JPS5919594A - Treatment of dithionic acid-contg. waste water - Google Patents

Treatment of dithionic acid-contg. waste water

Info

Publication number
JPS5919594A
JPS5919594A JP57126811A JP12681182A JPS5919594A JP S5919594 A JPS5919594 A JP S5919594A JP 57126811 A JP57126811 A JP 57126811A JP 12681182 A JP12681182 A JP 12681182A JP S5919594 A JPS5919594 A JP S5919594A
Authority
JP
Japan
Prior art keywords
treatment
dithionic acid
acid
organic
hydrogen sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57126811A
Other languages
Japanese (ja)
Other versions
JPS638839B2 (en
Inventor
Kaneaki Endo
銀朗 遠藤
Takayuki Suzuki
隆幸 鈴木
Yoshitaka Matsuo
松尾 吉高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57126811A priority Critical patent/JPS5919594A/en
Publication of JPS5919594A publication Critical patent/JPS5919594A/en
Publication of JPS638839B2 publication Critical patent/JPS638839B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02W10/12

Abstract

PURPOSE:To improve the speed of biodecomposing dithionic acid or the like, by adding organic substance to waste water containing at least dithionic acid or dithionate, and performing anaerobic biotreatment while formed hydrogen sulfide. CONSTITUTION:An outflow liquid mixture 2 from a decomposition tank 4 is degasified by circulating it through a decompression chamber 5 decompressed by a decompression pump 10 and then introduced into a precipitation-separating tank 6. Said liquid is separated into the fraction 12 of precipitating (living) sludge and the fraction 3 of a supernatant liquid in the precipitation-separating tank 6. The fraction 3 of a supernatant liquid is introduced as water for the treatment of decomposing dithionic acid into the process of aerobic treatment to remove BOD components. A part of the fraction 12 of precipitating sludge is returned to a decomposition tank 4 by a pump 11, while the remainder is disposed as excess sludge 13. The removal of gaseous hydrogen sulfide from an inner liquid inside the decomposition tank 4 can be performed by a method such as adding a metal salt, e.g. a ferric one, to the inner liquid to remove it as an insoluble sulfide.

Description

【発明の詳細な説明】 本発明は、排煙脱硫排水のような難分解性CODを含む
排水の生物学的処理法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a biological treatment method for wastewater containing persistent COD, such as flue gas desulfurization wastewater.

化石燃料を用いたボイラーその他の燃焼装置から排出さ
れる排煙には、高濃度の硫黄酸化物や窒素酸化物が含ま
れている。これらを大気中に無処理で排出すればそれら
自体の有害性によって、また大気中での光化学反応でさ
らなる有害物質に変化することによって、環境保全上多
くの弊害をもたらす。しだがって、これらを含む排煙は
法的規制に基づき、脱硫脱硝処理された後に大気中へと
排気されている。
Flue gas emitted from boilers and other combustion equipment using fossil fuels contains high concentrations of sulfur oxides and nitrogen oxides. If these are discharged into the atmosphere without treatment, they will cause many problems in terms of environmental conservation, both because of their own toxicity and because they change into even more harmful substances through photochemical reactions in the atmosphere. Therefore, in accordance with legal regulations, flue gas containing these substances is desulfurized and denitrated before being discharged into the atmosphere.

今日、排煙の脱硫脱硝法として最もよく用いられている
ものの一つに、排煙中の硫黄酸化物および窒素酸化物を
アルカリ液によって吸収除去する方法がある。この方法
においては、硫黄酸化物の多くは硫酸カルシウム、硫酸
マグネシウム等の硫酸塩として除去されるが、ジチオン
酸塩等の酸化分解されにくい化合物も副生される。酸化
分解しにくい硫黄酸化物のうち特にジチオン酸について
は、塩素による分解やオゾンによる分解によっても効果
的な分解はなされず、物理化学的方法としてはほぼ湿式
燃焼による方法に限定される。
One of the most commonly used flue gas desulfurization and denitrification methods today is a method in which sulfur oxides and nitrogen oxides in flue gas are absorbed and removed by an alkaline solution. In this method, most of the sulfur oxides are removed as sulfates such as calcium sulfate and magnesium sulfate, but compounds that are difficult to be oxidized and decomposed such as dithionates are also produced as by-products. Among sulfur oxides that are difficult to decompose by oxidation, dithionic acid in particular cannot be effectively decomposed by chlorine or ozone, and physicochemical methods are limited to wet combustion methods.

本発明は、このような現状に鑑みて上記硫黄酸化物であ
る難分解性COD成分を微生物のもつ生物分解能力を利
用して分解する方法、すなわち嫌気性微生物によってジ
チオン酸等の硫黄酸化物を分解する際の生物分解速度を
昂進せしめ得る方法を提供することを目的とするもので
ある。
In view of the current situation, the present invention proposes a method for degrading the above-mentioned persistent COD components, which are sulfur oxides, by utilizing the biodegradability of microorganisms. The object is to provide a method that can accelerate the biodegradation rate during decomposition.

