JP2006026461A - Method and apparatus for controlling anaerobic water treatment plant generating methane gas - Google Patents
Method and apparatus for controlling anaerobic water treatment plant generating methane gas Download PDFInfo
- Publication number
- JP2006026461A JP2006026461A JP2004204667A JP2004204667A JP2006026461A JP 2006026461 A JP2006026461 A JP 2006026461A JP 2004204667 A JP2004204667 A JP 2004204667A JP 2004204667 A JP2004204667 A JP 2004204667A JP 2006026461 A JP2006026461 A JP 2006026461A
- Authority
- JP
- Japan
- Prior art keywords
- cod
- equipment
- volumetric load
- load
- methane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
本発明は、生分解性有機物を含む水からメタンガスを発生させて水処理およびメタンを主成分とする有価ガスの回収を行う操作を行う際、ガス発生量と処理水中の生分解性物質負荷を測定し、これらの値と供給流量とから容積負荷を指標としてあるべき姿との乖離を判定し、性能悪化に対して敏感に負荷制御を行うメタンガスを生成する嫌気性水処理設備の制御方法および制御装置に関するものである。 In the present invention, when performing an operation of generating methane gas from water containing biodegradable organic matter to perform water treatment and recovery of valuable gas mainly composed of methane, the amount of gas generated and the load of biodegradable substances in the treated water are reduced. A method for controlling anaerobic water treatment equipment that generates methane gas that performs load control sensitively to performance deterioration; The present invention relates to a control device.
従来より、メタン発酵における性能判定には比メタン生成活性が用いられてきた。これは単位汚泥当たりのメタン生成量として算出される。工業的には装置から発生する装置容積当たりのメタン生成速度を汚泥濃度で除することで算出される。 Conventionally, specific methane production activity has been used for performance determination in methane fermentation. This is calculated as the amount of methane produced per unit sludge. Industrially, it is calculated by dividing the methane production rate per unit volume generated from the unit by the sludge concentration.
メタン発酵では、基質の加水分解、分解物の酢酸化、酢酸のメタンガス化の3ステップにより反応が進行し、それぞれ別々の菌体がその反応を請け負っており、それぞれがバランス良く反応することで良好な処理が進む。しかしながら、特に酢酸のメタンガス化は菌の増殖が遅いため律速になりやすく、過剰に負荷を掛けると系内に基質から変化した酢酸が蓄積してこの菌がダメージを受けることが知られている。ダメージを受けた菌はメタンガスの発生の低下だけでなく、復帰に多大な時間を要するため避けるべきである。すなわち、現在のリアクターの能力を見極め、許容以上の負荷が掛かっている場合は速やかに負荷を落として過負荷をできるだけ回避することが望まれる。 In methane fermentation, the reaction proceeds in three steps: hydrolysis of the substrate, acetylation of the degradation product, and methane gasification of acetic acid, and each cell is undertaken by the reaction. Progresses. However, especially methane gasification of acetic acid tends to be rate-determining because the growth of bacteria is slow, and it is known that acetic acid changed from the substrate accumulates in the system and damages the bacteria when excessively loaded. Damaged bacteria should be avoided not only because of the reduced generation of methane gas, but also because it takes a long time to recover. In other words, it is desirable to determine the current reactor capacity and to quickly reduce the load and avoid overload as much as possible when an excessive load is applied.
しかし、許容される負荷はリアクターに内在する汚泥の活性により刻々と変化するため、性能を判定するのに単位汚泥当たりのメタンガス発生量も変化する。 However, since the allowable load changes every moment due to the activity of the sludge inherent in the reactor, the amount of methane gas generated per unit sludge also changes to determine the performance.
これに対し、特許文献1で示されるように、自動的な制御指標として、比メタン転化活性という指標を用いて制御を行う制御装置が提唱されている。
On the other hand, as shown in
これは比メタン生成活性をCOD容積負荷で除したものであり、容積負荷により汚泥のあるべき活性を想定してそれを基準値とし、比較して活性の良否を判定するものである。 This is obtained by dividing the specific methane production activity by the COD volumetric load, and assuming the activity that should be sludge by the volumetric load, using it as a reference value, and comparing it to determine the quality of the activity.
