JPS6349554B2 - - Google Patents

Info

Publication number
JPS6349554B2
JPS6349554B2 JP18607882A JP18607882A JPS6349554B2 JP S6349554 B2 JPS6349554 B2 JP S6349554B2 JP 18607882 A JP18607882 A JP 18607882A JP 18607882 A JP18607882 A JP 18607882A JP S6349554 B2 JPS6349554 B2 JP S6349554B2
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
tank
denitrification
treatment
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18607882A
Other languages
Japanese (ja)
Other versions
JPS5976597A (en
Inventor
Takayuki Suzuki
Kaneaki Endo
Yoshitaka Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP18607882A priority Critical patent/JPS5976597A/en
Publication of JPS5976597A publication Critical patent/JPS5976597A/en
Publication of JPS6349554B2 publication Critical patent/JPS6349554B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、排煙脱硫排水のような難分解性
CODと窒素化合物を含む排水の生物学的処理法
に関するものである。 化石燃料を用いたボイラーその他の燃焼装置か
ら排出される排煙には、高濃度の硫黄酸化物や窒
素酸化物が含まれている。これらを大気中に無処
理で排出すればそれら自体の有害性によつて、ま
た大気中での光化学反応でさらなる有害物質に変
化することによつて、環境保全上多くの弊害をも
たらす。したがつて、これらを含む排煙は法的規
制に基づき、脱硝脱硫処理された後に大気中へと
排気されている。 今日、排煙の脱硝脱硫法として最もよく用いら
れているものの一つに、排煙中の硫黄酸化物およ
び窒素酸化物をアルカリ液によつて吸収除去する
方法がある。この方法においては、硫黄酸化物の
多くは硫酸カルシウム、硫酸マグネシウム等の硫
酸塩として除去されるが、ジチオン酸塩等の酸化
分解されにくい化合物も副生される。酸化分解し
にくい硫黄酸化物のうち特にジチオン酸について
は、塩素による分解やオゾンによる分解によつて
も効果的な分解はなされず、物理化学的方法とし
てはほぼ湿式燃焼による方法に限定される。 本発明は、このような現状に鑑みて上記硫黄酸
化物である難分解性COD成分を微生物のもつ生
物分解能力を利用して分解すると共に窒素化合物
(以下、「NH3」と略する。)を効果的かつ合理的
に生物学的に処理する方法を提供することを目的
とするものである。 本発明は、窒素化合物と硫黄酸化物として少な
くともジチオン酸又はその塩を含有する排水に有
機物を添加し、発生する硫化水素を吸収除去しな
がら嫌気性生物処理したのち、該嫌気性生物処理
液に前記硫化水素を吸収した吸収剤を添加して生
物学的硝化脱窒素処理することを特徴とする窒素
化合物とジチオン酸含有排水の生物処理方法であ
る。 以下に本発明の基本構成を、本発明に至つた研
究経緯を踏まえて詳細に説明する。 硫黄酸化細菌(Thiobacillus属等)や硫酸還元
菌(Desulfoviburio属等)などがジチオン酸等を
生物分解することはよく知られている。本研究
も、湿式燃焼法に代わるジチオン酸を含む硫黄酸
化物系の難分解性COD成分を分解せしめる省エ
ネルギー的処理法として、当初嫌気性細菌による
単純な連続発酵処理方式によつて検討が開始され
た。供試排煙脱硫排水は希釈もしくはイオン交換
処理などの物理化学的処理による濃縮によつて、
ジチオン酸濃度が100mg/asS2O2- 6、300mg/
asS2O2- 6、500mg/asS2O2- 6、1000mg/
asS2O2- 6の4段階になるように調整し、さらに乳
酸をBOD源としていずれも1000mg/(乳酸)
となるよう添加して用いた。 用いた種菌は、下水汚泥の嫌気性消化槽より得
た消化汚泥からジチオン酸ナトリウムを含む集積
培地で培養した混合細菌で、実験反応槽内濃度が
3000mg/・MLSSとなるように植種した。この
結果、ジチオン酸濃度が100mg/の供試排水の
場合においてはジチオン酸の分解除去はほぼ完全
に達成されたが、供試排水中のジチオン酸濃度が
300mg/ではジチオン酸の除去率は約60%に低
下し、ジチオン酸濃度500mg/以上の場合では
ジチオン酸の除去は日数の経過に伴いほとんどな
されない状態となつた。このジチオン酸の分解阻
害因子を調べた結果、阻害現象が見られた時点で
の処理水中の硫化水素濃度が供試排水中のジチオ
ン酸濃度によつて第1表のように変化することが
知られた。
The present invention applies to non-decomposable materials such as flue gas desulfurization wastewater.
It concerns a biological treatment method for wastewater containing COD and nitrogen compounds. Flue gas emitted from boilers and other combustion equipment using fossil fuels contains high concentrations of sulfur oxides and nitrogen oxides. If these are discharged into the atmosphere without treatment, they will cause many problems in terms of environmental conservation, both because of their own toxicity and because they change into even more harmful substances through photochemical reactions in the atmosphere. Therefore, in accordance with legal regulations, flue gas containing these substances is subjected to denitrification and desulfurization treatment before being discharged into the atmosphere. One of the methods most commonly used today for denitrification and desulfurization of flue gas is a method in which sulfur oxides and nitrogen oxides in flue gas are absorbed and removed by an alkaline solution. In this method, most of the sulfur oxides are removed as sulfates such as calcium sulfate and magnesium sulfate, but compounds that are difficult to be oxidized and decomposed such as dithionates are also produced as by-products. Among sulfur oxides that are difficult to decompose by oxidation, especially dithionic acid, decomposition by chlorine or ozone does not effectively decompose it, and physicochemical methods are mostly limited to methods using wet combustion. In view of the current situation, the present invention decomposes the above-mentioned sulfur oxide, a persistent COD component, by utilizing the biodegradation ability of microorganisms, and also decomposes it into nitrogen compounds (hereinafter abbreviated as "NH 3 "). The purpose is to provide an effective and rational biological treatment method for The present invention involves adding organic matter to wastewater containing at least dithionic acid or its salt as nitrogen compounds and sulfur oxides, performing anaerobic biological treatment while absorbing and removing generated hydrogen sulfide, and then adding organic matter to the anaerobic biological treatment liquid. This is a biological treatment method for wastewater containing nitrogen compounds and dithionic acid, which is characterized in that biological nitrification and denitrification treatment is performed by adding an absorbent that has absorbed hydrogen sulfide. The basic structure of the present invention will be explained in detail below based on the research history that led to the present invention. It is well known that sulfur-oxidizing bacteria (such as the genus Thiobacillus) and sulfate-reducing bacteria (such as the genus Desulfoviburi) biodegrade dithionic acid and the like. This research also began with a simple continuous fermentation treatment method using anaerobic bacteria as an energy-saving treatment method for decomposing persistent COD components of sulfur oxides containing dithionic acid instead of the wet combustion method. Ta. The sample flue gas desulfurization wastewater is concentrated by dilution or physicochemical treatment such as ion exchange treatment.
Dithionic acid concentration is 100 mg/asS 2 O 2- 6 , 300 mg/
asS2O2-6 , 500mg / asS2O2-6 , 1000mg /
Adjusted to 4 levels of asS 2 O 2- 6 , and further added 1000 mg/(lactic acid) using lactic acid as a BOD source.
It was added and used so that it became. The inoculum used was a mixed bacteria cultured in an enrichment medium containing sodium dithionate from digested sludge obtained from an anaerobic digestion tank of sewage sludge, and the concentration in the experimental reaction tank was
Seeds were planted at 3000mg/・MLSS. As a result, the decomposition and removal of dithionic acid was almost completely achieved in the case of the sample wastewater with a dithionic acid concentration of 100 mg/day, but the dithionate concentration in the sample wastewater was
At 300 mg/dithionic acid, the removal rate of dithionic acid decreased to about 60%, and at dithionic acid concentrations of 500 mg/d or more, dithionic acid was hardly removed as days passed. As a result of investigating factors that inhibit the decomposition of dithionic acid, it was found that the hydrogen sulfide concentration in the treated water at the time when the inhibition phenomenon was observed changes depending on the dithionic acid concentration in the sample wastewater, as shown in Table 1. It was done.

