JP5625705B2 - Method and apparatus for anaerobic treatment of wastewater containing terephthalic acid - Google Patents

Method and apparatus for anaerobic treatment of wastewater containing terephthalic acid Download PDF

Info

Publication number
JP5625705B2
JP5625705B2 JP2010224001A JP2010224001A JP5625705B2 JP 5625705 B2 JP5625705 B2 JP 5625705B2 JP 2010224001 A JP2010224001 A JP 2010224001A JP 2010224001 A JP2010224001 A JP 2010224001A JP 5625705 B2 JP5625705 B2 JP 5625705B2
Authority
JP
Japan
Prior art keywords
wastewater
terephthalic acid
anaerobic treatment
acid
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010224001A
Other languages
Japanese (ja)
Other versions
JP2012076023A (en
Inventor
田口 佳美
佳美 田口
田中 倫明
倫明 田中
佐藤 功
功 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Kurita Water Industries Ltd
Original Assignee
Mitsui Chemicals Inc
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Kurita Water Industries Ltd filed Critical Mitsui Chemicals Inc
Priority to JP2010224001A priority Critical patent/JP5625705B2/en
Priority to CN201180043948.XA priority patent/CN103124698B/en
Priority to KR1020137007169A priority patent/KR101849803B1/en
Priority to PCT/JP2011/071806 priority patent/WO2012043436A1/en
Priority to TW100135605A priority patent/TWI511937B/en
Publication of JP2012076023A publication Critical patent/JP2012076023A/en
Application granted granted Critical
Publication of JP5625705B2 publication Critical patent/JP5625705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Removal Of Specific Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明はテレフタル酸含有排水の嫌気性処理方法および処理装置に係り、特に、嫌気性処理により、排水中の難分解性のテレフタル酸を効率的に分解除去する方法および装置に関する。   The present invention relates to an anaerobic treatment method and treatment apparatus for terephthalic acid-containing wastewater, and more particularly to a method and apparatus for efficiently decomposing and removing hardly decomposable terephthalic acid in wastewater by anaerobic treatment.

化学産業分野や電子産業分野では、テレフタル酸を含有する排水が排出される場合がある。例えば、PETボトルやフィルム、磁気テープ、衣料用繊維等の原料として用いられるポリエチレンテレフタレートの製造工程排水には、通常、テレフタル酸やパラトルイル酸、安息香酸などが含まれている。   In the chemical industry and electronics industry, wastewater containing terephthalic acid may be discharged. For example, polyethylene terephthalate manufacturing process wastewater used as a raw material for PET bottles, films, magnetic tapes, clothing fibers and the like usually contains terephthalic acid, p-toluic acid, benzoic acid, and the like.

一般に、各種産業分野の排水を嫌気性処理する場合、嫌気性処理系内には、菌体合成のために栄養塩類、微量金属などが必要であり、例えば、硫酸イオンは排水中のCODCrに対してSO 2−として1.5%程度必要とされている。化学系の排水や電子産業排水には、これらの菌体合成に必要な成分は殆ど含まれていないために、これらの排水の嫌気性処理にあたっては、ミネラル成分を添加して処理が行われる。ただし、硫酸イオンは、メタン発酵槽内で硫酸還元菌により分解されて硫化水素ガスを発生させ、排ガス処理の負荷を増大させると共に、メタン発酵が硫化水素により阻害され、処理効率が低下することとなるため、菌体合成に必要な濃度以上の添加は行われていない。 In general, when anaerobic treatment of wastewater from various industrial fields, nutrient salts, trace metals, etc. are necessary for bacterial cell synthesis in the anaerobic treatment system. For example, sulfate ions are converted into COD Cr in the wastewater. On the other hand, about 1.5% is required as SO 4 2- . Since chemical wastewater and electronic industrial wastewater contain almost no components necessary for the synthesis of these cells, anaerobic treatment of these wastewaters is performed by adding mineral components. However, sulfate ions are decomposed by sulfate-reducing bacteria in the methane fermentation tank to generate hydrogen sulfide gas, increasing the load of exhaust gas treatment, and methane fermentation is hindered by hydrogen sulfide, reducing the processing efficiency. Therefore, addition beyond the concentration required for cell synthesis is not performed.

テレフタル酸含有排水を嫌気性処理しようとした場合、テレフタル酸が難分解性であるため、効率よく分解除去することができない。テレフタル酸含有排水に同時に含有されるパラトルイル酸についても同様である。   When trying to anaerobically treat terephthalic acid-containing wastewater, terephthalic acid is difficult to decompose and cannot be efficiently decomposed and removed. The same applies to p-toluic acid contained in the terephthalic acid-containing wastewater at the same time.

従来、嫌気性処理では分解し難い難分解性の有機物については、通常、好気性処理が行われるが、嫌気性処理は好気性処理に比べて高負荷処理が可能でランニングコストが低く、CO排出量も少ないという利点があるため、嫌気性処理による処理が望まれる。 Conventionally, for the organic matter decomposition hardly persistent in anaerobic treatment, usually aerobic treatment is carried out, the anaerobic treatment is high load processing is possible running cost is lower compared to aerobic treatment, CO 2 Since there is an advantage that the discharge amount is small, an anaerobic treatment is desired.

特許文献1には、嫌気性処理におけるテレフタル酸の分解効率を高めるために、テレフタル酸含有排水をオゾン処理した後嫌気性処理する方法が提案されている。しかし、この方法は、処理効率は高いものの、オゾン処理のための装置が複雑化し、また、処理コストも高くつくという不具合がある。   Patent Document 1 proposes a method for anaerobic treatment after ozone treatment of terephthalic acid-containing wastewater in order to increase the decomposition efficiency of terephthalic acid in anaerobic treatment. However, although this method has high processing efficiency, there are problems that the apparatus for ozone treatment becomes complicated and the processing cost is high.

