JP4112549B2 - Organic waste treatment methods - Google Patents

Organic waste treatment methods Download PDF

Info

Publication number
JP4112549B2
JP4112549B2 JP2004306346A JP2004306346A JP4112549B2 JP 4112549 B2 JP4112549 B2 JP 4112549B2 JP 2004306346 A JP2004306346 A JP 2004306346A JP 2004306346 A JP2004306346 A JP 2004306346A JP 4112549 B2 JP4112549 B2 JP 4112549B2
Authority
JP
Japan
Prior art keywords
organic waste
treatment
nitrate
oxygen
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004306346A
Other languages
Japanese (ja)
Other versions
JP2006116412A (en
Inventor
多美子 定家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004306346A priority Critical patent/JP4112549B2/en
Publication of JP2006116412A publication Critical patent/JP2006116412A/en
Application granted granted Critical
Publication of JP4112549B2 publication Critical patent/JP4112549B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、汚水処理、動物糞尿処理、生ゴミ分解処理等の有機性廃棄物を、微生物学的に効率よく無臭で余剰汚泥の少ない分解処理する方法に関するものである。   The present invention relates to a method for decomposing organic wastes such as sewage treatment, animal manure treatment, and garbage decomposition treatment in a microbiologically efficient and odorless manner with little excess sludge.

工場廃水、生活廃水、動物糞尿、生ゴミ等有機物を含む産業廃棄物、生活廃棄物の処理については、従来から数多くの方法が提案されており、その代表的な方法として、活性汚泥処理法が知られている。しかし、この方法は高い溶存酸素量(DO)の環境下、好気性微生物による好気呼吸で有機物を酸化分解するものであり、大量の余剰汚泥の発生や、下水悪臭の発生などの問題がある。また、嫌気条件下での分解処理方法も知られているが、発酵産物や硫化水素等を多量に生成するため、ひどい悪臭を発生するなどの問題がある。   Numerous methods have been proposed for the treatment of industrial waste including domestic waste such as factory waste water, domestic waste water, animal manure, and garbage, and domestic waste, and the representative method is the activated sludge treatment method. Are known. However, this method oxidizes and decomposes organic matter by aerobic respiration by aerobic microorganisms in an environment with a high dissolved oxygen content (DO). . Moreover, although the decomposition method under anaerobic conditions is also known, since it produces a large amount of fermentation products, hydrogen sulfide, etc., there is a problem of generating a bad odor.

このようなことから、本発明者は、有機物を分解する微生物群の呼吸因子である電子受容体に着目し、溶存酸素量を微量にコントロールするとともに、電子受容体を豊富に含んだ最終曝気処理工程の上澄液を廃水流入工程に返送するシステムを開発し、余剰汚泥の大幅な減容化と、全処理工程での無臭化に成功した(特許文献1、特許文献2)。また、微酸素量と酸素以外の電子受容体の存在下で共生増殖する微生物群と、これら微生物群による有機物分解過程についても研究し、その有効利用法を提案した(特許文献3)。   For this reason, the present inventor focused on the electron acceptor, which is a respiratory factor of the microbial group that decomposes organic matter, and controlled the amount of dissolved oxygen in a very small amount, and the final aeration treatment containing abundant electron acceptors. A system that returns the supernatant of the process to the wastewater inflow process was developed, and succeeded in drastically reducing the volume of excess sludge and eliminating bromination in all treatment processes (Patent Documents 1 and 2). In addition, the group of microorganisms that coexist and proliferate in the presence of a slight oxygen amount and an electron acceptor other than oxygen, and the organic matter decomposition process by these microorganisms were studied, and an effective utilization method was proposed (Patent Document 3).

特開2002−361279号JP 2002-361279 A 特開2004−188281号JP 2004-188281 A 特開2004−248618号JP 2004-248618 A

本発明は、上記した新たな有機性廃棄物処理法の研究をさらに進めた結果、提案されたものであり、微生物群の呼吸因子である電子受容体の濃度と、微生物群の生育環境を規定する一因である酸化還元電位の関連性に着目し、これらを適正な範囲にコントロールすることにより、効率的で安定な有機性廃棄物処理法の実現を図ったものである。 The present invention has been proposed as a result of further research on the above-mentioned new organic waste treatment methods, and it defines the concentration of electron acceptors, which are respiratory factors of microbial groups, and the growth environment of microbial groups. Focusing on the relationship between the redox potential, which is one of the causes, and controlling these within an appropriate range, an efficient and stable organic waste treatment method is realized.