本発明は、少なくともジチオン酸又はジチオン酸塩を含
む排水に有機物を添加し、発生する硫化水素を除去しな
がら嫌気性生物処理することを特徴とする含ジチオン酸
排水の処理方法である。
The present invention is a method for treating wastewater containing dithionic acid, which is characterized by adding organic matter to wastewater containing at least dithionic acid or a dithionate salt, and performing anaerobic biological treatment while removing generated hydrogen sulfide.

以下に本発明の基本構成を、本発明に至った研究経緯を
踏まえて詳細に説明する。
The basic structure of the present invention will be explained in detail below based on the research history that led to the present invention.

硫黄酸化細菌(Th1obaci 11us属等)や硫
酸還元菌(Desulfoviburio JfA等)
などがジチオン酸等を生物分解することはよく知られて
いる。木(0(究も、湿式燃焼法に代わるジチオン酸を
含む硫黄酸化物系の難分解性COD成分を分解せしめる
省エネルギー的処理法として、当初嫌気性細菌による単
純な連続発酵処理方式によって横側が開始された。供試
排煙脱硫排水は希釈もしくはイオン交換処理などの物理
化学的処理による濃縮によって、ジチオン酸濃度が10
0m9/las S20’b + 3001ffi7/
las 5206 + 500m9/L as S 2
06+ 1(100m9/l as 5206の4段1
@になるように調整し、さらに乳酸をBOD源としてい
ずれも1ooo my/l (乳酸)となるよう添加し
て用いた。
Sulfur-oxidizing bacteria (genus Th1obaci 11us, etc.) and sulfur-reducing bacteria (Desulfoviburio JfA, etc.)
It is well known that these compounds biodegrade dithionic acid, etc. As an energy-saving treatment method for decomposing persistent COD components of sulfur oxides containing dithionic acid, replacing the wet combustion method, the horizontal side was initially started using a simple continuous fermentation treatment method using anaerobic bacteria. The sample flue gas desulfurization wastewater was concentrated by dilution or physicochemical treatment such as ion exchange treatment, and the dithionic acid concentration was reduced to 10.
0m9/las S20'b + 3001ffi7/
las 5206 + 500m9/L as S 2
06+ 1 (100m9/l as 5206 4 stages 1
lactic acid was added as a BOD source so that the concentration was 100 my/l (lactic acid).

用いた種菌は、下水汚泥の嫌気性消化槽よりイ尋た消化
汚泥からジチオン酸ナト1ノウムを含む集積培地で培養
した混合細菌で、実、験反応槽内濃度7513000+
’19A−MLSSとなるように植鍾した。この結果、
ジチオン酸濃度が1oom9/Lの供試排水の場合にお
いてはジチオン酸の分解除去はほぼ完全に達成されだが
、供試排水中のジチオン酸濃度75x 300 m9/
lではジチオン酸の除去率は約60チに低下し、ジチオ
ン酸濃度5oomy/1以上の場合ではジチオン酸塩酵 となった。このジチオン酸の分解l!H害因子を調べた
結果、阻害現象が見られた時点での処理水中の硫化水素
濃度が供試排水中のジチオン酸濃度によって第1表のよ
うに変化すること75(知られた。
The inoculum used was a mixed bacteria cultured from digested sludge taken from an anaerobic sewage sludge digester in an enrichment medium containing 1 sodium dithionate, and the actual concentration in the experimental reaction tank was 7513000+.
It was planted to become '19A-MLSS. As a result,
In the case of the sample wastewater with a dithionic acid concentration of 1oom9/L, the decomposition and removal of dithionic acid was almost completely achieved, but when the dithionic acid concentration in the sample wastewater was 75x 300 m9/L.
1, the removal rate of dithionic acid decreased to about 60 ml, and when the dithionic acid concentration was 5 oomy/1 or more, dithionate fermentation occurred. Decomposition of this dithionic acid! As a result of investigating the H harmful factor, it was found that the hydrogen sulfide concentration in the treated water at the time when the inhibition phenomenon was observed changes as shown in Table 1, depending on the dithionic acid concentration in the test wastewater75 (known).

