JPH11253149A - Methane fermentation controller and its control - Google Patents

Methane fermentation controller and its control

Info

Publication number
JPH11253149A
JPH11253149A JP10063797A JP6379798A JPH11253149A JP H11253149 A JPH11253149 A JP H11253149A JP 10063797 A JP10063797 A JP 10063797A JP 6379798 A JP6379798 A JP 6379798A JP H11253149 A JPH11253149 A JP H11253149A
Authority
JP
Japan
Prior art keywords
methane
activity
specific
concentration
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10063797A
Other languages
Japanese (ja)
Inventor
Akira Matsunaga
旭 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP10063797A priority Critical patent/JPH11253149A/en
Publication of JPH11253149A publication Critical patent/JPH11253149A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a methane fermentation controller and its control, capable of judging whether activity of sludge is kept in good state or not and detecting sign of system failure in early stages. SOLUTION: An organic substrate is fed from a substrate flow inklet 2 into a methane fermentation tank 1. A methane producing rate is calculated by dividing a product of measured gas flow rate with methane concentration with tank effective volume by gas flowmeter 4 and methane densitometer 5 provided between the tank 1 and a gas holder 3. Sludge VSS concentration of the tank 1 is measured by a sludge densitometer 6 and VSS concentration measuring means 7 and specific methane production activity is calculated by a specific methane production activity calculating means 8. A substrate flow rate and the substrate COD of substrate flow inlet 2 are each measured by substrate flowmeter 9 and a substrate COD measuring means 10 and fed to COD volume load calculating means 11 to calculate COD volume load and fed to a specific methane conversion activity calculating means 12. The specific methane conversion activity is compared with a standard value comparing means 13 and whether methane production activity of sludge is good nor not is judged by a judging means 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、比メタン生成活性
をCOD容積負荷で除して算出した比メタン転化活性と
いう指標を用いて、メタン発酵の状態あるいはメタン生
成菌の濃度やVSS中におけるメタン生成菌の含有比率
を推定してメタン発酵の負荷制御を行うメタン発酵制御
装置及びその制御方法に関するものである。
[0001] The present invention relates to an indicator of specific methane conversion activity calculated by dividing specific methane production activity by COD volume load, and to the state of methane fermentation or the concentration of methane-producing bacteria or methane in VSS. TECHNICAL FIELD The present invention relates to a methane fermentation control device for controlling the load of methane fermentation by estimating the content ratio of produced bacteria, and a control method thereof.

【0002】[0002]

【従来の技術】従来より、メタン発酵における汚泥の活
性を表現する指標として、比メタン生成活性がよく用い
られてきた。比メタン生成活性は、通常、汚泥を採取し
てバイヤル瓶に入れ、酢酸あるいは水素などを基質とし
て添加した後、メタン生成量を測定して汚泥VSS単位
量当り1日当りのCOD換算メタン生成量として算出さ
れる。一方、メタン発酵タンクからのメタン生成速度を
COD換算して汚泥VSS濃度で除することにより比メ
タン生成活性を算出することもできる。両者とも比メタ
ン生成活性と呼ばれるが、測定条件が異なる。以下の文
中では、比メタン生成活性と表記した場合は前者ではな
く、後者のメタン発酵タンクの比メタン生成活性を意味
する。
2. Description of the Related Art Conventionally, specific methane production activity has been often used as an index for expressing the activity of sludge in methane fermentation. The specific methane production activity is usually calculated as the COD equivalent methane production per day per sludge VSS unit amount after collecting sludge, putting it in a vial bottle, adding acetic acid or hydrogen as a substrate, and measuring the methane production amount. Is calculated. On the other hand, the specific methane production activity can also be calculated by converting the methane production rate from the methane fermentation tank into COD and dividing by the sludge VSS concentration. Both are called specific methane production activities, but the measurement conditions are different. In the following text, the expression “specific methane production activity” means not the former but the specific methane production activity of the latter methane fermentation tank.

【0003】[0003]

【発明が解決しようとする課題】メタン発酵において
は、HRT(水理学的滞留時間)の短縮や基質の有機物
濃度の過大な上昇などにより、有機物過負荷の状態にな
ると中間生成物である揮発性有機酸濃度が上昇し、低p
Hや非電離揮発性有機酸によりメタン生成菌が阻害され
てメタン生成速度が低下する。この現象が顕著になった
状態をシステムフェイリュアーあるいは酸敗と称し、シ
ステムフェイリュアーを放置するとメタン発酵系は甚大
な損傷を受け、回復させるまでに長時間を要するという
問題がある。したがって、メタン発酵の制御において
は、システムフェイリュアーを早めに検出して負荷を低
減するなどの対策を講じる必要がある。
In the case of methane fermentation, when an organic substance is overloaded due to a shortened HRT (hydraulic residence time) or an excessive increase in the concentration of organic substances in a substrate, volatile substances, which are intermediate products, are produced. Organic acid concentration increases, lower p
Methanogens are inhibited by H and non-ionized volatile organic acids, and the methane production rate is reduced. A state in which this phenomenon becomes remarkable is called a system failure or sourness, and if the system failure is left untreated, the methane fermentation system is seriously damaged and it takes a long time to recover. Therefore, in the control of methane fermentation, it is necessary to take measures such as early detection of the system failure to reduce the load.

【0004】また、後述するように比メタン生成活性の
測定だけではシステムフェイリュアーの兆候を早い時期
に検出することはできない。実際の例では、負荷を高め
ていくと比メタン生成活性は上昇するが、比メタン生成
活性が最高となる時点では、既にシステムフェイリュア
ーが始まっていると考えられる。したがって、比メタン
生成活性は、メタン発酵タンクにおける汚泥の活性を表
現する良い指標ではあるが、汚泥の活性が良好な状態で
あるか否かを判断するには適していないという問題があ
る。
Further, as will be described later, it is not possible to detect a sign of system failure at an early stage only by measuring the specific methane production activity. In an actual example, the specific methane generation activity increases as the load is increased, but it is considered that the system failure has already started when the specific methane generation activity becomes the highest. Therefore, although the specific methane production activity is a good index expressing the activity of sludge in the methane fermentation tank, there is a problem that it is not suitable for judging whether or not the activity of sludge is in a good state.