上記課題を解決するため、本発明の有機性廃棄物の処理方法は、有機性廃棄物を曝気-沈殿処理した後に得られた上澄水を電子受容体として処理すべき有機性廃棄物に混入し、曝気処理を行う有機性廃棄物の処理方法であって、前記電子受容体を、硝酸呼吸主動の微生物群を構成するための呼吸因子とするにあたり、
硝酸塩及び硫酸塩を所定の濃度範囲に維持するように、溶存酸素を0.1mg/L〜3mg/Lの範囲に調整し、酸化還元電位を0〜300mVに維持して曝気処理することを特徴とする。
In order to solve the above problems, the organic waste treatment method of the present invention mixes the supernatant water obtained after aeration-precipitation treatment of the organic waste into the organic waste to be treated as an electron acceptor. , An organic waste treatment method for performing aeration treatment, wherein the electron acceptor is used as a respiration factor for constituting a microorganism group of nitrate respiration main action,
The dissolved oxygen is adjusted to a range of 0.1 mg / L to 3 mg / L so that nitrate and sulfate are maintained in a predetermined concentration range, and aeration treatment is performed while maintaining a redox potential at 0 to 300 mV. And

また本発明の有機性廃棄物の処理方法は、前記微生物群を、バイオフィルム中に共生させることを特徴とする。   The organic waste treatment method of the present invention is characterized in that the microorganism group is symbiotic in a biofilm.

前記電子受容体とは、微生物がエネルギー源として消費する有機物の分解に伴って必要となる呼吸因子の酸素、硝酸塩、硫酸塩を含んだ無機溶液であり、その他にも鉄分、マンガン等の化学物質を含んでいる。酸素は、好ましい呼吸因子として優先的に消費されるが、その量が3mg/Lを超えると、いわゆる活性汚泥処理法になり、好気性微生物群が増殖する。溶存酸素は、微生物群が酸素を消費尽くしている状態を意味する0でもよいが、微生物群の最小限の呼吸因子として、0.1mg/Lを超える酸素量とする。なお、酸素量には、電子受容体としての使用目的以外に、ほかの菌体の酸化(例えば硝酸菌による硝化)に使用される分も含まれる。   The electron acceptor is an inorganic solution containing oxygen, nitrate, and sulfate of respiratory factors that are necessary for the decomposition of organic matter consumed by microorganisms as an energy source, and other chemical substances such as iron and manganese. Is included. Oxygen is preferentially consumed as a preferred respiratory factor, but when its amount exceeds 3 mg / L, it becomes a so-called activated sludge treatment method, and the aerobic microorganism group grows. The dissolved oxygen may be 0 which means that the microorganism group is exhausting oxygen, but the oxygen amount is more than 0.1 mg / L as the minimum respiratory factor of the microorganism group. The oxygen content includes not only the purpose of use as an electron acceptor but also the amount used for oxidation of other cells (for example, nitrification by nitrate bacteria).

溶存酸素が0.1mg/L程度になると、微生物群は、酸素に代わる呼吸因子、最終電子受容体として、硝酸塩及び硫酸塩を消費し始める。順位的には酸化還元ポテンシャルの高い硝酸塩が消費され、次に硫酸塩が消費される。そして、微生物群の中で硝酸呼吸を行う真菌,細菌などにより、脱窒が行われ、硫酸呼吸を行う硫酸還元菌などにより硫化水素が生成される。硫化水素は悪臭原因のひとつであるが、本発明では、共生菌群全体で硝酸呼吸主動であり硫化水素の発生は少ない。また発生したものについては、硫化水素を分解するバシラス系菌や、硫酸まで酸化する硫黄酸化菌の働きにより、無臭状態が維持されているものと思われる。   When dissolved oxygen reaches about 0.1 mg / L, the microorganism group starts to consume nitrate and sulfate as a respiratory factor and final electron acceptor instead of oxygen. In order, nitrates with high redox potential are consumed, and then sulfates are consumed. Then, denitrification is performed by fungi, bacteria, and the like that perform nitrate respiration in the microorganism group, and hydrogen sulfide is generated by sulfate-reducing bacteria that perform sulfate respiration. Although hydrogen sulfide is one of the causes of bad odor, in the present invention, nitrate respiration is dominant in the whole symbiotic bacteria group, and the generation of hydrogen sulfide is small. In addition, the odorless state seems to be maintained by the action of the Bacillus bacteria that decompose hydrogen sulfide and the sulfur-oxidizing bacteria that oxidize to sulfuric acid.

