JP2004188281A - Method and apparatus for wastewater treatment - Google Patents

Method and apparatus for wastewater treatment Download PDF

Info

Publication number
JP2004188281A
JP2004188281A JP2002357479A JP2002357479A JP2004188281A JP 2004188281 A JP2004188281 A JP 2004188281A JP 2002357479 A JP2002357479 A JP 2002357479A JP 2002357479 A JP2002357479 A JP 2002357479A JP 2004188281 A JP2004188281 A JP 2004188281A
Authority
JP
Japan
Prior art keywords
water
tank
wastewater
aeration
supernatant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002357479A
Other languages
Japanese (ja)
Inventor
Tamiko Teika
多美子 定家
Kazuo Oyama
一雄 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOOMAA CLEAN KK
WAKAO KIICHI
Original Assignee
HOOMAA CLEAN KK
WAKAO KIICHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOOMAA CLEAN KK, WAKAO KIICHI filed Critical HOOMAA CLEAN KK
Priority to JP2002357479A priority Critical patent/JP2004188281A/en
Publication of JP2004188281A publication Critical patent/JP2004188281A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To obtain discharge water which sufficiently satisfies a water quality standard even if a large amount of wastewater containing an organic substance in high concentration in wastewater treatment accompanying microaerophilic aeration treatment. <P>SOLUTION: Microbial electron acceptor-adjusted water returned from a supernatant water re-aeration tank 4 is mixed with waste raw water flowing in an inflow tank 1 to aerate the waste raw water under such a condition that the amount of dissolved oxygen is substantially 1 mg/L or less. This aerated water is sent to a reaction tank 2 to be aerated under such a condition that the amount of dissolved oxygen is substantially 1 mg/L or less. Next, the treated water is separated into supernatant water and sludge in a sedimentation tank 4 and all amount of sedimented sludge is returned to the reaction tank 2. The supernatant water is re-aerated in the supernatant water re-aeration tank 4 under such a condition that the amount of dissolved oxygen is substantially 1 mg/L or less and a part of this treated water is returned to the inflow tank 1 and the remainder thereof is stationarily stored in a storage tank 6. The supernatant water re-aeration tank 4 and the storage tank 6 are integrated. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、有機物を含む廃水を微生物処理することにより浄化する廃水処理方法及び廃水処理装置に関するものである。
【0002】
【従来の技術】
一般的な活性汚泥処理法のプロセスは、以下の通りである。まず濾過・沈殿などの前処理をした流入廃水を曝気槽に送り、活性汚泥を攪拌・曝気して廃水中の水溶性有機化合物、コロイド状有機化合物等を無機化処理する。
【0003】
次に、廃水を沈殿槽に送って汚泥を分離・沈殿させ、上澄水を法定基準値以下となるように殺菌処理した後、河川等に放水する。沈殿槽の下層に沈殿した汚泥は貯留槽に送り、所定量溜まったときに適当な処分をしている。なお、必要により沈殿槽の汚泥の一部を曝気槽に返送し、曝気槽内の汚泥の微生物濃度調整に使用することもある。
【0004】
上述した従来の活性汚泥処理法は、一般に好気性微生物を用い、曝気槽の溶存酸素量(DO)を高い状態に保ち、好気性微生物の活性増殖を促進し、その好気呼吸で、基質としての有機汚物を酸化分解するものである。このため、微生物の死骸とともに廃水中の汚物が凝集して大量の汚泥が発生することになる。
【0005】
この汚泥の一部は上述のように曝気槽内に返送されてはいるが、多量の余剰汚泥は、これまで埋め立て処理、焼却処理等が行われてきた。しかし、余剰汚泥中には有害物質も含まれており、それ自身がさまざまな環境汚染を引き起こすことにもなるため、余剰汚泥をできるだけ出さないことが望まれている。
【0006】
また、活性汚泥処理法は、各処理工程で臭気の発生があるため、脱臭装置を設置しなければならず、設備コスト、ランニングコスト等が負担になっていた。
【0007】
さらに、前述の活性汚泥処理法と組み合せて、嫌気性ないし通性嫌気性の微生物を用いた廃水処理方法も知られているが、あらたに嫌気性処理装置が必要になるため、設備新設コストやそのランニングコストの負担が増大するという問題がある。
【0008】
