JP4865294B2 - Decomposition method of organic waste - Google Patents

Decomposition method of organic waste Download PDF

Info

Publication number
JP4865294B2
JP4865294B2 JP2005309455A JP2005309455A JP4865294B2 JP 4865294 B2 JP4865294 B2 JP 4865294B2 JP 2005309455 A JP2005309455 A JP 2005309455A JP 2005309455 A JP2005309455 A JP 2005309455A JP 4865294 B2 JP4865294 B2 JP 4865294B2
Authority
JP
Japan
Prior art keywords
tank
organic waste
electron acceptor
sludge
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005309455A
Other languages
Japanese (ja)
Other versions
JP2007117790A (en
Inventor
義人 定家
多美子 定家
Original Assignee
クラリス環境株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラリス環境株式会社 filed Critical クラリス環境株式会社
Priority to JP2005309455A priority Critical patent/JP4865294B2/en
Publication of JP2007117790A publication Critical patent/JP2007117790A/en
Application granted granted Critical
Publication of JP4865294B2 publication Critical patent/JP4865294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、汚水、動物糞尿、生ゴミ等の有機性廃棄物を、微生物学的に効率よく無臭で余剰汚泥を少なく分解処理する方法に関するものである。   The present invention relates to a method for decomposing organic wastes such as sewage, animal manure, and garbage in a microbiologically efficient and odorless manner with less excess sludge.

工場廃水、生活廃水、動物糞尿、生ゴミ等有機物を含む産業廃棄物、生活廃棄物の処理については、従来から数多くの方法が提案されており、その代表的な方法として、活性汚泥処理法が知られている。しかし、この方法は高い溶存酸素量(DO)の環境下、好気性微生物による好気呼吸で有機物を酸化分解するものであり、大量の余剰汚泥の発生や、下水悪臭の発生などの問題がある。また、嫌気条件下での分解処理方法も知られているが、発酵産物や硫化水素等を多量に生成するため、ひどい悪臭を発生するなどの問題がある。   Numerous methods have been proposed for the treatment of industrial waste including domestic waste such as factory waste water, domestic waste water, animal manure, and garbage, and domestic waste, and the representative method is the activated sludge treatment method. Are known. However, this method oxidizes and decomposes organic matter by aerobic respiration by aerobic microorganisms in an environment with a high dissolved oxygen content (DO), and there are problems such as generation of a large amount of excess sludge and generation of sewage malodor. . Moreover, although the decomposition method under anaerobic conditions is also known, since it produces a large amount of fermentation products, hydrogen sulfide, etc., there is a problem of generating a bad odor.

このようなことから、本発明者は、有機物を分解する微生物群の呼吸因子である電子受容体に着目し、溶存酸素量を微量にコントロールするとともに、電子受容体を含んだ最終曝気処理工程の上澄液を廃水流入工程に返送するシステムを開発し、余剰汚泥の大幅な減容化と、全処理工程での無臭化に成功した(特許文献1、特許文献2)。また、微酸素量と酸素以外の電子受容体の存在下で共生増殖する微生物群と、これら微生物群による有機物分解過程についても研究し、その有効利用法を提案した(特許文献3)。   Therefore, the present inventor paid attention to an electron acceptor that is a respiration factor of a microorganism group that decomposes organic matter, controls the amount of dissolved oxygen in a minute amount, and performs a final aeration process step including the electron acceptor. A system for returning the supernatant liquid to the wastewater inflow process was developed, and the volume of excess sludge was significantly reduced and bromination-free in all treatment processes (Patent Documents 1 and 2). In addition, the group of microorganisms that coexist and proliferate in the presence of a slight oxygen amount and an electron acceptor other than oxygen, and the organic matter decomposition process by these microorganisms were studied, and an effective utilization method was proposed (Patent Document 3).

特開2002−361279号JP 2002-361279 A 特開2004−188281号JP 2004-188281 A 特開2004−248618号JP 2004-248618 A

本発明は、上記した新たな有機性廃棄物処理法の研究をさらに進めた結果、提案されたものである。即ち、前記特許文献3には、微好気状態の処理槽内に出現する微生物が記載されているが、これらは単離培養により特定した微生物であり、処理槽内に生息する微生物群の全容を把握したものとは言い切れない。このため、前記処理槽内の微生物群の状態を安定維持させ、有機性廃棄物を安定的に分解処理するための条件付けとしては不十分である。   The present invention has been proposed as a result of further research on the above-mentioned new organic waste treatment method. That is, in Patent Document 3, microorganisms appearing in a microaerobic treatment tank are described, but these are microorganisms identified by isolation culture, and the entire volume of the microorganism group that inhabits the treatment tank. It cannot be said that it was what grasped. For this reason, it is insufficient as a condition for stably maintaining the state of the microorganism group in the treatment tank and stably decomposing the organic waste.