【0005】本発明は上記の事情に鑑みてなされたもの
で、汚泥の活性が良好な状態であるか否かを判断して、
システムフェイリュアーの兆候を早期に検出するメタン
発酵制御装置及びその制御方法を提供することにある。
The present invention has been made in view of the above circumstances, and determines whether or not sludge activity is good.
An object of the present invention is to provide a methane fermentation control device and a control method for detecting a sign of a system failure at an early stage.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を達
成するために、第1発明は、有機基質が供給されるメタ
ン発酵タンクを有し、このタンクで発酵されたメタンガ
スを貯留部で貯留し、貯留部とメタン発酵タンクとを連
結するガス通路にガス流量計およびメタン濃度計を設置
し、ガス流量計で測定されたガス流量とメタン濃度計で
測定されたメタン濃度の積をメタン発酵タンク有効容積
で除してメタン生成速度を得るタンク容積当たりメタン
生成速度計算手段と、前記メタン発酵タンク内の汚泥の
揮発性浮遊物質(VSS)を測定するVSS濃度測定手
段と、前記タンク容積当たりメタン生成速度計算手段で
得られたメタン生成速度をCOD換算してVSS濃度測
定手段で得られた汚泥VSS濃度で除して比メタン生成
活性を得る比メタン生成活性計算手段と、前記メタン発
酵タンクに供給される基質投入量と基質COD濃度の積
をメタン発酵タンク容積で除してCOD容積負荷を得る
COD容積負荷計算手段と、前記比メタン生成活性計算
手段で得られた比メタン生成活性をCOD容積負荷計算
手段で得られたCOD容積負荷で除して比メタン転化活
性を得る比メタン転化活性計算手段と、この比メタン転
化活性計算手段により得られた比メタン転化活性を基準
値と比較し、比較結果からメタン生成活性の良否を判定
する判定手段とを備えたことを特徴とするものである。
According to the present invention, in order to achieve the above object, a first invention has a methane fermentation tank to which an organic substrate is supplied, and methane gas fermented in this tank is stored in a storage unit. A gas flow meter and a methane concentration meter are installed in the gas passage connecting the storage part and the methane fermentation tank, and the product of the gas flow rate measured by the gas flow meter and the methane concentration measured by the methane concentration meter is measured. Methane production rate calculating means per tank volume to obtain a methane production rate by dividing by the effective volume of the fermentation tank; VSS concentration measuring means for measuring volatile suspended solids (VSS) of sludge in the methane fermentation tank; The specific methane generation activity is obtained by converting the methane generation rate obtained by the methane generation rate calculation means per COD and dividing by the sludge VSS concentration obtained by the VSS concentration measurement means to obtain the specific methane generation activity. Production activity calculation means, COD volume load calculation means for dividing the product of the substrate input amount supplied to the methane fermentation tank and the substrate COD concentration by the methane fermentation tank volume to obtain a COD volume load, and the specific methane production activity calculation The specific methane conversion activity obtained by the specific methane conversion activity calculation means for obtaining the specific methane conversion activity by dividing the specific methane production activity obtained by the means by the COD volume load obtained by the COD volume load calculation means, Determining means for comparing the specific methane conversion activity with a reference value and determining whether or not the methane generation activity is good or not based on the comparison result.

【0007】第2発明は、メタン発酵タンクに代えてU
ASBタンクを使用して、メタン生成速度を得るタンク
容積当たりメタン生成速度計算手段と、前記UASBタ
ンク内の汚泥の揮発性浮遊物質(VSS)を測定するV
SS濃度測定手段と、このVSS濃度測定手段により得
られた値とUASBタンク有効容積との積から換算VS
S濃度を得る換算VSS濃度測定手段と、前記タンク容
積当たりメタン生成速度計算手段で得られたメタン生成
速度をCOD換算して換算VSS濃度測定手段で得られ
た換算VSS濃度で除して比メタン生成活性を得る比メ
タン生成活性計算手段と、前記UASBタンクに供給さ
れる基質投入量と基質COD濃度の積をUASBタンク
容積で除してCOD容積負荷を得るCOD容積負荷計算
手段と、前記比メタン生成活性計算手段で得られた比メ
タン生成活性をCOD容積負荷計算手段で得られたCO
D容積負荷で除して比メタン転化活性を得る比メタン転
化活性計算手段と、この比メタン転化活性計算手段によ
り得られた比メタン転化活性の値を基準値と比較し、比
較結果からメタン生成活性の良否を判定する判定手段と
を備えたことを特徴とするものである。
[0007] A second aspect of the present invention relates to a methane fermentation tank instead of a methane fermentation tank.
Means for calculating methane production rate per tank volume to obtain methane production rate using an ASB tank, and V for measuring volatile suspended solids (VSS) of sludge in the UASB tank
The conversion VS is calculated from the product of the SS concentration measuring means and the value obtained by the VSS concentration measuring means and the effective volume of the UASB tank.
A converted VSS concentration measuring means for obtaining the S concentration, and a methane generation rate obtained by the methane generation rate calculating means per tank volume, which is converted into COD, divided by the converted VSS concentration obtained by the converted VSS concentration measuring means, and the specific methane Specific methane generation activity calculation means for obtaining the production activity; COD volume load calculation means for obtaining the COD volume load by dividing the product of the substrate input amount supplied to the UASB tank and the substrate COD concentration by the UASB tank volume; The specific methane production activity obtained by the methane production activity calculation means is calculated using the COD obtained by the COD volume load calculation means.
D The specific methane conversion activity calculating means for obtaining the specific methane conversion activity by dividing by the volume load, and the value of the specific methane conversion activity obtained by the specific methane conversion activity calculating means are compared with a reference value. Determining means for determining whether the activity is good or not.

【0008】第3発明は、前記比メタン転化活性の値が
基準値より低下したときには、水理学的滞留時間(HR
T)を長くして有機物負荷を低下させるように制御する
ことを特徴とするものである。
The third invention is characterized in that when the value of the specific methane conversion activity falls below a reference value, the hydraulic retention time (HR)
It is characterized in that control is performed so as to reduce the organic substance load by lengthening T).

【0009】第4発明は、前記基準値が、システムフェ
イリュアーに陥る前後の比メタン転化活性を比較してこ
れらの中間の比メタン生成活性の数値としたことを特徴
とするものである。
A fourth invention is characterized in that the reference value is a numerical value of a specific methane production activity intermediate between the specific methane conversion activities before and after the system falls into a system failure.

【0010】第5発明は、前記比メタン生成活性計算手
段で得られた比メタン生成活性から酢酸資化性メタン生
成菌の濃度を推定することを特徴とするものである。
A fifth invention is characterized in that the concentration of acetic acid-utilizing methane-producing bacteria is estimated from the specific methane-producing activity obtained by the specific methane-producing activity calculating means.

【0011】第6発明は、前記比メタン転化活性計算手
段で得られた比メタン転化活性から酢酸資化性メタン生
成菌濃度/VSSを推定することを特徴とするものであ
る。
According to a sixth aspect of the present invention, an acetic acid assimilating methanogen concentration / VSS is estimated from the specific methane conversion activity obtained by the specific methane conversion activity calculation means.

【0012】第7発明は、タンク内で発生したメタンガ
ス流量とメタンガス濃度からメタン生成速度を得た後、
そのメタン生成速度と汚泥VSS濃度もしくは換算VS
S濃度から比メタン生成活性を算出し、算出した比メタ
ン生成活性をCOD容積負荷で除して比メタン転化活性
を算出した後、比メタン転化活性を用いてメタン発酵あ
るいは汚泥の活性の良否を判定して、メタン発酵の負荷
制御を行うようにしたことを特徴とするものである。
A seventh aspect of the present invention is to obtain a methane production rate from a methane gas flow rate and a methane gas concentration generated in a tank.
The methane production rate and sludge VSS concentration or converted VS
After calculating the specific methane production activity from the S concentration, dividing the calculated specific methane production activity by the COD volume load, and calculating the specific methane conversion activity, the specific methane conversion activity is used to determine the quality of the methane fermentation or sludge activity. It is characterized in that a load is controlled for methane fermentation by making a judgment.

【0013】第8発明は、システムフェイリュアーに陥
る前と後の比メタン転化活性を比較し、得られた値の中
間の比メタン生成活性の数値から求めた値を基準値と
し、この基準値とした比メタン転化活性の高低により、
汚泥のメタン生成活性の良否を判定したことを特徴とす
るものである。
The eighth invention compares the specific methane conversion activity before and after the system falls into a system failure, and uses a value obtained from a numerical value of the specific methane production activity intermediate between the obtained values as a reference value. The value of the specific methane conversion activity
It is characterized in that the quality of the methane production activity of the sludge is determined.

【0014】第9発明は、前記基準値を予め設定してお
き、この設定した基準値より比メタン転化活性の測定値
が低下したときには、HRTを長くして負荷を低減させ
るように制御したことを特徴とするものである。
According to a ninth aspect of the present invention, the reference value is set in advance, and when the measured value of the specific methane conversion activity is lower than the set reference value, control is performed such that the HRT is lengthened to reduce the load. It is characterized by the following.