【表】 上記実験により、ジチオン酸の嫌気性生物分解
は供試排水中のジチオン酸濃度が100mg/を超
える場合には単純な嫌気性生物分解法では継続不
可能であることが判明し、阻害現象が生じた場合
の反応液中の硫化水素濃度は比較的高いことが知
られた。次に、ジチオン酸濃度300mg/、500
mg/、1000mg/の排水について、反応液中の
硫化水素濃度を8mg/以下になるように脱硫し
ながら同様な生物処理実験を行つたところ、いず
れのジチオン酸濃度の供試排水もほぼ完全なジチ
オン酸の分解処理が達成できた。以上の結果か
ら、ジチオン酸の嫌気性生物分解処理において
は、高濃度の硫化水素が生成されそれがジチオン
酸の分解を阻害することが知られ、これを防止す
るために、反応液中の硫化水素を除去しながら分
解処理せしめることの有効性が明らかとなつた。 以上の知見に基づいて想到したプロセスについ
ては、本発明者等は既に完成ずみである(特願昭
57−126811参照)。本発明者等はさらに改良すべ
く、嫌気性生物処理では除去できないNH3の効
果的な処理法について検討した(NOxの1部は
嫌気性生物処理において除去される)。また、水
質の変動によつて嫌気性反応槽からジチオン酸が
漏出した場合を考慮して、生物学的硝化脱窒素処
理工程における好気的ジチオン酸分解法について
も検討した。 これらの検討を行つた結果、嫌気性生物処理
に用いたBOD源の残部が生物学的脱窒に有利に
利用できること、嫌気性反応液から発生した硫
化水素を吸収した吸収液又は脱硫剤が脱窒の還元
剤として利用できること、硫化水素吸収液又は
脱硫剤を生物学的硝化脱窒素工程に添加すること
によつて該工程がジチオン酸酸化能力を備えるこ
とが判明し、本発明を完成したものである。 次に、本発明の実施態様の一例を図面に基づい
て詳細に説明する。 排煙脱硝脱硫工程等から排出されるNH3とジ
チオン酸を含有する排水は流入液1として嫌気性
生物分解槽2(以下、「分解槽」と略記する)に
投入される。この際の分解槽2の滞留時間は、通
常0.5〜10日の範囲とされることが多く、この排
水の滞留時間は分解槽2に添加される有機物3の
種類に応じて決定することができる。 メタノールを添加有機物とする場合において
は、特に滞留時間を短縮でき0.3〜2.0日の範囲と
することが可能であり、一方下水汚泥、産業廃水
汚泥、生し尿等を用いる場合には滞留時間を4日
〜10日とやや長めにとる必要がある。 ジチオン酸の分解に添加効果のあつた有機性廃
水としては、これらの他に都市下水、ゴミ処理場
でのピツトゴミ汁、下水汚泥または都市ゴミのコ
ンポストプラントにて排出される浸出汁、ゴミ埋
立地の浸出水、豚舎および牛舎からの家畜糞尿を
含む廐肥からの浸出水および廐舎清掃廃水、製糖
工場からの廃糖蜜、パルプ工場からの蒸気ドレン
類、醸造工場からの醸造廃水および蒸留廃水、食
品加工場からの工場廃水などを挙げることがで
き、これらを用いた場合の反応器滞留時間は0.8
日〜5.0日と、メタノールを添加有機物とする場
合よりもやや長くとる必要がある。 またメタノール以外の市販有機物で添加効果の
あつたものは、アルコール類ではプロパノール、
ブタノール、グリセロール、およびエタノールを
挙げることができるが、これらのうちエタノール
はやや添加効果が低かつた。 有機酸類ではギ酸、ピルビン酸、乳酸、プロピ
オン酸、酪酸、コハク酸、クエン酸および酢酸に
添加効果が見られた。特に酢酸の場合は他の有機
酸との混合添加の場合に添加効果が高かつた。こ
れらの有機酸の添加の場合の反応器滞留時間は
0.6〜4.0日程度にする必要があつて、メタノール
添加の場合よりもやや長くすることが必要とされ
たが、前記各種廃汚泥や廃水を添加する場合より
も短くてすむことが判明した。またマルトース、
セロビオース、グルコース等のオリゴ糖、還元糖
もほぼこれと同程度の滞留時間を必要とした。 有機物の添加量は、処理すべき廃水中のジチオ
ン酸(塩)その他の難分解性COD物質の濃度に
応じて、添加すべき有機物の量がBODに換算し
てジチオン酸濃度と同等から7倍となるように添
加することが好ましい。添加有機物の量がこれ以
下の場合にはジチオン酸を充分に分解することが
できず、未分解のジチオン酸が処理水中に残留
し、またこれ以上の有機物添加では処理水中での
残存BOD濃度が高まるが、これは脱窒の還元剤
として利用できるので、有機物の添加量は過剰な
方がジチオン酸の分解のうえからも好ましい。 なお、本発明においては添加有機物として、上
記した有機性廃水、有機性汚泥、アルコール類、
有機酸類、糖類を適宜組み合わせて使用できるこ
とは勿論である。 以上のような添加栄養条件と滞留時間条件の下
で、投入排水中のジチオン酸はほぼ完全に硫化水
素へと還元分解され、一部は槽内液中に溶存硫化
水素として残存するが残りは消化ガス4中へと移
行する。本発明なるジチオン酸の分解槽2は、通
常のメタン発酵に採用されている温度条件、即ち
中温菌を利用しての分解では20℃〜40℃、高温菌
を利用しての分解では45℃〜70℃に保たれること
によつてその効率を著しく高めることができ、特
に45℃〜70℃での操作は溶存H2S濃度を低下させ
るうえでより効果的であるが、分解効率を問題と
しなくてすむ場合には温度制御なしの操作であつ
てもかまわない。 分解槽2内液中の硫化水素を除去するにはいろ
いろな方法がとりうる。例えば消化ガス4中に集
積した硫化水素をガス循環経路を設け、これに吸
収装置5を設けることは、分解槽ヘツドスペース
の気相を低濃度H2S雰囲気とし、分解槽内液中に
残留するH2Sを追い出すことを目的としてなされ
る。このH2S吸収除去剤は苛性ソーダ液、第一鉄
液、炭酸カルシウム液、石灰液、アンモニア液、
モノエタノールアミン等の液体吸収剤でもよく、
酸化鉄等の固体吸収剤であつても可能である。 また、硫化水素吸収のためのガス循環経路は、
例えば第1図に示す如くガス循環ポンプ6からの
送気パイプを分解槽内液面下に入れ、ガス撹拌と
共用することによつて、液中に溶存する硫化水素
濃度をヘツドスペースのみのガス循環によるより
も、ストリツピング効果によつてさらに低減させ
ることができて好ましい。硫化水素除去には上記
のガス吸収法のほかに、分解槽液中に鉄塩等の金
属塩を添加することによつて、不溶性硫化物とし
て除去する方法もとりうる。 これらいずれの場合においても分解槽液中の硫
化水素濃度を20mg/以下とすることが好まし
く、特に0〜8mg/の範囲にとどめることが望
まれる。分解槽内のPHが極端な変動を示す場合に
は、PHを5.5〜7.5の範囲に調整することが好まし
い。このPH調整は、ジチオン酸の嫌気性生物分解
反応を助長するのみならず、上記硫化水素のガス
循環吸収除去を行ううえでも効果がある。このこ
とは特にPHを調節しない方式で分解槽液中のPHが
7.5を超えて上昇する場合に重要となる。即ち、
7.5より高いPHでは硫化水素の溶存量が著しく高
くなるために、硫化水素のガス化が充分に行われ
ず液中の硫化水素の残存濃度を低く抑えられなく
なるからである。 上記実施態様のほかに、本発明による排煙脱硝
脱硫排水の嫌気性生物処理装置の形態として従来
より知られている嫌気性消化装置である半回分式
接触消化法、上向流嫌気性ろ床法、流動床式嫌気
性反応器法、上向流嫌気性汚泥ブランケツト法な
どに属する装置のほとんどが利用できる点は、処
理すべき排煙脱硝脱硫排水の水質および添加有機
物の種類に応じて最も効率の高い装置を構成する
うえで選択範囲をより広くできる利点としてあげ
ることができる。 次に、分解液7は返送汚泥8、循環硝化液9と
ともに嫌気的条件にある第1脱窒槽10に流入
し、循環硝化液9中のNOxは分解液7中に残留
するBOD成分、硫化水素吸収液11あるいは外
部から添加する有機物3を還元剤として脱窒菌に
よつてN2ガスに還元分解される。 残留BOD、有機物3を用いる脱窒菌の種類は
多いが、硫化水素を利用して脱窒する菌は
Thiobacillus、Denitrificansの如く限られた種
で、NOx中の結合酸素を用いて硫化水素を硫酸
にまで酸化する。第1脱窒槽10に添加する還元
剤の量は、残留BOD成分で足りていれば、通常
有価である有機物3を敢えて注入する必要はな
い。 循環硝化液9のNOxが脱窒されたのち、分解
液7中のNH3は次段の好気的条件に維持されて
いる硝化槽13でNOxに酸化され、その大部分
は第1脱窒槽10に循環され、残部は第2脱窒槽
14に流入し、有機物3あるいは硫化水素吸収液
11中の硫化水素を還元剤としてN2にまで還元
分解される。 第2脱窒槽14に使用する還元剤にNH3が含
有されていると処理水16′にNH3が残留し窒素
除去率が低下するので、還元剤として利用する有
機物3、硫化水素吸収液11はNH3を含まない
ものが望ましい。したがつて、分解槽2の有機物
として含NH3有機物を利用する場合には、脱窒
の還元剤としては第1脱窒槽10にしか使用でき
ないので、第2脱窒槽14にはNH3を含有しな
い有機物を別個に添加することが好ましい。硫化
水素吸収液11についても同様であり、NH3
含む硫化水素吸収液11は第1脱窒槽10のみ、
NH3を含まない硫化水素吸収液11は第1脱窒
槽10、第2脱窒槽14のいずれにも使用するこ
とができる。 第2脱窒槽14流出液は次段の再ばつ気槽15
で残留有機物の酸化、液中のN2ガスのばつ気放
散が行われたのち、沈殿槽16に流入して固液分
