JPS638839B2 - - Google Patents

Info

Publication number
JPS638839B2
JPS638839B2 JP12681182A JP12681182A JPS638839B2 JP S638839 B2 JPS638839 B2 JP S638839B2 JP 12681182 A JP12681182 A JP 12681182A JP 12681182 A JP12681182 A JP 12681182A JP S638839 B2 JPS638839 B2 JP S638839B2
Authority
JP
Japan
Prior art keywords
organic
acid
dithionic acid
wastewater
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12681182A
Other languages
Japanese (ja)
Other versions
JPS5919594A (en
Inventor
Kaneaki Endo
Takayuki Suzuki
Yoshitaka Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57126811A priority Critical patent/JPS5919594A/en
Publication of JPS5919594A publication Critical patent/JPS5919594A/en
Publication of JPS638839B2 publication Critical patent/JPS638839B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02W10/12

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、排煙脱硫排水のような難分解性
CODを含む排水の生物学的処理法に関するもの
である。 化石燃料を用いたボイラーその他の燃焼装置か
ら排出される排煙には、高濃度の硫黄酸化物や窒
素酸化物が含まれている。これらを大気中に無処
理で排出すればそれら自体の有害性によつて、ま
た大気中での光化学反応でさらなる有害物質に変
化することによつて、環境保全上多くの弊害をも
たらす。したがつて、これらを含む排煙は法的規
制に基づき、脱硫脱硝処理された後に大気中へと
排気されている。 今日、排煙の脱硫脱硝法として最もよく用いら
れているものの一つに、排煙中の硫黄酸化物およ
び窒素酸化物をアルカリ液によつて吸収除去する
方法がある。この方法においては、硫黄酸化物の
多くは硫酸カルシウム、硫酸マグネシウム等の硫
酸塩として除去されるが、ジチオン酸塩等の酸化
分解されにくい化合物も副生される。酸化分解し
にくい硫黄酸化物のうち特にジチオン酸について
は、塩素による分解やオゾンによる分解によつて
も効果的な分解はなされず、物理化学的方法とし
てはほぼ湿式燃焼による方法に限定される。 本発明は、このような現状に鑑みて上記硫黄酸
化物である難分解性COD成分を微生物のもつ生
物分解能力を利用して分解する方法、すなわち嫌
気性微生物によつてジチオン酸等の硫黄酸化物を
分解する際の生物分解速度を昂進せしめ得る方法
を提供することを目的とするものである。 本発明は、少なくともジチオン酸又はジチオン
酸塩を含む排水に有機物を添加し、発生する硫化
水素を除去しながら嫌気性生物処理することを特
徴とする含ジチオン酸排水の処理方法である。 以下に本発明の基本構成を、本発明に至つた研
究経緯を踏まえて詳細に説明する。 硫黄酸化細菌(Thiobacillus属等)や硫酸環元
菌(Desulfoviburio属等)などがジチオン酸等を
生物分解することはよく知られている。本研究
も、湿式燃焼法に代わるジチオン酸を含む硫黄酸
化物系の難分解性COD成分を分解せしめる省エ
ネルギー的処理法として、当初嫌気性細菌による
単純な連続発酵処理方式によつて検討が開始され
た。供試排煙脱硫排水は希釈もしくはイオン交換
処理などの物理化学的処理による濃縮によつて、
ジチオン酸濃度が100mg/asS2O2- 6,300mg/
asS2O2- 6,500mg/asS2O2- 6,1000mg/
asS2O2- 6の4段階になるように調整し、さらに乳
酸をBOD源としていずれも1000mg/(乳酸)
となるよう添加して用いた。 用いた種菌は、下水汚泥の嫌気性消化槽より得
た消化汚泥からジチオン酸ナトリウムを含む集積
培地で培養した混合細菌で、実験反応槽内濃度が
3000mg/・MLSSとなるように植種した。この
結果、ジチオン酸濃度が100mg/の供試排水の
場合においてはジチオン酸の分解除去はほぼ完全
に達成されたが、供試排水中のジチオン酸濃度が
300mg/ではジチオン酸の除去率は約60%に低
下し、ジチオン酸濃度500mg/以上の場合では
ジチオン酸の除去は日数の経過に伴いほとんどな
されない状態となつた。このジチオン酸の分解阻
害因子を調べた結果、阻害現象が見られた時点で
の処理水中の硫化水素濃度が供試排水中のジチオ
ン酸濃度によつて第1表のように変化することが
知られた。
The present invention applies to non-decomposable materials such as flue gas desulfurization wastewater.
It concerns a biological treatment method for wastewater containing COD. Flue gas emitted from boilers and other combustion equipment using fossil fuels contains high concentrations of sulfur oxides and nitrogen oxides. If these are discharged into the atmosphere without treatment, they will cause many problems in terms of environmental conservation, both because of their own toxicity and because they change into even more harmful substances through photochemical reactions in the atmosphere. Therefore, in accordance with legal regulations, flue gas containing these substances is desulfurized and denitrated before being discharged into the atmosphere. One of the most commonly used flue gas desulfurization and denitration methods today is a method in which sulfur oxides and nitrogen oxides in flue gas are absorbed and removed by an alkaline solution. In this method, most of the sulfur oxides are removed as sulfates such as calcium sulfate and magnesium sulfate, but compounds that are difficult to be oxidized and decomposed such as dithionates are also produced as by-products. Among sulfur oxides that are difficult to decompose by oxidation, especially dithionic acid, decomposition by chlorine or ozone does not effectively decompose it, and physicochemical methods are mostly limited to methods using wet combustion. In view of the current situation, the present invention proposes a method for degrading the above-mentioned persistent COD components, which are sulfur oxides, by utilizing the biodegradation ability of microorganisms. The purpose of this invention is to provide a method that can accelerate the rate of biodegradation when decomposing substances. The present invention is a method for treating wastewater containing dithionic acid, which is characterized by adding organic matter to wastewater containing at least dithionic acid or a dithionate salt, and performing anaerobic biological treatment while removing generated hydrogen sulfide. The basic structure of the present invention will be explained in detail below based on the research history that led to the present invention. It is well known that sulfur-oxidizing bacteria (such as the genus Thiobacillus) and sulfate ring-forming bacteria (such as the genus Desulfoviburi) biodegrade dithionic acid and the like. This research also began with a simple continuous fermentation treatment method using anaerobic bacteria as an energy-saving treatment method for decomposing persistent COD components of sulfur oxides containing dithionic acid instead of the wet combustion method. Ta. The sample flue gas desulfurization wastewater is concentrated by dilution or physicochemical treatment such as ion exchange treatment.
Dithionic acid concentration is 100mg/asS 2 O 2- 6 , 300mg/
asS 2 O 2- 6 , 500mg/asS 2 O 2- 6 , 1000mg/
Adjusted to 4 levels of asS 2 O 2- 6 , and further added 1000 mg/(lactic acid) using lactic acid as a BOD source.
It was added and used so that it became. The inoculum used was a mixed bacteria cultured in an enrichment medium containing sodium dithionate from digested sludge obtained from an anaerobic digestion tank of sewage sludge, and the concentration in the experimental reaction tank was
Seeds were planted at 3000mg/・MLSS. As a result, the decomposition and removal of dithionic acid was almost completely achieved in the case of the sample wastewater with a dithionic acid concentration of 100 mg/day, but the dithionate concentration in the sample wastewater was
At 300 mg/dithionic acid, the removal rate of dithionic acid decreased to about 60%, and at dithionic acid concentrations of 500 mg/d or more, dithionic acid was hardly removed as days passed. As a result of investigating factors that inhibit the decomposition of dithionic acid, it was found that the hydrogen sulfide concentration in the treated water at the time when the inhibition phenomenon was observed changes depending on the dithionic acid concentration in the sample wastewater, as shown in Table 1. It was done.