【0015】[0015]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図1は、本発明の実施の第1形態を
示す完全混合型メタン発酵の比メタン転化活性制御シス
テム構成図で、この第1形態のメタン発酵システムにお
いては、汚泥の活性が良好な状態であるか否かを判断し
て、システムフェイリュアーの兆候を早期に検出し、比
メタン転化活性と称する汚泥の活性を表現する新しい指
標を得た。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a specific methane conversion activity control system of a complete mixed methane fermentation showing a first embodiment of the present invention. In the methane fermentation system of the first embodiment, sludge activity is in a good state. By judging whether or not this was the case, the signs of system failure were detected early, and a new index expressing the sludge activity called specific methane conversion activity was obtained.

【0016】ここで、比メタン転化活性とは、比メタン
生成活性をCOD容積負荷で除したものである。図1に
示す完全混合型のメタン発酵タンクにおいては、比メタ
ン転化活性を測定して汚泥の活性の状態の良否を判定す
る。
Here, the specific methane conversion activity is the specific methane generation activity divided by the COD volume load. In the methane fermentation tank of the complete mixing type shown in FIG. 1, the specific methane conversion activity is measured to determine the quality of the sludge activity.

【0017】図1において、1は完全混合型メタン発酵
タンクであり、下水汚泥のような通常の有機性基質が、
基質流入口2から供給される。タンク1内の汚泥に含ま
れる嫌気性菌の作用により、基質の一部はメタンに変換
されて、メタンはガスホルダー3に貯留される。
In FIG. 1, reference numeral 1 denotes a completely mixed methane fermentation tank in which a normal organic substrate such as sewage sludge is used.
It is supplied from the substrate inlet 2. A part of the substrate is converted to methane by the action of anaerobic bacteria contained in the sludge in the tank 1, and the methane is stored in the gas holder 3.

【0018】タンク容積当りのメタン生成速度は、下記
(1)式のようにメタン発酵タンク1とガスホルダー3
の間に設置されたガス流量計4およびメタン濃度計5に
より、測定したガス流量とメタン濃度の積をメタン発酵
タンク有効容積で除して計算される。
The methane production rate per tank volume is determined by the following equation (1): methane fermentation tank 1 and gas holder 3
Is calculated by dividing the product of the measured gas flow rate and the methane concentration by the effective volume of the methane fermentation tank by the gas flow meter 4 and the methane concentration meter 5 installed between the two.

【0019】[0019]

【数1】 (Equation 1)

【0020】メタン発酵タンク1の汚泥VSS濃度は、
VSS濃度測定手段7により測定される。実際には、セ
ンサ6aにより採取して手分析あるいは汚泥濃度計6に
より測定されたSS濃度に、次の(2)式のようにVS
S/SSの比率を乗じるなどの方法が用いられる。
The sludge VSS concentration in the methane fermentation tank 1 is as follows:
It is measured by the VSS concentration measuring means 7. In practice, the SS concentration measured by the sensor 6a and analyzed manually or by the sludge concentration meter 6 is added to the VS as shown in the following equation (2).
A method of multiplying the ratio of S / SS is used.

【0021】[0021]

【数2】 メタン発酵タンクVSS濃度(kg/m3) =メタン発酵タンクSS濃度(kg/m3)×VSS/SS ……(2) タンク内汚泥のVSS/SSの比率は、投入基質に比較
して変動が少ないことから、このようなVSS濃度測定
が可能である。次に、比メタン生成活性計算手段8によ
り、次の(3)式を用いてメタン生成速度をCOD換算
して汚泥VSS濃度で除することにより、比メタン生成
活性が計算される。
[Number 2] methane fermentation tank VSS concentration (kg / m 3) = methane fermentation tank SS concentration (kg / m 3) × VSS / SS ...... (2) tank ratio of VSS / SS of the sludge is to put a substrate Since the variation is relatively small, such a VSS concentration measurement is possible. Next, the specific methane generation activity is calculated by the specific methane generation activity calculation means 8 by converting the methane generation rate into COD using the following equation (3) and dividing by the sludge VSS concentration.

【0022】[0022]

【数3】 (Equation 3)

【0023】また、基質流入口2の基質流量と基質CO
Dは、それぞれ基質流量計9と基質COD測定手段10
で測定されて、COD容積負荷計算手段11に供給され
る。このCOD容積負荷計算手段11は、次の(4)式
より供給された基質投入量および基質COD濃度とメタ
ン発酵タンク容積の値を代入してCOD容積負荷を計算
する。
The substrate flow rate at the substrate inlet 2 and the substrate CO
D is a substrate flow meter 9 and a substrate COD measuring means 10 respectively.
And is supplied to the COD volume load calculating means 11. The COD volume load calculating means 11 calculates the COD volume load by substituting the substrate input amount, the substrate COD concentration and the value of the methane fermentation tank volume supplied from the following equation (4).

【0024】[0024]

【数4】 (Equation 4)

【0025】比メタン転化活性は、比メタン転化活性計
算手段12により次の(5)式に比メタン生成活性とC
OD容積負荷の値を代入することにより計算される。
The specific methane conversion activity is calculated by the specific methane conversion activity calculation means 12 into the following equation (5).
It is calculated by substituting the value of the OD volume load.

【0026】[0026]

【数5】 (Equation 5)

【0027】比メタン転化活性は、投入基質の性状や発
酵温度などが一定の範囲内にあり、負荷が過大でない場
合は、一定の値より高い値を示す。しかし、過負荷によ
りシステムフェイリュアーに陥った場合は、比メタン転
化活性は顕著に低下する。システムフェイリュアーに陥
る前と後の、比メタン転化活性を比較して、これらの中
間の比メタン生成活性の値を実験的に求めてこれをkと
すると、kを基準とした比メタン転化活性を基準値比較
手段13で比較し、その比較結果により、汚泥のメタン
生成活性の良否を判定手段14により判定する。このよ
うに、比メタン転化活性を比較手段13で基準値と比較
することにより、その基準値との高低から汚泥のメタン
生成活性の良否を判定することができるようになる。以
下、実際に汚泥消化室内実験の結果を用いて、このkの
値を求めた例を示す。
The specific methane conversion activity shows a value higher than a certain value when the properties of the input substrate and the fermentation temperature are within a certain range and the load is not excessive. However, when the system falls into the system failure due to overload, the specific methane conversion activity is significantly reduced. By comparing the specific methane conversion activities before and after falling into the system failure, the value of the intermediate specific methane production activity is experimentally obtained and is assumed to be k. The activity is compared by the reference value comparing means 13, and based on the comparison result, the quality of the methane generation activity of the sludge is judged by the judging means 14. In this way, by comparing the specific methane conversion activity with the reference value by the comparing means 13, it is possible to determine the quality of the methane production activity of the sludge from the level of the reference value. Hereinafter, an example in which the value of k is obtained by actually using the results of a sludge digestion laboratory experiment will be described.