これによれば、メタン発酵設備の現にあるべき状態からの逸脱を速やかに察知し、迅速に負荷低減に結びつけることができる。 According to this, it is possible to quickly detect a deviation from the actual state of the methane fermentation facility and to promptly reduce the load.
しかし、本法による制御方法は揮発性浮遊物質(VSS)やメタンガス濃度の測定装置が必要であるため煩雑かつ高コストであり、また実際に制御を行う場合にこの指標が難解で、管理が困難であるという問題があった。 However, the control method according to this method requires a measuring device for volatile suspended solids (VSS) and methane gas concentration, which is cumbersome and expensive, and this index is difficult and difficult to manage in actual control. There was a problem of being.
一方、簡単な性能管理指標としてリアクター入出のCOD(化学的酸素要求量)やTOC(総有機炭素量(Total organic Carbon ))の除去率が挙げられるが、そのリアクターの大きさゆえにレスポンスが悪く、速やかな性能悪化を検出するのが困難であるという問題があった。 On the other hand, removal performance of COD (chemical oxygen demand) and TOC (Total organic carbon) in and out of the reactor is a simple performance management index, but the response is poor due to the size of the reactor, There was a problem that it was difficult to detect a rapid deterioration in performance.
そこで、鋭意検討を重ねた結果、プロセスから連続的に排出される生分解性有機物を含む水を供給して運転中に新たに設備へのメタンガス発生に必要な微生物の出入りをすること無しにメタンを主成分とするガスを生成する設備(リアクター)に汚泥の供給も抜き出しも無いリアクターを用いれば、充填されている汚泥量増加が極めて小さいため汚泥量算出の必要性が小さいこと、メタンガス中のメタンガス濃度は例えば連続的に運転されるプロセスからの連続排水を処理する場合はほぼ一定であることから、特許文献1に記載のような測定装置は不要となることを見いだした。
Therefore, as a result of repeated studies, it was possible to supply water containing biodegradable organic matter continuously discharged from the process, and to make methane without having to enter and exit the facilities necessary for the generation of methane gas during operation. If a reactor that does not supply or withdraw sludge is used for the equipment (reactor) that generates gas containing as the main component, the increase in the amount of sludge that is filled is extremely small, so there is little need to calculate the amount of sludge. The methane gas concentration was found to be unnecessary when a continuous wastewater from a continuously operated process is treated, for example, and therefore a measuring device as described in
また、バイオガス発生量測定値とリアクターへの供給負荷の関係を監視、制御することで、リアクターの性能悪化を速やかに検出できることを見いだした。
本発明の目的は、メタン発酵設備において、リアクター(メタン発酵設備)の性能の良否を速やかに判定して、リアクターの性能の悪化が認められた場合に速やかに定量的なアクションに結びつけることができる、メタンガスを生成する嫌気性水処理設備の制御方法および制御装置を提供することにある。 The object of the present invention is to quickly determine the quality of the reactor (methane fermentation facility) performance in the methane fermentation facility, and when it is recognized that the reactor performance is deteriorated, it can be promptly linked to a quantitative action. Another object of the present invention is to provide a control method and a control device for an anaerobic water treatment facility that generates methane gas.
本発明の制御方法は、運転中に新たに設備へのメタンガス発生に必要な微生物の出入りをすること無しにメタンを主成分とするガスを生成する設備に、プロセスから連続的に排出される生分解性有機物を含む水を供給するに際し、該設備に供給される水投入量と供給水COD濃度またはTOC濃度から計算される換算COD濃度の積を該設備の有効容積で除して実際のCOD容積負荷を得ると共に、該設備から発生するガス発生量から該設備が良好に運転されているとして計算したCOD容積負荷目標値を得て、これらのCOD容積負荷とCOD容積負荷目標値とを比較して、その比較結果からメタン生成の活性の良否を判定することを特徴とする。 According to the control method of the present invention, the raw material continuously discharged from the process is generated in the facility that generates gas mainly composed of methane without entering and leaving the microorganisms necessary for generating methane gas to the facility during operation. When supplying water containing degradable organic matter, the actual COD is calculated by dividing the product of the amount of water supplied to the facility and the converted COD concentration calculated from the COD concentration or TOC concentration of the supplied water by the effective volume of the facility. Obtain the volumetric load and obtain the COD volumetric load target value calculated from the amount of gas generated from the equipment as being well operated, and compare these COD volumetric load and COD volumetric load target value. And the quality of the activity of methane production is judged from the comparison result.
