JPH09239397A - Controlling method for methane fermentation - Google Patents

Controlling method for methane fermentation

Info

Publication number
JPH09239397A
JPH09239397A JP5432696A JP5432696A JPH09239397A JP H09239397 A JPH09239397 A JP H09239397A JP 5432696 A JP5432696 A JP 5432696A JP 5432696 A JP5432696 A JP 5432696A JP H09239397 A JPH09239397 A JP H09239397A
Authority
JP
Japan
Prior art keywords
vfa
methane fermentation
methane
ionized
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5432696A
Other languages
Japanese (ja)
Inventor
Akira Matsunaga
旭 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5432696A priority Critical patent/JPH09239397A/en
Publication of JPH09239397A publication Critical patent/JPH09239397A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To take an appropriate measure by perceiving the sign of abnormal fermentation (system failure) in a methane fermentation tank utilizing waste in its early stages. SOLUTION: A pH meter 12, a device 13 for separately measuring the components of a volatile org. acid and a substrate supply control means 15 are set in a methane fermentation tank 11, the pH value of the liq. phase is measured, and a nonionizable volatile org. acid except acetic acid is measured by the device 13. Subsequently, the concn. of the nonionizable volatile org. acid is obtained by a calculating means 14, and the supply of substrate to the tank 11 is controlled with the calculated concn. as an index so that the concn. of the nonionizable volatile org. acid does not exceed 15-20mg/l. Further, the pH of the methane feremntation tank is controlled by a pH control means based on the index.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機性の廃水及び廃
棄物のメタン発酵制御方法に関し、特にはメタン発酵タ
ンク内液相のpHと、成分別揮発性有機酸濃度を測定し
て酢酸以外の非電離揮発性有機酸濃度を算出し、これを
指標として制限濃度以下になるようにメタン発酵タンク
への基質投入量又はpH値を制御するようにしたメタン
発酵制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling methane fermentation of organic wastewater and wastes, and particularly to measuring the pH of the liquid phase in a methane fermentation tank and the concentration of volatile organic acids for each component other than acetic acid. The present invention relates to a methane fermentation control method in which the concentration of a non-ionizing volatile organic acid is calculated, and the amount of substrate input to a methane fermentation tank or a pH value is controlled so that the concentration becomes equal to or lower than a limiting concentration using this as an index.

【0002】[0002]

【従来の技術】有機性の廃水及び廃棄物を嫌気性処理に
よってメタン発酵を行う方法において、有機物の過負荷
とか水理学的滞留時間(HRT)の過度な短縮及び毒物
の流入などの原因によって異常発酵(システムフェイリ
ュアー)が起きることがあり、このような場合はメタン
ガス発生量の減少とともに揮発性有機酸(以下VFAと
略称する)濃度が上昇し、pHは低下することが多い。
上記の異常発酵が起きた場合には、早急に対処しないと
事態は悪化する一方になり、且つ回復するまでに長時間
を要することが多いので、異常発酵が起こる兆候を早い
時期に察知して適切な対策をとることが肝要である。
2. Description of the Related Art In a method of methane fermentation of organic wastewater and wastes by anaerobic treatment, abnormalities are caused due to overload of organic matter, excessive shortening of hydraulic retention time (HRT) and inflow of toxic substances. Fermentation (system failure) may occur, and in such a case, the concentration of volatile organic acids (hereinafter abbreviated as VFA) increases and the pH often decreases as the amount of methane gas generated decreases.
If the above abnormal fermentation occurs, the situation will only get worse if you do not deal with it immediately, and it often takes a long time to recover, so detect the signs of abnormal fermentation early. It is essential to take appropriate measures.

【0003】上記に関して、文献「嫌気性プロセスの動
的挙動および安定性−プロピオン酸蓄積に及ぼす水素の
影響について」(用水と廃水,30,11,p33〜3
8,1988,井手慎司)には、メタン発酵のシステム
フェイリュアーの前兆として気相の水素濃度が上昇する
現象を利用して、この気相の水素濃度を指標とした制御
方法が提案されている。
With respect to the above, the literature "Dynamic Behavior and Stability of Anaerobic Processes-On the Effect of Hydrogen on Propionic Acid Accumulation" (Water and Wastewater, 30, 11, p33-3).
(1988, 1988, Shinji Ide), a control method using the hydrogen concentration in the gas phase as an index is proposed by utilizing the phenomenon that the hydrogen concentration in the gas phase rises as a precursor of the system failure of methane fermentation. There is.