なお、特許文献2には、嫌気性処理にあたって、グラニュール汚泥の浮上、流出を防止するために、排水に鉄塩と硫酸イオン源を添加して鉄塩と硫酸イオンの反応で硫化鉄(FeS)を生成させ、グラニュール汚泥の空洞を硫化鉄で充填する方法が提案されているが、この方法は、添加した硫酸イオン源をFeSとして析出させるものであり、嫌気性処理槽内の硫酸イオン濃度を高めるものではない。   In Patent Document 2, in anaerobic treatment, in order to prevent granulated sludge from floating and flowing out, an iron salt and a sulfate ion source are added to the waste water, and iron sulfide (FeS) is reacted by the reaction between the iron salt and the sulfate ion. ), And the granule sludge cavity is filled with iron sulfide. In this method, the added sulfate ion source is precipitated as FeS, and the sulfate ions in the anaerobic treatment tank are precipitated. It does not increase the concentration.

前述の如く、嫌気性処理において、系内の硫酸イオン濃度を高めると、硫化水素ガスが発生するため、従来においては、硫化水素ガスの発生を抑制するべく、菌体合成に必要な濃度以上に硫酸イオン濃度を高めることは行われていない。   As described above, in the anaerobic treatment, if the sulfate ion concentration in the system is increased, hydrogen sulfide gas is generated. Therefore, conventionally, in order to suppress the generation of hydrogen sulfide gas, the concentration is higher than that required for cell synthesis. The sulfate ion concentration is not increased.

特開平6−269797号公報Japanese Patent Laid-Open No. 6-269997 特許第3814851号公報Japanese Patent No. 3814851

本発明は、難分解性のテレフタル酸含有排水を、複雑な装置設備や煩雑な操作を必要とすることなく、低コストで効率的に嫌気性処理して、テレフタル酸を高度に分解除去することができる方法および装置を提供することを課題とする。   The present invention highly efficiently decomposes and removes terephthalic acid by subjecting hardly-decomposable terephthalic acid-containing wastewater to anaerobic treatment efficiently at low cost without requiring complicated equipment and complicated operations. It is an object of the present invention to provide a method and an apparatus capable of performing the above.

本発明者らは、上記課題を解決すべく鋭意検討した結果、テレフタル酸含有排水の嫌気性処理に際して、所定量の硫酸根(SO 2−)を添加すると、嫌気性処理におけるテレフタル酸の分解効率が飛躍的に向上することを見出した。 As a result of intensive studies to solve the above problems, the present inventors have added a predetermined amount of sulfate radical (SO 4 2− ) in the anaerobic treatment of terephthalic acid-containing wastewater, and decomposed terephthalic acid in the anaerobic treatment. It has been found that the efficiency is dramatically improved.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] テレフタル酸を含有する排水を嫌気性処理する方法において、該嫌気性処理が、酸生成工程とメタン発酵工程を有する生物学的嫌気性処理であり、嫌気性処理水中の硫酸イオン濃度が5〜200mg/Lとなるように、該排水に硫酸根を添加することを特徴とするテレフタル酸含有排水の嫌気性処理方法。 [1] In the method of anaerobically treating wastewater containing terephthalic acid, the anaerobic treatment is a biological anaerobic treatment having an acid generation step and a methane fermentation step, and the sulfate ion concentration in the anaerobic treatment water is An anaerobic treatment method for terephthalic acid-containing wastewater, wherein a sulfate radical is added to the wastewater so as to be 5 to 200 mg / L.

[2] 前記排水中の硫酸根の含有量が60〜400mg/Lとなるように、該排水に硫酸根を添加することを特徴とする[1]に記載のテレフタル酸含有排水の嫌気性処理方法。 [2] Anaerobic treatment of terephthalic acid-containing wastewater according to [1], wherein a sulfate radical is added to the wastewater so that the content of the sulfate radical in the wastewater is 60 to 400 mg / L. Method.

[3] 前記排水に、該排水中のテレフタル酸に対して硫酸根の含有量が10質量%以上となるように硫酸根を添加することを特徴とする[1]または[2]に記載のテレフタル酸含有排水の嫌気性処理方法。 [3] The sulfate according to [1] or [2], wherein a sulfate radical is added to the waste water so that a sulfate radical content is 10% by mass or more with respect to terephthalic acid in the waste water. Anaerobic treatment method for wastewater containing terephthalic acid.

[4] 前記排水は、テレフタル酸を50〜2000mg/L含有することを特徴とする[1]ないし[3]のいずれかに記載のテレフタル酸含有排水の嫌気性処理方法。 [4] The anaerobic treatment method for terephthalic acid-containing wastewater according to any one of [1] to [3], wherein the wastewater contains 50 to 2000 mg / L of terephthalic acid.

[5] 前記排水は、さらにパラトルイル酸を含有することを特徴とする[1]ないし[4]のいずれかに記載のテレフタル酸含有排水の嫌気性処理方法。 [5] The anaerobic treatment method for terephthalic acid-containing wastewater according to any one of [1] to [4], wherein the wastewater further contains p-toluic acid.

[6] テレフタル酸を含有する排水を嫌気性処理する装置において、該嫌気性処理が、酸生成工程とメタン発酵工程を有する生物学的嫌気性処理であり、嫌気性処理水中の硫酸イオン濃度が5〜200mg/Lとなるように、該排水に硫酸根を添加する手段を有することを特徴とするテレフタル酸含有排水の嫌気性処理装置。 [6] In the apparatus for anaerobic treatment of wastewater containing terephthalic acid, the anaerobic treatment is a biological anaerobic treatment having an acid generation step and a methane fermentation step, and the sulfate ion concentration in the anaerobic treatment water is An anaerobic treatment apparatus for terephthalic acid-containing wastewater, comprising means for adding a sulfate radical to the wastewater so as to be 5 to 200 mg / L.

[7] 前記排水中の硫酸根の含有量が60〜400mg/Lとなるように、該排水に硫酸根を添加する手段を有することを特徴とする[6]に記載のテレフタル酸含有排水の嫌気性処理装置。 [7] The terephthalic acid-containing wastewater according to [6], having means for adding a sulfate radical to the wastewater so that the content of the sulfate radical in the wastewater is 60 to 400 mg / L. Anaerobic treatment device.

