JPS61287497A - Anaerobic digester - Google Patents

Anaerobic digester

Info

Publication number
JPS61287497A
JPS61287497A JP60127136A JP12713685A JPS61287497A JP S61287497 A JPS61287497 A JP S61287497A JP 60127136 A JP60127136 A JP 60127136A JP 12713685 A JP12713685 A JP 12713685A JP S61287497 A JPS61287497 A JP S61287497A
Authority
JP
Japan
Prior art keywords
digestion
organic waste
digestion tank
input
wastes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60127136A
Other languages
Japanese (ja)
Inventor
Kazuo Shibazaki
柴崎 和夫
Ryosuke Miura
良輔 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60127136A priority Critical patent/JPS61287497A/en
Publication of JPS61287497A publication Critical patent/JPS61287497A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To obtain high treating efficiency by measuring the generation rate of a digestion gas to estimate the progress of the digestion, estimating the amt. and activity of microbes retained in a digestion tank and judging and controlling the amt. of org. wastes to be charged. CONSTITUTION:Org. wastes are intermittently charged into digestion tanks 2 and 4 in an aerobic digester. The generation rate of a digestion gas from the digestion tanks is measured by a measuring device 12, an output from the measuring device immediately before org. wastes are charged into the digestion tank is compared with the preset value by an arithmetic unit 13, the amt. of org. wastes to be charged into the digestion tank is calculated on the basis of the deviation and the amt. of org. wastes to be charged into the digestion tank is controlled by a controller 14 receiving the output from the arithmetic unit. Consequently, the digester can be operated under an appropriate load of org. wastes and high treating efficiency can be obtained.

Description

【発明の詳細な説明】 [発明の技術分野〕 本発明は工場廃水処理施設や下水処理場などで発生する
有機性廃棄物を処理する嫌気性消化装置に係り、消化槽
への有機性廃棄物の投入置制却に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an anaerobic digestion device for treating organic waste generated in factory wastewater treatment facilities, sewage treatment plants, etc. Regarding input and control.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

有機性汚泥を処理する一方法として、嫌気性消化法は古
くから行なわれている。近年、エネルギ情勢の悪化にと
もない、この嫌気性消化法は%a二注目を浴びるようI
:なってきている。この方法は、エネルギとして用いる
ことができるメタンを主成分とする消化ガスを多量に得
ることができ、また、好気性の処理方法のような多量の
曝気が不必要であるという利点がある。
Anaerobic digestion has been used for a long time as a method for treating organic sludge. In recent years, with the deterioration of the energy situation, this anaerobic digestion method has attracted attention.
:It has become to. This method has the advantage that it is possible to obtain a large amount of methane-based digestion gas that can be used as energy, and that it does not require large amounts of aeration as in aerobic treatment methods.

この嫌気性消化法は、嫌気性微生物の働きで有機物を分
解処理する方法であり、有機性汚泥中の炭水化物、脂肪
、タンパク質を主に揮発性有機酸も二分解する液化過程
と、揮発性有機酸を主に炭酸ガスとメタンに分解するガ
ス化過程の二段階の反応から構成されている。液化反応
を行なわせる細菌は酸生成菌、ガス化過程”を行なわせ
る細菌はメタン菌と呼ばれる。
This anaerobic digestion method is a method of decomposing organic matter using the action of anaerobic microorganisms. It consists of a two-step reaction in which acid is mainly decomposed into carbon dioxide and methane. Bacteria that perform the liquefaction reaction are called acid-producing bacteria, and bacteria that perform the gasification process are called methane bacteria.

第5因也二嫌気性消化法の一般的な系統図を示す。Figure 5 shows a general systematic diagram of the anaerobic digestion method.

有機性汚泥は管路1を介して1次消化槽2に投入される
。投入は連続的には行なわず、−日に数回間欠的に行な
うのがム般的である。1次消化槽2では有機性汚泥を1
5〜20日程度滞留させ、前述した液化、ガス化反応に
より最終的6ニメタン、炭酸ガス等に分解する。1次消
化槽2は細菌の活性を高く維持するために、30〜40
℃程度に加温しているのが一般的である(加温装置は図
示されていない。)。また投入された有機性汚泥と細菌
を均一に混合させるために、発生した消化ガスをブロワ
9などによって循環し、1次消化槽内を攪拌する。
Organic sludge is introduced into a primary digestion tank 2 via a pipe 1. Generally, the injection is not carried out continuously, but intermittently several times a day. In primary digestion tank 2, organic sludge is
It is allowed to stay for about 5 to 20 days, and is finally decomposed into 6-nimethane, carbon dioxide, etc. through the liquefaction and gasification reactions described above. In order to maintain high bacterial activity, the primary digestion tank 2 contains 30 to 40
Generally, it is heated to about ℃ (the heating device is not shown). Further, in order to uniformly mix the introduced organic sludge and bacteria, the generated digestion gas is circulated by a blower 9 or the like to agitate the inside of the primary digestion tank.