そこで本発明者は、上記処理槽内に生息する微生物群を遺伝子解析(メタゲノム解析)することにより、前記微好気状態の処理槽内に出現する微生物を仔細に分析し、微生物群が生成する理想的なバイオフィルムを追求すると共に、このようなバイオフィルムを生成させるための条件手法を創出したものである。これにより、処理する有機性廃棄物の条件が変化しても、効率的で安定的な分解処理を行うことができ、臭気の発生を抑制し、発生汚泥量を大幅に抑制することができる有機性廃棄物の分解処理法を提供するものである。
Therefore, the present inventor performs a gene analysis (metagenome analysis) on the microorganism group that inhabits the treatment tank, thereby finely analyzing the microorganism that appears in the treatment tank in the microaerobic state to generate a microorganism group. In addition to pursuing an ideal biofilm, we have created a conditional method for generating such a biofilm. As a result, even if the conditions of the organic waste to be treated change, an efficient and stable decomposition treatment can be performed, the generation of odor can be suppressed, and the amount of generated sludge can be greatly suppressed. It provides a method for decomposing and treating radioactive waste.

上記課題を解決するための手段として、請求項1の発明にあっては、流入槽に貯留された有機性廃棄物の廃水原水を、反応槽において曝気処理し、次いでその処理水を沈殿槽において汚泥分離処理し、その分離汚泥を汚泥消化槽において再曝気処理し、該再曝気処理の上澄水を電子受容体液として前記流入槽に返送する有機性廃棄物の分解処理方法において、
前記反応槽における曝気処理を、前記電子受容体液の存在下、溶存酸素量0.1〜3mg/L、酸化還元電位0〜300mVの条件下で処理し、
前記反応槽を、脱窒素菌が少なくとも20%を占める微生物群のバイオフィルムを生成させた状態で有機性廃棄物を分解処理することを特徴とする。
また請求項2の発明にあっては、前記流入槽及び/又は前記汚泥消化槽に、前記バイオフィルムを生成させることを特徴とする。
また、請求項3の発明にあっては、前記酸化還元電位を、前記溶存酸素量と前記電子受容体液の供給量により調整することを特徴とする。
さらに請求項4の発明にあっては、前記脱窒素菌はアシドボラックス類似菌であることを特徴とする。
本発明で処理槽とは、有機性廃棄物を微生物学的に分解処理するための槽であり、槽内への酸素供給装置を設けた曝気槽が代表的な例である。処理槽は1基だけでもよいが、通常は複数基が組み合わされて使用される。
As means for solving the above-mentioned problem, in the invention of claim 1, the waste water of the organic waste stored in the inflow tank is aerated in the reaction tank, and then the treated water in the precipitation tank In the method for decomposing organic waste, separating the sludge, re-aeration treatment of the separated sludge in the sludge digestion tank, and returning the supernatant water of the re-aeration process to the inflow tank as an electron acceptor liquid,
The aeration treatment in the reaction tank is treated under the conditions of dissolved oxygen amount of 0.1 to 3 mg / L, oxidation-reduction potential of 0 to 300 mV in the presence of the electron acceptor liquid,
The organic waste is decomposed in the reaction tank in a state in which a biofilm of a microbial group in which at least 20% of denitrifying bacteria are generated.
Moreover , in invention of Claim 2, the said biofilm is produced | generated in the said inflow tank and / or the said sludge digestion tank, It is characterized by the above-mentioned.
The invention of claim 3 is characterized in that the oxidation-reduction potential is adjusted by the amount of dissolved oxygen and the supply amount of the electron acceptor liquid.
In the invention of claim 4, the denitrifying bacterium is an acid borax-like bacterium.
In the present invention, the treatment tank is a tank for microbiologically decomposing organic waste, and an aeration tank provided with an oxygen supply device in the tank is a typical example. Only one treatment tank may be used, but usually a plurality of treatment tanks are used in combination.