【0004】又、メタン発酵のシステムフェイリュアー
が起きた場合、pHの異常が観察されることが多いこと
と、測定が容易であることからpH測定は一般に行われ
ている。しかしpHの異常はシステムフェイリュアーの
結果として起きるものであり、pH異常を検出した段階
では既に手遅れである場合が多く、pHのみを指標とし
た制御はメタン発酵制御方法として有効であるとはいえ
ない。
In addition, when a system failure of methane fermentation occurs, an abnormal pH is often observed and the measurement is easy, so that the pH is generally measured. However, the pH abnormality occurs as a result of the system failure, and it is often too late at the stage of detecting the pH abnormality, and the control using only the pH as an index is effective as a methane fermentation control method. I can't say.

【0005】一方、メタン発酵のシステムフェイリュア
ーの主要な原因として、非電離VFAのメタン生成菌に
対する阻害作用が報告されている。(例えばKroecker.e
tal:Water.Pollu.Control.Fed.,51,p718〜727,1979,又
はDuarte and Anderson: Water.Sci.Technol.,14,p749
〜763.1982を参照) 上記の報告を要約すると以下の通りである。Kroecker.e
talによれば、非電離VFAの阻害性は30〜60(m
g/l)で現れると述べており、Duarte and Anderson
によれば、非電離VFA濃度は10(mg/l)におい
てメタン生成は50%阻害されると述べている。これら
の報告以外にもプロピオン酸は酢酸よりも毒性が強く、
非電離型と電離型の両方を合わせた総プロピオン酸濃度
が1000(mg/l)でもメタン生成を阻害するとい
う報告もある。
On the other hand, an inhibitory effect of non-ionized VFA on methanogenic bacteria has been reported as a major cause of system failure of methane fermentation. (Eg Kroecker.e
tal: Water.Pollu.Control.Fed., 51, p718-727,1979, or Duarte and Anderson: Water.Sci.Technol., 14, p749
~ 763.1982) The above report is summarized as follows. Kroecker.e
According to tal, the inhibition of non-ionizing VFA is 30-60 (m
g / l), and Duarte and Anderson
Said that at a non-ionizing VFA concentration of 10 (mg / l) methane production was inhibited by 50%. Besides these reports, propionic acid is more toxic than acetic acid,
There is also a report that even if the total propionic acid concentration of both the non-ionized type and the ionized type is 1000 (mg / l), it inhibits methane production.

【0006】しかしながら一方ではプロピオン酸濃度が
10000(mg/l)でも阻害されないという報告も
あるため、非電離VFAの毒性については明確に一致し
た見解が得られていない。そのために非電離VFA濃度
を指標としたメタン発酵の制御方法は実現されていない
のが実状である。
On the other hand, however, there is a report that the propionic acid concentration is not inhibited even at a concentration of 10,000 (mg / l), so that no clear consensus is obtained on the toxicity of non-ionized VFA. Therefore, the reality is that the method for controlling methane fermentation using the non-ionized VFA concentration as an index has not been realized.

【0007】その他のメタン発酵の制御方法として、メ
タン菌数,F420,ATPなどを測定してこれらを指標
とする方法もあるが、これらの因子の測定技術は未完成
であり、仮に測定精度が高くなり、測定時間が短縮され
ても計測値からメタン発酵の正常と異常をどのようにし
て区別するのかという問題が残る。更に前記測定項目で
あるメタン菌数,F420,ATPは微生物濃度に関係し
ており、微生物濃度の微小な変化を検出してもシステム
フェイリュアーと関連付けることは困難であるものと推
察される。
As another method for controlling methane fermentation, there is also a method in which the number of methane bacteria, F 420 , ATP, etc. are measured and these are used as indicators, but the measuring technology for these factors is incomplete, and the measurement accuracy is assumed. However, even if the measurement time is shortened and the measurement time is shortened, there remains the problem of how to distinguish normal and abnormal methane fermentation from the measured values. Furthermore, the above-mentioned measurement items, the number of methane bacteria, F 420 , and ATP are related to the microorganism concentration, and it is presumed that it is difficult to correlate them with the system failure even if a minute change in the microorganism concentration is detected. .