消化処理が終了した消化汚泥は移送管3を介して2次消
化槽4へ送られる。2次消化槽4は主に消化汚泥を沈降
濃縮する目的で設けられる。このため、加温装置、攪拌
装置は通常設置されていない。
The digested sludge that has undergone the digestion process is sent to the secondary digestion tank 4 via the transfer pipe 3. The secondary digestion tank 4 is provided mainly for the purpose of sedimentation and concentration of digested sludge. For this reason, heating devices and stirring devices are usually not installed.

分離された上澄液は管路5を介して、河川などに放流さ
れるか、あるいは水処理プロセスへ返送される。下方礁
二溜った濃縮された消化汚泥は管路6を介して次の汚泥
処理工程へ送られる。1次消化槽2.2次消化槽4から
発生した消化ガスは管路7を介してガスタンク8に一日
貯留された後、1次消化槽2の加温用エネルギなどに使
われる。
The separated supernatant liquid is discharged into a river or the like via pipe 5 or is returned to a water treatment process. The concentrated digested sludge accumulated in the lower part of the tank is sent to the next sludge treatment step via a pipe 6. Primary Digestion Tank 2. Digestion gas generated from the secondary digestion tank 4 is stored for one day in a gas tank 8 via a pipe 7, and then used as energy for heating the primary digestion tank 2.

このように嫌気性消化プロセスは微生物の作用で行われ
るだめ、1次消化槽2に投入される有機性廃棄物の量が
重要な管理要素となる。すなわち、1次消化槽2内に保
有されている微生物の処理能力以上に有機性廃棄物を投
入した場合には、揮発性脂肪酸の蓄積が起り、PHが低
下し、微生物の処理活性が極度に低下し、処理が不能に
なることもある。一方、投入する有機性廃棄物の量が少
ない場合には、消化槽の設備を有効1二使用しないこと
1二なる。
Since the anaerobic digestion process is carried out by the action of microorganisms, the amount of organic waste input into the primary digestion tank 2 is an important management factor. In other words, if organic waste is added in excess of the processing capacity of the microorganisms held in the primary digestion tank 2, volatile fatty acids will accumulate, the pH will decrease, and the processing activity of the microorganisms will become extremely low. It may drop and become impossible to process. On the other hand, if the amount of organic waste to be input is small, the digestion tank equipment will not be used effectively.

このような1次消化槽2への投入有機性廃檗物量の管理
は、従来広のような方法で制卸されていた。
Conventionally, the amount of organic waste input into the primary digestion tank 2 has been controlled using a widely used method.

すなわち、1つは、常に一定量の有機性廃棄物を1次消
化槽2に投入する方法で、大多数の処理施設で採られで
いる。これは、「下水道施設設計指針と解説」(日本下
水道協会)の437頁に記数されているととく1.約3
0日の水理的滞留時間1二なるように、投入する有機性
廃棄物を制卸する方法である。通常、タイマーなど4二
よって投入ポンプのオン・オフを行い、所定歓の有機性
廃棄物を投入する。このような従来方法には、次の欠点
がある。
That is, one method is to always feed a fixed amount of organic waste into the primary digestion tank 2, which is used in the majority of treatment facilities. This is listed on page 437 of "Sewerage Facility Design Guidelines and Explanations" (Japan Sewage Works Association).1. Approximately 3
This is a method of controlling the amount of organic waste input so that the hydraulic retention time is 12 days. Usually, the input pump is turned on and off by a timer or the like, and a predetermined amount of organic waste is input. Such conventional methods have the following drawbacks.