脱窒素菌は、処理する有機性廃棄物にもよるが、アシドボラックス類似菌、クレブシエラ、シュードモナス、アシネトバクタ、バシラス、等であり、なかでもアシドボラックス類似菌が増加する。微生物群には、硝酸菌、硫黄酸化菌、硫黄還元菌等の他種の微生物も含んでいるが、脱窒素菌が占める割合が最も大きい。   Although denitrifying bacteria depend on the organic waste to be treated, they are acid borax-like bacteria, Klebsiella, Pseudomonas, Acinetobacter, Bacillus, etc. Among them, acid borax-like bacteria increase. The microorganism group includes other types of microorganisms such as nitrate bacteria, sulfur-oxidizing bacteria, and sulfur-reducing bacteria, but the ratio of denitrifying bacteria is the largest.

脱窒素菌を主体とする微生物群によって、硝酸呼吸主動の微生物群のバイオフィルムが生成されることになる。これにより、微生物群の代謝活性を下げずに微生物の増殖率を低下させ、結果的に余剰汚泥の発生を抑制することができる。また、悪臭原因のひとつであり、硫酸還元菌などによる生成される硫化水素の発生を抑制することができる。発生したわずかな硫化水素は、硫酸まで酸化する硫黄酸化菌の働きにより酸化され、無臭状態が維持される。   A biofilm of a microorganism group mainly driven by nitrate respiration is generated by a microorganism group mainly composed of denitrifying bacteria. Thereby, the growth rate of microorganisms can be reduced without lowering the metabolic activity of the microorganism group, and as a result, the generation of excess sludge can be suppressed. Moreover, it is one of the causes of bad odor and can suppress the generation of hydrogen sulfide produced by sulfate-reducing bacteria. The generated small amount of hydrogen sulfide is oxidized by the action of sulfur-oxidizing bacteria that oxidize to sulfuric acid, and the odorless state is maintained.

脱窒素菌が微生物群の中で占める割合は、有機性廃棄物の処理条件にもよるが、少なくとも20%、好ましくは40%以上占めている状態がよい。脱窒素菌が20%以下の微生物群では、好気性微生物群が主体となった、いわゆる活性汚泥処理法となるためである。脱窒素菌は、硝化菌、硫酸還元菌、硫黄酸化菌等の他種微生物と共生関係にあり、相互の代謝関係のバランスで脱窒素菌の占有率が自然に調整される。   The proportion of the denitrifying bacteria in the microorganism group depends on the treatment conditions of the organic waste, but it should be at least 20%, preferably 40% or more. This is because a microorganism group having 20% or less denitrifying bacteria is a so-called activated sludge treatment method mainly composed of aerobic microorganism groups. Denitrifying bacteria have a symbiotic relationship with other microorganisms such as nitrifying bacteria, sulfate-reducing bacteria, and sulfur-oxidizing bacteria, and the occupancy rate of denitrifying bacteria is naturally adjusted by the balance of mutual metabolic relationships.

前記微生物群のバイオフィルムは、処理槽内に有機性廃棄物を流入し、溶存酸素量、電子受容体液、さらには酸化還元電位を以下の条件とすることで、自然に生成される。即ち、曝気あるいは通気して必要な酸素量を保った後、静置すると、有機性廃棄物に含まれる微生物のうち、脱窒素菌が主動となって微生物集団が形成される。そして、それらが排出する分泌物質によりバイオフィルムが形成され、脱窒素菌主体の微生物群の共生状態が形成される。このようにバイオフィルム内で微生物の育成に必要な因子が確保され、代謝活動が活発化すると共に、バイオフィルム外部の環境変化から保護され、安定した微生物群の共生形態が維持される。   The biofilm of the microorganism group is naturally generated by flowing organic waste into the treatment tank and setting the dissolved oxygen amount, the electron acceptor liquid, and the oxidation-reduction potential to the following conditions. That is, when a necessary amount of oxygen is maintained by aeration or aeration and then left to stand, among the microorganisms contained in the organic waste, denitrifying bacteria mainly act to form a microbial population. And the biofilm is formed with the secretory substance which they discharge | emit, and the symbiotic state of the microorganism group mainly of denitrifying bacteria is formed. In this way, factors necessary for the growth of microorganisms are ensured in the biofilm, the metabolic activity is activated, the environment is protected from environmental changes outside the biofilm, and a stable symbiotic form of the microorganism group is maintained.