【表】 上記実験により、ジチオン酸の嫌気性生物分解
は供試排水中のジチオン酸濃度が100mg/を超
える場合には単純な嫌気性生物分解法では継続不
可能であることが判明し、阻害現象が生じた場合
の反応液中の硫化水素濃度は比較的高いことが知
られた。次に、ジチオン酸濃度300mg/,500
mg/,1000mg/の排水について、反応液中の
硫化水素濃度を8mg/以下になるように脱硫し
ながら同様な生物処理実験を行つたところ、いず
れのジチオン酸濃度の供試排水もほぼ完全なジチ
オン酸の分解処理が達成できた。以上の結果か
ら、ジチオン酸の嫌気性生物分解処理において
は、高濃度の硫化水素が生成されそれがジチオン
酸の分解を阻害することが知られ、これを防止す
るために、反応液中の硫化水素を除去しながら分
解処理せしめることの有効性が明らかとなつた。 以上のように、本発明による方法は特にジチオ
ン酸が高濃度である排水に有効であるため、排煙
脱硫装置等からの排水を直接生物分解させるより
は、イオン交換樹脂、電気透析膜および逆浸透膜
などによつて少なくともジチオン酸が濃縮された
ものである方が好適である。 次に、本発明の実施態様の一例を図面に基づい
て詳細に説明する。図示したプロセスは形態的に
は嫌気性接触法に属するものであるが、後述のよ
うに他の形態のプロセスによることも可能であ
る。図中で排煙脱硫工程等から排出される、また
はその濃縮工程より排出されるジチオン酸含有排
水は流入液1として嫌気性生物分解槽4(以下、
分解槽と略記する)に投入される。この際の分解
槽の滞留時間は、本態様のごとき嫌気性接触法に
おいては通常0.5〜10日の範囲とされることが多
く、この排水の滞留時間は分解槽4に添加される
有機物15の種類に応じて決定することができ
る。 メタノールを添加有機物とする場合において
は、特に滞留時間を短縮でき0.3〜2.0日の範囲と
することが可能であり、一方下水汚泥、産業廃水
汚泥、生し尿等を用いる場合には滞留時間を4日
〜10日とやや長めにとる必要がある。 ジチオン酸の分解に添加効果のあつた有機性廃
水はこれらの他に都市下水、ゴミ処理場でのピツ
トゴミ汁、下水汚泥または都市ゴミのコンポスト
プラントにて排出される浸出汁、ゴミ埋立地の浸
出水、豚舎および牛舎からの家蓄糞尿を含む廐肥
からの浸出水および廐舎清掃廃水、製糖工場から
の廃糖蜜、パルプ工場からの蒸気ドレン類、醸造
工場からの醸造廃水および蒸留廃水、食品加工場
からの工場廃水などを挙げることができ、これら
を用いた場合の反応器滞留時間は0.8日〜5.0日
と、メタノールを添加有機物とする場合よりもや
や長くとる必要がある。 またメタノール以外の市販有機物で添加効果の
あつたものは、アルコール類ではプロパノール、
ブタノール、グリセロール、およびエタノールを
挙げることができるが、これらのうちエタノール
はやや添加効果が低かつた。 有機酸類ではギ酸、ピルビン酸、乳酸、プロピ
オン酸、酪酸、コハク酸、クエン酸および酢酸に
添加効果が見られた。特に酢酸の場合は他の有機
酸との混合添加の場合に添加効果が高かつた。こ
れらの有機酸の添加の場合の反応器滞留時間は
0.6〜4.0日程度にする必要があつて、メタノール
添加の場合よりもやや長くすることが必要とされ
たが、前記各種廃汚泥や廃水を添加する場合より
も短くてすむことが判明した。またマルトース、
セロビオース、グルコース等のオリゴ糖、還元糖
もほぼこれと同程度の滞留時間を必要とした。 有機物の添加量は、処理すべき廃水中のジチオ
ン酸(塩)その他の難分解性COD物質の濃度に
応じて、添加すべき有機物の量がBODに換算し
てジチオン酸濃度と同等から7倍となるように添
加することが好ましい。添加有機物の量がこれ以
下の場合にはジチオン酸を充分に分解することが
できず、未分解のジチオン酸が処理水中に残留
し、またこれ以上の有機物添加では処理水中での
残存BOD濃度が高まり、好気性処理等による
BOD除去費が高価となる。 なお、本発明においては添加有機物として、上
記した有機性廃水、有機性汚泥、アルコール類、
有機酸類、糖類を適宜に組み合わせて使用できる
ことは勿論である。 以上のような添加栄養条件と滞留時間条件の下
で、投入排水中のジチオン酸はほぼ完全に硫化水
素へと還元分解され、一部は槽内液中に溶存硫化
水素として残存するが残りは消化ガス中14へと
移行する。本発明なるジチオン酸の分解槽4は、
通常のメタン発酵に採用されている温度条件、即
ち中温菌を利用しての分解では20℃〜40℃、高温
菌を利用しての分解では45℃〜70℃に保たれるこ
とによつてその効率を著しく高めることができ、
特に45℃〜70℃での操作は溶存H2S濃度を低下さ
せるうえでより効果的であるが、分解効率を問題
としなくてすむ場合には温度制御なしの操作であ
つてもかまわない。 分解槽4からの流出混合液2は、減圧ポンプ1
0によつて減圧された減圧室5を通過することに
よつて脱ガスされた後、沈殿分離槽6へと導かれ
るが、減圧室5での減圧の程度は従来の有機性廃
水等のメタン発酵処理に用いられる嫌気性接触法
と同程度もしくはそれよりも弱めとすることが妥
当である。また場合によつては上記脱ガス操作を
省略することも可能であるが、その選択は沈殿分
離槽6での固液分離性が極端に悪化しないことを
確認したうえで行うことが必要である。 沈殿分離槽6においては沈殿(生物性)汚泥画
分12と上澄液画分3とに分離され、この上澄液
画分3が即ちジチオン酸分解処理水として、残存
BOD成分等を除去するための好気性処理プロセ
スへ導かれるか、もしくは直接放流される。沈殿
汚泥画分12の一部は汚泥輸送ポンプ11によつ
て分解槽4に返送され、残りは余剰汚泥13とし
て処分されるが、この量比は分解槽4内の生物性
汚泥濃度が500〜10000mg/に維持されるように
調整して決めることができる。 分解槽4内液中の硫化水素を除去するにはいろ
いろな方法がとりうる。図示のごとく消化ガス中
に集積した硫化水素をガス循環経路を設け、これ
に吸収装置7を設けることは、分解槽ヘツドスペ
ースの気相を低濃度H2S雰囲気とし、分解槽内液
中に残留するH2Sを追い出すことを目的としてな
される。このH2S吸収除去剤は苛性ソーダ液、第
一鉄液、炭酸カルシウム液、石灰液、アンモニア
液、モノエタノールアミン等の液体吸収剤でもよ
く、酸化鉄等の固体吸収剤であつても可能であ
る。また、従来より消化ガスの脱硫に用いられて
いるタカハツクス法やサイロツク法なども場合に
よつては利用できる。 硫化水素吸収のためのガス循環経路は、必ずし
も図示した如くの方法によるのみとは限らず、例
えば循環ポンプ(ガスポンプ)9からの送気パイ
プを分解槽内液面下に入れ、ガス撹拌と共用する
ことによつて、液中に溶存する硫化水素濃度をヘ
ツドスペースのみのガス循環によるよりも、スト
リツピング効果によつてさらに低減させることが
できて好ましい。硫化水素除去には上記のガス吸
収法の外に、分解槽液中に鉄塩等の金属塩を添加
することによつて、不溶性硫化物として除去する
方法もとりうる。 これらいずれの場合においても分解槽液中の硫
化水素濃度を20mg/以下とすることが好まし
く、特に0〜8mg/の範囲にとどめることがの
ぞまれる。分解槽内のPHが極端な変動を示す場合
には、PHを5.5〜7.5の範囲に調整することが好ま
しい。このPH調整は、ジチオン酸の嫌気性生物分
解反応を助長するのみならず、上記硫化水素のガ
ス循環吸収除去を行ううえでも効果がある。この
ことは特にPHを調節しない方式で分解槽液中のPH
が7.5を超えて上昇する場合に重要となる。即ち、
7.5より高いPHでは硫化水素の溶存量が著しく高
くなるために、硫化水素のガス化が充分に行われ
ず液中の硫化水素の残存濃度を低く抑えられなく
なるからである。なお、図中8は撹拌機である。 上記実施態様の外に、本発明による排煙脱硫排
水の嫌気性生物処理装置の形態として従来より知
られている嫌気性消化装置である半回分式接触消
化法、上向流嫌気性ろ床法、流動床式嫌気性反応