一方、嫌気性及び通性嫌気性微生物を用いた汚泥処理法であって、廃水原水貯留機構、攪拌嫌気処理機構、曝気処理機構、分離処理機構を設け、分離処理機構の一定量の沈殿汚泥を曝気処理機構に返送するとともに、所定比率の上澄水と沈殿汚泥を攪拌嫌気処理機構に返送し、攪拌嫌気処理機構や曝気処理機構で、空気量を抑えた通性嫌気処理するシステムが提案されている(参考文献1)。
【0009】
【特許文献1】
特開平11−47787号公報
【0010】
しかし、この廃水浄化システムは、廃水原水の流入条件、曝気条件等によっては充分な微生物量を維持することができず、安定した浄化処理ができないという問題がある。また、分離処理機構の上澄水と沈殿汚泥とを所定比率で攪拌嫌気処理機構に返送するため、その制御システムが複雑化するという問題もある。
【0011】
このようなことから、本発明者等は、先に電子受容体調整水を混入し、微好気で曝気することにより、余剰汚泥の発生を抑え、無臭気で、しかもBOD濃度の低い廃水でも安定して効率的に廃水を浄化できる画期的な廃水処理システムを提案した(特願2001−175094号)。この廃水処理システムは、廃水原水に微生物の電子受容体調整水を混入し、溶存酸素量が実質的に1mg/Lの微好気状態で曝気した後、その処理液を沈殿分離処理し、次いで沈殿汚泥を、再度溶存酸素量が実質的に1mg/L以下の条件で曝気するとともに、上澄水を電子受容体調整水として前記排水原水に返送するものである。
【0012】
【発明が解決しようとする課題】
しかしながら、その後さらに検討を重ねたところ、上述した本発明者等が開発した廃水処理システムを含め、微好気での曝気処理を伴う廃水処理システムでは、実操業上、以下のような問題が懸念されることが解った。
【0013】
第1に、微好気(1mg/L以下)で運転する曝気槽に、高濃度(例えば5000ppm)の汚泥が多量に流入した場合、曝気槽で有機物が充分に消化されないまま、その処理水が沈殿槽に流入し、短時間で多量の汚泥が堆積することになる。この沈殿槽では微生物による脱窒が行われているため、発生した窒素ガスなどにより堆積汚泥が押し上げられ、スカム化して槽の表面に浮遊する心配がある(放流水質の悪化)。
【0014】
第2に、前述のように高濃度有機物の汚泥が多量に流入してきた場合、沈殿槽での汚泥高が高くなり、不充分な沈殿状態となり、放流水流に混じって汚泥が流出するおそれがある。
【0015】
第3に、微好気運転で、流入有機物が短時間に多量になる場合、沈殿槽の上澄水のSS(浮遊物質)が高くなり、白濁することがある。このSSが放流水質基準内であったとしても、異臭発生源になる可能性もある。
【0016】
本発明は、上述したような問題を解決するために提案されたものである。即ち、本発明は先願の特願2001−175094号のように微好気の曝気処理を伴う廃水処理において、高濃度の有機物を含む廃水が多量に流入してきた場合でも、水質基準を充分満たした放流水が得られるような廃水処理方法及びその装置を提供することを目的とする。
【0017】
また、本発明は特に最終処理工程での再曝気槽と貯留槽の一体化を図り、廃水処理装置のコンパクト化と低コスト化を実現できる廃水処理装置を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明は上記課題を解決するため検討を重ねた結果提案されたものであり、有機汚泥を含む廃水を微好気状態で曝気する廃水曝気処理工程と、その処理液を沈殿汚泥と上澄水に分離する沈殿分離処理工程を有する廃水処理方法において、
前記沈殿分離処理工程の沈殿汚泥の全量を前記廃水曝気処理工程に返送するとともに、上澄水を再曝気処理工程に移送して微好気状態で再曝気することを特徴とする。
【0019】
前記廃水曝気処理工程及び上澄水再曝気処理工程は、溶存酸素量が実施的に1mg/L以下の条件で曝気される。また前記上澄水再曝気工程の処理水は、微生物の電子受容体調整水として前記廃水曝気処理工程に送給される廃水に混入される。さらに、前記上澄水再曝気工程の処理水は静置貯留工程に移送され、該静置貯留工程の上澄水が下水道、河川等に放流される。
【0020】
また本発明の好ましい実施形態によれば、有機汚泥を含む廃水の処理方法は、廃水原水に、電子受容体調整水を混入し、溶存酸素容量が実質的に1mg/L以下の条件で曝気する第一工程と、
前記第一工程の処理水を、溶存酸素量が実質的に1mg/L以下の条件で曝気する第2工程と、
前記第二工程の処理水を沈殿分離処理し、沈殿汚泥の全量を前記第2工程に返送する第三工程と、
前記第三工程で分離された上澄液を、溶存酸素量が実質的に1mg/L以下の条件で再曝気するとともに、該処理水の一部を電子受容体調整水として前記第一工程に返送し、残りの処理水を静置貯留する第4工程、からなっている。
【0021】
前記第四工程において、第一工程に返送した残りの処理水はそのまま放流することもできるが、いったん静置貯留し、沈殿分離処理をした後、その上澄水を放流すれば、水質基準を確実にクリアした清浄な放流水となる。
【0022】
本発明の廃水処理方法で処理される廃水は、屎尿廃水、家畜糞尿廃水、工場廃水等のあらゆる生活廃水又は産業廃水が含まれる。また本発明における曝気処理は、曝気槽の内部に空気を送給して内容物を攪拌曝気するものであれば、散気式曝気法、機械式曝気法等、通常の方法で充分である。曝気槽内の溶存酸素量(DO)は空気送気量を調節して上述の範囲に調節する。
【0023】
本発明で使用される電子受容体調整水とは、微生物がエネルギー源とする酸化能力を有する化学物質を多量に含んだ液体であり、具体的には、微生物学的に生成された硝酸塩、硫黄化合物、リン酸塩等を多量に含んだ無機溶液である。
【0024】
本発明において、曝気処理を行なう全ての工程で溶存酸素量を実質的に1mg/L以下とした理由は、微生物に必要最小限の酸素を供給するとともに、酸素以外の電子受容体の消費を促がし、微生物の活性増殖を促がすためである。また1mg/L以上になると、好気性微生物が活性増殖し、酸素主動の活性汚泥処理法になるためである。なお、各曝気処理槽には溶存酸素計が設けられ、溶存酸素量が実質的に1mg/L以下となるように供給酸素量が制御されている。
【0025】
ここで「実質的に」としたのは、1mg/L以上であっても本発明と同等の効果を得られる微差範囲を含める趣旨である。なお、溶存酸素量は0であってもよい。これは微生物が、供給酸素量以上の酸素を消費している状態を含むことを意味している。
【0026】
上述の本発明の廃水処理方法を実現する装置は、有機汚泥を含む廃水を微好気状態で曝気する廃水曝気槽と、その処理液を沈殿汚泥と上澄水に分離する沈殿槽を有する廃水処理装置において、前記沈殿槽の後に、該沈殿槽から移送された上澄水を微好気状態で再曝気する上澄水再曝気槽を設けるとともに、前記沈殿槽の沈殿汚泥の全量を前記廃水曝気槽に移送する手段を設けることを特徴とする。沈殿槽の沈殿汚泥の全量を廃水曝気槽に移送する手段とは、該沈殿汚泥の全量を連続的に又は所定定時間毎に汲み上げて移送管等により廃水曝気槽に移送する装置であり、その具体的構成は問わない。
【0027】
前記廃水曝気槽と前記上澄水再曝気槽は、溶存酸素量を実質的に1mg/L以下にして曝気する曝気槽である。また前記上澄水再曝気槽の処理水を、微生物の電子受容体調整水として前記廃水曝気槽に供給される廃水に混入する手段が設けられる。具体的には上澄再曝気槽と廃水曝気槽又は廃水曝気槽の前工程に有する槽とを送給管で連結し、連続的、定期的又は廃水曝気槽に供給される廃水の微生物学的条件に応じてその処理水を返送すればよく、その具体的構成は問わない。