前記微生物群のバイオフィルムを生成、維持するためには、処理槽内の溶存酸素量を3mg/L以下、好ましくは1mg/L以下とする。これを超えると、酸素主動のいわゆる活性汚泥処理法となる。溶存酸素は、微生物群が酸素を消費尽くしている状態を意味する0でもよいが(酸素をまったく供給しない嫌気性曝気とは相違する)、微生物群の最小の呼吸因子として、0.1mg/Lを超える酸素量が好ましい。なお、溶存酸素は、後述の電子受容体液の一部として使用されるほか、他の菌体の酸化(例えば硝酸菌による硝化)にも使用される分も含まれる。なお、溶存酸素量は例えば処理槽内の曝気量をコントロールすることにより行うことができる。   In order to generate and maintain the biofilm of the microorganism group, the amount of dissolved oxygen in the treatment tank is set to 3 mg / L or less, preferably 1 mg / L or less. Beyond this, it becomes a so-called activated sludge treatment method with oxygen driving. The dissolved oxygen may be 0, which means that the microbial group is exhausting oxygen (unlike anaerobic aeration where no oxygen is supplied), but the minimum respiratory factor of the microbial group is 0.1 mg / L. An oxygen amount exceeding is preferred. The dissolved oxygen is used as a part of an electron acceptor liquid described later, and includes a portion used for oxidation of other bacterial cells (for example, nitrification by nitric acid bacteria). The amount of dissolved oxygen can be determined, for example, by controlling the amount of aeration in the treatment tank.

前記電子受容体液とは、微生物がエネルギー源として消費する有機物の分解に伴って必要となる呼吸因子の酸素、硝酸塩を含んだ無機溶液であり、その他にも硫酸塩、鉄分、マンガン等の化学物質を含んでいる。この電子受容体液は微生物学的に生成されたものである。即ち、前記物質は微生物群の代謝活動のなかで自然に生成されるものであり、人為的な合成物や精製物とは区別される。   The electron acceptor liquid is an inorganic solution containing oxygen and nitrates of respiratory factors necessary for the decomposition of organic substances consumed by microorganisms as an energy source. In addition, chemical substances such as sulfate, iron and manganese Is included. This electron acceptor fluid is produced microbiologically. That is, the substance is naturally generated in the metabolic activity of the microorganism group, and is distinguished from artificially synthesized products and purified products.

酸素は、好ましい呼吸因子として優先的に消費されるが、溶存酸素が0.1mg/L程度になると、微生物群は、酸素に代わる呼吸因子、最終電子受容体として、硝酸塩及び硫酸塩を消費し始める。順位的には酸化還元ポテンシャルの高い硝酸塩が消費され、次に硫酸塩が消費される。そして、微生物群の主体である脱窒素菌の硝酸呼吸により、脱窒が行われる。また、上述のように硫酸呼吸を行う硫酸還元菌などにより硫化水素が生成される。硫化水素は悪臭原因のひとつであるが、本発明では、共生菌群全体で硝酸呼吸主動であり硫化水素の発生は少ない。また発生したものについては、硫化水素を硫酸まで酸化する硫黄酸化菌の働きにより、無臭状態が維持されているものと思われる。   Oxygen is preferentially consumed as a preferred respiratory factor. However, when dissolved oxygen reaches about 0.1 mg / L, the microorganism group consumes nitrate and sulfate as a respiratory factor that replaces oxygen and the final electron acceptor. start. In order, nitrates with high redox potential are consumed, and then sulfates are consumed. And denitrification is performed by nitrate respiration of the denitrifying bacteria which are the main body of the microorganism group. In addition, hydrogen sulfide is generated by sulfate-reducing bacteria that perform sulfuric acid respiration as described above. Although hydrogen sulfide is one of the causes of bad odor, in the present invention, nitrate respiration is dominant in the whole symbiotic bacteria group, and hydrogen sulfide is hardly generated. In addition, the odorless state seems to be maintained by the action of sulfur-oxidizing bacteria that oxidize hydrogen sulfide to sulfuric acid.