器法、上向流嫌気性汚泥ブランケツト法などに属
する装置のほとんどが利用できる点は、処理すべ
き排煙脱硫排水の水質および添加有機物の種類に
応じて最も効率の高い装置を構成するうえで選択
範囲をより広くできる利点としてあげることがで
きる。 なお、少なくともジチオン酸を含む排水を本発
明の方法で処理した後、前記嫌気性反応器(分解
槽4)からの流出水が未利用の有機物を含んでい
る場合、脱硫化水素が不完全で硫化水素を含んで
いる場合、硫酸還元が不十分で亜硫酸イオンを含
む場合など、残留BODもしくはCOD濃度を除去
する必要のある場合には、引き続き曝気槽もしく
は生物膜法による反応器(浸漬ろ床、流動床、回
転円板、散水ろ床等)のごとくの好気性生物処理
装置に導き好気的に生物処理することが好ましい
ことは云うまでもない。 以上述べたように本発明は、ジチオン酸又はジ
チオン酸塩を含有する排水に、下水、し尿、各種
工場排水、各種農畜産排水、廃糖蜜等の有機性廃
水、これらの処理工程より排出される廃汚泥、市
販の有機物質であるメタノール、エタノール、プ
ロパノール、ブタノール、グリセロール等のアル
コール類、セルローズおよびでん粉等の多糖類の
加水分解によつて得られたオリゴ糖、還元糖等の
糖類、およびギ酸、酢酸、プロピオン酸、酪酸、
ピルビン酸、乳酸、コハク酸、クエン酸等の有機
酸類などの有機物のいずれか一種または複数種の
混合物を添加して嫌気性生物処理する方法であつ
て該生物処理工程を発生する硫化水素を除去しな
がら行うことを特徴とするものであり、簡潔なプ
ロセスにより難分解性のCOD物質を短時間内に
効率良くかつ省エネルギー的に分解処理すること
ができるうえ、二次公害の問題もなく、また既存
の装置をそのまま、もしくはこれにわずかの手直
しを加えるだけで使用できるなど多大の利点を有
するものである。
[Table] The above experiment revealed that anaerobic biodegradation of dithionic acid cannot be continued by a simple anaerobic biodegradation method when the concentration of dithionic acid in the sample wastewater exceeds 100mg/ It is known that when this phenomenon occurs, the concentration of hydrogen sulfide in the reaction solution is relatively high. Next, dithionic acid concentration 300mg/,500
When we performed similar biological treatment experiments on wastewater with concentrations of 1000mg/mg/mg/mg/mg/mg/, and 1000mg/ of dithionic acid while desulfurizing the hydrogen sulfide concentration in the reaction solution to below 8mg/, we found that the test wastewater with all dithionic acid concentrations was almost completely cured. The decomposition treatment of dithionic acid was achieved. From the above results, it is known that in the anaerobic biodegradation treatment of dithionic acid, a high concentration of hydrogen sulfide is produced, which inhibits the decomposition of dithionic acid. The effectiveness of decomposition treatment while removing hydrogen has become clear. As described above, the method according to the present invention is particularly effective for wastewater with a high concentration of dithionic acid. It is preferable that at least dithionic acid is concentrated using a permeable membrane or the like. Next, an example of an embodiment of the present invention will be described in detail based on the drawings. Although the illustrated process formally belongs to the anaerobic contact method, other types of processes are also possible as described below. In the figure, the dithionic acid-containing wastewater discharged from the flue gas desulfurization process or the like or the concentration process is used as the influent 1 in an anaerobic biodegradation tank 4 (hereinafter referred to as
(abbreviated as decomposition tank). The residence time in the decomposition tank at this time is often set in the range of 0.5 to 10 days in the anaerobic contact method such as this embodiment, and the residence time of this wastewater is the amount of organic matter 15 added to the decomposition tank 4. It can be determined depending on the type. When using methanol as the additive organic substance, the residence time can be particularly shortened to a range of 0.3 to 2.0 days, while when using sewage sludge, industrial wastewater sludge, human waste, etc., the residence time can be reduced to 4 days. It is necessary to take a slightly longer period of 1-10 days. In addition to these organic wastewaters that have an additive effect on the decomposition of dithionic acid, there are municipal sewage, pit garbage juice