【0028】
さらに前記上澄水再曝気槽には、該上澄水再曝気槽の処理水を静置貯留する貯留槽が併設されている。この貯留槽は、上澄水再曝気槽とは別に設けてもよいが、好ましくは該上澄水再曝気槽と一体化させて設けられる。
【0029】
本発明の廃水処理装置の好ましい実施形態は、有機汚泥を含む廃水の処理装置において、
廃水原水を貯留し、該廃水原水を溶存酸素容量が実質的に1mg/L以下の条件で曝気する流入槽と、
前記流入槽の処理水を、溶存酸素量が実質的に1mg/L以下の条件で曝気する反応槽と、
前記反応槽の処理水を沈殿分離処理し、沈殿汚泥の全量を前記反応槽に返送する沈殿槽と、
前記沈殿槽で分離された上澄液を、溶存酸素量が実質的に1mg/L以下の条件で再曝気し、該処理水の一部を前記流入槽に返送するとともに、残りの処理水を静置貯留する貯留槽が併設された上澄水再曝気槽、からなっている。
【0030】
【発明の実施の形態】
以下、本発明の実施形態を図1に基づいて説明する。同図において1は廃水原水流入槽、2は反応槽、3は沈殿槽、4は上澄液再曝気槽、5は貯留槽である。
【0031】
原水廃水流入槽1には、処理すべき原水廃水が流入され、スクリーニング処理等の前処理がされるとともに、廃水原水を一旦貯留することで、刻々変化する廃水原水の流量調節がなされる。
【0032】
流入槽1には後述するように、上澄水再曝気槽4における処理水が電子受容体調整水として混入される。この電子受容体調整水は、硝酸塩、硫黄化合物、リン酸塩を多量に含んだ無機溶液であり、必要により適当な濃度に薄めて使用される。なお、廃水処理装置の立ち上げの時には、別の廃水処理装置で生成された電子受容体調整水が投入される。
【0033】
流入槽1では、廃水原水に電子受容体調整水が混入された後、溶存酸素量が1mg/L以下の条件で曝気処理される。この流入槽1では、主として消臭微生物が増殖される。消臭微生物の電子受容体は酸素主動であり、前述の低い溶存酸素量の下では、消臭微生物は電子受容体調整水に含まれる硝酸塩を使い始め、その領域に入り込んでくる酸素も同時に使用される。
【0034】
消臭微生物は、たとえば化学合成菌、メトファイル菌等であり、アンモニア、硫化メチル等の臭い成分を電子供与体として分解使用し、消臭する。流入槽1で増殖した消臭微生物は全工程で使用され、全工程における臭気の発生を微生物学的に抑えることができる。なお、化学合成菌は硝酸を生成し、メトファイル菌は硫化物を合成する。これらは次の工程で使用される。
【0035】
流入槽1の処理水は反応槽2に移送され、流入槽1と同じように溶存酸素量が1mg/L以下の条件で所定時間(日数)曝気処理される。反応槽2は処理水中の有機物を完全に無機化することが目的である。反応槽2では、主として電子受容体調整水に含まれる硝酸塩を電子受容体として発酵性微生物及び通性嫌気性微生物が処理水中の有機物の殆どを消化分解し、窒素を生成放出する(脱窒)。電子供与体は微生物であり、より分子量の小さい有機物に分解される。発酵性微生物、通性嫌気性微生物とは、たとえば酵母、バシラス、アルカリゲネス、クロストリジウム、シュードモナス、乳酸菌等である。
【0036】
また発酵性微生物及び通性嫌気性微生物の生成物、特にHは、メトファイル菌、古細菌、硫黄還元菌等により消費され、発酵性微生物の増殖と、これに伴う有機物の消化が促進される。なお、発酵性微生物及び通性嫌気性微生物により生成された臭い成分は、流入槽1で増殖され、移送された消臭微生物により消費される。
【0037】
このような微生物の生態サイクルにより、処理水中の大量の有機物が分解消費されるとともに、反応槽2の微生物量を安定に保つことができる。実験では、反応槽2のMLSS(混合液懸濁浮遊物質)を10000mg/L前後に維持することができた。
【0038】
反応槽2の処理水は、ついで沈殿槽3に移送され、所定時間(日数)処理水を静置することにより、処理水に含まれる汚泥を沈殿させ、上澄水と分離する。沈殿槽3では、前述の反応槽2が充分に機能していれば、発酵性微生物及び通性嫌気性微生物により有機物がほとんど消費尽くされ、無機化される。また硫黄還元微生物等の微生物により汚泥が消化され、リン酸吸収性微生物により脱リン処理が行なわれ、上澄水のリン成分が少なくなる。
【0039】
沈殿槽3に堆積するすべての沈殿汚泥は、連続的に又は所定時間毎に反応槽2に返送され、反応槽2において曝気処理が繰り返される。
【0040】
沈殿槽3の上澄水は、上澄水再曝気槽4に移送される。上澄水再曝気槽4は、1つの処理槽内を隔壁6で仕切って貯留槽5を併設したものである。沈殿槽3の上澄水には、上述のごとく廃水の有機物濃度、流量、その他の運転環境等によって、放流水質基準を外れることも懸念され、そのまま放流できなくなることもある。そこで、この上澄水を再曝気槽4に移送させ、前述と同じように溶存酸素量が1mg/L以下の条件で上澄水を所定時間(日数)再曝気する。これにより、上澄水に含まれる有機物が、残存する発酵微生物及び通性嫌気性微生物等により消費され、充分に無機化される。
【0041】
上澄水再曝気槽4の処理液は、その一部が電子受容体調整水として流入槽1に返送され、残りの処理水は、併設する貯留槽5に移送される。貯留槽5は前記再曝気処理水の貯留が目的であるが、その処理水にわずかに含まれる微生物死骸等の汚泥は下層に沈殿し、上澄水は必要に応じで殺菌処理等がされた後、下水道、河川等に放流される。沈殿した汚泥は残存する微生物により消化されるか、定期的に抜き取られるなお、この貯留槽5の上澄水を電子受容体調整水として流入槽1に返送してもよい。
【0042】
本発明では、流入槽1にBOD2000ppm程度の廃水原水が流入した場合であっても、貯留槽5からの放流水は、BOD300ppm以下、SS200ppm以下、n−Hex10ppm以下の基準値をクリアすることができる。
【0043】
【発明の効果】
以上説明した本発明によれば、微生物の電子受容体を調整し、各処理工程で必要な微生物の活性増殖を図ることにより、廃水を環境基準値以下まで浄化するとともに、余剰汚泥の発生を皆無若しくは極力抑えることができる。また全処理工程を無臭気状態で実施することができる。このため、汚泥処理コストや脱臭装置などの設備コストを軽減することができる。
【0044】
また本発明によれば、処理工程、特に反応槽での微生物量を安定した状態に保つことができるため、BOD濃度の低い廃水であっても、安定して効率的に浄化することができる。
【0045】
さらに本発明によれば、高濃度の有機物を含む廃水が多量に流入してきた場合でも、水質基準を充分満たした放流水が得られる。しかも、最終処理工程での再曝気槽と貯留槽の一体化を図り、廃水処理装置のコンパクト化と低コスト化を実現できる。
【図面の簡単な説明】
【図1】本発明を実施するための廃水処理装置の一例を示す概略図である。
【符号の説明】
1は流入槽
2は反応槽
3は沈殿槽
4は再曝気槽
5は貯留槽
6は隔壁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wastewater treatment method and a wastewater treatment apparatus for purifying wastewater containing organic matter by treating the wastewater with microorganisms.