第1表 上記実験により、ジチオン酸の嫌気性生物分解は供試排
水中のジチオン酸濃度が]oomp/jを超える場合に
は単純な嫌気性生物分解法では継続不可能であることが
判明し、阻害現象が生じた場合の反応液中の硫化水素濃
度は比較的高いことが知られた。次に、ジチオン酸濃度
3oomp/l 、 500■/1 。
Table 1 The above experiment revealed that anaerobic biodegradation of dithionic acid cannot be continued by simple anaerobic biodegradation method when the concentration of dithionic acid in the sample wastewater exceeds ]oomp/j. It is known that the concentration of hydrogen sulfide in the reaction solution is relatively high when an inhibition phenomenon occurs. Next, the concentration of dithionic acid was 3 oomp/l and 500 μ/1.

1000 m9/lの排水について、反応液中の硫化水
素濃度を8 m9/を以下に在るように脱硫しながら同
様な生物処理実験を行ったところ、いずれのジチオン酸
濃度の供試排水もほぼ完全なジチオン酸の分解処理が達
成できた。以上の結果から、ジチオン酸の嫌気性生物分
解処理においては、高濃度の硫化水素が生成されそれが
ジチオン酸の分解を阻害することか知られ、これを防止
するだめに、反応液中の硫化水素を除去しながら分解処
理せしめることの有効性が明らかとなった。
Similar biological treatment experiments were conducted on wastewater of 1000 m9/l while desulfurizing the hydrogen sulfide concentration in the reaction solution to below 8 m9/l. Complete decomposition treatment of dithionic acid was achieved. From the above results, it is known that in the anaerobic biodegradation treatment of dithionic acid, a high concentration of hydrogen sulfide is generated, which inhibits the decomposition of dithionic acid. The effectiveness of decomposition treatment while removing hydrogen has been demonstrated.

以上のように、本発明による方法は特にジチオン酸が高
濃度である排水に有効であるため、排煙脱硫装置等から
の排水を直接生物分解させるよりは、イオン交換樹脂、
電気透析膜および逆浸透膜などKよって少なくともジチ
オン酸が濃縮されたものである方が好適である。
As described above, the method according to the present invention is particularly effective for wastewater with a high concentration of dithionic acid, so it is preferable to use ion exchange resin,
It is preferable to use a membrane in which at least dithionic acid is concentrated with K, such as an electrodialysis membrane or a reverse osmosis membrane.

次に、本発明の実施態様の一例を図面に基づいて詳細に
説明する。図示しだプロセスは形態的洗は嫌気性接触法
に属するものであるが、後述のように他の形態のプロセ
スによることも可能である。
Next, an example of an embodiment of the present invention will be described in detail based on the drawings. Although the illustrated process belongs to the anaerobic contact method, other types of processes are also possible as described below.

図中で排煙脱硫工程等から排出される、またはその濃縮
工程より排出されるジチオン酸含有排水は流入液1とし
て嫌気性生物分解槽4(以下、分解槽と略記する)に投
入される。この際の分解槽の滞留時間は、本態様のごと
き嫌気性接触法においては通常05〜10日の範囲とさ
れることが多く、この排水の滞留時間は分解槽4に添加
される有機物15の徨類に応じて決定することができる
In the figure, dithionic acid-containing wastewater discharged from a flue gas desulfurization process or the like or from its concentration process is input as an inflow liquid 1 into an anaerobic biodecomposition tank 4 (hereinafter abbreviated as a decomposition tank). The residence time in the decomposition tank at this time is often set in the range of 05 to 10 days in the anaerobic contact method such as this embodiment, and the residence time of this wastewater is the amount of organic matter 15 added to the decomposition tank 4. The decision can be made depending on the type of immigration.

メタノールを添加有機物とする場合においては、特に滞
留時間を短縮でき03〜2.0日の範囲とすることが可
能であり、一方下水汚泥、産業廃水汚泥。
When methanol is used as the added organic substance, the residence time can be particularly shortened to a range of 0.3 to 2.0 days; on the other hand, sewage sludge and industrial wastewater sludge.

生し尿等を用いる場合には滞留時間を4日〜】0日とや
や長めにとる必要がある。
When using fresh human urine, etc., the residence time must be slightly longer, from 4 days to 0 days.

ジチオン酸の分解に添加効果のあった有機性廃水はこれ
らの他に都市下水、ゴミ処理場でのピットゴミ汁、下水
汚泥まだは都市ゴミのコンポストプラントにて排出され
る浸出汁、ゴミ埋立地の浸出水、豚舎および牛舎からの
家畜薔尿を含む厩肥からの浸出水および厩舎清掃廃水、
製糖工場からの廃糖蜜、パルプ工場からの蒸気ドレン類
、醸造工場からの醸造廃水および蒸留廃水1食品加工場
からの工場廃水などを挙げることができ、これらを用い
た場合の反応器滞留時間は08日〜5.0日と、メタノ
ールを添加有機物とする場合よりもやや長くとる必要が
ある。
Other organic wastewaters that were effective in decomposing dithionic acid include urban sewage, pit garbage juice from garbage treatment plants, sewage sludge, leachate from municipal waste composting plants, and garbage from landfills. leachate, leachate from manure, including livestock manure from pig pens and cattle pens, and stable cleaning wastewater;
Examples include molasses from sugar mills, steam drain from pulp mills, brewing wastewater and distillation wastewater from brewing plants, and factory wastewater from food processing plants. When these are used, the residence time in the reactor is It is necessary to take a slightly longer period of time, from 0.8 days to 5.0 days, than when methanol is used as the added organic substance.