電子受容体液には、硝酸塩5〜500mg/L、硫酸塩5〜700mg/L、酸素量0.1〜3mg/Lを含んでいることが好ましい。硝酸塩と硫酸塩が5mg/L以下であると、前述した微生物群による硝酸呼吸や、硫酸呼吸が効率的に促進されない。逆に、硝酸塩が500mg/L以上、硫酸塩が700mg/L以上になると、微生物がこれらの物質により不活性化する。硝酸塩と硫酸塩は、100mg/L以下が好ましい。   The electron acceptor liquid preferably contains 5-500 mg / L nitrate, 5-700 mg / L sulfate, and 0.1-3 mg / L oxygen. When nitrate and sulfate are 5 mg / L or less, nitrate respiration and sulfate respiration by the microorganism group described above are not efficiently promoted. Conversely, when the nitrate is 500 mg / L or more and the sulfate is 700 mg / L or more, the microorganisms are inactivated by these substances. The nitrate and sulfate are preferably 100 mg / L or less.

酸化還元電位は300mV以下であり、0m〜300mVの範囲で調節される。酸化還元電位は、電子受容体を構成する酸素(溶存酸素)、硝酸塩、硫酸塩を前記範囲内に維持し、硝酸呼吸を主とした微生物群(共生菌群)を構成するための指標となるものである。酸化還元電位が0mV以下の場合は、電子受容体としての酸素が不足し、微生物群のバランスが硫黄化合物使用菌の方向に傾く。また、300mv以上では、電子受容体としての酸素が多すぎるため、微生物群のバランスが酸素使用菌の方向に傾くことになる(活性汚泥となる)。   The oxidation-reduction potential is 300 mV or less and is adjusted in the range of 0 mV to 300 mV. The oxidation-reduction potential is an index for constituting a microorganism group (symbiotic bacteria group) mainly composed of nitrate respiration by maintaining oxygen (dissolved oxygen), nitrate, and sulfate constituting the electron acceptor within the above range. Is. When the oxidation-reduction potential is 0 mV or less, oxygen as an electron acceptor is insufficient, and the balance of the microorganism group is inclined toward the sulfur compound-using bacteria. In addition, at 300 mv or more, since there is too much oxygen as an electron acceptor, the balance of the microorganism group is inclined toward the oxygen-using bacteria (becomes activated sludge).

酸化還元電位は、必要とあれば、酸素供給量の調整、所定の電子受容体液の投入、所定の酸化還元電位を有する緩衝液(廃水処理媒体等)の投入などにより調整することができる。本発明では、有機物含有廃棄物を微生物により分解処理するに際し、処理槽内を、脱窒素菌を主体とする微生物群となるように溶存酸素量と電子受容体液の供給量をコントロールすることができる。   If necessary, the oxidation-reduction potential can be adjusted by adjusting the oxygen supply amount, introducing a predetermined electron acceptor liquid, introducing a buffer solution (such as a wastewater treatment medium) having a predetermined oxidation-reduction potential, and the like. In the present invention, when the organic matter-containing waste is decomposed by microorganisms, the amount of dissolved oxygen and the amount of electron acceptor liquid supplied can be controlled so that the inside of the treatment tank becomes a microorganism group mainly composed of denitrifying bacteria. .

本発明は、上記条件を満たす限り、生ゴミ分解浄化処理、生ゴミ分解コンポスト、生活廃水処理、動物糞尿処理、産業有機廃棄物処理、等において実施できる。代表的な例として、本発明者が特開2002−361279号で提案したように、廃水原水を貯留する流入槽、流入槽からの廃水を曝気処理する反応槽、反応槽の処理廃水を回収静置して汚泥を沈殿させる沈殿槽、沈殿槽の汚泥を回収して再曝気処理し余剰汚泥を消化減容させるとともに上澄液を流入槽に返送する汚泥消化槽、を備えた有機性廃水処理装置に適用できる。即ち、流入槽、反応槽、汚泥消化槽の全部の槽又は一部の槽に、前記脱窒素菌を主体とする微生物群のバイオフィルムを形成させることにより、効率的で安定した分解処理が可能となる。特に、汚泥消化槽での発生汚泥を従来よりも減容することができ、上澄水を良質の電子受容体液として利用することができる。
The present invention satisfies the above conditions limit is, garbage decomposition purification treatment, garbage decomposing compost, domestic wastewater treatment, animal manure processing, industrial organic waste treatment can be carried out in the like. As typical examples, as proposed by the present inventor in Japanese Patent Laid-Open No. 2002-361279, an inflow tank for storing wastewater raw water, a reaction tank for performing aeration treatment of wastewater from the inflow tank, Organic wastewater treatment equipped with a sedimentation tank that deposits sludge and collects sludge from the sedimentation tank and re-aerates to digest and reduce excess sludge, and returns the supernatant to the inflow tank. Applicable to equipment. In other words, efficient and stable decomposition treatment is possible by forming a biofilm of the microorganism group mainly composed of the denitrifying bacteria in all or some of the inflow tank, reaction tank and sludge digestion tank. It becomes. In particular, the volume of sludge generated in the sludge digestion tank can be reduced as compared with the prior art, and the supernatant water can be used as a high-quality electron acceptor liquid.