離され、上澄水は処理水16′として放流され、
汚泥は返送汚泥8として大部分第1脱窒槽10に
返送され、残部は余剰汚泥12として分解槽2に
流入してジチオン酸を分解する有機物として利用
されるか、あるいは余剰汚泥処理工程17で処
理・処分される。 以上のように本発明では、水質の変動により処
理液7中にジチオン酸が残留する場合でも、ジチ
オン酸は主に好気的条件にある硝化槽13で速や
かに酸化することができる。元来、ジチオン酸酸
化能力を有する菌は、ジチオン酸のみの酸化では
充分な増殖エネルギーを穫得することができない
ため、水質変動あるいは定常的な残留によつて生
物学的硝化脱窒素工程にジチオン酸が流入して
も、該工程のみではジチオン酸分解菌が発生せ
ず、したがつてジチオン酸は除去されない。一
方、吸収液中のイオウ分の酸化によつて生ずるエ
ネルギーは充分ジチオン酸酸化菌の増殖エネルギ
ーとして利用される。ジチオン酸酸化菌はイオウ
分を酸化するに際し、分子状酸素、NOxの結合
酸素のいずれの酸素も利用できるので、イオウ分
を含有する吸収液は脱窒槽に注入して脱窒の還元
剤、ジチオン酸酸化菌の増殖エネルギー源として
兼用するようにしたものである。もちろん硫化水
素吸収液11を硝化槽13に注入しても充分ジチ
オン酸酸化菌を増殖することができる。 第1図は活性汚泥法で示したが硝化槽13、第
1脱窒槽10、第2脱窒槽14、再ばつ気槽15
は粒状あるいは板状の生物付着媒体を用いてもよ
い。 なお第1図中18は有機物貯槽、19は余剰ガ
スである。 本発明は、脱硝脱硫排水には多量のNH3が含
有されているので、特に有効に適用し得るもので
あるが、窒素含有量の少ないジチオン酸含有排水
でも分解槽2の有機物としてNH3の多いし尿、
あるいは嫌気性分解に際しNH3を溶出する有機
性汚泥を利用する場合にも、放流水の窒素濃度を
低減するうえで有効である。 また硫化水素吸収液はアルカリ性吸収液を用い
ることが推奨される。これはイオウ分の酸化に際
して生成する硫酸によるPH低下を防止するアルカ
リ剤の一部として使用できるからである。 次に本発明の実施例を第1図のフローに基づい
て行つた結果について述べる。嫌気性反応装置
(第1図、符号2に該当する)は第2図に示した
ものを用いた。なお、第2図中20は嫌気性生物
処理液の沈殿槽、21は返送汚泥、22は水封槽
である。 実施条件は第2表、第3表のとおりである。
[Table] The above experiment revealed that anaerobic biodegradation of dithionic acid cannot be continued by a simple anaerobic biodegradation method when the concentration of dithionic acid in the sample wastewater exceeds 100mg/ It is known that when this phenomenon occurs, the concentration of hydrogen sulfide in the reaction solution is relatively high. Next, dithionic acid concentration 300 mg/, 500
A similar biological treatment experiment was carried out on wastewater with concentrations of 1,000 mg/mg/mg/mg/mg/, and 1,000 mg/ml while desulfurizing the hydrogen sulfide concentration in the reaction solution to below 8 mg/ml. The decomposition treatment of dithionic acid was achieved. From the above results, it is known that in the anaerobic biodegradation treatment of dithionic acid, a high concentration of hydrogen sulfide is produced, which inhibits the decomposition of dithionic acid. The effectiveness of decomposition treatment while removing hydrogen has become clear. The inventors have already completed the process conceived based on the above knowledge (patent application
57-126811). In order to make further improvements, the present inventors investigated an effective treatment method for NH 3 that cannot be removed by anaerobic biological treatment (a portion of NOx is removed in anaerobic biological treatment). In addition, considering the case where dithionic acid leaks from the anaerobic reaction tank due to fluctuations in water quality, we also investigated an aerobic dithionic acid decomposition method in the biological nitrification and denitrification treatment process. As a result of these studies, we found that the remainder of the BOD source used for anaerobic biological treatment can be used advantageously for biological denitrification, and that the absorption liquid or desulfurization agent that absorbed hydrogen sulfide generated from the anaerobic reaction liquid can be used for denitrification. The present invention was completed by discovering that it can be used as a nitrogen reducing agent and that by adding a hydrogen sulfide absorbing solution or a desulfurizing agent to the biological nitrification and denitrification process, the process has dithionate oxidation ability. It is. Next, an example of an embodiment of the present invention will be described in detail based on the drawings. Wastewater containing NH 3 and dithionic acid discharged from a flue gas denitrification and desulfurization process, etc. is input as an inflow liquid 1 into an anaerobic biodecomposition tank 2 (hereinafter abbreviated as "decomposition tank"). The residence time in the decomposition tank 2 at this time is usually set in the range of 0.5 to 10 days, and the residence time of this wastewater can be determined depending on the type of organic matter 3 added to the decomposition tank 2. . When using methanol as the additive organic substance, the residence time can be particularly shortened to a range of 0.3 to 2.0 days, while when using sewage sludge, industrial wastewater sludge, human waste, etc., the residence