[8] 前記排水に、該排水中のテレフタル酸に対して硫酸根の含有量が10質量%以上となるように硫酸根が添加されることを特徴とする[6]または[7]に記載のテレフタル酸含有排水の嫌気性処理装置。 [8] The sulfate according to [6] or [7], wherein a sulfate radical is added to the waste water so that a sulfate radical content is 10% by mass or more with respect to terephthalic acid in the waste water. Anaerobic treatment equipment for wastewater containing terephthalic acid.

[9] 前記排水は、テレフタル酸を50〜2000mg/L含有することを特徴とする[6]ないし[8]のいずれかに記載のテレフタル酸含有排水の嫌気性処理装置。 [9] The anaerobic treatment apparatus for terephthalic acid-containing wastewater according to any one of [6] to [8], wherein the wastewater contains 50 to 2000 mg / L of terephthalic acid.

[10] 前記排水は、さらにパラトルイル酸を含有することを特徴とする[6]ないし[9]のいずれかに記載のテレフタル酸含有排水の嫌気性処理装置。 [10] The anaerobic treatment apparatus for terephthalic acid-containing wastewater according to any one of [6] to [9], wherein the wastewater further contains p-toluic acid.

本発明によれば、嫌気性処理水中の硫酸イオン濃度が5〜200mg/Lとなるように、テレフタル酸含有排水に硫酸根(SO 2−)を添加することにより、難分解性のテレフタル酸を嫌気性処理により効率的に分解除去して、高水質の処理水を得ることができる(請求項1,6)。
本発明は、複雑な装置設備や煩雑な操作を必要とすることなく、排水に硫酸等の硫酸根を添加するのみで、簡易な装置で容易かつ低コストに実施することができ、その工業的有用性は極めて大である。
According to the present invention, by adding sulfate radical (SO 4 2− ) to the terephthalic acid-containing waste water so that the sulfate ion concentration in the anaerobic treated water is 5 to 200 mg / L, the hardly decomposable terephthalic acid is obtained. Can be efficiently decomposed and removed by anaerobic treatment to obtain high-quality treated water (claims 1 and 6).
The present invention can be carried out easily and at low cost with a simple device by simply adding a sulfate group such as sulfuric acid to waste water without requiring complicated equipment and complicated operations. The utility is extremely large.

本発明において、硫酸根は、排水中のテレフタル酸に対して10質量%以上で、排水中の含有量が60〜400mg/Lとなるように添加することが好ましい(請求項2,3,7,8)。   In the present invention, the sulfate radical is preferably added in an amount of 10% by mass or more with respect to terephthalic acid in the waste water, and the content in the waste water is 60 to 400 mg / L. , 8).

本発明は、テレフタル酸を50〜2000mg/L含有し、さらにパラトルイル酸を含有するテレフタル酸含有排水の処理に好適である(請求項4,5,9,10)。   The present invention is suitable for treating terephthalic acid-containing wastewater containing 50 to 2000 mg / L of terephthalic acid and further containing p-toluic acid (claims 4, 5, 9, and 10).

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明においては、テレフタル酸含有排水の嫌気性処理に当たり、排水に所定量の硫酸根を添加する。この所定量の硫酸根の添加でテレフタル酸含有排水の嫌気性処理効率の向上効果が得られる作用機構の詳細は明らかではないが、本発明では、排水に、菌体合成に必要な量よりも過剰量の硫酸根を添加することにより、硫酸還元反応を促進させることが可能となり、これにより、水素分圧が低下し、この結果、嫌気性処理系内が還元状態となってメタン生成反応が促進され、難分解性のテレフタル酸が分解除去されるものと考えられる。   In the present invention, in the anaerobic treatment of terephthalic acid-containing wastewater, a predetermined amount of sulfate radical is added to the wastewater. Although the details of the mechanism of action by which the effect of improving the anaerobic treatment efficiency of terephthalic acid-containing wastewater is obtained by the addition of this predetermined amount of sulfate radicals are not clear in the present invention, the amount of wastewater is more than the amount necessary for cell synthesis. By adding an excessive amount of sulfate radicals, it is possible to promote the sulfate reduction reaction, thereby lowering the hydrogen partial pressure, resulting in the reduction of the anaerobic treatment system and the methane production reaction. It is believed that accelerated and persistent terephthalic acid is decomposed and removed.

[テレフタル酸含有排水]
本発明で処理する原水は、テレフタル酸を含有する排水であり、化学産業分野や電子産業分野等の各種の産業分野から排出されるテレフタル酸含有排水、例えば、ポリエチレンテレフタレートの製造工程排水などが挙げられる。
[Terephthalic acid-containing wastewater]
The raw water to be treated in the present invention is effluent containing terephthalic acid, and includes terephthalic acid-containing effluent discharged from various industrial fields such as the chemical industry and the electronics industry, such as polyethylene terephthalate manufacturing process effluent. It is done.

テレフタル酸含有排水中のテレフタル酸濃度については特に制限はないが、通常50〜2000mg/L、好ましくは100〜1000mg/L程度である。排水中のテレフタル酸濃度がこの下限値より少ない場合は通常処理との有意差が小さくなり、この上限値より多いとテレフタル酸が結晶化しやすく処理効率が低下するおそれがある。   Although there is no restriction | limiting in particular about the terephthalic acid density | concentration in a terephthalic-acid containing waste water, Usually, 50-2000 mg / L, Preferably it is about 100-1000 mg / L. When the concentration of terephthalic acid in the waste water is less than this lower limit, the significant difference from the normal treatment becomes small, and when it exceeds this upper limit, terephthalic acid tends to crystallize and the processing efficiency may be reduced.

また、このテレフタル酸含有排水は、更にパラトルイル酸や、安息香酸、糖、有機酸を始めとする易分解性の有機物等を含んでいてもよい。   The terephthalic acid-containing wastewater may further contain easily degradable organic substances such as p-toluic acid, benzoic acid, sugar, and organic acids.