第1に、投入する有機性廃棄物の有機物濃度が変動した
場合嬬二は、微生物に対する有機物負荷量も変動し、処
理効率の低下などをまねく。このよう1−有機物負荷量
が変動し、その結果前述したように、微生物の処理能力
以上の有機性廃棄物が投入された場合は、微生物の処理
活性の低下を招き最悪の場合には処理不能になる。一方
、有機性廃棄物の投入量が少な過ぎた場合には有効に処
理施設を活用していないこと1二なる。
First, if the concentration of organic matter in the input organic waste changes, the amount of organic matter loaded onto microorganisms will also change, leading to a decrease in treatment efficiency. In this way, the amount of organic matter load fluctuates, and as a result, as mentioned above, if more organic waste is input than the processing capacity of microorganisms, the processing activity of microorganisms will decrease, and in the worst case, processing will not be possible. become. On the other hand, if the input amount of organic waste is too small, it means that the treatment facility is not being utilized effectively.

第2に、消化槽の状態すなわち、消化反応の進行具合や
微生物量、さらにはその活性には無関係に有機性廃棄物
の投入を行うので、適正な処理条件から逸脱した条件で
処理する場合もあり、処理効率の低下をもたらすことが
あった。
Second, organic waste is input without regard to the state of the digestion tank, i.e., the progress of the digestive reaction, the amount of microorganisms, and even its activity, so it may be processed under conditions that deviate from the appropriate processing conditions. This may lead to a decrease in processing efficiency.

また、他の従来方法には、投入する有機性廃棄物の重量
を一定に制卸する方法がある(例えば特開昭58−15
9900号参照)。この方法は投入する有機性廃棄物の
流量と固形物濃度との積が一定仙:ユなるよう感二制卸
する方法で、有機性廃棄物の固形物濃度が高い場合には
投入流量を減じ、反対に有機性廃棄物の固形物濃度が低
い場合1;は投入流量を増大させる。この方法は、消化
槽への有機物負荷を安定させることができるので前述し
た第1の従来方法よりは処理効率のよい安定した処理を
行うことができる。しかしこの方法も消化反応の進行具
合や微生物量、さら番:はその活性媛二は無関係に有機
性廃棄物の投入を行うので、有機性廃棄物の組成の変化
かとによって微生物の活性が変動した場合には過負荷1
;なり、処理効率の低下を招くことがあった。
In addition, other conventional methods include a method of controlling the weight of input organic waste to a constant level (for example, Japanese Patent Application Laid-Open No. 58-15
(See No. 9900). This method is a two-control method in which the product of the flow rate of organic waste to be input and the solids concentration is constant. If the solids concentration of organic waste is high, the input flow rate is reduced. , conversely, when the solid concentration of organic waste is low, the input flow rate is increased. Since this method can stabilize the organic matter load to the digestion tank, it is possible to perform stable treatment with better treatment efficiency than the first conventional method described above. However, since this method also inputs organic waste without regard to the progress of the digestive reaction, the amount of microorganisms, or its activity, the activity of microorganisms may fluctuate depending on changes in the composition of the organic waste. If overload 1
; This may lead to a decrease in processing efficiency.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、消化槽内に保持されている微生物量や
その活性に見合った有機性廃棄物置を常に投入できるよ
うにした嫌気性消化装置を提供することにある。
An object of the present invention is to provide an anaerobic digestion apparatus that allows organic waste to be constantly fed into the digester in accordance with the amount of microorganisms held in the tank and their activity.

[発明の概要〕 本発明は消化槽内に有機性廃棄物が間欠的に投入される
嫌気性消化装置に関するもので、消化槽から発生する消
化ガスの発生速度を測定する測定器と、前記消化槽への
有機性廃棄物の投入直前の前記測定器からの出力を予定
の設定値と比較しその偏差に基づいて消化槽への有機性
廃棄物の投入蓋を演算する装置と、この演算装置からの
出力を受けで消化槽に対する南機性廃棄物の投入量を制
御する制御装置とを備え、前記消化ガスの発生速度から
、消化槽内に保存されている微生物量やその活性状態を
把握し、それに応じた有機性廃棄物量を消化槽内に投入
するものである。
[Summary of the Invention] The present invention relates to an anaerobic digestion device in which organic waste is intermittently introduced into a digestion tank, and includes a measuring device for measuring the generation rate of digestion gas generated from the digestion tank, and a A device that compares the output from the measuring device immediately before the introduction of organic waste into the tank with a scheduled setting value and calculates a lid for introducing the organic waste into the digestion tank based on the deviation, and this calculation device. The system is equipped with a control device that controls the amount of organic waste input into the digester based on the output from the digester, and the amount of microorganisms stored in the digester and their activation status can be determined from the rate of generation of the digestion gas. Then, the corresponding amount of organic waste is put into the digestion tank.