硝酸塩と硫酸塩が5mg/L以下であると、このような微生物群による硝酸呼吸や、硫酸呼吸が効率的に促進されない。逆に、硝酸塩が500mg/L以上、硫酸塩が700mg/L以上になると、微生物がこれらの物質により不活性化する。好ましくは、硝酸塩と硫酸塩は、5〜100mg/Lに維持される。   When nitrate and sulfate are 5 mg / L or less, nitrate respiration and sulfate respiration by such microorganisms are not efficiently promoted. Conversely, when the nitrate is 500 mg / L or more and the sulfate is 700 mg / L or more, the microorganisms are inactivated by these substances. Preferably, nitrate and sulfate are maintained at 5-100 mg / L.

酸化還元電位は、前記電子受容体を構成する酸素(溶存酸素)、硝酸塩、硫酸塩を前記範囲内に維持し、硝酸呼吸を主とした微生物群(共生菌群)を構成するための指標となるものである。酸化還元電位が0mV以下の場合は、電子受容体としての酸素が不足し、微生物群のバランスが硫黄化合物使用菌の方向に傾く。また、300mv以上では、電子受容体としての酸素が多すぎるため、微生物群のバランスが酸素使用菌の方向に傾くことになる(活性汚泥となる)。   The oxidation-reduction potential is an index for maintaining the oxygen (dissolved oxygen), nitrate, and sulfate constituting the electron acceptor within the above range, and constituting a microorganism group (symbiotic bacteria group) mainly composed of nitrate respiration. It will be. When the oxidation-reduction potential is 0 mV or less, oxygen as an electron acceptor is insufficient, and the balance of the microorganism group is inclined toward the sulfur compound-using bacteria. In addition, at 300 mv or more, since there is too much oxygen as an electron acceptor, the balance of the microorganism group is inclined toward the oxygen-using bacteria (becomes activated sludge).

酸化還元電位は、酸素供給量により調整することができる。   The oxidation-reduction potential can be adjusted by the oxygen supply amount.

微生物群は、前記した条件で、バイオフィルム中に共生させる。具体的には、曝気あるいは通気して必要な酸素量を保った後、静置して、バイオフィルム中に、自然に共生状態を形成する。このとき使用する電子供与体は、簡単な糖類を含まないほうがよい。このようにバイオフィルム内で微生物の育成に必要な因子が確保され、代謝活動が活発化すると共に、バイオフィルム外部の環境変化から保護され、安定した微生物群の共生形態が維持される。   The microorganism group is symbiotic in the biofilm under the conditions described above. Specifically, a necessary amount of oxygen is maintained by aeration or ventilation, and then left to stand to form a symbiotic state naturally in the biofilm. The electron donor used at this time should not contain simple saccharides. In this way, factors necessary for the growth of microorganisms are ensured in the biofilm, the metabolic activity is activated, the environment is protected from environmental changes outside the biofilm, and a stable symbiotic form of the microorganism group is maintained.

上記条件で共生する微生物群としては以下のものが確認された。
(1)真菌(ムコール、酵母など)、エンテロコッカスなどの発酵菌
(2)シュードモナス、アシネトバクター、ミクロコッカス、クレブシラなどの糖分解菌
(3)バシラスなどの外分泌酵素を持ち、多糖類、たんぱく質、脂質を分解する菌
(4)硝酸菌
(5)硫黄酸化菌
(6)硫黄還元菌
The following were confirmed as a group of microorganisms symbiotic under the above conditions.
(1) Fermentative fungi such as fungi (mucor, yeast, etc.), enterococcus, etc. (2) Glycolytic bacteria such as Pseudomonas, Acinetobacter, Micrococcus, Klebsiola, etc. (3) Exocrine enzymes such as Bacillus, polysaccharides, proteins and lipids Decomposing bacteria (4) Nitric acid bacteria (5) Sulfur oxidizing bacteria (6) Sulfur reducing bacteria