まだメタノール以外の市販有機物で添加効果のおったも
のは、アルコール類ではグロパノール。
The only commercially available organic substance other than methanol that has been shown to have an additive effect is glopanol among alcohols.

ブタノール、グリセロール、およびエタノールを挙げる
ことができるが、これらのうちエタノールはやや添加効
果が低かった。
Butanol, glycerol, and ethanol can be mentioned, but among these, ethanol had a slightly lower addition effect.

有機酸類ではギ酸、ピルビン酸、乳酸、プロピオン酸、
酪酸、コハク酸、クエン酸および酢酸に添加効果が見ら
れた。特に酢酸の場合は他の有機酸との混合添加の場合
に添加効果が高かった。これらの有機酸の添加の場合の
反応器滞留時間は06〜40日程度にする必要があって
、メタノール添加の場合よりもやや長くすることが必要
とされたが、前記各種廃汚泥や廃水を添加する場合より
も短くてすむことが判明した。、壕だマルトース。
Organic acids include formic acid, pyruvic acid, lactic acid, propionic acid,
Additive effects were seen for butyric acid, succinic acid, citric acid, and acetic acid. Particularly in the case of acetic acid, the addition effect was high when mixed with other organic acids. When these organic acids are added, the residence time in the reactor needs to be about 0.6 to 40 days, which is slightly longer than when methanol is added. It has been found that the time required is shorter than in the case of addition. , it's maltose.

セロビオース、グルコース等のオ’) ゴa、R元mも
ほぼこれと同程度の滞留時間を必要としだ。
Cellobiose, glucose, etc., and R elements also require approximately the same residence time.

有機物の添加預ば、処理すべき廃水中のジチオン酸(塩
)その他の難分解性COD物質のn度に応じて、添加す
べき有機物の量がBODに換算してジチオン酸濃度と同
等から7倍となるように添加することが−好ましい。添
加有機物の刊、がこれ以下の場合にはジチオン酸を充分
に分解することができず、未分解のジチオン酸が処理水
中に残留し、またこれ以上の有機物添加では処理水中で
の残存BOD濃度が高まシ、好気性処理等による130
D除去費が高価となる。
Depending on the amount of organic matter added and the n degree of dithionic acid (salt) and other persistent COD substances in the wastewater to be treated, the amount of organic matter to be added ranges from the same concentration as dithionic acid to 7% in terms of BOD. It is preferable to add twice as much. If the amount of added organic matter is less than this, dithionic acid cannot be fully decomposed, and undecomposed dithionic acid will remain in the treated water, and if more organic matter is added, the residual BOD concentration in the treated water will decrease. 130 due to high oxidation, aerobic treatment, etc.
D Removal costs are high.

なお、本発明においては添加有機物として、上記した有
機性廃水、有機性汚泥、アルコール類。
In addition, in the present invention, the above-mentioned organic wastewater, organic sludge, and alcohols are used as additive organic substances.

有機酸類、糖類を適宜に組み合わせて使用できることは
勿論である。
It goes without saying that organic acids and saccharides can be used in appropriate combinations.

以上のような添加栄養条件と滞留時0月条件の下で、投
入排水中のジチオン酸はほぼ完全に硫化水素へと還元分
解され、一部は槽内液中に溶存硫化水素として残存する
が残りは消化ガス中14へと移行する。本発明なるジチ
オン酸の分解槽4は、通常のメタン発酵に採用されてい
る温度条件、即ち中温菌を利用しての分解では20℃〜
4(1’c、高温菌を利用しての分解では45℃〜70
℃に保たれることによってその効率を著しく高めること
ができ、−特に45℃〜70℃での操作は溶存)Lz 
S濃度を低下させるうえでよ如効果的であるが、分解効
率を問題としなくてすむ場合には温度制御なしの操作で
ちってもかまわない。
Under the above-mentioned added nutrient conditions and retention conditions, dithionic acid in the input wastewater is almost completely reduced and decomposed to hydrogen sulfide, and some remains as dissolved hydrogen sulfide in the tank liquid. The rest moves to 14 in the digestive gas. The dithionic acid decomposition tank 4 of the present invention is operated under the temperature conditions adopted for normal methane fermentation, that is, 20°C to 20°C for decomposition using mesophilic bacteria.
4 (1'c, 45℃ to 70℃ for decomposition using thermophilic bacteria)
Its efficiency can be significantly increased by keeping the temperature at - especially when operating at 45 to 70 °C (dissolution) Lz
Although it is very effective in reducing the S concentration, if decomposition efficiency is not an issue, operation without temperature control may be used.