〔発明の実施例〕[Embodiments of the invention]

まず始めに本発明の基本的な概念も二ついて説明する。 First, two basic concepts of the present invention will be explained.

前述したように、投入された有機性廃棄物はメタンと炭
酸ガスを主成分とする消化ガスに分解される。すなわち
、消化ガスは微生物の伏線産物であるため、消化ガス発
生速度を測定することによってそのときの消化反応の進
行具合を推定することができる。
As mentioned above, the input organic waste is decomposed into digestion gas whose main components are methane and carbon dioxide. That is, since digestive gas is a foreshadowing product of microorganisms, the progress of the digestive reaction at that time can be estimated by measuring the rate of digestive gas generation.

ここで、嫌気性消化プロセスでは有機性廃棄物の投入は
間欠的に行うことが一般的である。このため、消化ガス
発生速度は有機性廃棄物の投入後徐々に増加し、最大値
を経てまた徐々に減少するパターンを採る(第2図参照
)。したがって、1次消化槽2内に保持されている菌体
祉籠;対して有機性廃棄物の投入量が適正ならば、消化
ガス発生速度の垂死パターンは第3図鑞二示したように
、次回の有機性廃棄物投入時I畷ま、各処理施設個有の
ベースライン付近まで消化ガス発生速度は徐々に減少す
る。一方、1次消化槽2内に保持されている微生物量4
二対して有機性廃棄物の投入量が過大な場合晶;は、第
4図に示すように、次回の有機性廃棄物投入時でも、消
化ガス発生速度はベースライン付近まで減少しない。こ
れは未処理の有機物がまだ1次消化槽2内1:残留しで
いることを意味し、このままの運転、管理を続けると、
1次消化槽2内1;揮発性有機酸が蓄積し、PHが低し
、消化効率の低下を招くこと亀;なる。
Here, in the anaerobic digestion process, organic waste is generally input intermittently. For this reason, the rate of digestion gas generation follows a pattern in which it gradually increases after organic waste is introduced, reaches a maximum value, and then gradually decreases again (see Figure 2). Therefore, if the input amount of organic waste is appropriate for the bacterial cell cage held in the primary digestion tank 2, the starvation pattern of the digestion gas generation rate will be as shown in Figure 3, Reiji. The next time organic waste is introduced, the rate of digestion gas generation gradually decreases to around the baseline unique to each treatment facility. On the other hand, the amount of microorganisms 4 retained in the primary digestion tank 2
On the other hand, when the amount of organic waste input is excessive, as shown in FIG. 4, the digestion gas generation rate does not decrease to near the baseline even when organic waste is input next time. This means that untreated organic matter still remains in the primary digestion tank 2, and if operation and management continue as is,
Volatile organic acids accumulate in the primary digestion tank 2, lowering the pH and causing a decrease in digestion efficiency.

上記内容から、有機性廃棄物の投入直前の消化ガス発生
速度を測定し、これが処理施設個有のベースライン近く
ま′で減少しているかを判定すべく予定の設定値と比較
し、その偏差を得ることによって、その時の微生物量や
その活性における消化反応の進行具合を推定できる。し
たがってこの偏差値を基準にして、微生物量やその活性
状態に対し適正な有機物負荷量二なるよう口有機性廃棄
物量を投入すべく制御することが可能となる。
Based on the above information, measure the rate of digestion gas generation just before inputting organic waste, compare it with the planned setting value to determine whether it has decreased to near the baseline unique to the treatment facility, and check the deviation. By obtaining this information, it is possible to estimate the progress of the digestive reaction based on the amount of microorganisms and their activity at that time. Therefore, on the basis of this deviation value, it is possible to control the amount of organic waste to be input so that the amount of organic matter load is appropriate for the amount of microorganisms and their activation state.

以下本発明を図示する一実施例に基づいて説明する。第
1図は本発明の一実施例を示す概略ブロック図である。
The present invention will be described below based on an illustrated embodiment. FIG. 1 is a schematic block diagram showing one embodiment of the present invention.