at garbage treatment plants, sewage sludge or leachate discharged from municipal waste composting plants, and leaching from garbage landfills. Water, leachate from manure including domestic manure from pig pens and cow sheds and barn cleaning wastewater, molasses from sugar mills, steam drains from pulp mills, brewing and distillation wastewater from brewing plants, food processing For example, wastewater from factories can be used, and when these are used, the residence time in the reactor is 0.8 to 5.0 days, which is slightly longer than when methanol is used as the added organic substance. In addition, commercially available organic substances other than methanol that have an additive effect are alcohols such as propanol,
Butanol, glycerol, and ethanol can be mentioned, but among these, ethanol had a rather low addition effect. Among organic acids, additive effects were seen for formic acid, pyruvic acid, lactic acid, propionic acid, butyric acid, succinic acid, citric acid, and acetic acid. Particularly in the case of acetic acid, the addition effect was high when mixed with other organic acids. The reactor residence time for the addition of these organic acids is
Although it was necessary to make it about 0.6 to 4.0 days, which was slightly longer than in the case of methanol addition, it was found that it was shorter than in the case of adding the various waste sludge and wastewater. Also maltose,
Oligosaccharides such as cellobiose and glucose, and reducing sugars also required approximately the same residence time. The amount of organic matter to be added varies depending on the concentration of dithionic acid (salt) and other persistent COD substances in the wastewater to be treated, and the amount of organic matter to be added ranges from equivalent to the concentration of dithionic acid to 7 times the concentration of dithionic acid in terms of BOD. It is preferable to add it so that If the amount of added organic matter is less than this, dithionic acid will not be fully decomposed and undecomposed dithionic acid will remain in the treated water, and if more organic matter is added, the residual BOD concentration in the treated water will increase. due to aerobic treatment, etc.
BOD removal costs are high. In addition, in the present invention, the above-mentioned organic wastewater, organic sludge, alcohols,
It goes without saying that organic acids and saccharides can be used in appropriate combinations. Under the above-mentioned conditions of added nutrients and residence time, dithionic acid in the input wastewater is almost completely reduced and decomposed to hydrogen sulfide, and some remains as dissolved hydrogen sulfide in the tank liquid, but the rest remains. Transition to Digestion Gas Medium 14. The dithionic acid decomposition tank 4 of the present invention includes:
The temperature conditions used for normal methane fermentation, i.e. 20°C to 40°C for decomposition using mesophilic bacteria, and 45°C to 70°C for decomposition using thermophilic bacteria. Its efficiency can be significantly increased,
In particular, operation at 45° C. to 70° C. is more effective in reducing the dissolved H 2 S concentration, but operation without temperature control may be used if decomposition efficiency is not an issue. The mixed liquid 2 flowing out from the decomposition tank 4 is sent to a vacuum pump 1