time can be reduced to 4 days. It is necessary to take a slightly longer period of 1-10 days. In addition to these organic wastewaters that have an additive effect on the decomposition of dithionic acid, there are municipal sewage, pit garbage juice at garbage treatment plants, sewage sludge or leachate discharged from municipal garbage composting plants, and garbage landfills. leachate, leachate from manure including livestock manure from pig pens and cow sheds, and wastewater from barn cleaning, molasses from sugar mills, steam drains from pulp mills, brewing and distillation wastewater from breweries, food. Examples include factory wastewater from processing plants, and when these are used, the residence time in the reactor is 0.8
It is necessary to take a slightly longer period of 5.0 days to 5.0 days than when using methanol as the added organic substance. In addition, commercially available organic substances other than methanol that have an additive effect are alcohols such as propanol,
Butanol, glycerol, and ethanol can be mentioned, but among these, ethanol had a rather low addition effect. Among organic acids, additive effects were seen for formic acid, pyruvic acid, lactic acid, propionic acid, butyric acid, succinic acid, citric acid, and acetic acid. Particularly in the case of acetic acid, the addition effect was high when mixed with other organic acids. The reactor residence time for the addition of these organic acids is
Although it was necessary to make it about 0.6 to 4.0 days, which was slightly longer than in the case of methanol addition, it was found that it was shorter than in the case of adding the various waste sludge and wastewater. Also maltose,
Oligosaccharides such as cellobiose and glucose, and reducing sugars also required approximately the same residence time. The amount of organic matter to be added varies depending on the concentration of dithionic acid (salt) and other persistent COD substances in the wastewater to be treated, and the amount of organic matter to be added ranges from equivalent to the concentration of dithionic acid to 7 times the concentration of dithionic acid in terms of BOD. It is preferable to add it so that If the amount of added organic matter is less than this, dithionic acid will not be fully decomposed and undecomposed dithionic acid will remain in the treated water, and if more organic matter is added, the residual BOD concentration in the treated water will increase. However, since it can be used as a reducing agent for denitrification, it is preferable to add an excessive amount of organic matter from the standpoint of decomposing dithionic acid. In addition, in the present invention, the above-mentioned organic wastewater, organic sludge, alcohols,
It goes without saying that organic acids and saccharides can be used in appropriate combinations. Under the above-mentioned conditions of added nutrients and residence time, dithionic acid in the input wastewater is almost completely reduced and decomposed to hydrogen sulfide, and some remains as dissolved hydrogen sulfide in the tank liquid, but the rest remains. Transfers into digestive gas 4. The dithionic acid decomposition tank 2 of the present invention is operated under the temperature conditions adopted for normal methane fermentation, that is, 20°C to 40°C for decomposition using mesophilic bacteria, and 45°C for decomposition using thermophilic bacteria. Its efficiency can be significantly increased by being kept at ~70°C, especially operation at 45°C to 70°C is more effective in reducing the dissolved H2S concentration, but it also reduces the decomposition efficiency. If there is no problem, operation without temperature control may be used. Various methods can be used to remove hydrogen sulfide from the liquid in the decomposition tank 2. For example, providing a gas circulation path for hydrogen sulfide accumulated in the digestion gas 4 and providing an absorption device 5 therein creates a low-concentration H 2 S atmosphere in the gas phase of the head space of the decomposition tank, which allows hydrogen sulfide to remain in the liquid in the decomposition tank. This is done with the purpose of expelling H 2 S. This H 2 S absorption remover can be used with caustic soda solution, ferrous solution, calcium carbonate solution, lime solution, ammonia solution,