【0028】下水汚泥(遠心濃縮および重力濃縮混合生
汚泥)を用いた中温(36℃)消化実験においてHRT
(水理学的滞留時間)を短縮して負荷を段階的に高めた
場合の負荷、メタン生成指標(タンク容積当りメタン生
成速度、比メタン生成活性、比メタン転化活性、投入C
OD当りメタン生成量など)および酢酸資化性メタン生
成菌濃度、酢酸資化性メタン菌濃度/VSSなどの経時
変化を図2、図3に示す。
In a medium temperature (36 ° C.) digestion experiment using sewage sludge (mixed centrifugally concentrated and gravity concentrated sludge), HRT was used.
(Hydraulic residence time), load when stepwise increased load, methane production index (methane production rate per tank volume, specific methane production activity, specific methane conversion activity, input C
The chronological changes such as the amount of methane produced per OD), the concentration of acetic acid-utilizing methane-forming bacteria, and the concentration of acetic acid-utilizing methane bacteria / VSS are shown in FIGS.

【0029】図2、図3において遠心濃縮混合生汚泥投
入系ではHRTを第14週は8日、第15〜17週は5
日としたが、第14,15,16,17週において、タ
ンク容積当りメタン生成速度はそれぞれ、1.3,1.4,1.0
5,0.45m3/m3・日、および比メタン生成活性は0.185,0.2
05,0.170,0.020kgCH4一COD/kgVSS・日とな
り、HRT5日とした第15週に一連の実験における最
高値を示した。
In FIG. 2 and FIG. 3, in the centrifugal concentrated mixed raw sludge feeding system, the HRT was set to 8 days on the 14th week and to 5 days on the 15th to 17th weeks.
The methane production rate per tank volume was 1.3, 1.4, 1.0 at Weeks 14, 15, 16, and 17, respectively.
5,0.45m 3 / m 3・ day, and specific methane production activity is 0.185,0.2
05, 0.170, 0.020 kg CH 4 -1 COD / kg VSS · day, the highest value in a series of experiments in the 15th week of HRT 5 days.

【0030】しかし、第16週には、タンク容積当りメ
タン生成速度と比メタン生成活性はともに低下した。一
方、投入COD当りメタン生成量は、第14,15,1
6,17週はそれぞれ、0.18,0.13,0.10,0.04m3/kgとな
り、第14週から15週にかけて急速に低下し、15週
以降はさらに低下した。酢酸資化性メタン生成菌濃度
は、第14,15,16,17週はそれぞれ、1.1,1.1,
0.6,0.05kg/m3となり、第14週と15週は同じレベル
であったが、第16週には急速に低下した。酢酸資化性
メタン生成菌濃度/VSSは、第14,15,16,1
7週はそれぞれ、5.7,5.6,3.3,0.2%となり、第14週と
第15週は同じレベルであったが、第16週には急速に
低下した。比メタン転化活性は、第14,15,16,
17週において、それぞれ0.027,0.018,0.015,0.002m3/
kgVSSとなり、第14週から15週にかけて低下し、
その後さらに低下した。比メタン転化活性は、第7週に
おいても一時的に0.020m3/kgVSSまで低下したが、そ
の後、上昇に転じている。
However, in the 16th week, both the methane production rate per tank volume and the specific methane production activity decreased. On the other hand, the amount of methane generated per input COD is
At 6 and 17 weeks, they were 0.18, 0.13, 0.10 and 0.04 m 3 / kg, respectively, and decreased rapidly from the 14th to the 15th week, and further decreased after the 15th week. The concentrations of acetic acid assimilating methanogens were 1.1, 1.1, and 14, respectively, at weeks 14, 15, 16, and 17.
It was 0.6,0.05 kg / m 3 , which was at the same level in the 14th and 15th weeks, but decreased rapidly in the 16th week. The acetic acid assimilating methanogen concentration / VSS was 14, 15, 16, 1
Week 7 was 5.7,5.6,3.3,0.2%, respectively, at the same level in weeks 14 and 15, but declined rapidly in week 16. The specific methane conversion activity is as follows:
At week 17, 0.027,0.018,0.015,0.002m 3 /
kgVSS, which decreases from week 14 to week 15,
Then it fell further. The specific methane conversion activity also temporarily decreased to 0.020 m 3 / kg VSS in the seventh week, but then turned upward.

【0031】各種のメタン生成指標の比較から総合的に
判断すると、第14週まではメタン生成は順調に進行し
たが、第15週はシステムフェイリュアーに陥る寸前あ
るいは既にシステムフェイリュアーが始まった状態にあ
り、第16週以降はシステムフェイリュアーに陥ったと
考えられる。したがって、この実験の場合、システムフ
ェイリュアーを第15週に察知して負荷を軽減するなど
の対策を講じれば,メタン発酵を持続して行うことがで
きると考えられる。
Comprehensively judging from the comparison of various methane generation indices, methane generation progressed smoothly until the 14th week, but on the 15th week immediately before falling into the system failure or the system failure already started. It is thought that he had fallen into a system failure after the 16th week. Therefore, in the case of this experiment, it is considered that methane fermentation can be sustained if the system failure is detected in the 15th week and measures such as reducing the load are taken.

【0032】第15週経過時にメタン生成活性の低下を
検出できるメタン生成指標を選択すると、比メタン転化
活性と投入COD当りメタン生成量があり、タンク容積
当りメタン生成速度や比メタン生成活性などは除外され
る。このうち、投入COD当りメタン生成量はメタン生
成指標として既に使用されているが比メタン転化活性を
メタン生成指標として用いた例はないようであり、比メ
タン転化活性の最適範囲も知られていない。
When a methane generation index capable of detecting a decrease in methane generation activity after the lapse of the 15th week is selected, there are specific methane conversion activity and methane generation amount per input COD. Excluded. Of these, the amount of methane generated per input COD has already been used as a methane generation index, but there seems to be no example of using specific methane conversion activity as a methane generation index, and the optimal range of specific methane conversion activity is not known. .

【0033】図2、図3において、第7,14,15週
における比メタン転化活性の値は、それぞれ0.020,0.02
7,0.018m3/kgVSSであり、0.020m3/kgVSS以上では
メタン生成が持続することから、この汚泥消化の実験条
件においてはシステムフェイリュアーに陥ることなくメ
タン生成が持続できるか否かを判定する目安となる比メ
タン転化活性の値(k)は0.020m3/kgと推定した。
2 and 3, the values of the specific methane conversion activity at the 7th, 14th and 15th weeks were 0.020 and 0.02, respectively.
7,0.018m 3 / kg VSS, and above 0.020m 3 / kg VSS, methane production continues, so under these sludge digestion experimental conditions, it was determined whether methane production could be sustained without falling into the system failure. The value (k) of the specific methane conversion activity, which is a reference for determination, was estimated to be 0.020 m 3 / kg.

【0034】このようにしてkの値を予め決めておい
て、もし、比メタン転化活性の測定値がkの値より低下
した場合には、HRTを長くして有機物負荷を低下させ
るような制御を行うことができる。
In this way, the value of k is determined in advance, and if the measured value of the specific methane conversion activity falls below the value of k, the control is performed such that the HRT is lengthened to reduce the organic substance load. It can be performed.

【0035】次に、本発明の実施の第2形態を図4に示
すUASB法における比メタン転化活性制御システム装
置について述べる。図4に示す比メタン転化活性制御シ
ステム装置は、UASB法において比メタン転化活性を
測定して汚泥(グラニュール)の活性の状態の良否を判
定するものである。
Next, a second embodiment of the present invention will be described with respect to a specific methane conversion activity control system apparatus in the UASB method shown in FIG. The specific methane conversion activity control system device shown in FIG. 4 measures the specific methane conversion activity in the UASB method to determine whether the sludge (granule) is active or not.