[0002]
[Prior art]
The process of a general activated sludge treatment method is as follows. First, inflow wastewater that has been subjected to pretreatment such as filtration and precipitation is sent to an aeration tank, and activated sludge is stirred and aerated to mineralize water-soluble organic compounds, colloidal organic compounds, and the like in the wastewater.
[0003]
Next, the wastewater is sent to a sedimentation tank to separate and sediment the sludge, and the supernatant water is sterilized so as to be equal to or lower than a legal standard value, and then discharged to a river or the like. Sludge settled in the lower layer of the sedimentation tank is sent to a storage tank, and when a predetermined amount is accumulated, the sludge is appropriately disposed of. If necessary, a part of the sludge in the settling tank may be returned to the aeration tank and used for adjusting the concentration of microorganisms in the sludge in the aeration tank.
[0004]
The above-mentioned conventional activated sludge treatment method generally uses an aerobic microorganism, keeps the dissolved oxygen amount (DO) in an aeration tank at a high level, promotes the active growth of the aerobic microorganism, and uses the aerobic respiration as a substrate. Oxidatively decomposes organic waste. For this reason, the dirt in the wastewater coagulates together with the dead bodies of microorganisms, and a large amount of sludge is generated.
[0005]
Although a part of the sludge is returned to the aeration tank as described above, a large amount of excess sludge has been subjected to landfill treatment, incineration treatment, and the like. However, surplus sludge contains harmful substances, which itself causes various environmental pollutions. Therefore, it is desired that surplus sludge is not generated as much as possible.
[0006]
In addition, in the activated sludge treatment method, since odor is generated in each treatment step, a deodorizing device must be installed, and equipment costs, running costs, and the like are burdensome.
[0007]
Further, a wastewater treatment method using anaerobic or facultative anaerobic microorganisms in combination with the above-described activated sludge treatment method is also known.However, since a new anaerobic treatment device is required, the cost of installing new equipment and There is a problem that the burden of the running cost increases.
[0008]
On the other hand, it is a sludge treatment method using anaerobic and facultative anaerobic microorganisms, comprising a wastewater raw water storage mechanism, a stirring anaerobic treatment mechanism, an aeration treatment mechanism, and a separation treatment mechanism. A system has been proposed in which a return to the aeration treatment mechanism and a predetermined ratio of supernatant water and settled sludge are returned to the stirring anaerobic treatment mechanism, and the agitated anaerobic treatment mechanism and the aeration treatment mechanism are used to perform a passivated anaerobic treatment with a reduced amount of air. (Ref. 1).
[0009]
[Patent Document 1]
JP-A-11-47787 [0010]
However, this wastewater purification system has a problem that a sufficient amount of microorganisms cannot be maintained depending on the inflow conditions, aeration conditions, and the like of raw wastewater, and stable purification treatment cannot be performed. Further, since the supernatant water and the sediment sludge are returned to the stirring anaerobic treatment mechanism at a predetermined ratio, the control system is also complicated.
[0011]
From such a fact, the present inventors mixed the electron acceptor conditioning water first, and aerated with microaeration to suppress the generation of surplus sludge, and it was odorless, and even wastewater with a low BOD concentration was used. An epoch-making wastewater treatment system capable of stably and efficiently purifying wastewater has been proposed (Japanese Patent Application No. 2001-175094). This wastewater treatment system mixes microbial electron acceptor adjusted water into wastewater raw water, aeration is performed in a microaerobic state having a dissolved oxygen content of substantially 1 mg / L, and then the treated liquid is subjected to precipitation separation treatment. The precipitated sludge is aerated again under the condition that the dissolved oxygen content is substantially 1 mg / L or less, and the supernatant water is returned to the raw wastewater as electron acceptor adjusted water.
[0012]
[Problems to be solved by the invention]
However, after further study, the wastewater treatment system with aerial treatment in microaerobic conditions, including the wastewater treatment system developed by the present inventors, has the following problems in actual operation. I knew it would be done.
[0013]
First, when a large amount of high-concentration (for example, 5000 ppm) sludge flows into an aeration tank that is operated with microaerobic (1 mg / L or less), the treated water is not sufficiently digested in the aeration tank and the treated water is removed. After flowing into the sedimentation tank, a large amount of sludge is deposited in a short time. Since denitrification by microorganisms is performed in this settling tank, there is a concern that the deposited sludge is pushed up by the generated nitrogen gas and the like, and is scummed and floats on the surface of the tank (deterioration of discharged water quality).
[0014]
Second, when a large amount of high-concentration organic matter sludge flows in as described above, the height of the sludge in the sedimentation tank increases, resulting in an insufficient sedimentation state, and the sludge may flow out in the discharge water stream. .
[0015]
Third, in the case of a large amount of inflowing organic matter in a short time during microaerobic operation, the SS (suspended matter) of the supernatant water in the sedimentation tank becomes high, and may become cloudy. Even if this SS is within the effluent quality standards, it may be a source of off-flavors.
[0016]
The present invention has been proposed to solve the above problems. That is, the present invention sufficiently satisfies the water quality standards even in a case where a large amount of wastewater containing high-concentration organic substances flows in wastewater treatment with microaerobic aeration treatment as disclosed in Japanese Patent Application No. 2001-175094. It is an object of the present invention to provide a wastewater treatment method and a wastewater treatment method capable of obtaining discharged water.