Liquid absorbents such as monoethanolamine may also be used.
It is also possible to use a solid absorbent such as iron oxide. In addition, the gas circulation route for hydrogen sulfide absorption is
For example, as shown in Fig. 1, by placing the air supply pipe from the gas circulation pump 6 below the liquid level in the decomposition tank and also using it for gas agitation, the concentration of hydrogen sulfide dissolved in the liquid can be reduced to the gas in the head space only. This is preferable because it can be further reduced by the stripping effect rather than by circulation. In addition to the above-mentioned gas absorption method, hydrogen sulfide can be removed by adding metal salts such as iron salts to the decomposition tank liquid to remove the hydrogen sulfide as insoluble sulfide. In any of these cases, the concentration of hydrogen sulfide in the decomposition tank liquid is preferably 20 mg/or less, and particularly preferably within the range of 0 to 8 mg/. If the pH in the decomposition tank shows extreme fluctuations, it is preferable to adjust the pH to a range of 5.5 to 7.5. This pH adjustment is effective not only in promoting the anaerobic biodecomposition reaction of dithionic acid, but also in performing gas circulation absorption and removal of hydrogen sulfide. This is especially true when the pH in the digester liquid is
It becomes important when it rises above 7.5. That is,
This is because at a pH higher than 7.5, the amount of dissolved hydrogen sulfide becomes significantly high, and hydrogen sulfide is not sufficiently gasified, making it impossible to keep the residual concentration of hydrogen sulfide in the liquid low. In addition to the embodiments described above, the present invention includes a semi-batch contact digestion method, which is a conventionally known anaerobic digestion device, and an upflow anaerobic filter bed as a form of an anaerobic biological treatment device for flue gas denitrification and desulfurization wastewater. The fact that most of the equipment belonging to the method, fluidized bed anaerobic reactor method, upflow anaerobic sludge blanket method, etc. This can be cited as an advantage of widening the range of selection when constructing a highly efficient device. Next, the decomposition liquid 7 flows into the first denitrification tank 10 under anaerobic conditions together with the return sludge 8 and the circulating nitrification liquid 9. The absorption liquid 11 or the organic matter 3 added from the outside is used as a reducing agent to be reduced and decomposed into N2 gas by denitrifying bacteria. There are many types of denitrifying bacteria that use residual BOD and organic matter3, but there are bacteria that denitrify using hydrogen sulfide.
A limited number of species, such as Thiobacillus and Denitrificans, oxidize hydrogen sulfide to sulfuric acid using bound oxygen in NOx. As long as the amount of reducing agent added to the first denitrification tank 10 is sufficient for the residual BOD component, there is no need to intentionally inject the organic matter 3, which is normally valuable. After the NOx in the circulating nitrification solution 9 is denitrified, the NH 3 in the decomposition solution 7 is oxidized to NOx in the next step, the nitrification tank 13 maintained under aerobic conditions, and most of it is in the first denitrification tank. 10, and the remainder flows into the second denitrification tank 14, where it is reduced and decomposed to N2 using the organic matter 3 or hydrogen sulfide in the hydrogen sulfide absorption liquid 11 as a reducing agent. If the reducing agent used in the second denitrification tank 14 contains NH 3 , NH 3 will remain in the treated water 16' and the nitrogen removal rate will decrease. Preferably, it does not contain NH3 . Therefore, when using NH 3 -containing organic matter as the organic matter in the decomposition tank 2 , it can only be used as a reducing agent for denitrification in the first denitrification tank 10 , so the NH 3 -containing organic matter can be used in the second denitrification tank 14 . It is preferable to add organic substances separately. The same applies to the hydrogen sulfide absorption liquid 11, and the hydrogen sulfide absorption liquid 11 containing NH 3 is contained only in the first denitrification tank 10,