After being degassed by passing through the decompression chamber 5, which is depressurized by It is appropriate to use the same or weaker strength than the anaerobic contact method used for fermentation. In some cases, it is possible to omit the above degassing operation, but this selection must be made after confirming that the solid-liquid separability in the sedimentation separation tank 6 will not be extremely deteriorated. . In the sedimentation separation tank 6, the sludge is separated into a sedimentation (biological) sludge fraction 12 and a supernatant fraction 3, and this supernatant fraction 3 is treated as dithionic acid decomposition treated water.
It is either led to an aerobic treatment process to remove BOD components, etc., or directly discharged. A part of the settled sludge fraction 12 is returned to the decomposition tank 4 by the sludge transport pump 11, and the rest is disposed of as surplus sludge 13, but this quantitative ratio is such that the concentration of biological sludge in the decomposition tank 4 is 500 to 500. It can be adjusted and determined to be maintained at 10000mg/. Various methods can be used to remove hydrogen sulfide from the liquid in the decomposition tank 4. As shown in the figure, providing a gas circulation path for hydrogen sulfide accumulated in the digestion gas and providing an absorption device 7 in this path creates a low-concentration H 2 S atmosphere in the gas phase of the head space of the decomposition tank, and allows the hydrogen sulfide to be absorbed into the liquid in the decomposition tank. This is done for the purpose of expelling residual H 2 S. This H 2 S absorption and removal agent may be a liquid absorbent such as a caustic soda solution, a ferrous solution, a calcium carbonate solution, a lime solution, an ammonia solution, or a monoethanolamine solution, or it may be a solid absorbent such as iron oxide. be. Furthermore, the Takahakus method and the Silock method, which have been conventionally used for desulfurization of digestion gas, can be used in some cases. The gas circulation route for hydrogen sulfide absorption is not necessarily limited to the method shown in the diagram; for example, the air supply pipe from the circulation pump (gas pump) 9 may be placed below the liquid level in the decomposition tank and used for gas agitation. This is preferable because the concentration of hydrogen sulfide dissolved in the liquid can be further reduced by the stripping effect than by gas circulation only in the head space. In addition to the above-mentioned gas absorption method, hydrogen sulfide can be removed by adding metal salts such as iron salts to the decomposition tank liquid to remove the hydrogen sulfide as insoluble sulfide. In any of these cases, it is preferable that the hydrogen sulfide concentration in the decomposition tank liquid is 20 mg/or less, and particularly preferably within the range of 0 to 8 mg/. If the pH in the decomposition tank shows extreme fluctuations, it is preferable to adjust the pH to a range of 5.5 to 7.5. This pH adjustment is effective not only in promoting the anaerobic biodecomposition reaction of dithionic acid, but also in removing the hydrogen sulfide through gas circulation. This is especially true when using a method that does not adjust the pH of the PH in the digester liquid.
becomes important when the value rises above 7.5. That is,