本発明は、上記条件を満たす限り、生ゴミ分解浄化処理、生ゴミ分解コンポスト、生活廃水処理、動物糞尿処理、産業有機廃棄物処理、等に実施することができる。代表的な例として、本発明者が特開2002−361279号で提案したように、廃水原水を貯留する流入槽、流入槽からの廃水を曝気処理する反応槽、反応槽の処理廃水を回収静置して汚泥を沈殿させる沈殿槽、沈殿槽の汚泥を回収して再曝気処理し余剰汚泥を消化減容させるとともに上澄液を流入槽に返送する汚泥消化槽、を備えた有機性廃水処理装置に適用できる。即ち、流入槽、反応槽、汚泥消化槽の全部の槽又は一部の槽を、前記条件に設定することで、効率的で安定した分解処理が可能となる。特に、汚泥消化槽での発生汚泥を従来よりも減容することができ、上澄水を良質の電子受容体液として利用することができる。   As long as the above conditions are satisfied, the present invention can be implemented for garbage decomposition and purification treatment, garbage decomposition compost, domestic wastewater treatment, animal manure treatment, industrial organic waste treatment, and the like. As representative examples, as proposed in Japanese Patent Laid-Open No. 2002-361279, the present inventor collects wastewater raw water, a reaction tank for aeration treatment of wastewater from the inflow tank, and collects treatment wastewater from the reaction tank. Organic wastewater treatment system equipped with a sedimentation tank that deposits sludge and collects sludge from the sedimentation tank and re-aerates to digest and reduce excess sludge and return the supernatant to the inflow tank. Applicable to equipment. That is, by setting all or some of the inflow tank, the reaction tank, and the sludge digestion tank to the above conditions, an efficient and stable decomposition treatment can be performed. In particular, the volume of sludge generated in the sludge digestion tank can be reduced as compared with the prior art, and the supernatant water can be used as a high-quality electron acceptor liquid.

上述した本発明によれば、有機性廃棄物を曝気-沈殿処理した後に得られた上澄水を電子受容体として処理すべき有機性廃棄物に混入し、曝気処理を行う有機性廃棄物の処理方法において、溶存酸素濃度と酸化還元電位を所定範囲に維持することにより、処理する有機性廃棄物の条件(例えばBOD、COD)が変化しても、効率的で安定した分解過程をとるため、有機物分解が速くなり、悪臭を発生することもない。また、硝酸呼吸を主とした微生物群により有機物分解を行うので、発生汚泥の量を大幅に減少することができる。   According to the above-described present invention, the supernatant water obtained after subjecting the organic waste to aeration-precipitation treatment is mixed with the organic waste to be treated as an electron acceptor, and the organic waste is subjected to the aeration treatment. In the method, by maintaining the dissolved oxygen concentration and the oxidation-reduction potential within a predetermined range, even if the conditions of the organic waste to be treated (for example, BOD, COD) are changed, an efficient and stable decomposition process is taken. Organic matter decomposition becomes faster and no odor is generated. In addition, since organic matter is decomposed by a microorganism group mainly composed of nitric acid respiration, the amount of generated sludge can be greatly reduced.

平均流入有機物量100mg/Lの生活廃水を、以下の条件で処理した。処理装置は、前述した流入槽、反応槽、沈殿槽及び汚泥消化槽から構成されている。その結果を表1に示す。このときの反応槽における硝酸塩、硫酸塩、酸素量及び酸化還元電位の実測値を表2に示す。   Domestic wastewater with an average inflow organic matter amount of 100 mg / L was treated under the following conditions. The processing apparatus is composed of the above-described inflow tank, reaction tank, sedimentation tank, and sludge digestion tank. The results are shown in Table 1. Table 2 shows measured values of nitrate, sulfate, oxygen amount, and oxidation-reduction potential in the reaction tank at this time.

Figure 0004112549
Figure 0004112549

Figure 0004112549
Figure 0004112549

平均流入有機物量1000mg/Lの生ゴミを、実施例1と同じ処理装置により、以下の条件で処理した。その結果を表3に示す。反応槽における硝酸塩、硫酸塩、酸素量及び酸化還元電位の実測値は表4に示す通りである。   Raw garbage having an average inflow organic matter amount of 1000 mg / L was treated by the same treatment apparatus as in Example 1 under the following conditions. The results are shown in Table 3. The measured values of nitrate, sulfate, oxygen amount and oxidation-reduction potential in the reaction vessel are as shown in Table 4.

Figure 0004112549
Figure 0004112549

Figure 0004112549
Figure 0004112549

以上の実施例からも明らかなように、本発明によれば、流入水(処理前の廃水)に比較して処理水の水質が大幅に浄化されていることがわかる。また悪臭もほとんど認められなかった。さらに、汚泥消化槽の上澄水には硝酸塩、硫酸塩が適量含まれており、良質な電子受容体含有液であることがわかる。   As is clear from the above examples, according to the present invention, it is understood that the quality of the treated water is greatly purified compared to the inflow water (waste water before treatment). Also, almost no bad odor was observed. Furthermore, it can be seen that the supernatant water of the sludge digester contains appropriate amounts of nitrate and sulfate, and is a high-quality electron acceptor-containing solution.