特に、本発明における嫌気性処理での硫酸根添加は、パラトルイル酸の嫌気性処理効率の向上にも有効であり、テレフタル酸と共にパラトルイル酸を含む排水に対しても良好な処理効果を示す。
この場合、排水中のパラトルイル酸の含有量については特に制限はないが、通常50〜5000mg/L、好ましくは100〜2000mg/Lである。
本発明は、パラトルイル酸濃度が上記範囲にある排水の処理において、処理効果の点で優位性が特に高くなる。
In particular, the addition of sulfate radicals in the anaerobic treatment in the present invention is also effective in improving the anaerobic treatment efficiency of p-toluic acid, and shows a good treatment effect even for wastewater containing p-toluic acid together with terephthalic acid.
In this case, although there is no restriction | limiting in particular about content of the paratoluic acid in waste_water | drain, Usually, 50-5000 mg / L, Preferably it is 100-2000 mg / L.
The present invention is particularly advantageous in terms of treatment effect in the treatment of wastewater having a paratoluic acid concentration in the above range.

[硫酸根]
本発明において、排水に硫酸根(SO 2−)を添加するための薬剤としては、排水中のSO 2−濃度を高めることができるものであればよく、特に制限はないが、例えば、硫酸、硫酸鉄(I)、硫酸鉄(II)、ポリ硫酸鉄等のSO 2−含有酸性溶液、硫酸アンモニウム、硫酸アルミニウム、硫酸ナトリウム、硫酸カリウム等の可溶性の硫酸塩などが挙げられる。
なお、硫酸カルシウム、硫酸マグネシウムなどは、水に難溶性であるが、希薄溶液として添加することにより、排水中の硫酸イオン濃度を高めることができる。これらの硫酸根源となる薬剤は1種を単独で用いてもよく、2種以上を併用してもよい。
[Sulfate]
In the present invention, the agent for adding sulfate radical (SO 4 2− ) to the waste water is not particularly limited as long as it can increase the concentration of SO 4 2− in the waste water. Examples thereof include SO 4 2- containing acidic solutions such as sulfuric acid, iron (I) sulfate, iron (II) sulfate, and polysulfate, and soluble sulfates such as ammonium sulfate, aluminum sulfate, sodium sulfate, and potassium sulfate.
In addition, although calcium sulfate, magnesium sulfate, etc. are hardly soluble in water, the sulfate ion concentration in the waste water can be increased by adding as a dilute solution. One kind of these sulfate radical agents may be used alone, or two or more kinds may be used in combination.

硫酸等の硫酸根源薬剤は、SO 2−濃度として5〜30質量%の水溶液として添加することが、取り扱い性、排水への添加操作性等の面で好ましい。 It is preferable to add a sulfate source drug such as sulfuric acid as an aqueous solution having a SO 4 2− concentration of 5 to 30% by mass in terms of handleability, operability of adding to drainage, and the like.

排水への硫酸根の添加量は少な過ぎると硫酸根を添加することによる本発明の効果を十分に得ることができず、多過ぎると硫化水素ガスを多量に発生するようになり、好ましくない。
従って、排水への硫酸根添加量、即ちSO 2−添加量は、好ましくは30〜400mg/L、より好ましくは50〜200mg/Lとし、この添加量の範囲内において、排水中のSO 2−濃度が60〜400mg/L、特に70〜200mg/Lとなるように添加することが好ましい。
If the amount of sulfate radical added to the wastewater is too small, the effect of the present invention by adding the sulfate radical cannot be sufficiently obtained, and if too large, hydrogen sulfide gas is generated in a large amount, which is not preferable.
Therefore, the sulfate radical addition amount to the wastewater, that is, SO 4 2− addition amount is preferably 30 to 400 mg / L, more preferably 50 to 200 mg / L, and within the range of this addition amount, SO 4 in the wastewater. 2- It is preferable to add so that a density | concentration may be 60-400 mg / L, especially 70-200 mg / L.

また、硫酸根は、特に排水中のテレフタル酸に対して10質量%以上、とりわけ15〜30質量%の含有量となるように添加することが好ましい。排水中のテレフタル酸に対する硫酸根含有量が少な過ぎると、テレフタル酸の分解効率を十分に高めることができない場合がある。   Moreover, it is preferable to add a sulfate radical so that it may become content of 10 mass% or more especially 15-30 mass% especially with respect to the terephthalic acid in waste_water | drain. If the content of sulfate radicals relative to terephthalic acid in the wastewater is too small, the decomposition efficiency of terephthalic acid may not be sufficiently increased.

また、処理対象排水がテレフタル酸とパラトルイル酸を含む場合、硫酸根は、排水中のテレフタル酸とパラトルイル酸との合計量に対して10質量%以上、特に15〜30質量%の含有量となるように添加することが好ましい。   Moreover, when the wastewater to be treated contains terephthalic acid and p-toluic acid, the sulfate radical has a content of 10% by mass or more, particularly 15 to 30% by mass with respect to the total amount of terephthalic acid and p-toluic acid in the waste water. It is preferable to add such that.

また、硫酸根は、嫌気性処理で得られる処理水中の硫酸イオン濃度が5〜200mg/L、好ましくは10〜20mg/Lとなるように添加する。嫌気性処理水の硫酸イオン濃度が上記下限より少ない程度の硫酸根添加量では、本発明による硫酸根の添加効果を十分に得ることができない。ただし、嫌気性処理水の硫酸イオン濃度が過度に高いと、硫化水素ガス発生量が多くなると共に、嫌気性処理水自体の水質が悪くなり、後段の処理工程の負荷が増大し、好ましくない。   The sulfate radical is added so that the sulfate ion concentration in the treated water obtained by anaerobic treatment is 5 to 200 mg / L, preferably 10 to 20 mg / L. When the sulfate ion concentration is such that the sulfate ion concentration of the anaerobic treated water is less than the above lower limit, the effect of adding the sulfate radical according to the present invention cannot be sufficiently obtained. However, if the sulfate ion concentration of the anaerobic treated water is excessively high, the amount of hydrogen sulfide gas generated is increased, the water quality of the anaerobic treated water itself is deteriorated, and the load of the subsequent treatment process is increased.