また、本発明の制御装置は、プロセスから連続的に排出される生分解性有機物を含む水を供給して、運転中に新たに設備へのメタンガス発生に必要な微生物の出入りをすること無しにメタンを主成分とするガスを生成する設備において、該設備から発生するガス発生量を流量計で測定する装置と、該設備への供給流量を測定する流量計と、該設備の入り口と出口にあってCODまたはTOCを自動的に入手する装置を設置し、該設備に供給される水投入量と供給水COD濃度またはTOC濃度から計算される換算COD濃度の積を該設備の有効容積で除してCOD容積負荷を得る実際のCOD容積負荷と、該設備から発生するガス発生量から該設備が良好に運転されているとして計算したCOD容積負荷目標値とを比較して、その比較結果からメタン生成の活性の良否を判定する手段を備えたことを特徴とする。 In addition, the control device of the present invention can supply water containing biodegradable organic matter continuously discharged from the process without newly entering and leaving microorganisms necessary for generating methane gas to the facility during operation. In a facility that generates a gas mainly composed of methane, a device that measures the amount of gas generated from the facility with a flow meter, a flow meter that measures the flow rate supplied to the facility, and an inlet and an outlet of the facility A device that automatically obtains COD or TOC is installed, and the product of the amount of water supplied to the equipment and the converted COD concentration calculated from the supplied COD concentration or TOC concentration is divided by the effective volume of the equipment. Compare the actual COD volumetric load to obtain the COD volumetric load and the COD volumetric load target value calculated from the amount of gas generated from the equipment that the equipment is operating well. Determining the quality of methane production activity Characterized by comprising a means.
本発明によれば、メタン発酵設備において、リアクター(メタン発酵設備)の性能の良否を速やかに判定して、リアクターの性能の悪化が認められた場合に速やかに定量的なアクションに結びつけることが可能となる。 According to the present invention, in a methane fermentation facility, it is possible to quickly determine whether the performance of the reactor (methane fermentation facility) is good or not, and when it is recognized that the performance of the reactor is deteriorated, it is possible to quickly connect to a quantitative action. It becomes.
以下、本発明を詳細に説明する。
メタン発酵は、排水中のBOD(生化学的酸素要求量)成分を嫌気性雰囲気で特定の菌体存在下で反応させ、BOD成分をメタンガスとして揮散させて排水から除去すると共に有用なメタンガスを燃料などのエネルギー源として活用することで、従来好気性処理で処理した場合に産業廃棄物として発生していた余剰汚泥の削減が可能になると共に、メタンガスのエネルギー代替使用によるコストダウンが可能となる技術である。
Hereinafter, the present invention will be described in detail.
In methane fermentation, BOD (biochemical oxygen demand) components in wastewater are reacted in the presence of specific cells in an anaerobic atmosphere, and the BOD components are volatilized as methane gas and removed from the wastewater. Technology that makes it possible to reduce excess sludge that has been generated as industrial waste when treated with aerobic treatment, and to reduce costs by using methane gas as an alternative energy source. It is.
BOD成分は加水分解反応、次いで酢酸生成反応、最後に酢酸からメタンガスを発生させる反応を経てメタンガスへと分解され、これらは全てリアクター内に蓄えられた別々の菌体がその役を受け持つ。これら一連の反応をメタン発酵と呼ぶ。 The BOD component is decomposed into methane gas through a hydrolysis reaction, then an acetic acid production reaction, and finally a reaction for generating methane gas from acetic acid, all of which are handled by separate cells stored in the reactor. This series of reactions is called methane fermentation.