[0017]
Another object of the present invention is to provide a wastewater treatment apparatus that can achieve compactness and low cost of the wastewater treatment apparatus, particularly by integrating the re-aeration tank and the storage tank in the final treatment step.
[0018]
[Means for Solving the Problems]
The present invention has been proposed as a result of repeated studies to solve the above problems, and a wastewater aeration treatment step of aerating wastewater containing organic sludge in a microaerobic state, and treating the treated liquid into settled sludge and supernatant water. In a wastewater treatment method having a sedimentation separation treatment step of separating,
The method is characterized in that the whole amount of the settled sludge in the sedimentation separation process is returned to the wastewater aeration process, and the supernatant water is transferred to the re-aeration process to be re-aerated in a microaerobic state.
[0019]
In the waste water aeration treatment step and the supernatant water re-aeration treatment step, aeration is performed under the condition that the dissolved oxygen amount is practically 1 mg / L or less. Further, the treated water in the supernatant water re-aeration step is mixed with the waste water sent to the waste water aeration step as the microorganism electron acceptor adjusted water. Further, the treated water in the supernatant water re-aeration step is transferred to a stationary storage step, and the supernatant water in the stationary storage step is discharged to a sewer, a river, or the like.
[0020]
According to a preferred embodiment of the present invention, in the method for treating wastewater containing organic sludge, an electron acceptor adjusted water is mixed into raw wastewater, and aeration is performed under the condition that the dissolved oxygen capacity is substantially 1 mg / L or less. The first step,
A second step of aerating the treated water of the first step under the condition that the amount of dissolved oxygen is substantially 1 mg / L or less;
A third step of subjecting the treated water of the second step to precipitation separation treatment, and returning the entire amount of the settled sludge to the second step;
The supernatant separated in the third step is re-aerated under the condition that the amount of dissolved oxygen is substantially 1 mg / L or less, and a part of the treated water is used as an electron acceptor adjusting water in the first step. A fourth step of returning and resting and storing the remaining treated water.
[0021]
In the fourth step, the remaining treated water returned to the first step can be discharged as it is.However, once it is stored and settled once and subjected to sedimentation separation processing, the supernatant water is discharged to ensure the water quality standard. It will be clean and clear water.
[0022]
The wastewater treated by the wastewater treatment method of the present invention includes all domestic wastewater or industrial wastewater such as human wastewater, livestock manure wastewater, and industrial wastewater. In the aeration treatment in the present invention, a normal method such as a diffused aeration method or a mechanical aeration method is sufficient as long as the contents are stirred and aerated by supplying air into the aeration tank. The dissolved oxygen amount (DO) in the aeration tank is adjusted to the above-mentioned range by adjusting the air supply amount.
[0023]
The electron acceptor adjusted water used in the present invention is a liquid containing a large amount of a chemical substance having an oxidizing ability as an energy source by microorganisms, and specifically, nitrate, sulfur produced by microbiology, An inorganic solution containing a large amount of compounds, phosphates and the like.
[0024]
In the present invention, the reason that the dissolved oxygen amount is substantially 1 mg / L or less in all the steps of performing the aeration treatment is to supply the minimum necessary oxygen to the microorganisms and promote the consumption of electron acceptors other than oxygen. This is to promote active growth of microorganisms. Also, when the concentration is 1 mg / L or more, the aerobic microorganisms actively grow and the activated sludge treatment method is driven by oxygen. A dissolved oxygen meter is provided in each aeration tank, and the amount of supplied oxygen is controlled so that the amount of dissolved oxygen is substantially 1 mg / L or less.
[0025]
Here, the term “substantially” is intended to include a fine difference range in which an effect equivalent to that of the present invention can be obtained even at 1 mg / L or more. Note that the dissolved oxygen amount may be zero. This means that the microorganism includes a state of consuming more oxygen than the supplied oxygen amount.
[0026]
An apparatus for realizing the above-described wastewater treatment method of the present invention is a wastewater treatment system having a wastewater aeration tank for aerating wastewater containing organic sludge in a microaerobic state, and a sedimentation tank for separating the treated liquid into settled sludge and supernatant water. In the apparatus, after the sedimentation tank, a supernatant water re-aeration tank for re-aeration of the supernatant water transferred from the sedimentation tank in a slightly aerobic state is provided, and the entire amount of the settled sludge in the sedimentation tank is supplied to the wastewater aeration tank. It is characterized by providing means for transferring. The means for transferring the entire amount of the sedimentation sludge in the sedimentation tank to the wastewater aeration tank is a device that pumps up the entire amount of the sedimentation sludge continuously or at predetermined time intervals and transfers it to the wastewater aeration tank by a transfer pipe or the like. The specific configuration does not matter.
[0027]
The waste water aeration tank and the supernatant water re-aeration tank are aeration tanks for performing aeration by setting the dissolved oxygen amount to substantially 1 mg / L or less. In addition, a means is provided for mixing the treated water in the supernatant water re-aeration tank with the waste water supplied to the waste water aeration tank as the electron acceptor adjusted water for microorganisms. Specifically, the supernatant re-aeration tank and the waste water aeration tank or the tank in the previous process of the waste water aeration tank are connected by a feed pipe, and the microbiological of the waste water supplied to the waste water aeration tank is continuously, periodically, or supplied to the waste water aeration tank. What is necessary is just to return the treated water according to conditions, and the specific structure does not matter.
[0028]
Further, the supernatant water re-aeration tank is provided with a storage tank for statically storing the treated water in the supernatant water re-aeration tank. This storage tank may be provided separately from the supernatant water re-aeration tank, but is preferably provided integrally with the supernatant water re-aeration tank.
[0029]
A preferred embodiment of the wastewater treatment apparatus of the present invention is a wastewater treatment apparatus containing organic sludge,
An inflow tank for storing wastewater raw water and aerating the wastewater raw water under the condition that the dissolved oxygen capacity is substantially 1 mg / L or less;
A reaction tank in which the treated water in the inflow tank is aerated under the condition that the amount of dissolved oxygen is substantially 1 mg / L or less;
A sedimentation separation treatment of the treated water of the reaction tank, and a precipitation tank for returning the entire amount of the settled sludge to the reaction tank,
The supernatant separated in the sedimentation tank is re-aerated under the condition that the amount of dissolved oxygen is substantially 1 mg / L or less, and a part of the treated water is returned to the inflow tank, and the remaining treated water is removed. It consists of a supernatant water re-aeration tank with a storage tank for stationary storage.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG. In the figure, 1 is a wastewater raw water inflow tank, 2 is a reaction tank, 3 is a sedimentation tank, 4 is a supernatant re-aeration tank, and 5 is a storage tank.