The hydrogen sulfide absorption liquid 11 that does not contain NH 3 can be used in both the first denitrification tank 10 and the second denitrification tank 14. The effluent from the second denitrification tank 14 is transferred to the next re-aeration tank 15.
After the residual organic matter is oxidized and the N2 gas in the liquid is diffused, it flows into the settling tank 16 where it is separated into solid and liquid, and the supernatant water is discharged as treated water 16'.
Most of the sludge is returned to the first denitrification tank 10 as return sludge 8, and the remainder flows into the decomposition tank 2 as surplus sludge 12 and is used as organic matter to decompose dithionic acid, or is treated in the surplus sludge treatment step 17.・It will be disposed of. As described above, in the present invention, even if dithionic acid remains in the treatment liquid 7 due to fluctuations in water quality, the dithionic acid can be quickly oxidized in the nitrification tank 13 under mainly aerobic conditions. Bacteria that originally have the ability to oxidize dithionate cannot obtain sufficient growth energy by oxidizing dithionate alone, so dithionate is used in the biological nitrification and denitrification process due to water quality fluctuations or constant residual activity. Even if dithionic acid flows in, dithionic acid-degrading bacteria will not be generated in this step alone, and therefore dithionic acid will not be removed. On the other hand, the energy generated by the oxidation of sulfur in the absorption liquid is fully utilized as energy for growth of dithionate-oxidizing bacteria. When oxidizing sulfur, dithionate oxidizing bacteria can use both molecular oxygen and combined oxygen of NOx, so the absorption liquid containing sulfur is injected into a denitrification tank and used as a reducing agent for denitrification, dithion. It is designed to double as an energy source for the growth of acid-oxidizing bacteria. Of course, even if the hydrogen sulfide absorption liquid 11 is injected into the nitrification tank 13, the dithionate oxidizing bacteria can be sufficiently grown. Although Fig. 1 shows the activated sludge method, there is a nitrification tank 13, a first denitrification tank 10, a second denitrification tank 14, and a re-aeration tank 15.
A granular or plate-shaped biofouling medium may also be used. In FIG. 1, 18 is an organic matter storage tank, and 19 is surplus gas. The present invention can be particularly effectively applied to denitrification and desulfurization wastewater since it contains a large amount of NH 3 , but even in dithionic acid-containing wastewater with a low nitrogen content, NH 3 is produced as organic matter in the decomposition tank 2. a lot of human urine,
Alternatively, using organic sludge that elutes NH 3 during anaerobic decomposition is also effective in reducing the nitrogen concentration in effluent water. Furthermore, it is recommended to use an alkaline absorption liquid as the hydrogen sulfide absorption liquid. This is because it can be used as part of an alkaline agent that prevents the pH from decreasing due to sulfuric acid produced during the oxidation of sulfur. Next, the results of carrying out an embodiment of the present invention based on the flow shown in FIG. 1 will be described. The anaerobic reaction apparatus (corresponding to number 2 in FIG. 1) shown in FIG. 2 was used. In addition, in FIG. 2, 20 is a sedimentation tank for the anaerobic biological treatment liquid, 21 is a return sludge, and 22 is a water seal tank. The implementation conditions are as shown in Tables 2 and 3.