排水への硫酸根の添加箇所については後述する。   The location of the sulfate radical added to the wastewater will be described later.

[嫌気性処理]
本発明における嫌気性処理方式については特に制限はなく、酸生成菌による酸生成工程とメタン生成菌によるメタン発酵工程とを同一槽内で行う一相式であっても、これらを別の槽で行う二相式であってもよい。
[Anaerobic treatment]
There is no particular limitation on the anaerobic treatment method in the present invention, even if it is a single-phase system in which the acid production process by acid-producing bacteria and the methane fermentation process by methanogenic bacteria are performed in the same tank, these are performed in separate tanks. A two-phase system may be used.

また、嫌気性処理の反応槽の型式にも特に制限はなく、固定床式、流動床式、メタン生成細菌のグラニュールによる高負荷処理が可能なUASB(Upflow Anaerobic Sludge Blanket;上向流嫌気性汚泥床)方式、EGSB(Expanded Granule Sludge Bed;展開粒状汚泥床)方式等が挙げられるが、好ましくは高負荷処理が可能なUASB方式、EGSB方式である。   There is also no particular limitation on the type of reaction tank for anaerobic treatment, and fixed bed type, fluidized bed type, UASB (Upflow Anaerobic Sludge Blanket; upflow anaerobic) capable of high load treatment with granule of methanogenic bacteria. (Sludge bed) method, EGSB (Expanded Granule Sludge Bed) method, and the like, and the UASB method and EGSB method capable of high load treatment are preferable.

一相式の嫌気性処理の場合、硫酸根は、嫌気性処理槽、嫌気性処理槽に流入する原水、のいずれに添加してもよいが、硫酸根として硫酸を添加する場合、硫酸の添加でpHが低下するため、pH調整槽が設けられている場合は、その前段で添加することが好ましい。
また、二相式の場合、硫酸根の添加箇所は、排水中の被処理物質の量に応じて異なり、排水中の易分解性物質が多い場合には、メタン発酵槽に近い位置で添加し、排水中の易分解性物質が少ない場合には、前段側、例えば酸生成槽で添加することが好ましい。これは易分解性物質の分解時に消費されてしまうと、テレフタル酸やパラトルイル酸の分解促進効果が減じられてしまうという理由による。
なお、いずれの場合も、硫酸根として硫酸を添加する場合、硫酸の添加でpHが低下するため、pH調整槽が設けられている場合は、その前段で添加することが好ましい。
In the case of single-phase anaerobic treatment, the sulfate radical may be added to either the anaerobic treatment tank or the raw water flowing into the anaerobic treatment tank, but when adding sulfuric acid as the sulfate radical, addition of sulfuric acid When the pH adjustment tank is provided, it is preferable to add it at the preceding stage.
In addition, in the case of the two-phase system, the location of sulfate radical addition differs depending on the amount of the material to be treated in the wastewater. If there are many easily decomposable substances in the wastewater, add them at a position close to the methane fermentation tank. When there is little easily decomposable substance in the waste water, it is preferable to add in the former stage, for example, an acid generation tank. This is because if the easily decomposable substance is consumed, the effect of promoting the decomposition of terephthalic acid or p-toluic acid is reduced.
In any case, when sulfuric acid is added as a sulfate radical, the pH is lowered by the addition of sulfuric acid. Therefore, when a pH adjusting tank is provided, it is preferably added at the preceding stage.

嫌気性処理の条件は採用する方式により異なるが、通常pH6〜8、温度25〜39℃、滞留時間4時間〜3日間、嫌気性汚泥濃度10,000〜40,000mg−VSS/L、負荷量1〜15kg−BOD/m3・day、CODcr負荷2〜30kg−CODcr/m3・dayとするのが好ましい。 The conditions of anaerobic treatment vary depending on the method employed, but usually pH 6-8, temperature 25-39 ° C., residence time 4 hours-3 days, anaerobic sludge concentration 10,000-40,000 mg-VSS / L, load amount It is preferable to set it as 1-15 kg-BOD / m < 3 > * day, CODcr load 2-30 kg-CODcr / m < 3 > * day.

嫌気性処理水は、残留した有機物を分解するために、さらに活性汚泥処理などの好気性処理、その他の後処理に供することができる。本発明によれば、嫌気性処理では難分解性のテレフタル酸を嫌気性処理により効率的に分解除去することができるため、その後段に好気性処理を行う場合であっても、負荷を軽減することができ、処理コストを低減することができる。   Anaerobic treated water can be further subjected to aerobic treatment such as activated sludge treatment and other post-treatments in order to decompose the remaining organic matter. According to the present invention, since terephthalic acid that is hardly decomposable can be efficiently decomposed and removed by anaerobic treatment in anaerobic treatment, the load is reduced even when aerobic treatment is performed in the subsequent stage. And the processing cost can be reduced.