[0031]
Raw water wastewater to be treated flows into the raw water wastewater inflow tank 1, and is subjected to pretreatment such as screening processing, and by temporarily storing the wastewater raw water, the flow rate of the constantly changing wastewater raw water is adjusted.
[0032]
As described later, the treated water in the supernatant water re-aeration tank 4 is mixed into the inflow tank 1 as electron acceptor adjustment water. The electron acceptor conditioning water is an inorganic solution containing a large amount of nitrate, sulfur compound, and phosphate, and is used by diluting to an appropriate concentration if necessary. At the time of starting up the wastewater treatment apparatus, the electron acceptor conditioned water generated by another wastewater treatment apparatus is supplied.
[0033]
In the inflow tank 1, after the electron acceptor conditioning water is mixed into the raw wastewater, aeration treatment is performed under the condition that the dissolved oxygen amount is 1 mg / L or less. In this inflow tank 1, deodorant microorganisms are mainly propagated. The electron acceptor of deodorant microorganisms is driven by oxygen, and under the low dissolved oxygen amount described above, deodorant microorganisms start using nitrate contained in the electron acceptor conditioned water, and also use oxygen entering the area at the same time Is done.
[0034]
The deodorant microorganism is, for example, a chemically synthesized bacterium, a methofile bacterium, or the like, and decomposes and deodorizes odor components such as ammonia and methyl sulfide as electron donors. The deodorant microorganisms grown in the inflow tank 1 are used in all steps, and the generation of odor in all steps can be microbiologically suppressed. It should be noted that chemically synthesized bacteria produce nitric acid, and Methofile bacteria synthesize sulfide. These will be used in the next step.
[0035]
The treated water in the inflow tank 1 is transferred to the reaction tank 2 and aerated for a predetermined time (days) under the condition that the amount of dissolved oxygen is 1 mg / L or less, as in the inflow tank 1. The purpose of the reaction tank 2 is to completely mineralize organic substances in the treated water. In the reaction tank 2, fermentative microorganisms and facultative anaerobic microorganisms digest and decompose most of organic substances in the treated water, and generate and release nitrogen (denitrification), mainly using nitrate contained in the electron acceptor conditioned water as an electron acceptor. . Electron donors are microorganisms that are broken down into smaller organic matter. The fermentative microorganisms and facultative anaerobic microorganisms include, for example, yeast, Bacillus, Alcaligenes, Clostridium, Pseudomonas, lactic acid bacteria and the like.
[0036]
The products of fermenting microorganisms and facultative anaerobic microorganisms, especially H 2 is methemoglobin file bacteria, archaea, is consumed by the sulfur-reducing bacteria or the like, and the growth of fermenting microorganisms, organic matter digestion is accelerated due to this You. The odor components generated by the fermentative microorganisms and the facultative anaerobic microorganisms are propagated in the inflow tank 1 and consumed by the transferred deodorant microorganisms.
[0037]
By such an ecological cycle of microorganisms, a large amount of organic matter in the treated water is decomposed and consumed, and the amount of microorganisms in the reaction tank 2 can be kept stable. In the experiment, the MLSS (mixture suspension material) of the reaction tank 2 could be maintained at about 10,000 mg / L.
[0038]
The treated water in the reaction tank 2 is then transferred to the sedimentation tank 3, where the treated water is allowed to stand for a predetermined time (the number of days) to precipitate sludge contained in the treated water and separate from the supernatant water. In the sedimentation tank 3, if the above-mentioned reaction tank 2 is functioning sufficiently, organic matter is almost completely consumed by the fermentative microorganisms and the facultative anaerobic microorganisms and is mineralized. In addition, sludge is digested by microorganisms such as sulfur-reducing microorganisms, and dephosphorization is performed by phosphoric acid-absorbing microorganisms, and the phosphorus component in the supernatant water is reduced.
[0039]
All the settled sludge deposited in the settling tank 3 is returned to the reaction tank 2 continuously or at a predetermined time interval, and the aeration treatment is repeated in the reaction tank 2.
[0040]
The supernatant water of the settling tank 3 is transferred to the supernatant water re-aeration tank 4. The supernatant water re-aeration tank 4 is one in which a single treatment tank is partitioned by a partition wall 6 and a storage tank 5 is also provided. As described above, the supernatant water of the sedimentation tank 3 may be out of the discharge water quality standard depending on the organic matter concentration, flow rate, and other operating environment of the wastewater, and may not be discharged as it is. Therefore, the supernatant water is transferred to the re-aeration tank 4, and the supernatant water is re-aerated for a predetermined time (number of days) under the condition that the amount of dissolved oxygen is 1 mg / L or less as described above. Thereby, the organic matter contained in the supernatant water is consumed by the remaining fermenting microorganisms, facultative anaerobic microorganisms, and the like, and is sufficiently mineralized.
[0041]
A part of the processing liquid in the supernatant water re-aeration tank 4 is returned to the inflow tank 1 as the electron acceptor adjusting water, and the remaining processing water is transferred to the storage tank 5 provided therewith. The purpose of the storage tank 5 is to store the re-aeration treated water, but sludge such as microbial dead bodies slightly contained in the treated water precipitates in a lower layer, and the supernatant water is subjected to sterilization treatment or the like as necessary. , Discharged into sewers, rivers, etc. The precipitated sludge is digested by the remaining microorganisms or is periodically withdrawn. The supernatant water of the storage tank 5 may be returned to the inflow tank 1 as the electron acceptor adjusted water.
[0042]
In the present invention, even when wastewater raw water having a BOD of about 2000 ppm flows into the inflow tank 1, the discharge water from the storage tank 5 can clear the reference values of BOD 300 ppm or less, SS 200 ppm or less, and n-Hex 10 ppm or less. .