図1に代表的なプロセスフローを示す。フローは本技術を限定するものではない。BOD負荷を持つ1種以上の排水1をバッファタンク2に受け、混合して均一化した原水3を流量計4、およびTOC計またはCOD計6を通した後、調整槽8に一定量供給する。調整槽8では温度、pHが調整され、かつ処理水14と混合された後、リアクタ供給水9としてリアクター10に供給される。リアクター10からはリアクター出バイオガス11が発生し、このガスはガス流量計12を通した後、バイオガス13として燃焼炉などの燃料として有効利用される。処理された処理水14は調整槽8に戻されるが、供給量相当がTOC計またはCOD計17を経由して系外排出水18として系外に排出される。
FIG. 1 shows a typical process flow. The flow does not limit the technology. One or more kinds of
次に、制御の基本的な考え方について説明する。 Next, the basic concept of control will be described.
メタン発酵反応が良好に行われているかどうかについて、供給しているBOD負荷に見合ったメタンガス発生が行われているかどうかを判断することが最も信頼性が高い。 It is most reliable to judge whether methane gas generation corresponding to the supplied BOD load is performed as to whether the methane fermentation reaction is being performed satisfactorily.
メタンガス発生量は供給されるBOD負荷が増加すると増加するが、排水組成が変化すればリアクター出バイオガス11中のメタン濃度は若干変化する。しかしながら、連続運転される設備からほぼ一定組成・濃度で排出される排水や、バッチ的に排出される排水であっても特定のバッファタンクを持つなどして組成・濃度が平滑化された排水、すなわち連続プロセスからの排水であれば、その組成は一定であると考えられ、メタンガス濃度を測定しなくても、ガス発生流量を以て性能の良否を判断する指標として使用することに大きな支障はない。
The amount of methane gas generated increases as the supplied BOD load increases, but if the drainage composition changes, the methane concentration in the
一方、メタン発酵反応槽への供給負荷は本来BOD濃度と供給流量の積で表されるべきであるが、BODは分析に5日という長時間を要するため、連続的に監視することはできない。通常、排水負荷を管理するために代替的に用いられるCODやTOC計を用いて監視することで連続的に推定することができる。基本的にBOD、COD、TOCは互いに相関があることが多く、それゆえにガス発生量との間にもほぼ正比例の相関を示すことが多いため、排水監視には良く用いられる。しかし、より好ましくはクロム酸を酸化剤として用いてCODを測定するCODCrを指標として用いるのが望ましい。 On the other hand, the supply load to the methane fermentation reaction tank should originally be represented by the product of the BOD concentration and the supply flow rate. However, since BOD requires a long time of 5 days for analysis, it cannot be continuously monitored. Usually, it can be continuously estimated by monitoring using a COD or TOC meter that is alternatively used to manage the drainage load. Basically, BOD, COD, and TOC are often correlated with each other, and therefore, are often used in wastewater monitoring because they often show a substantially direct correlation with the amount of gas generated. However, it is more preferable to use CODCr, which measures COD using chromic acid as an oxidizing agent, as an index.
通常、メタン発酵では負荷を表す指標としてCOD容積負荷が用いられる。TOCの場合も読み替えて用いることが可能である。 Usually, in methane fermentation, COD volumetric load is used as an index representing load. In the case of the TOC, it can be read and used.
(COD容積負荷)=(原水COD濃度)×(原水流量)/(リアクター容積)
バイオガスの発生量は、除去されたCOD負荷に比例して発生する。
(バイオガス発生量)=((原水COD濃度)−(処理水COD濃度))×(原水流量)×C1(係数)
従って、COD容積負荷とバイオガス発生量の間には次式(a)が成り立つ。
(バイオガス発生量)=(COD容積負荷)×(COD除去率)×(リアクター容積)×C1 ・・・(a)
但し、(COD除去率)=((原水COD濃度)−(処理水COD濃度))/(原水COD濃度)
(COD volumetric load) = (Raw water COD concentration) × (Raw water flow rate) / (Reactor volume)
The amount of biogas generated is generated in proportion to the removed COD load.
(Biogas generation amount) = ((Raw water COD concentration) − (Treated water COD concentration)) × (Raw water flow rate) × C1 (Coefficient)
Therefore, the following equation (a) is established between the COD volumetric load and the biogas generation amount.