【表】【table】

【表】 第3表の実施番号CとDとを比較すると、
S2O2- 6が高濃度になると硫化水素吸収液無添加の
DではS2O2- 6が大量に残留していることがわか
る。 また第2表の実施条件に示した処理装置を用
い、S2O2- 61000mg/、NH3―N300mg/の排
水を3/日で、有機物としてし尿、下水汚泥
を、硝化脱窒処理装置の余剰汚泥としてメタノー
ルをそれぞれ用いて処理を行つたところ、高率の
ジチオン酸、窒素除去を行うことができた。ただ
し、第2脱窒槽の有機物にはメタノールを用い
た。 以上のように本発明によつて、以下に列挙する
多大の効果をあげることができる。 ジチオン酸流入量の変動に対応するため、嫌
気性生物処理槽に過剰の有機物を添加しても、
次段の生物学的脱窒に有効に利用できる。 嫌気性生物処理槽で発生した硫化水素を吸収
した吸収剤を脱窒の還元剤として利用するた
め、外部から添加する有機物量を節減でき、同
時に該吸収剤も処理できる。 イオウ分を硝化脱窒素工程に注入することに
より、該工程内にジチオン酸酸化能力を有する
微生物を増殖できるので、前段の嫌気性生物処
理工程と合せて、極めて安定したジチオン酸の
生物処理を行うことができる。 硝化脱窒素工程で発生する余剰汚泥をジチオ
ン酸の還元分解に利用できるので、プロセス全
体の汚泥発生量が少なくなり、汚泥処理費用が
軽減される。
[Table] Comparing implementation numbers C and D in Table 3,
It can be seen that when the concentration of S 2 O 2- 6 becomes high, a large amount of S 2 O 2- 6 remains in D without the addition of a hydrogen sulfide absorption liquid. In addition, using the treatment equipment shown in the implementation conditions in Table 2, wastewater containing 1000 mg of S 2 O 2-6 and 300 mg of NH 3 -N per day is processed to treat human waste and sewage sludge as organic matter. When the excess sludge was treated with methanol, it was possible to remove dithionic acid and nitrogen at a high rate. However, methanol was used as the organic substance in the second denitrification tank. As described above, the present invention can bring about many effects listed below. Even if excess organic matter is added to the anaerobic biological treatment tank to accommodate fluctuations in the amount of dithionate inflow,
It can be effectively used for the next stage of biological denitrification. Since the absorbent that has absorbed hydrogen sulfide generated in the anaerobic biological treatment tank is used as a reducing agent for denitrification, the amount of organic matter added from the outside can be reduced and the absorbent can be treated at the same time. By injecting sulfur into the nitrification and denitrification process, microorganisms capable of oxidizing dithionic acid can be grown in the process, so when combined with the preceding anaerobic biological treatment process, extremely stable biological treatment of dithionic acid can be achieved. be able to. Since the excess sludge generated in the nitrification and denitrification process can be used for the reductive decomposition of dithionic acid, the amount of sludge generated in the entire process is reduced, and sludge treatment costs are reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を示すフローシー
ト、第2図は本発明の実施例に使用した嫌気性反
応装置を示すフローシートである。 1…流入液、2…分解槽、3…有機物、4…消
化ガス、5…吸収装置、6…ガス循環ポンプ、7
…分解液、8…返送汚泥、9…循環硝化液、10
…第1脱窒槽、11…硫化水素吸収液、12…余
剰汚泥、13…硝化槽、14…第2脱窒槽、15
…再ばつ気槽、16…沈殿槽、16′…処理水、
17…余剰汚泥処理工程、18…有機物貯槽、1
9…余剰ガス、20…沈殿槽、21…返送汚泥、
22…水封槽。
FIG. 1 is a flow sheet showing one embodiment of the present invention, and FIG. 2 is a flow sheet showing an anaerobic reactor used in an example of the present invention. 1... Inflow liquid, 2... Decomposition tank, 3... Organic matter, 4... Digestion gas, 5... Absorption device, 6... Gas circulation pump, 7
... Decomposition liquid, 8 ... Returned sludge, 9 ... Circulating nitrification liquid, 10
...First denitrification tank, 11...Hydrogen sulfide absorption liquid, 12...Excess sludge, 13...Nitrification tank, 14...Second denitrification tank, 15
... Re-aeration tank, 16... Sedimentation tank, 16'... Treated water,
17... Surplus sludge treatment process, 18... Organic matter storage tank, 1
9... Surplus gas, 20... Sedimentation tank, 21... Return sludge,
22... Water seal tank.