上述した本発明によれば、有機性廃棄物の分解処理において、処理槽内に脱窒素菌を主体とする微生物群のバイオフィルムを生成させ、溶存酸素濃度と電子受容体液の供給をコントロールすることにより、処理する有機性廃棄物の条件(例えばBOD、COD)が変化しても、効率的で安定した分解過程をとるため、有機物分解が速くなり、悪臭を発生することもない。硝酸呼吸を主とした微生物群により有機物分解を行うので、発生汚泥の量を大幅に減少することができる。   According to the present invention described above, in the decomposition treatment of organic waste, a biofilm of a microorganism group mainly composed of denitrifying bacteria is generated in the treatment tank, and the dissolved oxygen concentration and the supply of the electron acceptor liquid are controlled. Therefore, even if the conditions (for example, BOD, COD) of the organic waste to be treated are changed, an efficient and stable decomposition process is taken, so that the decomposition of the organic matter is accelerated and no odor is generated. Since organic matter is decomposed by microorganisms mainly composed of nitrate respiration, the amount of generated sludge can be greatly reduced.

平均流入有機物量100mg/L、流入水量500t/日の生活廃水を、以下の条件で処理した。処理装置は、前述した流入槽、反応槽、沈殿槽及び汚泥消化槽から構成されている。その結果を表1に示す。表1において、流入水とは流入槽の水質、処理水とは沈殿槽の上澄水の水質である。このときの反応槽における硝酸塩、硫酸塩、酸素量及び酸化還元電位の実測値を表2に示す。   Domestic wastewater with an average inflow organic matter amount of 100 mg / L and inflow water amount of 500 t / day was treated under the following conditions. The processing apparatus is composed of the above-described inflow tank, reaction tank, sedimentation tank, and sludge digestion tank. The results are shown in Table 1. In Table 1, the influent water is the quality of the inflow tank, and the treated water is the quality of the supernatant water of the precipitation tank. Table 2 shows measured values of nitrate, sulfate, oxygen amount, and oxidation-reduction potential in the reaction tank at this time.

Figure 0004865294
Figure 0004865294

Figure 0004865294
Figure 0004865294

平均流入有機物量1000mg/L、流入水量200t/日の食品加工工場の廃水を、実施例1と同じ処理装置により、以下の条件で処理した。その結果を表3に示す。反応槽における硝酸塩、硫酸塩、酸素量及び酸化還元電位の実測値は表4に示す通りである。   Wastewater from a food processing plant having an average inflow organic matter amount of 1000 mg / L and an inflow water amount of 200 t / day was treated by the same treatment apparatus as in Example 1 under the following conditions. The results are shown in Table 3. The measured values of nitrate, sulfate, oxygen amount and oxidation-reduction potential in the reaction vessel are as shown in Table 4.

Figure 0004865294
Figure 0004865294

Figure 0004865294
Figure 0004865294

以上の実施例からも明らかなように、本発明によれば、流入水(処理前の廃水)に比較して処理水の水質が大幅に浄化されていることがわかる。また悪臭もほとんど認められなかった。さらに、汚泥消化槽の上澄水には硝酸塩、硫酸塩が適量含まれており、良質な電子受容体含有液であることがわかる。   As is clear from the above examples, according to the present invention, it is understood that the quality of the treated water is greatly purified compared to the inflow water (waste water before treatment). Also, almost no bad odor was observed. Furthermore, it can be seen that the supernatant water of the sludge digester contains appropriate amounts of nitrate and sulfate, and is a high-quality electron acceptor-containing solution.