図において、ガス管路7に、消化ガス発生速度を測定す
る測定器、すなわちガス流量計12を設ける。この流量
計12からは、各処理施設で決められでいる有機性廃棄
物の投入スケジュール−二合せて、投入を開始する直前
の消化ガス発生速度の測定値Gが出力され、演算装置1
3に与えられる。演算装置13では測定値Gl二基づい
て次回の有機性廃棄物の投入量の目標値Qinを演算番
二よって求める。これは例えば次式1二よってQinの
変動分△Qinを求めること亀;よってなされる。
In the figure, a gas pipe line 7 is provided with a measuring device for measuring the rate of digestion gas generation, that is, a gas flow meter 12. The flow meter 12 outputs the organic waste input schedule determined by each treatment facility, as well as the measured value G of the digestion gas generation rate immediately before the start of input.
given to 3. Based on the measured value Gl2, the arithmetic device 13 calculates a target value Qin for the next input amount of organic waste using arithmetic number 2. This can be done, for example, by finding the variation ΔQin of Qin using the following equation 12.

△Qjn 二K (Go  G) (Qin)n+t=(Qin)n+△QtnここでG。△Qjn 2K (Go G) (Qin)n+t=(Qin)n+△Qtn where G.

は所定の設定値、Kは所定の係数であり、これらは各処
理施設ごと1:決められるものである。また(Q l 
n )n+tは次回投入すべき有機性廃棄物の投入量、
(Qin)n は前回投入された有機性廃棄物の投入量
を示す。
is a predetermined setting value, and K is a predetermined coefficient, which can be determined for each processing facility. Also (Q l
n) n+t is the amount of organic waste to be input next time,
(Qin)n indicates the amount of organic waste input last time.

このようにして求められた演算装置13の出力は制御装
置141;与えられ、投入ポンプ11の運転時間を制卸
することによって、目標の投入量になるようにされる。
The output of the arithmetic unit 13 obtained in this way is given to a control device 141, and by controlling the operation time of the dosing pump 11, the target amount of input is achieved.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、消化ガス発生速度を
測定し消化反応の進行具合を推定することI:よって、
消化槽内に保有されている微生物置やその活性を推定し
、投入した有機性廃棄物の菫が適正であったか否かを判
断して、次回鴫二投入する有機性廃棄物置を制御するの
で、常鑑;適正な有機物負荷量で運転でき、高い処理効
率が達成できる。
As described above, according to the present invention, it is possible to measure the digestive gas generation rate and estimate the progress of the digestive reaction.
The system estimates the microorganisms held in the digestion tank and their activity, determines whether the amount of organic waste input is appropriate, and controls the next organic waste storage to be input. General rule: It can be operated with an appropriate amount of organic matter load and high treatment efficiency can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による嫌気性消化装置の一実施例を示す
ブロック図、第2図、第3図、第4図は消化ガス発生速
度の変化パターンを示す図、第5図は一般的な嫌気性消
化装置のフロー図である。 2・・・1次消化槽   4・・・2次消化槽11・・
・投入ポンプ   12・・・ガス速度測定器13・・
・演算装置    14・・・制卸装置(7317) 
 代理人 弁理士 則 近 憲 佑 (ほか1名)す; 1間 第2図 峙関 第3図 汚泥投入 第4図
Fig. 1 is a block diagram showing an embodiment of the anaerobic digestion device according to the present invention, Figs. It is a flow diagram of an anaerobic digestion device. 2...Primary digestion tank 4...Secondary digestion tank 11...
・Dosing pump 12...Gas velocity measuring device 13...
・Arithmetic device 14...Control device (7317)
Agent: Patent attorney Kensuke Chika (and 1 other person)

Claims (1)

【特許請求の範囲】 消化槽内に有機性廃棄物が間欠的に投入される嫌気性消
化装置において、 消化槽から発生する消化ガスの発生速度を測定する測定
器と、 前記消化槽への有機性廃棄物の投入直前の前記測定器か
らの出力を予定の設定値と比較しその偏差に基づいて消
化槽への有機性廃棄物の投入量を演算する演算装置と、 該演算装置からの出力を受けて消化槽に対する有機性廃
棄物の投入量を制御する制御装置と、を備えたことを特
徴とする嫌気性消化装置。
[Scope of Claims] An anaerobic digestion device in which organic waste is intermittently introduced into a digestion tank, comprising: a measuring device for measuring the generation rate of digestion gas generated from the digestion tank; a calculation device that compares the output from the measuring device immediately before inputting the organic waste with a scheduled set value and calculates the amount of organic waste to be input into the digestion tank based on the deviation; and an output from the calculation device. An anaerobic digestion device comprising: a control device for controlling the amount of organic waste input into the digestion tank in accordance with the received organic waste.
JP60127136A 1985-06-13 1985-06-13 Anaerobic digester Pending JPS61287497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60127136A JPS61287497A (en) 1985-06-13 1985-06-13 Anaerobic digester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60127136A JPS61287497A (en) 1985-06-13 1985-06-13 Anaerobic digester