[硫化水素ガスの処理]
本発明においては、テレフタル酸含有排水に対して硫酸根を前述の制限された添加量で添加するため、メタン発酵を阻害することがない程度に硫化水素ガスの発生を抑えた上で、テレフタル酸の分解効率を高めることができるが、少量の硫化水素ガスが発生する場合がある。この場合には、生物脱硫処理などにより、排ガス中の硫化水素を処理するようにしてもよい。生物脱硫を行う場合、被処理ガス中の硫化水素濃度が変動すると硫黄酸化細菌が安定に生育せず、処理が不安定となるが、本発明では、硫化水素ガスが発生する場合であっても、排水に所定量の硫酸根を添加することにより、硫化水素濃度が安定した排ガスが排出されるため、このような問題はなく、安定した生物脱硫処理を行うことができる。
[Treatment of hydrogen sulfide gas]
In the present invention, since the sulfate radical is added to the terephthalic acid-containing wastewater in the above-described limited amount, the generation of hydrogen sulfide gas is suppressed to the extent that methane fermentation is not inhibited, and terephthalic acid is then added. Although the decomposition efficiency of can be increased, a small amount of hydrogen sulfide gas may be generated. In this case, hydrogen sulfide in exhaust gas may be treated by biological desulfurization treatment or the like. When biodesulfurization is performed, if the concentration of hydrogen sulfide in the gas to be treated fluctuates, the sulfur-oxidizing bacteria do not grow stably and the treatment becomes unstable, but in the present invention, even when hydrogen sulfide gas is generated, By adding a predetermined amount of sulfate radicals to the waste water, exhaust gas with a stable hydrogen sulfide concentration is discharged, so there is no such problem, and a stable biological desulfurization treatment can be performed.

硫化水素含有排ガスの生物脱硫処理としては、特許第3235131号公報に記載されるように、硫化水素含有排ガスを洗浄液、例えば、有機性物質の好気性微生物酸化における処理液と接触させて、ガス中の硫化水素を吸収させ、得られた吸収液を好気性微生物酸化して、イオウ酸化細菌の酸化作用により硫化水素を硫酸イオン又は単体イオウに酸化して無害化する方法が挙げられる。
この方法によれば、メタンガスの含有率を低下させることなく、低コストで効率よく、また脱硫に伴って新たな廃液を生じることなく、高い脱硫率で脱硫処理することができる。
ただし、硫化水素ガスの処理方法は、何らこの方法に限定されるものではない。
As the biological desulfurization treatment of hydrogen sulfide-containing exhaust gas, as described in Japanese Patent No. 3235131, the hydrogen sulfide-containing exhaust gas is brought into contact with a cleaning liquid, for example, a treatment liquid in aerobic microbial oxidation of an organic substance. And a method in which the obtained absorption liquid is oxidized aerobically by microorganisms, and the hydrogen sulfide is oxidized to sulfate ions or elemental sulfur by the oxidizing action of sulfur-oxidizing bacteria to render them harmless.
According to this method, desulfurization can be performed at a high desulfurization rate without reducing the content of methane gas, efficiently at low cost, and without generating a new waste liquid accompanying desulfurization.
However, the method for treating hydrogen sulfide gas is not limited to this method.

以下に実施例および比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

なお、以下の実施例および比較例において、嫌気性処理した原水の水質は、以下の通りである。   In the following examples and comparative examples, the quality of raw water subjected to anaerobic treatment is as follows.

<原水水質>
CODCr :4050mg/L
テレフタル酸濃度 :400mg/L
パラトルイル酸濃度:620mg/L
SO 2-濃度 :30〜40mg/L
pH :10
<Raw water quality>
COD Cr : 4050 mg / L
Terephthalic acid concentration: 400 mg / L
Palatoluic acid concentration: 620 mg / L
SO 4 2− concentration: 30 to 40 mg / L
pH: 10

[実施例1〜3、比較例1,2]
酸生成槽とEGSBメタン発酵槽とを備える2相式の嫌気性処理装置により、原水を酸生成槽に導入して処理した後、メタン発酵槽で処理し、メタン発酵槽の処理水の一部を酸生成槽に循環すると共に残部を処理水として取り出すことにより、原水の嫌気性処理を行った。
[Examples 1 to 3, Comparative Examples 1 and 2]
A two-phase anaerobic treatment device equipped with an acid production tank and an EGSB methane fermentation tank, after introducing and treating raw water into the acid production tank, treating it in the methane fermentation tank, and a part of the treated water in the methane fermentation tank Was circulated to the acid generation tank and the remainder was taken out as treated water to perform anaerobic treatment of the raw water.

各槽の仕様および処理条件は次の通りであり、原水流量は5L/dayである。   The specifications and processing conditions of each tank are as follows, and the raw water flow rate is 5 L / day.

酸生成槽 槽容量:0.5L
酸生成槽 pH :6.5〜7.5
メタン発酵槽 槽容量:2L
メタン発酵槽 pH :7〜8
メタン発酵槽 汚泥濃度:67g/L as VSS
メタン発酵槽 温度 :35℃
メタン発酵槽から酸生成槽への循環水量:原水流量Q(=5L/day)に対して1Q(=5L/day)を循環した。
Acid production tank Capacity: 0.5L
Acid generation tank pH: 6.5 to 7.5
Methane fermentation tank Capacity: 2L
Methane fermenter pH: 7-8
Methane fermentation tank Sludge concentration: 67g / L as VSS
Methane fermenter temperature: 35 ℃
Circulating water amount from the methane fermentation tank to the acid generation tank: 1Q (= 5 L / day) was circulated with respect to the raw water flow rate Q (= 5 L / day).

このような嫌気性処理において、酸生成槽の前段で表1に示すSO 2−添加量となるように硫酸を添加した(ただし、比較例1では硫酸を添加せず)。なお、硫酸は、20質量%の水溶液として添加した。また、硫酸の添加によりpHが低下するため、硫酸添加後、適宜アルカリ(水酸化ナトリウム)を添加してpH調整した。この硫酸の添加により、原水中に含まれるSO 2−も含めて、嫌気性処理に供される排水中のSO 2−含有量は表1に示す通りとなった。 In such anaerobic treatment, sulfuric acid was added to the SO 4 2− addition amount shown in Table 1 in the previous stage of the acid generation tank (however, in Comparative Example 1, sulfuric acid was not added). Sulfuric acid was added as a 20% by mass aqueous solution. Moreover, since pH falls by addition of a sulfuric acid, after adding a sulfuric acid, alkali (sodium hydroxide) was added suitably and pH adjustment was carried out. By the addition of this sulfuric acid, the SO 4 2− content in the wastewater subjected to anaerobic treatment including SO 4 2− contained in the raw water was as shown in Table 1.