実施例2の反応槽の処理水を採取し、バイオフィルム中に生存する微生物のメタゲノム解析を行った。また、流入槽、反応槽、沈殿槽で構成し、流入槽と反応槽を溶存酸素量3mg/L以上で曝気した従来の活性汚泥方法についても、反応槽中に生存する微生物のメタゲノム解析を行った。なお、メタゲノムとは、土壌微生物集団中の培養できない微生物も含むすべてのゲノム集団に対して名付けられたものであり、メタゲノム解析とは、培養というプロセスを経ずに微生物菌叢のゲノム総体の解析を行うことをいう。解析結果(リボソーム小サブユニット中の16SrRNA遺伝子の塩基配列の比較による微生物の分類)を表5に示す。   The treated water of the reaction tank of Example 2 was collected, and a metagenomic analysis of microorganisms surviving in the biofilm was performed. In addition, the metagenome analysis of microorganisms that survive in the reaction tank is also performed for the conventional activated sludge method that consists of an inflow tank, a reaction tank, and a precipitation tank, and aerated the inflow tank and the reaction tank with a dissolved oxygen amount of 3 mg / L or more. It was. Metagenome is named for all genome groups in the soil microbial population, including microorganisms that cannot be cultivated. Metagenome analysis is an analysis of the entire microbial flora genome without going through the process of culturing. To do. The analysis results (classification of microorganisms by comparison of the base sequence of 16S rRNA gene in the small subunit of ribosome) are shown in Table 5.

Figure 0004865294
Figure 0004865294

上表のように、本発明法では、プロテオバクテリア類に属し、脱窒素菌の一種であるアシドボラックス類似菌(49.2%)が著しく出現し、硫黄酸化菌であるクロロフレクサス類似菌(16.2%)が消失していることがわかる。ちなみに活性汚泥法では、硫黄酸化菌が23.5%を占めている。なお、上記分類はメタゲノム解析により類似した遺伝子配列ごとに区分した門(ファイラム)分類によるものであるが、同じ門(ファイラム)に属する菌が共通の微生物学的性質を有しているとは限らない。   As shown in the above table, in the method of the present invention, acid borax-like bacteria (49.2%), which belong to proteobacteria and are a kind of denitrifying bacteria, remarkably appear, and chloroflexus-like bacteria that are sulfur-oxidizing bacteria ( 16.2%) has disappeared. Incidentally, in the activated sludge method, sulfur-oxidizing bacteria account for 23.5%. The above classification is based on the phylum classification divided into similar gene sequences by metagenomic analysis, but the bacteria belonging to the same phylum have not always have common microbiological properties. Absent.

Claims (4)

流入槽に貯留された有機性廃棄物の廃水原水を、反応槽において曝気処理し、次いでその処理水を沈殿槽において汚泥分離処理し、その分離汚泥を汚泥消化槽において再曝気処理し、該再曝気処理の上澄水を電子受容体液として前記流入槽に返送する有機性廃棄物の分解処理方法において、
前記反応槽における曝気処理を、前記電子受容体液の存在下、溶存酸素量0.1〜3mg/L、酸化還元電位0〜300mVの条件下で処理し、
前記反応槽を、脱窒素菌が少なくとも20%を占める微生物群のバイオフィルムを生成させた状態で有機性廃棄物を分解処理することを特徴とする有機性廃棄物の分解処理方法。
Raw organic wastewater stored in the inflow tank is aerated in the reaction tank, then the treated water is sludge separated in the settling tank, and the separated sludge is aerated again in the sludge digestion tank. In the organic waste decomposition method of returning the supernatant water of the aeration treatment as an electron acceptor liquid to the inflow tank,
The aeration treatment in the reaction tank is treated under the conditions of dissolved oxygen amount of 0.1 to 3 mg / L, oxidation-reduction potential of 0 to 300 mV in the presence of the electron acceptor liquid,
A method for decomposing organic waste, comprising decomposing organic waste in a state where a biofilm of a microorganism group in which denitrifying bacteria account for at least 20% is generated in the reaction tank .
前記流入槽及び/又は前記汚泥消化槽に、前記バイオフィルムを生成させることを特徴とする請求項1に記載の有機性廃棄物の分解処理方法。   The organic waste decomposition method according to claim 1, wherein the biofilm is generated in the inflow tank and / or the sludge digestion tank. 前記酸化還元電位を、前記溶存酸素量と前記電子受容体液の供給量により調整することを特徴とする請求項1又は2に記載の有機性廃棄物の分解処理方法。   The organic waste decomposition method according to claim 1 or 2, wherein the oxidation-reduction potential is adjusted by the amount of dissolved oxygen and the supply amount of the electron acceptor liquid. 前記脱窒素菌はアシドボラックス類似菌であることを特徴とする請求項1〜3のいずれかに記載の有機性廃棄物の分解処理方法。   The method for decomposing organic waste according to any one of claims 1 to 3, wherein the denitrifying bacterium is an acid borax-like bacterium.
JP2005309455A 2005-10-25 2005-10-25 Decomposition method of organic waste Active JP4865294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309455A JP4865294B2 (en) 2005-10-25 2005-10-25 Decomposition method of organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005309455A JP4865294B2 (en) 2005-10-25 2005-10-25 Decomposition method of organic waste