[0043]
【The invention's effect】
According to the present invention described above, by adjusting the electron acceptor of the microorganisms and promoting the active proliferation of the microorganisms required in each treatment step, the wastewater is purified to an environmental standard value or less, and no generation of excess sludge is generated. Alternatively, it can be suppressed as much as possible. In addition, all the processing steps can be performed in an odorless state. For this reason, the sludge treatment cost and the equipment cost of a deodorizing device and the like can be reduced.
[0044]
Further, according to the present invention, since the amount of microorganisms in the treatment step, particularly in the reaction tank, can be kept in a stable state, even wastewater having a low BOD concentration can be stably and efficiently purified.
[0045]
Furthermore, according to the present invention, even when a large amount of wastewater containing high-concentration organic matter flows in, effluent that sufficiently satisfies the water quality standard can be obtained. In addition, the re-aeration tank and the storage tank are integrated in the final treatment step, so that the wastewater treatment apparatus can be made compact and low-cost.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a wastewater treatment apparatus for carrying out the present invention.
[Explanation of symbols]
1 is an inflow tank 2 is a reaction tank 3 is a sedimentation tank 4 is a re-aeration tank 5 is a storage tank 6 is a partition

Claims (10)

有機汚泥を含む廃水を微好気状態で曝気する廃水曝気処理工程と、その処理液を沈殿汚泥と上澄水に分離する沈殿分離処理工程を有する廃水処理方法において、
前記沈殿分離処理工程の沈殿汚泥の全量を前記廃水曝気処理工程に返送するとともに、上澄水を再曝気処理工程に移送して微好気状態で再曝気することを特徴とする廃水処理方法。
In a wastewater treatment method having a wastewater aeration treatment step of aerating wastewater containing organic sludge in a microaerobic state, and a sedimentation separation treatment step of separating the treated liquid into settled sludge and supernatant water,
A wastewater treatment method comprising returning all of the settled sludge from the precipitation separation treatment step to the wastewater aeration treatment step, transferring the supernatant water to the re-aeration treatment step, and re-aeration in a slightly aerobic state.
前記廃水曝気処理工程及び上澄水再曝気処理工程は、溶存酸素量が実施的に1mg/L以下の条件で曝気することを特徴とする請求項1に記載の廃水処理方法。The wastewater treatment method according to claim 1, wherein in the wastewater aeration treatment step and the supernatant water re-aeration treatment step, the dissolved oxygen amount is practically aerated under a condition of 1 mg / L or less. 前記上澄水再曝気工程の処理水を、微生物の電子受容体調整水として前記廃水曝気処理工程に送給される廃水に混入することを特徴とする請求項1又は請求項2に記載の廃水処理方法。3. The wastewater treatment according to claim 1, wherein the treated water in the supernatant water re-aeration step is mixed with the wastewater sent to the wastewater aeration treatment step as microbial electron acceptor adjusted water. 4. Method. 前記上澄水再曝気工程の処理水を静置貯留工程に移送し、該静置貯留工程の上澄水を放流することを特徴とする請求項1から請求項3の何れかに1項に記載の廃水処理方法。4. The method according to claim 1, wherein the treated water in the supernatant water re-aeration step is transferred to a stationary storage step, and the supernatant water in the stationary storage step is discharged. 5. Wastewater treatment method. 有機汚泥を含む廃水の処理方法において、
廃水原水に、電子受容体調整水を混入し、溶存酸素容量が実質的に1mg/L以下の条件で曝気する第一工程と、
前記第一工程の処理水を、溶存酸素量が実質的に1mg/L以下の条件で曝気する第2工程と、
前記第二工程の処理水を沈殿分離処理し、沈殿汚泥の全量を前記第2工程に返送する第三工程と、
前記第三工程で分離された上澄液を、溶存酸素量が実質的に1mg/L以下の条件で再曝気するとともに、該処理水の一部を電子受容体調整水として前記第一工程に返送し、残りの処理水を静置貯留する第4工程、
を有することを特徴とする廃水処理方法。
In a method for treating wastewater containing organic sludge,
A first step of mixing an electron acceptor adjusted water with wastewater raw water and aeration under a condition that the dissolved oxygen capacity is substantially 1 mg / L or less;
A second step of aerating the treated water of the first step under the condition that the amount of dissolved oxygen is substantially 1 mg / L or less;
A third step of subjecting the treated water of the second step to precipitation separation treatment, and returning the entire amount of the settled sludge to the second step;
The supernatant separated in the third step is re-aerated under the condition that the amount of dissolved oxygen is substantially 1 mg / L or less, and a part of the treated water is used as an electron acceptor adjusting water in the first step. The fourth step of returning and resting and storing the remaining treated water,
A method for treating wastewater, comprising:
有機汚泥を含む廃水を微好気状態で曝気する廃水曝気槽と、その処理液を沈殿汚泥と上澄水に分離する沈殿槽を有する廃水処理装置において、
前記沈殿槽の後に、該沈殿槽から移送された上澄水を微好気状態で再曝気する上澄水再曝気槽を設けるとともに、前記沈殿槽の沈殿汚泥の全量を前記廃水曝気槽に移送する手段を設けることを特徴とする廃水処理装置。
In a wastewater treatment apparatus having a wastewater aeration tank for aerating wastewater containing organic sludge in a microaerobic state and a settling tank for separating the treated liquid into settled sludge and supernatant water,
A means for providing a supernatant water re-aeration tank for re-aeration of the supernatant water transferred from the settling tank in a slightly aerobic state after the settling tank, and a means for transferring the entire amount of settled sludge in the settling tank to the waste water aeration tank. A wastewater treatment device characterized by comprising:
前記廃水曝気槽と前記上澄水再曝気槽は、溶存酸素量を実質的に1mg/L以下にして曝気する曝気槽であることを特徴とする請求項6に記載の廃水処理装置。The wastewater treatment apparatus according to claim 6, wherein the wastewater aeration tank and the supernatant water re-aeration tank are aeration tanks for performing aeration by setting the amount of dissolved oxygen to substantially 1 mg / L or less. 前記上澄水再曝気槽の処理水を、微生物の電子受容体調整水として前記廃水曝気槽に供給する廃水に混入する手段を設けたことを特徴とする請求項6又は請求項7に記載の廃水処理装置。The wastewater according to claim 6 or 7, further comprising means for mixing the treated water in the supernatant water re-aeration tank with the wastewater supplied to the wastewater aeration tank as a microbial electron acceptor adjusted water. Processing equipment. 前記上澄水再曝気槽に、該上澄水再曝気槽の処理水を静置貯留する貯留槽を、該上澄水再曝気槽と一体化させて設けたことを特徴とする請求項6から請求項8の何れか1項に記載の廃水処理装置。7. The supernatant water re-aeration tank is provided with a storage tank for statically storing the treated water of the supernatant water re-aeration tank, the storage tank being integrated with the supernatant water re-aeration tank. A wastewater treatment apparatus according to any one of claims 8 to 13. 有機汚泥を含む廃水の処理装置において、