Claims (1)

【特許請求の範囲】 1 窒素化合物と硫黄酸化物として少なくともジ
チオン酸又はその塩を含有する排水に有機物を添
加し、発生する硫化水素を吸収除去しながら嫌気
性生物処理したのち、該嫌気性生物処理液に前記
硫化水素を吸収した吸収剤を添加して生物学的硝
化脱窒素処理することを特徴とする窒素化合物と
ジチオン酸含有排水の生物処理方法。 2 前記嫌気性生物処理を、生物反応液の硫化水
素濃度を20mg/以下、好ましくは8mg/以下
に保つて行う特許請求の範囲第1項記載の方法。 3 前記硫化水素を吸収した吸収剤を前記生物学
的硝化脱窒素工程の脱窒素工程に添加する特許請
求の範囲第1項又は第2項記載の方法。 4 前記硫化水素を吸収した吸収剤を前記生物学
的硝化脱窒素工程の硝化工程に添加する特許請求
の範囲第1項又は第2項記載の方法。 5 前記有機物としてメタノール、エタノール、
酢酸などの窒素を含有しない物質を使用する特許
請求の範囲第1項記載の方法。 6 前記有機物として前記生物学的硝化脱窒素工
程で得られる余剰汚泥を使用する特許請求の範囲
第1項記載の方法。
[Claims] 1. Organic matter is added to wastewater containing at least dithionic acid or its salt as a nitrogen compound and sulfur oxide, and after anaerobic biological treatment while absorbing and removing generated hydrogen sulfide, the anaerobic organism A biological treatment method for wastewater containing nitrogen compounds and dithionic acid, characterized in that biological nitrification and denitrification treatment is performed by adding an absorbent that has absorbed the hydrogen sulfide to the treatment liquid. 2. The method according to claim 1, wherein the anaerobic biological treatment is carried out while maintaining the hydrogen sulfide concentration of the biological reaction liquid at 20 mg/or less, preferably 8 mg/or less. 3. The method according to claim 1 or 2, wherein the absorbent that has absorbed hydrogen sulfide is added to the denitrification step of the biological nitrification and denitrification step. 4. The method according to claim 1 or 2, wherein the absorbent that has absorbed hydrogen sulfide is added to the nitrification step of the biological nitrification and denitrification step. 5 Methanol, ethanol,
2. A method according to claim 1, wherein a nitrogen-free substance such as acetic acid is used. 6. The method according to claim 1, wherein excess sludge obtained in the biological nitrification and denitrification step is used as the organic matter.
JP18607882A 1982-10-25 1982-10-25 Biological treatment of waste water containing nitrogen compound and dithionic acid Granted JPS5976597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18607882A JPS5976597A (en) 1982-10-25 1982-10-25 Biological treatment of waste water containing nitrogen compound and dithionic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18607882A JPS5976597A (en) 1982-10-25 1982-10-25 Biological treatment of waste water containing nitrogen compound and dithionic acid

Publications (2)

Publication Number Publication Date
JPS5976597A JPS5976597A (en) 1984-05-01
JPS6349554B2 true JPS6349554B2 (en) 1988-10-05

Family

ID=16181992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18607882A Granted JPS5976597A (en) 1982-10-25 1982-10-25 Biological treatment of waste water containing nitrogen compound and dithionic acid

Country Status (1)

Country Link
JP (1) JPS5976597A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122331A (en) * 1988-10-03 1990-05-10 Xerox Corp Remote programming method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839052A (en) * 1987-03-10 1989-06-13 Council For Scientific And Industrial Research Biological treatment of water
EP0769479A1 (en) * 1995-10-18 1997-04-23 N.V. Kema Process for cleaning a waste water stream or the like
JP2005288371A (en) * 2004-04-01 2005-10-20 Sumitomo Heavy Ind Ltd Wastewater treatment method
JP5873744B2 (en) * 2012-03-15 2016-03-01 水ing株式会社 Organic wastewater and organic waste treatment method and treatment equipment
JP7181078B2 (en) * 2018-12-21 2022-11-30 水ing株式会社 Water treatment method and water treatment equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122331A (en) * 1988-10-03 1990-05-10 Xerox Corp Remote programming method

Also Published As

Publication number Publication date
JPS5976597A (en) 1984-05-01

Similar Documents

Publication Publication Date Title
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
CN103803711A (en) Method for treating ammonia-nitrogen wastewater by using immobilized microorganism
KR20090051450A (en) The treatment method of high concentrated organic waste water,like with leachate of food waste water and animal waste water
US3867284A (en) Water treatment with nitrogen dioxide
KR0149978B1 (en) Advanced waste water treatment process by noxn removal from return activated sludge
KR100970576B1 (en) The apparatus and method of removing BOD, N, and P removal from an animal wastewater
JPS6349554B2 (en)
JP5391011B2 (en) Nitrogen-containing wastewater treatment method
JP5391010B2 (en) Operation method of denitrification reactor
JPH0824920B2 (en) Solid waste and wastewater treatment methods
CN116216989A (en) Fecal sewage treatment method and system
JPH0568849A (en) Method and device for desulfurizing digestion gas
KR101849803B1 (en) Method and device for anaerobically treating wastewater containing terephthalic acid
JP2000189995A (en) Method and device for removing nitrogen in waste water
KR20100046936A (en) Combined sulfur autotrophic denitrification and bioelectrochemical denitrification system
KR101179049B1 (en) Nitrite removal processes from waters using sulfur-oxidizing denitrifying bacteria
KR100375413B1 (en) Removal Methods of Nitrogen and phosphorus in wastewater using external carbon source
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
JPS585118B2 (en) Yuukiseihaisuino
JP2004305980A (en) Biological denitrification treatment method
JPS638839B2 (en)
KR100465039B1 (en) Treatment method for organic wastewater
JP4112549B2 (en) Organic waste treatment methods
KR100325722B1 (en) A treatment method of sewage and wastewater using ozone and oxygen
KR100462578B1 (en) The purification method of an organic waste water with high density