(Biogas generation amount) = (COD volumetric load) × (COD removal rate) × (reactor volume) × C1 (a)
However, (COD removal rate) = ((raw water COD concentration) − (treated water COD concentration)) / (raw water COD concentration)
性能が良好であることは、COD除去率が高いことを意味している。それならばリアクター入出のCODないしTOCを測定して判断すれば良いと思われる。しかし、メタン発酵のリアクターは容量が非常に大きく、滞留時間として3〜10時間と出口の濃度にまで影響が見られるのに長い時間を要するため、レスポンスの速いバイオガス発生量を指標とするべきである。COD容積負荷に対してすぐ応答するバイオガス発生量との相関を監視することで、遅れ時間のない速やかな性能評価が可能となる。 Good performance means that the COD removal rate is high. In that case, it may be judged by measuring COD or TOC of the reactor. However, the reactor for methane fermentation has a very large capacity, and it takes a long time for the residence time to reach 3 to 10 hours and the concentration at the outlet, so the amount of biogas generated with a quick response should be used as an index. It is. By monitoring the correlation with the amount of biogas generated that immediately responds to the COD volumetric load, it is possible to quickly evaluate the performance without delay time.
次に、性能の検出を行う手法について図1を用いて説明する。図1においてメタン発酵設備に供給される原水が調整槽8に入る地点において流量計4により供給水流量を、CODまたはTOC計6によりCODまたはTOCを測定し、容積負荷計算機19によりCOD(TOC)供給量および容積負荷を得ることが出来る。一方、先に示したとおり、ガス流量計12によりバイオガス発生量を測定することが出来る。処理水にCOD(TOC)計を設置することは結果として処理の状態を知るには有効であるが、先に述べたように、遅れ時間を考えるとこの値を計算に取り込んで性能を速やかに見極めるには不向きである。
Next, a method for detecting performance will be described with reference to FIG. In FIG. 1, the feed water flow rate is measured by the
一方、この系はメタンガスを発生するに供する菌は専らリアクターの中に充填されており、供給したり、引き抜く必要は無く、また菌体はほとんどその量を成長させないので、リアクター容量が一定であれば基本的に菌体量は同じと考えて良い。 On the other hand, in this system, the bacteria used to generate methane gas are filled exclusively in the reactor, so there is no need to supply or withdraw, and the amount of bacteria hardly grows, so that the reactor capacity is constant. Basically, the amount of cells can be considered the same.
これらから、メタン発酵リアクターが良好な性能である、即ちCOD除去率がある設定値であると仮定した場合、バイオガス発生量が決定すれば、今あるべきCOD容積負荷値が前述の式(a)に従い、あるべき容積負荷演算機20により算出される(COD容積負荷目標値)。容積負荷計算機19とあるべき容積負荷演算機20を容積負荷比較演算機21により比較し、その偏差を算出する。その偏差が設定した割合を越した場合に、警報機22より直ちに異常を知らせる。
From these, assuming that the methane fermentation reactor has good performance, that is, the COD removal rate is a certain set value, if the biogas generation amount is determined, the COD volumetric load value that should be present can be expressed by the above formula (a ) Is calculated by the desired volume load calculator 20 (COD volume load target value). The
制御の概念図を図2に示す。横軸はCOD容積負荷、縦軸はバイオガス発生量である。測定されたガス発生量Gと測定された容積負荷Fの位置を測定された容積負荷24で表す。式(a)の関係から、ガス発生量と容積負荷は比例関係を示す。傾きは除去率を表し、傾きが大きいほど除去率が高い。このとき、あるべき除去率を線25で示した場合、現在のあるべき容積負荷F0は26で示す点にある。ここで、設定した下限除去率27よりも測定された容積負荷24が右側に外れた場合、リアクターへの負荷がリアクターが現に処理できる量に対して多すぎることを示している。従って、この場合、速やかに測定された容積負荷24から現在のあるべき容積負荷26へ負荷を下げるよう警報することが必要である。
A conceptual diagram of the control is shown in FIG. The horizontal axis represents the COD volumetric load, and the vertical axis represents the biogas generation amount. The position of the measured gas generation amount G and the measured volume load F is represented by the measured