【0036】図4において、21はUASBタンクであ
り、このタンク21には基質流入口22から基質が供給
される。30は基質流量計、31は基質COD測定手段
である。UASBタンク21内のグラニュール汚泥に含
まれる嫌気性菌の作用により、基質の一部はメタンに変
換されて、メタンはガスホルダー23に貯留される。タ
ンク容積当りメタン生成速度は前記(1)式のようにU
ASBタンク21とガスホルダー23の間に設置された
ガス流量計24およびメタン濃度計25により測定した
ガス流量とメタン濃度の積として計算される。
In FIG. 4, reference numeral 21 denotes a UASB tank to which a substrate is supplied from a substrate inlet 22. Reference numeral 30 denotes a substrate flow meter, and 31 denotes a substrate COD measuring means. A part of the substrate is converted to methane by the action of anaerobic bacteria contained in the granular sludge in the UASB tank 21, and the methane is stored in the gas holder 23. The methane production rate per tank volume is U
It is calculated as the product of the gas flow rate measured by the gas flow meter 24 and the methane concentration meter 25 installed between the ASB tank 21 and the gas holder 23 and the methane concentration.

【0037】UASBタンク21の汚泥VSS濃度は、
VSS濃度測定手段27により測定される。実際にはタ
ンク底部のスラッジベッドから採取したグラニュール汚
泥を対象として手分析あるいは汚泥濃度計26により測
定されたSS濃度に、次の(6)式のようにVSS/S
Sの比率を乗じるなどの方法によりスラッジベッド部分
の汚泥VSS濃度が計算される。
The sludge VSS concentration in the UASB tank 21 is as follows:
It is measured by the VSS concentration measuring means 27. Actually, the SS concentration measured by the manual analysis or the sludge concentration meter 26 for the granular sludge collected from the sludge bed at the bottom of the tank is calculated as VSS / S as shown in the following equation (6).
The sludge VSS concentration in the sludge bed portion is calculated by a method such as multiplying by the ratio of S.

【0038】[0038]

【数6】 スラッジベッド部分の汚泥VSS濃度(kg/m3)=スラッジ部分の汚泥SS濃度 ×VSS/SS …(6) また、スラッジベッド容積とUASBタンク容積の比を
目視あるいは汚泥界面を検出する装置を用いて測定す
る。あるいは、垂直方向に汚泥SS濃度を測定できるよ
うな汚泥濃度分布計28のような計測器が用いられる。
これらの容積比を用いて換算VSS濃度が次の(7)式
により計算される。
[Equation 6] The sludge VSS concentration in the sludge bed portion (kg / m 3 ) = the sludge SS concentration in the sludge portion × VSS / SS (6) Also, the ratio of the sludge bed volume to the UASB tank volume is visually observed or the sludge interface is detected. The measurement is performed using an apparatus that performs the measurement. Alternatively, a measuring instrument such as a sludge concentration distribution meter 28 capable of measuring the sludge SS concentration in the vertical direction is used.
Using these volume ratios, the converted VSS concentration is calculated by the following equation (7).

【0039】[0039]

【数7】 UASBタンク換算VSS濃度(kg/m3)=スラッジベッド部分の汚泥VSS濃 度×スラッジベッド容積/UASBタンク有効容積 …(7) 次に、比メタン生成活性計算手段29により次の(8)
式を用いてメタン生成速度をCOD換算してUASBタ
ンク換算VSS濃度で除することにより、比メタン生成
活性を算出する。
UASB tank converted VSS concentration (kg / m 3 ) = Sludge VSS concentration in sludge bed portion × Sludge bed volume / UASB tank effective volume (7) Next, the specific methane generation activity calculating means 29 calculates (8)
The specific methane generation activity is calculated by converting the methane generation rate into COD using the equation and dividing by the UASB tank converted VSS concentration.

【0040】[0040]

【数8】 (Equation 8)

【0041】また、基質流入口22の基質流量と基質C
ODは、それぞれ基質流量計30と基質COD測定手段
31で測定されて、COD容積負荷計算手段32に供給
される。このCOD容積負荷計算手段32は、次の
(9)式により供給された基質投入量および基質COD
濃度とUASBタンク有効容積の値を代入してCOD容
積負荷を計算する。
The substrate flow rate at the substrate inlet 22 and the substrate C
The OD is measured by the substrate flow meter 30 and the substrate COD measuring means 31, respectively, and supplied to the COD volume load calculating means 32. The COD volume load calculating means 32 calculates the substrate input amount and the substrate COD supplied by the following equation (9).
The COD volume load is calculated by substituting the concentration and the value of the UASB tank effective volume.

【0042】[0042]

【数9】 (Equation 9)

【0043】比メタン転化活性は、比メタン転化活性計
算手段29により前記(5)式に比メタン生成活性とC
OD容積負荷の値を代入することにより計算される。
The specific methane conversion activity is calculated by the specific methane conversion activity calculating means 29 according to the above equation (5).
It is calculated by substituting the value of the OD volume load.

【0044】比メタン転化活性は、発酵タンクの構造、
投入基質の性状や発酵温度などの影響を受ける。しか
し、これらが一定の範囲内にあり、負荷が過大でない場
合は、一定の数値より高い値を示す。システムフェイリ
ュアーに陥る前と後の比メタン転化活性を比較して、こ
れらの中間の比メタン生成活性の数値を実験的に求めて
これをkとすると、kを基準とした比メタン転化活性を
基準値比較手段34で比較し、その比較結果により、汚
泥のメタン生成活性の良否を判定手段35により判定す
る。このように、比メタン転化活性を比較手段34で基
準値と比較することにより、その基準値との高低から汚
泥のメタン生成活性の良否を判定することができるよう
になる。
The specific methane conversion activity depends on the structure of the fermentation tank,
It is affected by the properties of the input substrate and the fermentation temperature. However, when they are within a certain range and the load is not excessive, the value shows a value higher than a certain value. The specific methane conversion activity before and after falling into the system failure is compared, and the numerical value of the specific methane production activity in between these is experimentally obtained, and this is taken as k. Are compared by the reference value comparing means 34, and based on the comparison result, the quality of the methane generation activity of the sludge is judged by the judging means 35. As described above, by comparing the specific methane conversion activity with the reference value by the comparing means 34, it is possible to determine the quality of the methane production activity of the sludge from the level of the reference value.

【0045】次に、実際に酢酸を主成分とした人工基質
を用いた高温(48〜51℃)および中温(34〜36
℃)UASB法室内実験の結果を用いてこのkの値を求
めたところ、高温UASB法では0.2m3/kg、中温UAS
B法では0.1m3/kgとなった。高温UASB法の方が中温
UASB法よりもkの値は2倍高く、同じ中温域では、
UASB法の場合は、完全混合型メタン発酵タンクを用
いた下水汚泥消化の場合(k=0.020m3/kg)よりも5倍高い
ことが判った。
Next, a high temperature (48-51 ° C.) and a medium temperature (34-36) using an artificial substrate containing acetic acid as a main component were actually used.
° C.) UASB method using the results of laboratory experiments was determined the value of the k, 0.2 m 3 / kg at high temperatures UASB process, mesophilic UAS
In the method B, it was 0.1 m 3 / kg. The value of k is twice as high in the high temperature UASB method as in the medium temperature UASB method.
In the case of the UASB method, it was found to be 5 times higher than in the case of sewage sludge digestion using a completely mixed methane fermentation tank (k = 0.020 m 3 / kg).

【0046】このようにして、UASB法においても完
全混合型メタン発酵タンクを用いたメタン発酵法の場合
と同様にkの値を予め決めておいて、もし、比メタン転
化活性の測定値がkの値より低下した場合にはHRTを
長くしてCOD容積負荷を低下させるような制御を行う
ことができる。
Thus, in the UASB method, as in the case of the methane fermentation method using the completely mixed methane fermentation tank, the value of k is determined in advance, and if the measured value of the specific methane conversion activity is k , The HRT can be lengthened to perform control to reduce the COD volume load.