This is because at a pH higher than 7.5, the amount of dissolved hydrogen sulfide becomes significantly high, and hydrogen sulfide is not sufficiently gasified, making it impossible to keep the residual concentration of hydrogen sulfide in the liquid low. In addition, 8 in the figure is a stirrer. In addition to the above-mentioned embodiments, the semi-batch contact digestion method, which is an anaerobic digestion device conventionally known as a form of the anaerobic biological treatment device for flue gas desulfurization wastewater according to the present invention, and the upflow anaerobic filter bed method The fact that most of the equipment belonging to the anaerobic reactor method, fluidized bed anaerobic reactor method, upflow anaerobic sludge blanket method, etc. can be used is that the most efficient method can be used depending on the water quality of the flue gas desulfurization wastewater to be treated and the type of added organic matter. This can be cited as an advantage of widening the selection range when configuring expensive equipment. Note that after treating wastewater containing at least dithionic acid by the method of the present invention, if the water flowing out from the anaerobic reactor (decomposition tank 4) contains unused organic matter, hydrogen desulfurization is incomplete. If it is necessary to remove residual BOD or COD concentrations, such as when hydrogen sulfide is present or when sulfite ions are contained due to insufficient sulfate reduction, use an aeration tank or biofilm reactor (submerged filter bed) to remove residual BOD or COD concentrations. Needless to say, it is preferable to conduct the aerobic biological treatment by introducing the raw material into an aerobic biological treatment device such as a fluidized bed, rotating disk, trickling filter, etc.). As described above, the present invention is applicable to wastewater containing dithionic acid or dithionate, including sewage, human waste, various industrial wastewater, various agricultural and livestock wastewater, organic wastewater such as molasses, and organic wastewater discharged from these treatment processes. Waste sludge, commercially available organic substances such as methanol, ethanol, propanol, butanol, alcohols such as glycerol, oligosaccharides obtained by hydrolysis of polysaccharides such as cellulose and starch, sugars such as reducing sugars, and formic acid. , acetic acid, propionic acid, butyric acid,
A method of anaerobic biological treatment by adding one or a mixture of organic substances such as organic acids such as pyruvic acid, lactic acid, succinic acid, and citric acid to remove hydrogen sulfide generated in the biological treatment process. It is characterized by the fact that it can decompose recalcitrant COD substances in a short time, efficiently and energy-savingly through a simple process, and there is no problem of secondary pollution. It has many advantages, such as being able to use existing equipment as is or with only slight modifications.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示すフローシートで
ある。 1……流入液、2……流出混合液、3……上澄
液画分、4……分解槽、5……減圧室、6……沈
殿分離槽、7……吸収装置、8……撹拌機、9…
…循環ポンプ、10……減圧ポンプ、11……汚
泥輸送ポンプ、12……沈殿汚泥画分、13……
余剰汚泥、14……消化ガス、15……有機物。
The drawings are flow sheets illustrating embodiments of the invention. 1... Inflow liquid, 2... Outflow mixed liquid, 3... Supernatant liquid fraction, 4... Decomposition tank, 5... Decompression chamber, 6... Precipitation separation tank, 7... Absorption device, 8... Stirrer, 9...
...Circulation pump, 10...Reducing pressure pump, 11...Sludge transport pump, 12...Settled sludge fraction, 13...
Excess sludge, 14...digestion gas, 15...organic matter.