このような嫌気性処理で得られた処理水の水質と、この処理結果から求めた汚泥の活性、硫化水素ガスの発生の有無を表1に示す。   Table 1 shows the quality of treated water obtained by such anaerobic treatment, the activity of sludge determined from the result of the treatment, and the presence or absence of hydrogen sulfide gas.

Figure 0005625705
Figure 0005625705

表1より、本発明によれば、難分解性のテレフタル酸含有排水を効率的に嫌気性処理して高水質の処理水を得ることができることが分かる。   From Table 1, it can be seen that according to the present invention, it is possible to efficiently anaerobically treat hardly-decomposable terephthalic acid-containing wastewater to obtain high-quality treated water.

Claims (10)

テレフタル酸を含有する排水を嫌気性処理する方法において、該嫌気性処理が、酸生成工程とメタン発酵工程を有する生物学的嫌気性処理であり、嫌気性処理水中の硫酸イオン濃度が5〜200mg/Lとなるように、該排水に硫酸根を添加することを特徴とするテレフタル酸含有排水の嫌気性処理方法。 In the method of anaerobically treating wastewater containing terephthalic acid, the anaerobic treatment is a biological anaerobic treatment having an acid generation step and a methane fermentation step, and the sulfate ion concentration in the anaerobic treatment water is 5 to 200 mg. An anaerobic treatment method for terephthalic acid-containing wastewater, wherein a sulfate radical is added to the wastewater so as to be / L. 前記排水中の硫酸根の含有量が60〜400mg/Lとなるように、該排水に硫酸根を添加することを特徴とする請求項1に記載のテレフタル酸含有排水の嫌気性処理方法。   The method for anaerobic treatment of terephthalic acid-containing wastewater according to claim 1, wherein a sulfate radical is added to the wastewater so that the content of the sulfate radical in the wastewater is 60 to 400 mg / L. 前記排水に、該排水中のテレフタル酸に対して硫酸根の含有量が10質量%以上となるように硫酸根を添加することを特徴とする請求項1または2に記載のテレフタル酸含有排水の嫌気性処理方法。   The terephthalic acid-containing wastewater according to claim 1 or 2, wherein a sulfate radical is added to the wastewater such that the sulfate radical content is 10 mass% or more with respect to the terephthalic acid in the wastewater. Anaerobic treatment method. 前記排水は、テレフタル酸を50〜2000mg/L含有することを特徴とする請求項1ないし3のいずれかに記載のテレフタル酸含有排水の嫌気性処理方法。   The method for anaerobic treatment of terephthalic acid-containing wastewater according to any one of claims 1 to 3, wherein the wastewater contains 50 to 2000 mg / L of terephthalic acid. 前記排水は、さらにパラトルイル酸を含有することを特徴とする請求項1ないし4のいずれかに記載のテレフタル酸含有排水の嫌気性処理方法。   The method for anaerobic treatment of wastewater containing terephthalic acid according to any one of claims 1 to 4, wherein the wastewater further contains p-toluic acid. テレフタル酸を含有する排水を嫌気性処理する装置において、該嫌気性処理が、酸生成工程とメタン発酵工程を有する生物学的嫌気性処理であり、嫌気性処理水中の硫酸イオン濃度が5〜200mg/Lとなるように、該排水に硫酸根を添加する手段を有することを特徴とするテレフタル酸含有排水の嫌気性処理装置。 In the apparatus for anaerobically treating wastewater containing terephthalic acid, the anaerobic treatment is a biological anaerobic treatment having an acid generation step and a methane fermentation step, and the sulfate ion concentration in the anaerobic treatment water is 5 to 200 mg. An anaerobic treatment apparatus for terephthalic acid-containing wastewater, comprising means for adding a sulfate radical to the wastewater so as to be / L. 前記排水中の硫酸根の含有量が60〜400mg/Lとなるように、該排水に硫酸根を添加する手段を有することを特徴とする請求項6に記載のテレフタル酸含有排水の嫌気性処理装置。   The anaerobic treatment of terephthalic acid-containing wastewater according to claim 6, further comprising means for adding a sulfate radical to the wastewater so that the content of the sulfate radical in the wastewater is 60 to 400 mg / L. apparatus. 前記排水に、該排水中のテレフタル酸に対して硫酸根の含有量が10質量%以上となるように硫酸根が添加されることを特徴とする請求項6または7に記載のテレフタル酸含有排水の嫌気性処理装置。   The terephthalic acid-containing wastewater according to claim 6 or 7, wherein a sulfate radical is added to the wastewater so that the content of the sulfate radical is 10% by mass or more with respect to the terephthalic acid in the wastewater. Anaerobic treatment equipment. 前記排水は、テレフタル酸を50〜2000mg/L含有することを特徴とする請求項6ないし8のいずれかに記載のテレフタル酸含有排水の嫌気性処理装置。   The anaerobic treatment apparatus for terephthalic acid-containing wastewater according to any one of claims 6 to 8, wherein the wastewater contains 50 to 2000 mg / L of terephthalic acid. 前記排水は、さらにパラトルイル酸を含有することを特徴とする請求項6ないし9のいずれかに記載のテレフタル酸含有排水の嫌気性処理装置。   The anaerobic treatment apparatus for terephthalic acid-containing wastewater according to any one of claims 6 to 9, wherein the wastewater further contains p-toluic acid.
JP2010224001A 2010-10-01 2010-10-01 Method and apparatus for anaerobic treatment of wastewater containing terephthalic acid Active JP5625705B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010224001A JP5625705B2 (en) 2010-10-01 2010-10-01 Method and apparatus for anaerobic treatment of wastewater containing terephthalic acid
CN201180043948.XA CN103124698B (en) 2010-10-01 2011-09-26 Method and device for anaerobically treating wastewater containing terephthalic acid
KR1020137007169A KR101849803B1 (en) 2010-10-01 2011-09-26 Method and device for anaerobically treating wastewater containing terephthalic acid
PCT/JP2011/071806 WO2012043436A1 (en) 2010-10-01 2011-09-26 Method and device for anaerobically treating wastewater containing terephthalic acid
TW100135605A TWI511937B (en) 2010-10-01 2011-09-30 An anaerobic treatment method and treatment device for the drainage of terephthalic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010224001A JP5625705B2 (en) 2010-10-01 2010-10-01 Method and apparatus for anaerobic treatment of wastewater containing terephthalic acid