【0047】上述したように、メタン発酵において、比
メタン転化活性はメタン生成速度や比メタン生成活性、
投入COD当りメタン生成量などと同様に汚泥のメタン
生成活性を表現する指標となり得る。このため、メタン
生成速度やメタン生成活性を測定してもこれらが最高に
なった時期には、従来では、既にシステムフェイリュア
ーが始まってその兆候を早期に検出することができなか
ったが、上述した実施の形態においては、比メタン転化
活性を測定するようにしたことにより、システムフェイ
リュアーが起きる前に、その兆候を検出して負荷の軽減
を図ることができるようになった。また、比メタン転化
活性を測定することにより、汚泥の活性が良好な状態で
あるか否かを容易に判断できるようになる。
As described above, in the methane fermentation, the specific methane conversion activity includes the methane production rate, the specific methane production activity,
It can be an index expressing the methane production activity of sludge in the same manner as the amount of methane production per input COD. For this reason, even when the methanation rate and methanogenesis activity were measured, when they were at their maximum, the system failed to detect the signs at an early stage because the system failed to start. In the above-described embodiment, by measuring the specific methane conversion activity, before the system failure occurs, the sign can be detected to reduce the load. Also, by measuring the specific methane conversion activity, it becomes possible to easily determine whether or not the sludge activity is in a good state.

【0048】このため、メタン生成指標とその他の因子
との相関解析の結果、下水汚泥中温消化実験において
は、図5に示す比メタン生成活性と酢酸資化性メタン生
成菌濃度の関係(相関係数r=0.794,n=21)および
図6に示す比メタン転化活性と酢酸資化性メタン菌濃度
/VSSの関係(相関係数r=0.770,n=21)におい
て、相関係数が0.8に近い相関が認められた。また、下
水汚泥の高温および中温消化実験、豚糞搾汁液の低温メ
タン発酵、酢酸を主成分とした人工基質のUASB実験
などにおいては、図7に示す比メタン転化活性と1/V
SS(COD・VSS負荷/投入COD)の関係(r=
0.915,n=80)において高い相関が認められた。この
ことから、比メタン転化活性は酢酸資化性メタン生成菌
/VSS濃度に比例することが判る。
Therefore, as a result of correlation analysis between the methane production index and other factors, in the sewage sludge mesophilic digestion experiment, the relationship between the specific methane production activity and the concentration of acetic acid assimilating methanogen shown in FIG. Number r = 0.794, n = 21) and the relationship between specific methane conversion activity and acetic acid assimilating methane bacteria concentration / VSS (correlation coefficient r = 0.770, n = 21) shown in FIG. A close correlation was observed. In addition, in the high-temperature and medium-temperature digestion experiments of sewage sludge, low-temperature methane fermentation of pig manure juice, and UASB experiment of an artificial substrate containing acetic acid as a main component, the specific methane conversion activity and 1 / V shown in FIG.
SS (COD / VSS load / input COD) relationship (r =
0.915, n = 80). This indicates that the specific methane conversion activity is proportional to the acetic acid assimilating methanogen / VSS concentration.

【0049】さらに、UASB法では、メタン生成菌/
VSSが汚泥消化の場合より高いことが知られているこ
とから、UASB法において汚泥消化よりも比メタン転
化活性が高いことが説明できる。
Further, in the UASB method, methanogens /
Since it is known that VSS is higher than that in the case of sludge digestion, it can be explained that the specific methane conversion activity is higher in the UASB method than in the case of sludge digestion.

【0050】以上の事実から比メタン転化活性を測定す
る意義とメタン生成指標としての有効性が認められる。
比メタン生成活性と酢酸資化性メタン菌濃度および比メ
タン転化活性と酢酸資化性メタン生成菌濃度/VSSと
の相関解析により得られた回帰式である次の(10)式
および(11)式を利用して比メタン生成活性や比メタ
ン転化活性から酢酸資化性メタン生成菌濃度や酢酸資化
性メタン生成菌濃度/VSSを推定することもできるよ
うになる。
From the above facts, the significance of measuring the specific methane conversion activity and the effectiveness as an indicator of methane production are recognized.
The following equations (10) and (11), which are regression equations obtained by correlation analysis between specific methane production activity and acetic acid assimilating methane bacteria concentration and specific methane conversion activity and acetic acid assimilating methane bacteria concentration / VSS. The concentration of acetic acid-utilizing methane-producing bacteria and the concentration of acetic acid-utilizing methane-producing bacteria / VSS can also be estimated from the specific methane-producing activity and the specific methane conversion activity using the formula.

【0051】[0051]

【数10】 酢酸資化性メタン生成菌濃度=4.19×比メタン生成活性(kgCH4一COD/k gVSS・日)(kg/m3)+0.276 …(10)## EQU10 ## Acetic acid-assimilating methanogen concentration = 4.19 × specific methanogenic activity (kg CH 4 -COD / kg VSS · day) (kg / m 3 ) +0.276 (10)

【0052】[0052]

【数11】 酢酸資化性メタン生成菌濃度/VSS=95.5×比メタン転化活性(m3/kgVSS )(%)+1.40 …(11)[Equation 11] acetic acid-utilizing methanogen concentration / VSS = 95.5 × specific methane conversion activity (m 3 / kg VSS) (%) + 1.40 (11)

【0053】[0053]

【発明の効果】以上述べたように、本発明によれば、比
メタン転化活性を測定するようにしたことにより、従来
はシステムフェイリュアーの兆候を早期に検出すること
ができなかったことが、システムフェイリュアーが起き
る前にその兆候を検出して負荷を軽減するような対策を
講じることができるようになる利点がある。また、本発
明によれば、比メタン転化活性を測定するようにしたこ
とにより、汚泥の活性が良好な状態であるか否かを容易
に判断することができる利点もある。
As described above, according to the present invention, by measuring the specific methane conversion activity, it has been impossible to detect the signs of system failure at an early stage. This has the advantage that measures can be taken to reduce the load by detecting the signs before the system failure occurs. Further, according to the present invention, by measuring the specific methane conversion activity, there is an advantage that it can be easily determined whether or not the sludge activity is in a good state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態を示す完全混合型メタ
ン発酵の比メタン転化活性制御システム構成図。
FIG. 1 is a configuration diagram of a specific methane conversion activity control system for a completely mixed methane fermentation showing a first embodiment of the present invention.

【図2】汚泥消化実験における負荷上昇に対するメタン
生成指標の経時変化特性図。
FIG. 2 is a characteristic diagram of a change over time of a methane generation index with respect to a load increase in a sludge digestion experiment.

【図3】汚泥消化実験における負荷上昇に対するメタン
生成指標および酢酸資化性メタン生成菌濃度などの経時
変化特性図。
FIG. 3 is a graph showing a change over time in a methane generation index, an acetic acid-utilizing methane-producing bacterium concentration, and the like with respect to a load increase in a sludge digestion experiment.

【図4】本発明の実施の第2形態を示すUASB法にお
ける比メタン転化活性制御システム構成図。
FIG. 4 is a configuration diagram of a specific methane conversion activity control system in a UASB method showing a second embodiment of the present invention.

【図5】汚泥消化実験における比メタン生成活性と酢酸
資化性メタン生成菌濃度の関係を示す特性図。
FIG. 5 is a characteristic diagram showing a relationship between specific methane production activity and acetic acid-utilizing methane-producing bacteria concentration in a sludge digestion experiment.