Claims (2)

有機性廃棄物を曝気-沈殿処理した後に得られた上澄水を電子受容体として処理すべき有機性廃棄物に混入し、曝気処理を行う有機性廃棄物の処理方法であって、前記電子受容体を、硝酸呼吸主動の微生物群を構成するための呼吸因子とするにあたり、
硝酸塩及び硫酸塩を所定の濃度範囲に維持するように、溶存酸素を0.1mg/L〜3mg/Lの範囲に調整し、酸化還元電位を0〜300mVに維持して曝気処理することを特徴とする有機性廃棄物の処理方法。
A method for treating organic waste, wherein the supernatant obtained after aeration-precipitation treatment of organic waste is mixed with the organic waste to be treated as an electron acceptor, and is subjected to aeration. In making the body a respiration factor to constitute the nitrate respiration active microbe group,
The dissolved oxygen is adjusted to a range of 0.1 mg / L to 3 mg / L so that nitrate and sulfate are maintained in a predetermined concentration range, and aeration treatment is performed while maintaining a redox potential at 0 to 300 mV. A method for treating organic waste.
前記微生物群を、バイオフィルム中に共生させることを特徴とする請求項1に記載の有機性廃棄物の処理方法。   The method for treating organic waste according to claim 1, wherein the microorganism group is symbiotic in a biofilm.
JP2004306346A 2004-10-21 2004-10-21 Organic waste treatment methods Expired - Fee Related JP4112549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306346A JP4112549B2 (en) 2004-10-21 2004-10-21 Organic waste treatment methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306346A JP4112549B2 (en) 2004-10-21 2004-10-21 Organic waste treatment methods

Publications (2)

Publication Number Publication Date
JP2006116412A JP2006116412A (en) 2006-05-11
JP4112549B2 true JP4112549B2 (en) 2008-07-02

Family

ID=36534802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306346A Expired - Fee Related JP4112549B2 (en) 2004-10-21 2004-10-21 Organic waste treatment methods

Country Status (1)

Country Link
JP (1) JP4112549B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041210A (en) * 2010-08-16 2012-03-01 Kurarisu Kankyo Kk Method for producing liquid fertilizer
JP2021000613A (en) * 2019-06-25 2021-01-07 多美子 定家 Method of treating organic wastewater

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865294B2 (en) * 2005-10-25 2012-02-01 クラリス環境株式会社 Decomposition method of organic waste
KR102103491B1 (en) * 2018-05-04 2020-04-23 한국과학기술원 Reinforcement Method for Water Leaking of Water Facilities using Soil Microbes Biostimulation and Microparticles Injection
CN112139211A (en) * 2020-09-09 2020-12-29 深圳文科园林股份有限公司 Garbage treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041210A (en) * 2010-08-16 2012-03-01 Kurarisu Kankyo Kk Method for producing liquid fertilizer
JP2021000613A (en) * 2019-06-25 2021-01-07 多美子 定家 Method of treating organic wastewater
JP7337560B2 (en) 2019-06-25 2023-09-04 多美子 定家 Organic wastewater treatment method

Also Published As

Publication number Publication date
JP2006116412A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP5100091B2 (en) Water treatment method
JP4017657B1 (en) Treatment method of wastewater containing organic matter
Manica et al. Effects of electrocoagulation on membrane fouling and treatment performance of a membrane bioreactor operated without sludge discharge
JP4112549B2 (en) Organic waste treatment methods
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP3667254B2 (en) Waste water treatment method and waste water treatment apparatus
JP4865294B2 (en) Decomposition method of organic waste
CN101164919A (en) Deep treatment method for garbage percolate
CN101353201A (en) Novel wastewater treatment method
JP5812277B2 (en) Nitrogen removal method
JP4590756B2 (en) Organic drainage treatment method and organic drainage treatment apparatus
JPH0724499A (en) Treatment of sludge
KR20020031118A (en) Treatment method for high concentrated organic wastewater
JP2007007620A (en) Method for treating nitrogen-containing liquid waste
JP5625705B2 (en) Method and apparatus for anaerobic treatment of wastewater containing terephthalic acid
CN106277352B (en) A kind of enzyme-linked conjunction deoxidation method of semiconductor waste water
JP7337560B2 (en) Organic wastewater treatment method
JP2562386B2 (en) Rapid cultivation and growth method for useful microorganisms suitable for wastewater treatment
JP2005193122A (en) Anaerobic hydrogen fermentation treatment system
CN110066065A (en) A kind of Pollution from livestock and poultry tail end wastewater advanced treatment process
CN213680297U (en) Landfill leachate treatment system
JP2006035094A (en) Method and apparatus for treating high concentration waste water
JPH10128376A (en) Method for treating organic waste water
JP2008012476A (en) Wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070528

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Ref document number: 4112549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees