素、臭化メタン、三臭化メタン、三臭化メタン、
四臭化炭素よりなる1群中から任意に選んだものである
特許請求の範囲第1項、第2項又は第3項記載の方法。 5、 前記嫌気性生物処理を、該処理過程において発生
する硫化水素を除去しながら行なう特許請求の範囲第1
項、第2項又は第3項記載の方法。 6、 前記排水が、予めイオン交換処理などの物理化学
的方法により濃縮してジチオン酸又はジチオン酸塩の濃
度を高めたものである特許請求の範囲第1項、第2項、
第3項又は第5項記載の方法。 l 前記嫌気性生物処理を、反応液のpHを6.0〜7
.5に維持して行なう特許請求の範囲第1項記載の方法
。 a 前記BOD源が糖類、有機性排水、アルコール類、
有機酸類よりなる1群中から任意に選んだものである特
許請求の範囲第1項記載の方法。[Claims] A method for treating dithionic acid-containing wastewater, which comprises subjecting it to anaerobic biological treatment. 2. The method according to claim 1, wherein the anaerobic biological treatment is performed by returning microbial sludge obtained by subjecting the biologically treated water to solid-liquid separation treatment. 6. The method according to claim 2, wherein the separated water obtained by the solid-liquid separation treatment is subjected to aerobic biological treatment. 4. The halogenated methane is chloromethane, dilormethane, chloroform, or carbon tetrachloride. Methane fluoride, methane difluoride, methane trifluoride, carbon tetrafluoride, methane bromide, methane tribromide, methane tribromide,
The method according to claim 1, 2 or 3, wherein the carbon tetrabromide is selected arbitrarily from the group consisting of carbon tetrabromide. 5. Claim 1, wherein the anaerobic biological treatment is performed while removing hydrogen sulfide generated during the treatment process.
3. The method described in Section 2, Section 2, or Section 3. 6. Claims 1 and 2, wherein the wastewater has been concentrated in advance by a physicochemical method such as ion exchange treatment to increase the concentration of dithionic acid or dithionate salt.
The method described in paragraph 3 or paragraph 5. l The above-mentioned anaerobic biological treatment is carried out by adjusting the pH of the reaction solution to 6.0 to 7.
.. 5. The method according to claim 1, wherein the method is carried out while maintaining a The BOD source is sugars, organic wastewater, alcohols,
The method according to claim 1, wherein the acid is arbitrarily selected from a group consisting of organic acids.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57127478A JPS5919595A (en) | 1982-07-23 | 1982-07-23 | Treatment of dithonic acid-contg. waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57127478A JPS5919595A (en) | 1982-07-23 | 1982-07-23 | Treatment of dithonic acid-contg. waste water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5919595A true JPS5919595A (en) | 1984-02-01 |
JPS638840B2 JPS638840B2 (en) | 1988-02-24 |
Family
ID=14960926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57127478A Granted JPS5919595A (en) | 1982-07-23 | 1982-07-23 | Treatment of dithonic acid-contg. waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5919595A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5277815A (en) * | 1992-05-04 | 1994-01-11 | E. I. Du Pont De Nemours And Company | In situ biodegradation of groundwater contaminants |
AU662828B2 (en) * | 1992-05-26 | 1995-09-14 | Paques B.V. | Process for removing sulphur compounds from water |
US5518619A (en) * | 1992-05-26 | 1996-05-21 | Paques B. V. | Process for removing sulphur compounds from water |
-
1982
- 1982-07-23 JP JP57127478A patent/JPS5919595A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5277815A (en) * | 1992-05-04 | 1994-01-11 | E. I. Du Pont De Nemours And Company | In situ biodegradation of groundwater contaminants |
AU662828B2 (en) * | 1992-05-26 | 1995-09-14 | Paques B.V. | Process for removing sulphur compounds from water |
US5518619A (en) * | 1992-05-26 | 1996-05-21 | Paques B. V. | Process for removing sulphur compounds from water |
Also Published As
Publication number | Publication date |
---|---|
JPS638840B2 (en) | 1988-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101607777B (en) | Lurgi furnace coal gasification wastewater treatment and reuse technology | |
WO2014146439A1 (en) | Biochemical method for treating synthetic leather wastewater comprising dimethylformamide | |
CN109354347A (en) | A kind of processing method of neomycinsulphate production waste water | |
JP2652841B2 (en) | Operating method of wastewater treatment equipment | |
JP2002079034A (en) | Biological desulfurization method and apparatus | |
CN212451088U (en) | Be applied to integrated processing apparatus who breeds waste water treatment | |
CN108862827A (en) | A kind of processing method of ammonia nitrogen waste water | |
KR100497810B1 (en) | System of circulated sequencing batch Reactor with media containing zeolite for organic matters, nitrogen and phosphorus removal in sewage and waste waters | |
KR20220096414A (en) | Apparatus for treating waste water using iron oxide powder | |
KR100479649B1 (en) | The procces and apparatus of Livestock wastewater treatment. | |
CN115572017B (en) | Method and system for internal circulation of aquaculture tail water | |
CN102050547A (en) | Pretreatment method of organic wastewater difficult to biochemically degrade | |
JP4329359B2 (en) | Denitrification method | |
CN116495923A (en) | System and process for treating high ammonia nitrogen wastewater in pharmaceutical industry | |
CN100439263C (en) | High efficiency, low energy consumption waste water treating and reutilizing process | |
JPH0568849A (en) | Method and device for desulfurizing digestion gas | |
JPS5919595A (en) | Treatment of dithonic acid-contg. waste water | |
CN210855695U (en) | Waste cutting emulsion waste water treatment device | |
JPH05228493A (en) | Method for treating waste water using sulfur bacterium and apparatus therefor | |
WO2012043436A1 (en) | Method and device for anaerobically treating wastewater containing terephthalic acid | |
JP2002210489A (en) | Treating method of waste water containing polyethylene glycol and apparatus therefor | |
KR101269379B1 (en) | Treatment method for wastewater | |
JP2006035094A (en) | Method and apparatus for treating high concentration waste water | |
JPS6349554B2 (en) | ||
JP3930102B2 (en) | Treatment method for wastewater containing ethanolamine |