【図6】汚泥消化実験における比メタン転化活性と酢酸
資化性メタン生成菌濃度/VSSの関係を示す特性図。
FIG. 6 is a characteristic diagram showing a relationship between specific methane conversion activity and acetic acid-utilizing methane-producing bacteria concentration / VSS in a sludge digestion experiment.

【図7】メタン発酵における1/VSSと比メタン転化
活性の関係を示す特性図。
FIG. 7 is a characteristic diagram showing the relationship between 1 / VSS and specific methane conversion activity in methane fermentation.

【符号の説明】[Explanation of symbols]

1…完全混合型メタン発酵タンク 2…基質流入口 3…ガスホルダー 4…ガス流量計 5…メタン濃度計 6…汚泥濃度計 6a…センサ 7…VSS濃度測定手段 8…比メタン生成活性計算手段 9…基質流量計 10…基質COD測定手段 11…COD容積負荷計算手段 12…比メタン転化活性計算手段 13…基準値比較手段 14…判定手段 DESCRIPTION OF SYMBOLS 1 ... Complete mixing methane fermentation tank 2 ... Substrate inflow port 3 ... Gas holder 4 ... Gas flow meter 5 ... Methane concentration meter 6 ... Sludge concentration meter 6a ... Sensor 7 ... VSS concentration measurement means 8 ... Specific methane generation activity calculation means 9 ... substrate flow meter 10 ... substrate COD measuring means 11 ... COD volume load calculating means 12 ... specific methane conversion activity calculating means 13 ... reference value comparing means 14 ... determining means

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 有機基質が供給されるメタン発酵タンク
を有し、このタンクで発酵されたメタンガスを貯留部で
貯留し、貯留部とメタン発酵タンクとを連結するガス通
路にガス流量計およびメタン濃度計を設置し、ガス流量
計で測定されたガス流量とメタン濃度計で測定されたメ
タン濃度の積をメタン発酵タンク有効容積で除してメタ
ン生成速度を得るタンク容積当たりメタン生成速度計算
手段と、 前記メタン発酵タンク内の汚泥の揮発性浮遊物質(VS
S)を測定するVSS濃度測定手段と、 前記タンク容積当たりメタン生成速度計算手段で得られ
たメタン生成速度をCOD換算してVSS濃度測定手段
で得られた汚泥VSS濃度で除して比メタン生成活性を
得る比メタン生成活性計算手段と、 前記メタン発酵タンクに供給される基質投入量と基質C
OD濃度の積をメタン発酵タンク容積で除してCOD容
積負荷を得るCOD容積負荷計算手段と、 前記比メタン生成活性計算手段で得られた比メタン生成
活性をCOD容積負荷計算手段で得られたCOD容積負
荷で除して比メタン転化活性を得る比メタン転化活性計
算手段と、 この比メタン転化活性計算手段により得られた比メタン
転化活性の値を基準値と比較し、比較結果からメタン生
成活性の良否を判定する判定手段とを備えたことを特徴
とするメタン発酵制御装置。
1. A methane fermentation tank to which an organic substrate is supplied, wherein a methane gas fermented in the tank is stored in a storage section, and a gas flow meter and a methane fermenter are provided in a gas passage connecting the storage section and the methane fermentation tank. A methane production rate calculation means per tank volume that installs a concentration meter and divides the product of the gas flow rate measured by the gas flow meter and the methane concentration measured by the methane concentration meter by the effective volume of the methane fermentation tank to obtain the methane production rate And volatile suspended solids (VS) of the sludge in the methane fermentation tank.
S) measuring the VSS concentration, and the specific methane production by dividing the methane production rate obtained by the methane production rate calculating means per tank volume into COD and dividing by the sludge VSS concentration obtained by the VSS concentration measuring means. Specific methane production activity calculation means for obtaining activity; substrate input amount and substrate C supplied to the methane fermentation tank
COD volume load calculation means for obtaining the COD volume load by dividing the product of the OD concentration by the methane fermentation tank volume; and the specific methane generation activity obtained by the specific methane generation activity calculation means obtained by the COD volume load calculation means. Specific methane conversion activity calculating means for obtaining the specific methane conversion activity by dividing by the COD volume load, and the specific methane conversion activity value obtained by the specific methane conversion activity calculating means are compared with a reference value. A methane fermentation control device, comprising: determination means for determining whether the activity is good or bad.
【請求項2】 有機基質が供給されるUASBタンクを
有し、このタンクで発酵されたメタンガスを貯留部で貯
留し、貯留部とUASBタンクとを連結するガス通路に
ガス流量計およびメタン濃度計を設置し、ガス流量計で
測定されたガス流量とメタン濃度計で測定されたメタン
濃度の積をUASBタンク有効容積で除してメタン生成
速度を得るタンク容積当たりメタン生成速度計算手段
と、 前記UASBタンク内の汚泥の揮発性浮遊物質(VS
S)を測定するVSS濃度測定手段と、 このVSS濃度測定手段により得られた値とUASBタ
ンク有効容積との積から換算VSS濃度を得る換算VS
S濃度測定手段と、 前記タンク容積当たりメタン生成速度計算手段で得られ
たメタン生成速度をCOD換算して換算VSS濃度測定
手段で得られた換算VSS濃度で除して比メタン生成活
性を得る比メタン生成活性計算手段と、 前記UASBタンクに供給される基質投入量と基質CO
D濃度の積をUASBタンク容積で除してCOD容積負
荷を得るCOD容積負荷計算手段と、 前記比メタン生成活性計算手段で得られた比メタン生成
活性をCOD容積負荷計算手段で得られたCOD容積負
荷で除して比メタン転化活性を得る比メタン転化活性計
算手段と、 この比メタン転化活性計算手段により得られた比メタン
転化活性の値を基準値と比較し、比較結果からメタン生
成活性の良否を判定する判定手段とを備えたことを特徴
とするメタン発酵制御装置。
2. A UASB tank to which an organic substrate is supplied, wherein a methane gas fermented in this tank is stored in a storage unit, and a gas flow meter and a methane concentration meter are provided in a gas passage connecting the storage unit and the UASB tank. Methane production rate calculation means per tank volume to obtain a methane production rate by dividing the product of the gas flow rate measured by the gas flow meter and the methane concentration measured by the methane concentration meter by the UASB tank effective volume, Volatile suspended matter (VS) of sludge in the UASB tank
S) measuring VSS concentration measuring means, and a converted VS which obtains a converted VSS concentration from a product of a value obtained by the VSS concentration measuring means and a UASB tank effective volume.
S concentration measuring means, and a ratio for obtaining a specific methane production activity by dividing the methane generation rate obtained by the methane generation rate calculating means per tank volume by COD conversion and dividing by the converted VSS concentration obtained by the converted VSS concentration measuring means. Methane production activity calculation means, substrate input amount and substrate CO supplied to the UASB tank
COD volume load calculating means for obtaining the COD volume load by dividing the product of the D concentration by the UASB tank volume; and COD obtained by the COD volume load calculating means by the specific methane generation activity obtained by the specific methane generation activity calculating means. Specific methane conversion activity calculating means for obtaining the specific methane conversion activity by dividing by the volume load, and the specific methane conversion activity value obtained by the specific methane conversion activity calculating means are compared with a reference value. A methane fermentation control device, comprising: determination means for determining the quality of the methane fermentation.
【請求項3】 前記比メタン転化活性の値が基準値より
低下したときには、水理学的滞留時間(HRT)を長く
して有機物負荷を低下させるように制御することを特徴
とする請求項1または2記載のメタン発酵制御装置。
3. The method according to claim 1, wherein when the value of the specific methane conversion activity falls below a reference value, the hydraulic retention time (HRT) is lengthened to reduce the organic matter load. 3. The methane fermentation control device according to 2.
【請求項4】 前記基準値は、システムフェイリュアー
に陥る前後の比メタン転化活性を比較してこれらの中間
の比メタン生成活性の数値としたことを特徴とする請求
項1〜3記載のメタン発酵制御装置。
4. The method according to claim 1, wherein the reference value is a numerical value of a specific methane production activity intermediate between the specific methane conversion activities before and after the system falls into a system failure. Methane fermentation control device.
【請求項5】 前記比メタン生成活性計算手段で得られ
た比メタン生成活性から酢酸資化性メタン生成菌の濃度
を推定することを特徴とする請求項1または2記載のメ
タン発酵制御装置。
5. The methane fermentation control device according to claim 1, wherein the concentration of acetic acid-utilizing methane-producing bacteria is estimated from the specific methane-producing activity obtained by the specific methane-producing activity calculating means.
【請求項6】 前記比メタン転化活性計算手段で得られ
た比メタン転化活性から酢酸資化性メタン生成菌濃度/
VSSを推定することを特徴とする請求項1または2記
載のメタン発酵制御装置。
6. An acetic acid assimilating methane-producing bacterium concentration / from the specific methane conversion activity obtained by the specific methane conversion activity calculation means.
The methane fermentation control device according to claim 1 or 2, wherein VSS is estimated.
【請求項7】 タンク内で発生したメタンガス流量とメ
タンガス濃度からメタン生成速度を得た後、そのメタン
生成速度と汚泥VSS濃度もしくは換算VSS濃度から
比メタン生成活性を算出し、算出した比メタン生成活性
をCOD容積負荷で除して比メタン転化活性を算出した
後、比メタン転化活性を用いてメタン発酵あるいは汚泥
の活性の良否を判定して、メタン発酵の負荷制御を行う
ようにしたことを特徴とするメタン発酵制御方法。
7. A specific methane generation activity is obtained from a methane generation rate from a methane gas flow rate and a methane gas concentration generated in the tank, and then a specific methane generation activity is calculated from the methane generation rate and a sludge VSS concentration or a converted VSS concentration. After calculating the specific methane conversion activity by dividing the activity by the COD volume load, the quality of methane fermentation or sludge activity was judged using the specific methane conversion activity to control the load of methane fermentation. Characteristic methane fermentation control method.
【請求項8】 システムフェイリュアーに陥る前と後の
比メタン転化活性を比較し、得られた値の中間の比メタ
ン生成活性の数値から求めた値を基準値とし、この基準
値とした比メタン転化活性の高低により、汚泥のメタン
生成活性の良否を判定したことを特徴とする請求項7記
載のメタン発酵制御方法。
8. The specific methane conversion activity before and after falling into the system failure is compared, and the value obtained from the numerical value of the specific methane production activity in the middle of the obtained values is set as a reference value, which is used as the reference value. The method for controlling methane fermentation according to claim 7, wherein the quality of the methane production activity of the sludge is determined based on the level of the specific methane conversion activity.
【請求項9】 前記基準値を予め設定しておき、この設
定した基準値より比メタン転化活性の測定値が低下した
ときには、HRTを長くして負荷を低減させるように制
御したことを特徴とする請求項7または8記載のメタン
発酵制御方法。
9. The method according to claim 1, wherein the reference value is set in advance, and when the measured value of the specific methane conversion activity is lower than the set reference value, control is performed such that the HRT is lengthened to reduce the load. The method for controlling methane fermentation according to claim 7 or 8, wherein
JP10063797A 1998-03-16 1998-03-16 Methane fermentation controller and its control Withdrawn JPH11253149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10063797A JPH11253149A (en) 1998-03-16 1998-03-16 Methane fermentation controller and its control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10063797A JPH11253149A (en) 1998-03-16 1998-03-16 Methane fermentation controller and its control