分解槽4からの流出混合液2は、減圧ポンプ10によっ
て減圧された減圧室5を通過することによって脱ガスさ
れた後、沈殿分離槽6へと導かれるが、減圧室5での減
圧の程度は従来の有機性廃水等のメタン発酵処理に用い
られる嫌気性接触法と同程度もしくはそれよりも弱めと
することが妥当である。また場合によっては上記脱ガス
操作を省略することも可能であるが、その選択は沈殿分
離槽6での固液分離性が極端に悪化しないことを確認し
たうえで行うことが必要である。
The mixed liquid 2 flowing out from the decomposition tank 4 is degassed by passing through a vacuum chamber 5 whose pressure is reduced by a vacuum pump 10 and then guided to a precipitation separation tank 6, but the degree of pressure reduction in the vacuum chamber 5 It is appropriate that the pressure should be as strong as or weaker than the conventional anaerobic contact method used for methane fermentation treatment of organic wastewater, etc. Although it is possible to omit the degassing operation in some cases, it is necessary to make this selection after confirming that the solid-liquid separability in the precipitation separation tank 6 will not be extremely deteriorated.

沈殿分離槽6においては沈殿(生物性)汚泥画分12と
上澄液画分3とに分離され、この上澄液画分3が即ちジ
チオン酸分解処理水として、残存BOD成分等を除去す
るだめの好気性処理プロセスへ導かれるか、もしくは直
接放流される。沈殿汚泥画分12の一部は汚泥輸送ポン
プ11によって分解槽4に返送され、残りは余剰汚泥1
3として処分されるが、この量比は分解槽4内の生物性
汚泥濃度が500〜10000r&9/lに維持される
ように調整して決めることかできる。
In the sedimentation separation tank 6, the sludge is separated into a sedimentation (biological) sludge fraction 12 and a supernatant fraction 3, and this supernatant fraction 3 is used as dithionic acid decomposition treated water to remove residual BOD components, etc. The waste may be directed to an aerobic treatment process or directly discharged. A part of the settled sludge fraction 12 is returned to the decomposition tank 4 by the sludge transport pump 11, and the rest is the surplus sludge 1.
However, this ratio can be adjusted and determined so that the biological sludge concentration in the decomposition tank 4 is maintained at 500 to 10,000 r&9/l.

分解槽4内液中の硫化水素を除去するにはいろいろな方
法がとりうる。図示のごとく消化ガス中に集積した硫化
水素をガス循環経路を設け、これに吸収装置7を設ける
ことは、分解槽ヘッドスペースの気相を低濃度H2S雰
囲気とし、分解槽内液中に残留するH2S’(r追い出
すことを目的としてなされる。とのH2S吸収除去剤は
苛性ソーダ液、第一鉄液、炭酸カルシウム液1石灰液、
アンモニア液、モノエタノールアミン等の液体吸収剤で
もよく、酸化鉄等の固体吸収剤であっても可能である。
Various methods can be used to remove hydrogen sulfide from the liquid in the decomposition tank 4. As shown in the figure, providing a gas circulation path for hydrogen sulfide accumulated in the digestion gas and providing an absorption device 7 therein creates a low-concentration H2S atmosphere in the gas phase of the head space of the decomposition tank, and prevents it from remaining in the liquid in the decomposition tank. It is made for the purpose of expelling H2S' (r. H2S absorption and removal agents include caustic soda solution, ferrous solution, calcium carbonate solution, 1 lime solution,
A liquid absorbent such as ammonia liquid or monoethanolamine may be used, or a solid absorbent such as iron oxide may be used.

また、従来より消化ガスの脱硫に用いられているタカハ
゛ツクス法やザイロソク法なども場合によっては利用で
きる。
In addition, the Takaax method and the Zyrosox method, which have been conventionally used for desulfurization of digestion gas, may also be used depending on the case.

硫化水素吸収のためのガス循環経路は、必ずしも図示し
た如くの方法によるのみとは限らず、例工ば循環ポンプ
(ガスポンプ)9かもの送気パイプを分解槽内液面下に
入れ、ガス攪拌と共用すること罠よって、液中に溶存す
る硫化水素濃度をヘッドスペースのみのガス循環による
よりも、ストリッピング効果によってさらに低減させる
ことができて好ましい。硫化水素除去には上記のガス吸
収法の外に、分解槽液中に鉄塩等の金属塩を添加するこ
とによって、不溶性硫化物として除去する方法もとりう
る。
The gas circulation route for absorbing hydrogen sulfide is not necessarily limited to the method shown in the diagram; for example, a circulation pump (gas pump) and nine air supply pipes are placed below the liquid level in the decomposition tank to stir the gas. It is preferable that the hydrogen sulfide concentration dissolved in the liquid can be further reduced by the stripping effect than by gas circulation only in the head space. In addition to the above-mentioned gas absorption method, hydrogen sulfide can be removed by adding metal salts such as iron salts to the decomposition tank liquid to remove the hydrogen sulfide as insoluble sulfide.