また、第2発明では、上記で計算した測定された容積負荷24と現在のあるべき容積負荷26の容積負荷差分だけアクションするよう図1の流量換算器23で流量換算し、流量計4を調整することで過負荷状態を速やかに、自動的に回避することができる。流量計4により流量を低減した場合、バッファタンク2の収支はアンバランスとなるが、バッファタンク2のタンクで排水をオーバーフローさせるなどで対応すればよい。
Further, in the second invention, the flow rate is converted by the
(実施例)
生分解性有機物として、主として酢酸、テレフタル酸、パラトルイル酸をCODcr濃度の合計値が8500mg/L〜13000mg/L含む原水を、図1に示すフローに従い固形分5.6%のグラニュール11トンを投入した550m3のIHI製リアクターに供給した。このときテレフタル酸、パラトルイル酸の合計混入量はCODcr換算で2500mg/L以下であった。原水供給流量を表1のようにテスト開始後12時間経過した後に原水供給流量を39m3/h→45m3/hにアップさせた。このときのバイオガス発生量、あるべき容積負荷計算値、原水及び処理水のCODcr濃度および除去率の経時変化を表1に示す。
(Example)
As biodegradable organic substances, raw water containing acetic acid, terephthalic acid, and p-toluic acid with a total CODcr concentration of 8500 mg / L to 13000 mg / L, and 11 tons of granules with a solid content of 5.6% according to the flow shown in FIG. The charged 550 m 3 IHI reactor was supplied. At this time, the total mixing amount of terephthalic acid and p-toluic acid was 2500 mg / L or less in terms of CODcr. The raw water supply flow rate was up the raw water supply flow rate after a lapse of 12 hours after the start of the test as shown in Table 1 to 39m 3 / h → 45m 3 / h. Table 1 shows changes in biogas generation amount, calculated volumetric load value, CODcr concentration of raw water and treated water, and removal rate with time.
表1から判るように、12時間目に負荷を上昇させた結果、16時間目に追従していたものが20時間目には急激にバイオガス発生量が低下したためガス発生量をあるべき容積負荷に対応した流量まで低下させた。この結果、27時間目でバイオガス発生量は負荷アップ前のレベルを維持できた。 As can be seen from Table 1, as a result of increasing the load at the 12th hour, the amount of gas generated should be the volume load that should follow the 16th hour because the biogas generation amount suddenly decreased at the 20th hour. The flow rate was reduced to a level corresponding to. As a result, the amount of biogas generated at the 27th hour was maintained at the level before the load increase.
(比較例)
生分解性有機物として、実施例と同等の原水を実施例と同じメタン発酵リアクターに同フローにより供給した。原水供給流量を表1のようにテスト開始後7時間経過した後に原水供給流量を42m3/h→52m3/hにアップさせた。このときのバイオガス発生量、あるべき容積負荷計算値、原水及び処理水のCODcr濃度および除去率の経時変化を表2に示す。同様にリアクター入COD量が急激に上昇した場合のバイオガス発生量と容積負荷推移の例を示す。7時間目に流量をアップさせた結果、24時間目まではガス発生量が追従していたがそれ以降ガス発生が低下し、58時間目にはCOD除去率が41%まで低下した。
(Comparative example)
As biodegradable organic matter, raw water equivalent to that in the example was supplied to the same methane fermentation reactor as in the example by the same flow. The raw water supply flow rate was up the raw water supply flow rate after the elapse of the start of the test after 7 hours as shown in Table 1 to 42m 3 / h → 52m 3 / h. Table 2 shows changes over time in the amount of biogas generated, the calculated volumetric load, the CODcr concentration of raw water and treated water, and the removal rate. Similarly, an example of biogas generation amount and volumetric load transition when the reactor COD amount rapidly increases is shown. As a result of increasing the flow rate at the 7th hour, the gas generation amount followed up to the 24th hour, but the gas generation decreased thereafter, and the COD removal rate decreased to 41% at the 58th hour.