廃水原水を貯留し、該廃水原水を溶存酸素容量が実質的に1mg/L以下の条件で曝気する流入槽と、
前記流入槽の処理水を、溶存酸素量が実質的に1mg/L以下の条件で曝気する反応槽と、
前記反応槽の処理水を沈殿分離処理し、沈殿汚泥の全量を前記反応槽に返送する沈殿槽と、
前記沈殿槽で分離された上澄液を、溶存酸素量が実質的に1mg/L以下の条件で再曝気し、該処理水の一部を前記流入槽に返送するとともに、残りの処理水を静置貯留する貯留槽が併設された上澄水再曝気槽、
を有することを特徴とする廃水処理装置。
In the treatment equipment for wastewater containing organic sludge,
An inflow tank for storing wastewater raw water and aerating the wastewater raw water under the condition that the dissolved oxygen capacity is substantially 1 mg / L or less;
A reaction tank in which the treated water in the inflow tank is aerated under the condition that the amount of dissolved oxygen is substantially 1 mg / L or less;
A sedimentation separation treatment of the treated water of the reaction tank, and a precipitation tank for returning the entire amount of the settled sludge to the reaction tank,
The supernatant separated in the sedimentation tank is re-aerated under the condition that the amount of dissolved oxygen is substantially 1 mg / L or less, and a part of the treated water is returned to the inflow tank, and the remaining treated water is removed. A supernatant re-aeration tank with a storage tank for stationary storage,
A wastewater treatment device comprising:
JP2002357479A 2002-12-10 2002-12-10 Method and apparatus for wastewater treatment Pending JP2004188281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002357479A JP2004188281A (en) 2002-12-10 2002-12-10 Method and apparatus for wastewater treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002357479A JP2004188281A (en) 2002-12-10 2002-12-10 Method and apparatus for wastewater treatment

Publications (1)

Publication Number Publication Date
JP2004188281A true JP2004188281A (en) 2004-07-08

Family

ID=32757466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002357479A Pending JP2004188281A (en) 2002-12-10 2002-12-10 Method and apparatus for wastewater treatment

Country Status (1)

Country Link
JP (1) JP2004188281A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239510A (en) * 2005-03-01 2006-09-14 Sumiju Kankyo Engineering Kk Organic wastewater treatment method and organic wastewater treatment apparatus
JP2007117790A (en) * 2005-10-25 2007-05-17 Saitama Univ Treatment method of organic waste
JP2011502776A (en) * 2007-11-16 2011-01-27 ブルーウォーター バイオ テクノロジーズ リミテッド Wastewater treatment method and plant including control of dissolved oxygen concentration
JP2011045837A (en) * 2009-08-27 2011-03-10 Kurarisu Kankyo Kk Wastewater treatment method
JP2013512096A (en) * 2009-12-01 2013-04-11 リ、ジンミン Sludge treatment method using sludge biological treatment method, and sludge treatment apparatus and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239510A (en) * 2005-03-01 2006-09-14 Sumiju Kankyo Engineering Kk Organic wastewater treatment method and organic wastewater treatment apparatus
JP2007117790A (en) * 2005-10-25 2007-05-17 Saitama Univ Treatment method of organic waste
JP2011502776A (en) * 2007-11-16 2011-01-27 ブルーウォーター バイオ テクノロジーズ リミテッド Wastewater treatment method and plant including control of dissolved oxygen concentration
JP2011045837A (en) * 2009-08-27 2011-03-10 Kurarisu Kankyo Kk Wastewater treatment method
JP2013512096A (en) * 2009-12-01 2013-04-11 リ、ジンミン Sludge treatment method using sludge biological treatment method, and sludge treatment apparatus and apparatus

Similar Documents

Publication Publication Date Title
KR100277597B1 (en) Deodorize and nutrients removal from wastewater by soil microorganisms
AU770666B2 (en) Waste treatment with control over biological solids
US6387254B1 (en) Apparatus for wastewater treatment
Ødegaard et al. Small wastewater treatment plants based on moving bed biofilm reactors
JP4017657B1 (en) Treatment method of wastewater containing organic matter
KR20140063454A (en) Apparatus and method for treatment wastewater
KR100763640B1 (en) Liquid-waste treating apparatus and liquid-waste treating method
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
KR100229237B1 (en) Advanced treatment method and its device of night soil
JP2004188281A (en) Method and apparatus for wastewater treatment
KR100321679B1 (en) Advanced wastewater treatment method
HU205330B (en) Process for purifying sewage containing organic material, by increased removal of phosphorus and nitrogen
KR102607197B1 (en) High-concentration landfill leachate, livestock wastewater, manure, food wastewater, industrial wastewater and low-concentration wastewater treatment system using an upflow complex bioreactor
Yilmaz et al. Nutrient removal of ammonia rich effluents in a sequencing batch reactor
KR20020089085A (en) Apparatus for treating Nitrogen and Phosphorus in wastewater and A Treatment method thereof
JP3271326B2 (en) Biological phosphorus removal method and apparatus
Bakar et al. Treatment of leachate using sequencing batch reactor (SBR)
KR100254523B1 (en) Natural purification method and apparatus thereof
KR20050081109A (en) Gi soul biological system and method
KR100543770B1 (en) polluted water sewage disposal method and its apparatus
JP2001259679A (en) Biological treating method
KR20180094176A (en) Wastewater treatment apparatus and method
JP2001259675A (en) Sludge amount reducing method and its device
JP6909147B2 (en) Organic wastewater treatment equipment, organic wastewater treatment method and renovation method of organic wastewater treatment equipment
KR200371942Y1 (en) Gi soul biological system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041020