Claims (1)

【特許請求の範囲】 1 少なくともジチオン酸又はジチオン酸塩を含
む排水に有機物を添加し、発生する硫化水素を除
去しながら嫌気性生物処理することを特徴とする
含ジチオン酸排水の処理方法。 2 前記排水がジチオン酸又はジチオン酸塩の濃
縮水であつて、排煙脱硫排水をイオン交換処理な
どの物理化学的処理により濃縮したものである特
許請求の範囲第1項記載の方法。 3 前記有機物として有機性廃水、有機性汚泥、
アルコール類、有機酸類、糖類からなる一群中よ
り任意に選んだ物質を使用する特許請求の範囲第
1項又は第2項記載の方法。 4 前記有機物としてメタノールを使用する特許
請求の範囲第3項記載の方法。 5 前記有機物として酢酸を使用する特許請求の
範囲第3項記載の方法。 6 前記有機物の添加量を、そのBOD換算量が
ジチオン酸、ジチオン酸塩その他の難分解性
COD物質のCOD換算量の1倍以上7倍以下とな
るように設定する特許請求の範囲第4項又は第5
項記載の方法。 7 前記嫌気性生物処理を、生物反応液の硫化水
素濃度を20mg/以下、好ましくは8mg/以下
に保つて行う特許請求の範囲第6項記載の方法。 8 前記嫌気性生物処理を、生物反応液のPHを
5.5〜7.5に調整して行う特許請求の範囲第6項又
は第7項記載の方法。 9 前記嫌気性生物処理を、生物反応液の温度を
45℃〜70℃に保つて行う特許請求の範囲第6項,
第7項又は第8項記載の方法。
[Scope of Claims] 1. A method for treating wastewater containing dithionic acid, which comprises adding organic matter to wastewater containing at least dithionic acid or a dithionate salt, and performing anaerobic biological treatment while removing generated hydrogen sulfide. 2. The method according to claim 1, wherein the waste water is concentrated water of dithionic acid or dithionate salt, and is obtained by concentrating flue gas desulfurization waste water by physicochemical treatment such as ion exchange treatment. 3 As the organic matter, organic wastewater, organic sludge,
3. The method according to claim 1 or 2, wherein a substance arbitrarily selected from the group consisting of alcohols, organic acids, and saccharides is used. 4. The method according to claim 3, wherein methanol is used as the organic substance. 5. The method according to claim 3, wherein acetic acid is used as the organic substance. 6 The amount of added organic matter is calculated based on the BOD equivalent amount of dithionic acid, dithionate, and other non-decomposable substances.
Claim 4 or 5 sets the amount to be 1 to 7 times the COD equivalent amount of the COD substance.
The method described in section. 7. The method according to claim 6, wherein the anaerobic biological treatment is carried out while maintaining the hydrogen sulfide concentration of the biological reaction liquid at 20 mg/or less, preferably 8 mg/or less. 8 Perform the anaerobic biological treatment and adjust the pH of the biological reaction solution.
The method according to claim 6 or 7, which is carried out by adjusting the ratio to 5.5 to 7.5. 9 Perform the anaerobic biological treatment by adjusting the temperature of the biological reaction solution.
Claim 6,
The method described in paragraph 7 or 8.
JP57126811A 1982-07-22 1982-07-22 Treatment of dithionic acid-contg. waste water Granted JPS5919594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57126811A JPS5919594A (en) 1982-07-22 1982-07-22 Treatment of dithionic acid-contg. waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57126811A JPS5919594A (en) 1982-07-22 1982-07-22 Treatment of dithionic acid-contg. waste water