1 排水
2 バッファタンク
3 原水
4 流量計
6 TOC計またはCOD計
8 調製槽
9 リアクタ−供給水
10 リアクター
11 リアクター出バイオガス
12 ガス流量計
13 バイオガス
14 処理水
17 TOC計またはCOD計
18 系外排出水
19 容積負荷計算機
20 あるべき容積負荷計算機
21 容積負荷比較演算機
22 警報機
23 流量換算器
24 測定された容積負荷
25 あるべき除去率
26 現在のあるべき容積負荷
27 下限除去率
1 Wastewater 2
Claims (4)
Compare the obtained COD volumetric load target value with the actual COD volumetric load, and if the COD volumetric load target value is smaller than the actual COD volumetric load over a certain percentage, the actual COD volumetric load and the COD volumetric load are 4. The control apparatus for anaerobic water treatment equipment for producing methane gas according to claim 3, further comprising means for controlling the supply load to be reduced by a difference between the target values.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004204667A JP2006026461A (en) | 2004-07-12 | 2004-07-12 | Method and apparatus for controlling anaerobic water treatment plant generating methane gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004204667A JP2006026461A (en) | 2004-07-12 | 2004-07-12 | Method and apparatus for controlling anaerobic water treatment plant generating methane gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006026461A true JP2006026461A (en) | 2006-02-02 |
Family
ID=35893430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004204667A Pending JP2006026461A (en) | 2004-07-12 | 2004-07-12 | Method and apparatus for controlling anaerobic water treatment plant generating methane gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006026461A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012043436A1 (en) * | 2010-10-01 | 2012-04-05 | 栗田工業株式会社 | Method and device for anaerobically treating wastewater containing terephthalic acid |
CN111675325A (en) * | 2020-07-22 | 2020-09-18 | 苏州科特环保股份有限公司 | Intelligent anaerobic reactor system and wastewater treatment detection method |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59225796A (en) * | 1983-05-23 | 1984-12-18 | ヘキスト・セラニーズ・コーポレーション | Control for anaerobic reactor |
JPS62174699U (en) * | 1986-04-23 | 1987-11-06 | ||
JPS62174700U (en) * | 1986-04-26 | 1987-11-06 | ||
JPS62286595A (en) * | 1986-06-03 | 1987-12-12 | Toshiba Corp | Apparatus for distribution control of inflow load of water treatment plant |
JPH024499A (en) * | 1988-06-21 | 1990-01-09 | Akua Runesansu Gijutsu Kenkyu Kumiai | Controlling device for methane producing equipment |
JPH024497A (en) * | 1988-06-21 | 1990-01-09 | Akua Runesansu Gijutsu Kenkyu Kumiai | Controlling device for methane producing equipment |
JPH024498A (en) * | 1988-06-21 | 1990-01-09 | Akua Runesansu Gijutsu Kenkyu Kumiai | Controlling device for methane producing equipment |
JPH07171592A (en) * | 1991-05-16 | 1995-07-11 | Asahi Breweries Ltd | Automatic control device for inflow amount of raw water to anaerobic waste water treatment equipment |
JPH08173993A (en) * | 1994-12-27 | 1996-07-09 | Meidensha Corp | Method for controlling anaerobic treatment |
JPH10277583A (en) * | 1997-04-04 | 1998-10-20 | Meidensha Corp | Control of methane fermentation |
JPH11253148A (en) * | 1998-03-16 | 1999-09-21 | Meidensha Corp | Load-estimating apparatus in methane fermentation and estimation of load |
JPH11253149A (en) * | 1998-03-16 | 1999-09-21 | Meidensha Corp | Methane fermentation controller and its control |
JP2003290789A (en) * | 2002-03-29 | 2003-10-14 | Sumitomo Heavy Ind Ltd | Anaerobic treatment equipment and its monitoring method |
-
2004
- 2004-07-12 JP JP2004204667A patent/JP2006026461A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59225796A (en) * | 1983-05-23 | 1984-12-18 | ヘキスト・セラニーズ・コーポレーション | Control for anaerobic reactor |
JPS62174699U (en) * | 1986-04-23 | 1987-11-06 | ||
JPS62174700U (en) * | 1986-04-26 | 1987-11-06 | ||
JPS62286595A (en) * | 1986-06-03 | 1987-12-12 | Toshiba Corp | Apparatus for distribution control of inflow load of water treatment plant |
JPH024499A (en) * | 1988-06-21 | 1990-01-09 | Akua Runesansu Gijutsu Kenkyu Kumiai | Controlling device for methane producing equipment |