これらいずれの場合においても分解槽液中の硫化水素濃
度を20m9/を以下とすることが好ましく、特に0〜
8■/lの範囲にとどめることがのぞまれる。
In any of these cases, it is preferable to keep the hydrogen sulfide concentration in the decomposition tank liquid below 20m9/, especially from 0 to
It is desirable to keep it within the range of 8■/l.

分解槽内のpHが極端な変動を示す場合には、pHを5
.5〜7.5の範囲に調整することが好ましい。このp
H調整は、ジチオン酸の嫌気性生物分解反応を助長する
のみならず、上記硫化水素のガス循環吸収除去を行うう
えでも効果がある。このことは特にpHt調節しない方
式で分解槽液中のpHが7.5を超えて上昇する場合に
重要となる。即ち、7.5より高いp■(では硫化水素
の溶存量が著しく高くなるために、硫化水素のガス化が
充分に行われず液中の硫化水素の残存濃度を低く抑えら
れなくなるからである。
If the pH in the digester shows extreme fluctuations, reduce the pH to 5.
.. It is preferable to adjust it to a range of 5 to 7.5. This p
H adjustment is effective not only in promoting the anaerobic biodecomposition reaction of dithionic acid but also in removing the hydrogen sulfide through gas circulation and absorption. This is particularly important when the pH in the digester liquid increases above 7.5 in a system without pH adjustment. That is, if the p.

なお、図中81−1攪拌機である。In addition, it is 81-1 stirrer in the figure.

」二記実施態様の外に、本発明による排煙脱硫排水の嫌
気性生物処理装置の形態とじで従来より知られている嫌
気性消化装置である半回分式接触消化法、上向流嫌気性
ろ床法1流動床式嫌気性反応器法、上向流嫌気性汚泥ブ
ランク°ソト法などに属する装置のほとんどが利用でき
る点は、処理すべき排煙脱硫排水の水質および添加有機
物の腫類九応じて最も効率の高い装置を構成するうえで
選択範囲をより広くできる利点としてあげることができ
る。
In addition to the above-mentioned embodiments, the anaerobic biological treatment apparatus for flue gas desulfurization wastewater according to the present invention includes a semi-batch contact digestion method, an upflow anaerobic digestion apparatus, which is a conventionally known anaerobic digestion apparatus. Most of the equipment belonging to the filter bed method 1 fluidized bed anaerobic reactor method, upflow anaerobic sludge blank °soto method, etc. can be used to improve the water quality of the flue gas desulfurization wastewater to be treated and the amount of added organic matter. This can be cited as an advantage of widening the selection range in configuring the most efficient device.

なお、少なくともジチオン酸を含む排水を本発明の方法
で処理した後、前記嫌気性反応器(分解槽4)からの流
出水が未利用の有機物を含んでいる場合、脱硫化水素が
不完全で硫化水素を含んでいる場合、硫酸還元が不十分
で亜硫酸・イオンを含む場合など、残留BOI)もしく
はCOD濃度を除去する必要のある場合には、引き続き
曝気槽もしくは生物膜法による反応器(浸漬ろ床、流動
床1回転円板、散水ろ床等)のどとくの好気性生物処理
装置に導き好気的に生物処理することが好ましいことは
云うまでもない。
Note that after treating wastewater containing at least dithionic acid by the method of the present invention, if the water flowing out from the anaerobic reactor (decomposition tank 4) contains unused organic matter, hydrogen desulfurization is incomplete. If it is necessary to remove residual BOI or COD concentration, such as when hydrogen sulfide is present, or when sulfite and ions are contained due to insufficient sulfate reduction, use an aeration tank or biofilm method reactor (immersion). Needless to say, it is preferable to introduce the material into an aerobic biological treatment device (filter bed, fluidized bed, single-rotation disk, trickling filter, etc.) and perform aerobic biological treatment.