Publications (2)

Publication Number Publication Date
JPS5919594A JPS5919594A (en) 1984-02-01
JPS638839B2 true JPS638839B2 (en) 1988-02-24

Family

ID=14944540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126811A Granted JPS5919594A (en) 1982-07-22 1982-07-22 Treatment of dithionic acid-contg. waste water

Country Status (1)

Country Link
JP (1) JPS5919594A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303862B2 (en) * 2007-05-11 2013-10-02 栗田工業株式会社 Anaerobic treatment method and anaerobic treatment apparatus
WO2009119521A1 (en) * 2008-03-26 2009-10-01 株式会社神鋼環境ソリューション Method for processing waste water
JP5443057B2 (en) * 2009-05-29 2014-03-19 オルガノ株式会社 Anaerobic biological treatment method and anaerobic biological treatment apparatus

Also Published As

Publication number Publication date
JPS5919594A (en) 1984-02-01

Similar Documents

Publication Publication Date Title
CN100400441C (en) Process for combined water treatment of chemical oxidizing-biological biological filtering tank
CN101549939B (en) Leather making integrated waste water treatment method
CN101428941B (en) Process for treating wastewater from pulping papermaking
KR20070047731A (en) Method for purifying leachate of landfill and dewatering water of food waste
KR20090051450A (en) The treatment method of high concentrated organic waste water,like with leachate of food waste water and animal waste water
US3867284A (en) Water treatment with nitrogen dioxide
CN111847796B (en) Leachate treatment system and method for garbage incineration plant
US8828230B2 (en) Wastewater treatment method for increasing denitrification rates
WO2020152707A1 (en) Heavy metal removal from industrial effluents by combination of aerobic and anaerobic treatment
JP2003225694A (en) Waste water treatment system using humic substance
CN101164919A (en) Deep treatment method for garbage percolate
JPS6349554B2 (en)
JPS638839B2 (en)
CN109320029A (en) Liquor production wastewater processing method and system
JP2000061497A (en) Treatment of organic wastewater and equipment therefor
KR100285015B1 (en) Nitrogen and phosphorus removal method in sewage treatment in rotary disk method
CN209307174U (en) Liquor production wastewater processing system
KR101849803B1 (en) Method and device for anaerobically treating wastewater containing terephthalic acid
CN111847682A (en) Sewage treatment process
KR100465039B1 (en) Treatment method for organic wastewater
CN105600948B (en) A kind of method that body refuse bioactivation recycles enhanced coagulation absorption organic pollution in water process
KR102607197B1 (en) High-concentration landfill leachate, livestock wastewater, manure, food wastewater, industrial wastewater and low-concentration wastewater treatment system using an upflow complex bioreactor
KR100254523B1 (en) Natural purification method and apparatus thereof
CN219567732U (en) Making wine effluent treatment plant
CN216687835U (en) Wastewater treatment system for fine chemical production process