JPH024497A (en) * | 1988-06-21 | 1990-01-09 | Akua Runesansu Gijutsu Kenkyu Kumiai | Controlling device for methane producing equipment |
JPH024498A (en) * | 1988-06-21 | 1990-01-09 | Akua Runesansu Gijutsu Kenkyu Kumiai | Controlling device for methane producing equipment |
JPH07171592A (en) * | 1991-05-16 | 1995-07-11 | Asahi Breweries Ltd | Automatic control device for inflow amount of raw water to anaerobic waste water treatment equipment |
JPH08173993A (en) * | 1994-12-27 | 1996-07-09 | Meidensha Corp | Method for controlling anaerobic treatment |
JPH10277583A (en) * | 1997-04-04 | 1998-10-20 | Meidensha Corp | Control of methane fermentation |
JPH11253148A (en) * | 1998-03-16 | 1999-09-21 | Meidensha Corp | Load-estimating apparatus in methane fermentation and estimation of load |
JPH11253149A (en) * | 1998-03-16 | 1999-09-21 | Meidensha Corp | Methane fermentation controller and its control |
JP2003290789A (en) * | 2002-03-29 | 2003-10-14 | Sumitomo Heavy Ind Ltd | Anaerobic treatment equipment and its monitoring method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012043436A1 (en) * | 2010-10-01 | 2012-04-05 | 栗田工業株式会社 | Method and device for anaerobically treating wastewater containing terephthalic acid |
JP2012076023A (en) * | 2010-10-01 | 2012-04-19 | Kurita Water Ind Ltd | Method and device for anaerobically treating wastewater containing terephthalic acid |
CN111675325A (en) * | 2020-07-22 | 2020-09-18 | 苏州科特环保股份有限公司 | Intelligent anaerobic reactor system and wastewater treatment detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pind et al. | Monitoring and control of anaerobic reactors | |
US7718066B2 (en) | Method and apparatus for controlling wastewater treatment processes | |
Vasilaki et al. | A knowledge discovery framework to predict the N2O emissions in the wastewater sector | |
CA2225456C (en) | Controlling wastewater treatment by monitoring oxygen utilisation rates | |
US5989428A (en) | Controlling wastewater treatment by monitoring oxygen utilization rates | |
TWI640481B (en) | Wastewater treatment plant online monitoring and control | |
JP2008253870A (en) | Methane fermentation control system | |
Li et al. | Achieving stable partial nitritation using endpoint pH control in an SBR treating landfill leachate | |
Rodrigues et al. | Influence of agitation rate on the performance of an anaerobic sequencing batch reactor containing granulated biomass treating low-strength wastewater | |
CN112645536A (en) | Sewage treatment control method, device and system | |
JP4117274B2 (en) | Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment | |
Zeng et al. | Effects of solids concentration, pH and carbon addition on the production rate and composition of volatile fatty acids in prefermenters using primary sewage sludge | |
JP5180132B2 (en) | Methane fermentation method and methane fermentation apparatus | |
JP4784521B2 (en) | Methane fermentation treatment method | |
CN117509882A (en) | Predictive accurate aeration method | |
JP2006026461A (en) | Method and apparatus for controlling anaerobic water treatment plant generating methane gas | |
Beltrán et al. | Instrumentation, monitoring and real-time control strategies for efficient sewage treatment plant operation | |
JP2005111338A (en) | Method and apparatus for monitoring anaerobic digestion process, and method for operating anaerobic digestion process | |
JPH10277583A (en) | Control of methane fermentation | |
JPH07171592A (en) | Automatic control device for inflow amount of raw water to anaerobic waste water treatment equipment | |
JP2003290789A (en) | Anaerobic treatment equipment and its monitoring method | |
JP7422590B2 (en) | Methane fermentation treatment method and methane fermentation treatment equipment | |
JP4146491B2 (en) | Water treatment using activated sludge | |
JPS61287497A (en) | Anaerobic digester | |
JPH11253148A (en) | Load-estimating apparatus in methane fermentation and estimation of load |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070508 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100202 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100601 |