Publications (2)

Publication Number Publication Date
JP2007117790A JP2007117790A (en) 2007-05-17
JP4865294B2 true JP4865294B2 (en) 2012-02-01

Family

ID=38142217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309455A Active JP4865294B2 (en) 2005-10-25 2005-10-25 Decomposition method of organic waste

Country Status (1)

Country Link
JP (1) JP4865294B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783399B2 (en) * 2010-08-16 2015-09-24 多美子 定家 Manufacturing method of liquid fertilizer
WO2014199500A1 (en) * 2013-06-13 2014-12-18 三菱重工メカトロシステムズ株式会社 Wastewater treatment method
JP7337560B2 (en) * 2019-06-25 2023-09-04 多美子 定家 Organic wastewater treatment method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305299A (en) * 1991-04-03 1992-10-28 Kubota Corp Biological denitrification device
JPH05177197A (en) * 1991-12-27 1993-07-20 Fuji Photo Film Co Ltd Treatment process for waste water
JP3667254B2 (en) * 2001-06-11 2005-07-06 株式会社若尾電気 Waste water treatment method and waste water treatment apparatus
JP2004188281A (en) * 2002-12-10 2004-07-08 Hoomaa Clean Kk Method and apparatus for wastewater treatment
JP2004248618A (en) * 2003-02-21 2004-09-09 Hoomaa Clean Kk Bacterial group symbiotically living with fungus used for treating organic material and its application
JP4112549B2 (en) * 2004-10-21 2008-07-02 多美子 定家 Organic waste treatment methods

Also Published As

Publication number Publication date
JP2007117790A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
Arora et al. Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects
Peng et al. Biological nitrogen removal with nitrification and denitrification via nitrite pathway
Hasan et al. Kinetic evaluation of simultaneous COD, ammonia and manganese removal from drinking water using a biological aerated filter system
Kargi et al. Simultaneous adsorption and biological treatment of pre-treated landfill leachate by fed-batch operation
Rikmann et al. Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater
Li et al. Highly efficient of nitrogen removal from mature landfill leachate using a combined DN-PN-Anammox process with a dual recycling system
Chakraborty et al. Effect of HRT and recycle ratio on removal of cyanide, phenol, thiocyanate and ammonia in an anaerobic–anoxic–aerobic continuous system
Ahammad et al. Wastewater treatment: biological
JP4892917B2 (en) Biological treatment method and apparatus for organic wastewater
Sun et al. Endogenous influences on anammox and sulfocompound-oxidizing autotrophic denitrification coupling system (A/SAD) and dynamic operating strategy
US8828230B2 (en) Wastewater treatment method for increasing denitrification rates
JP6344216B2 (en) Biological treatment of wastewater
JP4017657B1 (en) Treatment method of wastewater containing organic matter
JP5032564B2 (en) Novel microorganisms for wastewater treatment and corresponding methods
JP4865294B2 (en) Decomposition method of organic waste
CN101353201A (en) Novel wastewater treatment method
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP5812277B2 (en) Nitrogen removal method
JP4112549B2 (en) Organic waste treatment methods
Tan et al. Feasibility test of autotrophic denitrification of industrial wastewater in sequencing batch and static granular bed reactors
JP7337560B2 (en) Organic wastewater treatment method
CN110759607A (en) Process for removing total nitrogen from printing and dyeing wastewater
JP2001058197A (en) Treatment of wastewater
JP2562386B2 (en) Rapid cultivation and growth method for useful microorganisms suitable for wastewater treatment
KR100254523B1 (en) Natural purification method and apparatus thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4865294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250