以上述べたように本発明は、ジチオン酸又はジチオン酸
塩を含有する排水に、1水、し尿、各種工場排水、各種
農畜産排水、廃糖蜜等の廟機性廃水、これらの処理工程
より排出される廃汚泥、市販の有機物質であるメタノー
ル、エタノール9プロパツール、ブタノール、クリセロ
ール等のアルコール類、セルローズおよびでん粉等の多
糖類の加水分解によって得られだオリゴ粕、還元糖等の
糖類、およびギ酸、酢酸、プロピオン酸、醋酸。
As described above, the present invention is applicable to wastewater containing dithionic acid or dithionate, including 1 water, human waste, various industrial wastewater, various agricultural and livestock wastewater, and mausoleum wastewater such as blackstrap molasses, discharged from these treatment processes. waste sludge, commercially available organic substances such as methanol, ethanol 9 propatool, butanol, alcohols such as chrycerol, oligo lees obtained by hydrolysis of polysaccharides such as cellulose and starch, sugars such as reducing sugars, and Formic acid, acetic acid, propionic acid, acetic acid.

ピルビーン酸、乳酸、コハク酸、クエン酸等のイコ機酸
類などの有機物のいずれか一称スたは複数種の混合物を
添加して嫌気性生物処用1する方法でイ)つて該生物処
理工程を発生ずる硫化水素を除去しながら行うことを特
徴とするものであり、簡潔なプロセスにより難分解性の
COD物質を短時間内に効率良くかつ省工オルギー的に
分解処理することができるうえ、二次公害の問題点もな
く、寸だ既存の装置をそのまま、もしくはこれにわずか
の手直しを加えるだけで使用できるなど多大の利点を有
するものである。
A) A method of anaerobic biological treatment by adding any one or a mixture of organic substances such as icosyl acids such as pyruvic acid, lactic acid, succinic acid, and citric acid to the biological treatment step. This method is characterized by the fact that it is carried out while removing the hydrogen sulfide that is generated, and it is possible to decompose difficult-to-decompose COD substances in a short time, efficiently, and in a labor-saving manner through a simple process. It has many advantages such as there is no problem of secondary pollution, and existing equipment can be used as is or with only slight modification.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示すフロー/−1・である。 1・・・流入液、2・・流出混合液、3・・・上澄液画
分、4 分解槽、5・・・減圧室、6・・・沈殿分離槽
、7・・・吸収装置、8・・・攪拌機、9・・循環ポン
プ、10・・・減圧ポンプ、11・・・汚泥輸送ポンプ
、12・沈殿汚泥画分、13・・・余剰汚泥、14 ・
消化ガス、15・・有機物。 特許出願人 荏原インフィルコ株式会社代理人弁理士 
端  山  Tlj−
The drawing is a flow/-1. showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Inflow liquid, 2... Outflow mixed liquid, 3... Supernatant liquid fraction, 4... Decomposition tank, 5... Decompression chamber, 6... Precipitation separation tank, 7... Absorption device, 8... Stirrer, 9... Circulation pump, 10... Decompression pump, 11... Sludge transport pump, 12. Precipitated sludge fraction, 13... Excess sludge, 14.
Digestion gas, 15...Organic matter. Patent applicant: Patent attorney representing Ebara Infilco Co., Ltd.
Edge Mountain Tlj-

Claims (1)