Publications (2)

Publication Number Publication Date
JP2012076023A JP2012076023A (en) 2012-04-19
JP5625705B2 true JP5625705B2 (en) 2014-11-19

Family

ID=45892882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010224001A Active JP5625705B2 (en) 2010-10-01 2010-10-01 Method and apparatus for anaerobic treatment of wastewater containing terephthalic acid

Country Status (5)

Country Link
JP (1) JP5625705B2 (en)
KR (1) KR101849803B1 (en)
CN (1) CN103124698B (en)
TW (1) TWI511937B (en)
WO (1) WO2012043436A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239929A (en) * 2011-05-16 2012-12-10 Swing Corp Method and apparatus for anaerobic treatment of organic wastewater
JP6593975B2 (en) * 2014-03-11 2019-10-23 住友重機械エンバイロメント株式会社 Water treatment method and water treatment apparatus
WO2024128322A1 (en) * 2022-12-16 2024-06-20 国立研究開発法人産業技術総合研究所 Method for treating refractory wastewater produced in steps for manufacturing pet raw material

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249197A (en) * 1988-03-30 1989-10-04 Akua Runesansu Gijutsu Kenkyu Kumiai Method for inhibiting reduction of sulfate in anaerobic treatment and surfactant hindering growth of sulfate reducing bacteria
CN1011405B (en) * 1988-12-06 1991-01-30 地质矿产部水文地质工程地质研究所 Process of treatment of para-benzene dicarbonic acid in waste water
CN1039784A (en) * 1989-06-20 1990-02-21 北京市环境保护科学研究所 Pure terephthalic acid (PTA) Wastewater Treatment
CA2139863C (en) * 1992-07-16 2000-05-09 Delman R. Hogen Microbial mediated method for soil and water treatment
JP3389628B2 (en) * 1993-03-23 2003-03-24 栗田工業株式会社 Treatment method for wastewater containing terephthalic acid
JPH11138188A (en) * 1997-11-13 1999-05-25 Toray Ind Inc Method for aerobically decomposing organic acid salt-containing waste liquid
JP2000037699A (en) * 1998-07-23 2000-02-08 Toray Ind Inc Wastewater treatment method
CN1331052A (en) * 2000-07-03 2002-01-16 中国科学院生态环境研究中心 Process and equipment for denitrifying N-contained industrial sewage
JP2006026461A (en) * 2004-07-12 2006-02-02 Toray Ind Inc Method and apparatus for controlling anaerobic water treatment plant generating methane gas
JP4428188B2 (en) * 2004-10-13 2010-03-10 荏原エンジニアリングサービス株式会社 Organic wastewater treatment method and treatment apparatus
JP2007007494A (en) * 2005-06-28 2007-01-18 Ishikawajima Harima Heavy Ind Co Ltd Method of operating methane fermentation tank
CN101016532A (en) * 2007-01-26 2007-08-15 清华大学 Method of domesticating and screening benzene series anaerobic degradation flora
JP2008212083A (en) * 2007-03-06 2008-09-18 Kyoto Univ Primer set for detecting or quantifying microorganism in treating terephthalic acid-containing wastewater, and method for monitoring microorganisms quantity and method for rating methane fermentation efficiency each using the primer set
JP2008278823A (en) * 2007-05-11 2008-11-20 Toyota Industries Corp Gene-destructing strain, recombinant plasmid, transformant, and method for producing 3-carboxymuconolactone
CN102358641B (en) * 2007-05-11 2013-07-10 栗田工业株式会社 Anaerobic treatment method

Also Published As

Publication number Publication date
WO2012043436A1 (en) 2012-04-05
CN103124698A (en) 2013-05-29
TWI511937B (en) 2015-12-11
KR101849803B1 (en) 2018-04-17
JP2012076023A (en) 2012-04-19
CN103124698B (en) 2014-06-18
TW201231410A (en) 2012-08-01
KR20130116244A (en) 2013-10-23

Similar Documents

Publication Publication Date Title
EP3369713B1 (en) Nitrogen removal method
JP4892917B2 (en) Biological treatment method and apparatus for organic wastewater
KR20090051450A (en) The treatment method of high concentrated organic waste water,like with leachate of food waste water and animal waste water
JP5914964B2 (en) Ultrapure water production method
JP5625705B2 (en) Method and apparatus for anaerobic treatment of wastewater containing terephthalic acid
JP2008284428A (en) Method for treating organic matter-containing waste water
JP2006305488A (en) Method of treating organic sludge
JP2006272252A (en) Method for treating nitrogen-containing organic drainage
JP3389628B2 (en) Treatment method for wastewater containing terephthalic acid
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP2006218422A (en) Process for treating organic waste and apparatus for the same
JP4838649B2 (en) Anaerobic fermentation method and biodesulfurization method
JP2009039620A (en) Method and system for reducing amount of excess sludge
KR20060056447A (en) Modified starch wastewater treatment system
JP2005185967A (en) Treatment method and treatment apparatus for organic waste water
JP2007007620A (en) Method for treating nitrogen-containing liquid waste
JP4112549B2 (en) Organic waste treatment methods
JP2002210489A (en) Treating method of waste water containing polyethylene glycol and apparatus therefor
JPH11333492A (en) Apparatus and method for methane fermentation
JP5930798B2 (en) Organic wastewater treatment method and apparatus
JP5731209B2 (en) Method and apparatus for treating soap production waste liquid
JPH11347588A (en) Methane fermentation treatment apparatus and method
JP2007209889A (en) Surplus sludge treatment method
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water
JP2006035094A (en) Method and apparatus for treating high concentration waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250