Publications (1)

Publication Number Publication Date
JPS61287497A true JPS61287497A (en) 1986-12-17

Family

ID=14952506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60127136A Pending JPS61287497A (en) 1985-06-13 1985-06-13 Anaerobic digester

Country Status (1)

Country Link
JP (1) JPS61287497A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024499A (en) * 1988-06-21 1990-01-09 Akua Runesansu Gijutsu Kenkyu Kumiai Controlling device for methane producing equipment
JPH024498A (en) * 1988-06-21 1990-01-09 Akua Runesansu Gijutsu Kenkyu Kumiai Controlling device for methane producing equipment
JPH0463756B2 (en) * 1988-06-21 1992-10-12 Tokyo Shibaura Electric Co
WO1997012840A1 (en) * 1995-10-04 1997-04-10 Institut National De La Recherche Agronomique Method and device for controlling a device for purifying waste water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024499A (en) * 1988-06-21 1990-01-09 Akua Runesansu Gijutsu Kenkyu Kumiai Controlling device for methane producing equipment
JPH024498A (en) * 1988-06-21 1990-01-09 Akua Runesansu Gijutsu Kenkyu Kumiai Controlling device for methane producing equipment
JPH0463756B2 (en) * 1988-06-21 1992-10-12 Tokyo Shibaura Electric Co
JPH0463758B2 (en) * 1988-06-21 1992-10-12 Tokyo Shibaura Electric Co
JPH0463757B2 (en) * 1988-06-21 1992-10-12 Tokyo Shibaura Electric Co
WO1997012840A1 (en) * 1995-10-04 1997-04-10 Institut National De La Recherche Agronomique Method and device for controlling a device for purifying waste water
FR2739615A1 (en) * 1995-10-04 1997-04-11 Agronomique Inst Nat Rech METHOD FOR CONTROLLING A WASTEWATER CLEANING DEVICE AND CORRESPONDING DEVICE

Similar Documents

Publication Publication Date Title
Fernández et al. Reduction of aeration costs by tuning a multi-set point on/off controller: A case study
Pitman Management of biological nutrient removal plant sludges—change the paradigms?
US8956540B2 (en) Process and apparatus for controlling aeration during nitrification and denitrification of water
CZ294826B6 (en) Method and for treating waste material and apparatus for making the same
Kim et al. Control of an alternating aerobic–anoxic activated sludge system—Part 2: optimization using a linearized model
JP4117274B2 (en) Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment
JP2017113725A (en) Operation support system and operation support method of sewage treatment plant
JP2004171531A (en) Plant-wide optimum process control apparatus
JP4576845B2 (en) Nitrogen-containing waste liquid treatment method
JPS61287497A (en) Anaerobic digester
KR101063206B1 (en) Ultra-high sewage treatment system and method for reducing surplus sludge in process and producing recycled water
Asteriadis et al. A control strategy for an intermittently aerated and fed bioreactor to reduce aeration costs: A simulation study
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JP2013078732A (en) Operation method, operation control device, and control method for sewage plant
CN102503062A (en) Method and device for online optimized control of operation of two-sludge denitrifying dephosphatation process
CN115421525A (en) Intelligent aeration quantity control method, device, controller and storage medium
Kim et al. SBR system for phosphorus removal: linear model based optimization
JP3397102B2 (en) Control method of intermittent aeration type activated sludge method
CN111217449B (en) Sewage treatment device and method based on accurate control of oxygen input
JP4573575B2 (en) Advanced sewage treatment method and apparatus
JP2987103B2 (en) Intermittent aeration
JPS61268398A (en) Anaerobic digestion apparatus
JPH08323393A (en) Water quality simulator for circulation type nitrification and denitirification method
JP2001009497A (en) Biological water treatment and equipment therefor
JPS62221496A (en) Apparatus for controlling return of digested sludge