【特許請求の範囲】 1、 少なくともジチオン酸又はジチオン酸塩を含む排
水に有機物を添加し、発生する硫化水素を除去しながら
嫌気性生物処理することを特徴とする含ジチオン酸排水
の処理方法。 2 前記排水がジチオン酸又はジチオン酸塩の濃縮水で
あって、排煙脱硫排水をイオン交換処理などの物理化学
的処理により濃縮したものである特許請求の範囲第1項
記載の方法。 3、 前記有機物として有機性廃水、有機性汚泥、アル
コール類、有機酸類、糖類からなる一群中よシ任意に選
んだ物質を使用する特許請求の範囲第1項又は第2項記
載の方法。 4、 前記有機物としてイクノールを使用する特許請求
の範囲第3項記載の方法。 5、 前記有機物として酢酸を使用する特許請求の範囲
第3項記載の方法。 6、 前記有機物の添加量を、そのBOD換算量がジチ
オン酸、ジチオン酸塩その他の難分解性COD*質のC
OD換算量の1倍以上7倍以下となるように設定する特
許請求の範囲第4項又は第5項記載の方法。 Z 前記嫌気性生物処理を、生物反応液の硫化水素濃度
を2o”9/を以下、好ましくは8〜/を以下に保って
行う特許請求の範囲第6項記載の方法。 8、 前記嫌気性生物処理を、生物反応液のpHを5.
5〜7.5に調整して行う特許請求の範囲第6項又は第
7項記載の方法。 9、 前記嫌気性生物処El’!を、生物反応液の温度
を45℃〜70℃に保って行う特許請求の範囲第6項、
第7項又は第8項記載の方法。
[Scope of Claims] 1. A method for treating wastewater containing dithionic acid, which comprises adding organic matter to wastewater containing at least dithionic acid or a dithionate salt, and performing anaerobic biological treatment while removing generated hydrogen sulfide. 2. The method according to claim 1, wherein the waste water is concentrated water of dithionic acid or dithionate salt, and is obtained by concentrating flue gas desulfurization waste water by physicochemical treatment such as ion exchange treatment. 3. The method according to claim 1 or 2, wherein the organic substance is a substance arbitrarily selected from the group consisting of organic wastewater, organic sludge, alcohols, organic acids, and sugars. 4. The method according to claim 3, wherein equnol is used as the organic substance. 5. The method according to claim 3, wherein acetic acid is used as the organic substance. 6. The amount of the organic substance added is calculated based on the BOD equivalent amount of dithionic acid, dithionate, and other persistent COD* quality C.
The method according to claim 4 or 5, wherein the amount is set to be 1 to 7 times the OD conversion amount. Z. The method according to claim 6, wherein the anaerobic biological treatment is carried out while maintaining the hydrogen sulfide concentration of the biological reaction liquid at 2o''9/ or less, preferably 8 to 1/2 or less. 8. The anaerobic treatment. During biological treatment, the pH of the biological reaction solution was set to 5.
The method according to claim 6 or 7, which is carried out by adjusting the temperature to 5 to 7.5. 9. The anaerobic biological treatment El'! Claim 6, in which the temperature of the biological reaction solution is maintained at 45°C to 70°C;
The method described in paragraph 7 or 8.
JP57126811A 1982-07-22 1982-07-22 Treatment of dithionic acid-contg. waste water Granted JPS5919594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57126811A JPS5919594A (en) 1982-07-22 1982-07-22 Treatment of dithionic acid-contg. waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57126811A JPS5919594A (en) 1982-07-22 1982-07-22 Treatment of dithionic acid-contg. waste water

Publications (2)

Publication Number Publication Date
JPS5919594A true JPS5919594A (en) 1984-02-01
JPS638839B2 JPS638839B2 (en) 1988-02-24

Family

ID=14944540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126811A Granted JPS5919594A (en) 1982-07-22 1982-07-22 Treatment of dithionic acid-contg. waste water

Country Status (1)

Country Link
JP (1) JPS5919594A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008279383A (en) * 2007-05-11 2008-11-20 Kurita Water Ind Ltd Method and apparatus for anaerobic treatment
JP2009255067A (en) * 2008-03-26 2009-11-05 Kobelco Eco-Solutions Co Ltd Method for processing waste water
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008279383A (en) * 2007-05-11 2008-11-20 Kurita Water Ind Ltd Method and apparatus for anaerobic treatment
JP2009255067A (en) * 2008-03-26 2009-11-05 Kobelco Eco-Solutions Co Ltd Method for processing waste water
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment

Also Published As

Publication number Publication date
JPS638839B2 (en) 1988-02-24

Similar Documents

Publication Publication Date Title
JP3103027B2 (en) Exhaust gas treatment method and apparatus using ammonia in sewage
CN100400441C (en) Process for combined water treatment of chemical oxidizing-biological biological filtering tank
CN101428941B (en) Process for treating wastewater from pulping papermaking
JP4632356B2 (en) Biological nitrogen removal method and system
US5350516A (en) Control of odor and septicity and purification of sewage and wastewater
KR20090051450A (en) The treatment method of high concentrated organic waste water,like with leachate of food waste water and animal waste water
US3867284A (en) Water treatment with nitrogen dioxide
US8828230B2 (en) Wastewater treatment method for increasing denitrification rates
JP2003225694A (en) Waste water treatment system using humic substance
JP2004097856A (en) Equipment and method for waste liquid treatment
JP2002079034A (en) Biological desulfurization method and apparatus
JP3235131B2 (en) Digestion gas desulfurization method and apparatus
JPH05277486A (en) Anaerobic treatment of organic waste water
CN101164919A (en) Deep treatment method for garbage percolate
JPS5919594A (en) Treatment of dithionic acid-contg. waste water
JP2000061497A (en) Treatment of organic wastewater and equipment therefor
JPS6349554B2 (en)
IE67375B1 (en) Water purification process
JP2004148242A (en) Waste water treatment method and waste water treatment equipment
KR20100046936A (en) Combined sulfur autotrophic denitrification and bioelectrochemical denitrification system
JPH0839090A (en) Desulfurization equipment of anaerobic biological reaction gas
KR101849803B1 (en) Method and device for anaerobically treating wastewater containing terephthalic acid
CN106587480A (en) Ethylene waste alkali liquid treatment method
JPH0847696A (en) Desulfurizing device for anaerobic biological reaction gas
JP3413856B2 (en) Method and apparatus for simultaneous treatment of digestive gas and odorous gas