Publications (1)

Publication Number Publication Date
JPH11253149A true JPH11253149A (en) 1999-09-21

Family

ID=13239739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10063797A Withdrawn JPH11253149A (en) 1998-03-16 1998-03-16 Methane fermentation controller and its control

Country Status (1)

Country Link
JP (1) JPH11253149A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111344A (en) * 2003-10-06 2005-04-28 Fuji Electric Holdings Co Ltd Methane fermentation apparatus
JP2006026461A (en) * 2004-07-12 2006-02-02 Toray Ind Inc Method and apparatus for controlling anaerobic water treatment plant generating methane gas
JP2006110424A (en) * 2004-10-13 2006-04-27 Ebara Corp Method and apparatus for treating organic waste water
JP2007289914A (en) * 2006-03-31 2007-11-08 Ebara Corp Treatment method and apparatus of organic waste by anaerobic microorganism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111344A (en) * 2003-10-06 2005-04-28 Fuji Electric Holdings Co Ltd Methane fermentation apparatus
JP2006026461A (en) * 2004-07-12 2006-02-02 Toray Ind Inc Method and apparatus for controlling anaerobic water treatment plant generating methane gas
JP2006110424A (en) * 2004-10-13 2006-04-27 Ebara Corp Method and apparatus for treating organic waste water
JP2007289914A (en) * 2006-03-31 2007-11-08 Ebara Corp Treatment method and apparatus of organic waste by anaerobic microorganism

Similar Documents

Publication Publication Date Title
Pind et al. Monitoring and control of anaerobic reactors
Yu et al. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater
JP4679251B2 (en) Membrane type methane fermentation treatment method and apparatus
Sharma et al. Inclined-plug-flow type reactor for anaerobic digestion of semi-solid waste
Scherer et al. Application of a fuzzy logic control system for continuous anaerobic digestion of low buffered, acidic energy crops as mono‐substrate
Bergland et al. Temperature effects in anaerobic digestion modeling
CN201903539U (en) Frequency-converting speed-regulating fast online detecting device for specific oxygen uptake rate
Pan et al. A novel hydraulic biogas digester controlling the scum formation in batch and semi-continuous tests using banana stems
Esparza Soto et al. Anaerobic treatment of a medium strength industrial wastewater at low-temperature and short hydraulic retention time: A pilot-scale experience
US4986916A (en) Method of monitoring and/or controlling biologically catalyzed reactions
CN102183910A (en) Method for detecting specific oxygen utilization rate of activated sludge microorganism online based on frequency control
JPH11253149A (en) Methane fermentation controller and its control
JP4784521B2 (en) Methane fermentation treatment method
Chang et al. Measurement of KLa by a gassing‐in method with oxygen‐enriched air
Rozzi et al. Monitoring toxicity in anaerobic digesters by the Rantox biosensor: theoretical background
JP4016474B2 (en) Load estimation apparatus and load estimation method in methane fermentation
Ristow et al. The effects of hydraulic retention time and feed COD concentration on the rate of hydrolysis of primary sewage sludge under methanogenic conditions
CN112863612A (en) Optimization method of dry anaerobic digestion mixing ratio of multi-component material
CN111141876A (en) Method for rapidly measuring bubbling potential of anaerobic digestion solution
Bolzonella Monitoring parameters in anaerobic digestion processes
JPH10277583A (en) Control of methane fermentation
van der Berg High-throughput biomethane potential (BMP) tests as predictors for commercial-scale anaerobic digester performance
Kothari et al. Application of the two-phase anaerobic fluidized bed process to the treatment of corn processing wastewater
Lyseng et al. Biogas reactor modeling with ADM1
Arzate et al. Modeling and parameter estimation of a biogas plant using maize silage in a two step model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070803