【0008】ここでメタン発酵について簡単に説明する
と、メタン生成に直接関わるメタン生成菌は、酢酸又は
水素と二酸化炭素を基質にしており、これ以外の基質は
加水分解と有機性生成を経て酢酸,水素,二酸化炭素等
を生成してからメタン化される。ある種のメタン生成菌
はメタノールを直接資化してメタンを生成することが知
られている。
To briefly explain methane fermentation, the methanogenic bacterium directly involved in methane production uses acetic acid or hydrogen and carbon dioxide as substrates, and the other substrates undergo hydrolysis and organic production to produce acetic acid. After producing hydrogen, carbon dioxide, etc., it is methanated. Certain methanogens are known to directly utilize methanol to produce methane.

【0009】本出願人は先に特願平6−324159号
により、有機性廃棄物及び廃水を嫌気性処理する際に、
反応槽への原水投入量の指標として、有機物・酢酸資化
性メタン細菌負荷という制御因子を求めて、この制御因
子が適正範囲にあるように原水の流量を調節するように
した嫌気性処理の制御方法を提案した。更に特願平7−
266555号により、基本培地に汚泥消化槽から採取
した汚泥と種汚泥としての消化汚泥を加え、これに基質
としてエタノールを添加し、更に重炭酸ナトリウムを添
加しpHを調整してから適宜の温度条件下でメタンを発
生させるようにしたエタノールを基質としたメタン発酵
方法を提案した。上記pH条件は5.8〜6.5に調整し
た。
[0009] The applicant of the present invention previously filed Japanese Patent Application No. 6-324159 to treat organic waste and wastewater anaerobically.
As an index of the amount of raw water input to the reaction tank, a control factor called organic matter / acetic acid assimilating methane bacteria load was determined, and the flow rate of the anaerobic treatment was adjusted so that the control factor was within an appropriate range. A control method was proposed. Furthermore, Japanese Patent Application No. 7-
According to No. 266555, sludge collected from the sludge digestion tank and digested sludge as seed sludge were added to the basic medium, ethanol was added as a substrate, and sodium bicarbonate was further added to adjust the pH. A methane fermentation method using ethanol as a substrate below was proposed. The above pH conditions were adjusted to 5.8 to 6.5.

【0010】これを簡単に説明すると、一般に嫌気性処
理の諸方式における基質投入量の制御は、HRT(水理
学的滞留時間)と有機物容積負荷によって行われる。但
し固形物含量が低い場合には、有機物容積負荷の代わり
にTOC(総有機炭素量),COD(化学的酸素要求
量),BOD(生物化学的酸素要求量)等の容積負荷が
用いられる。
To briefly explain this, in general, the control of the substrate input amount in various anaerobic treatment systems is carried out by HRT (hydraulic retention time) and organic matter volume loading. However, when the solid content is low, a volume load such as TOC (total amount of organic carbon), COD (chemical oxygen demand), BOD (biochemical oxygen demand) is used instead of the organic matter volume load.

【0011】上記の特願平6−324159号によれ
ば、反応槽に付設された酢酸資化性メタン細菌濃度測定
手段の測定値に基づいて、式を用いて有機物・酢酸資化
性メタン細菌負荷が計算され、この結果から反応槽に対
する原水流量の最適な制御が実施される。特に上記有機
物・酢酸資化性メタン細菌負荷が適正な範囲に入らない
場合には、適正な範囲に入るような原水の流量を計算に
より求めて、原水ポンプの流量を調節する制御が実施可
能となる。
According to the above-mentioned Japanese Patent Application No. 6-324159, based on the value measured by the acetic acid-utilizing methane bacteria concentration measuring means attached to the reaction tank, an organic substance / acetic acid-utilizing methane bacterium is calculated using a formula. The load is calculated and from this result optimal control of the raw water flow rate to the reactor is implemented. In particular, when the organic matter / acetic acid assimilating methane bacterial load does not fall within an appropriate range, it is possible to calculate the flow rate of raw water that falls within the appropriate range by calculation, and to control the flow rate of the raw water pump. Become.

【0012】又、特願平7−266555号によれば、
基質としてエタノールを添加し、更に重炭酸ナトリウム
NaHCO3を添加してpHを調整することにより、エ
タノールを基質としたメタン発酵においてpH5.8程
度の低pH条件でも正常なメタン発酵を進行させること
が可能となり、重炭酸ナトリウムを添加することによっ
て水素と炭酸ガスからのメタン生成が促進されるととも
に、エタノールからのVFA生成を促進する作用が得ら
れる。更にメタノールを基質としてpH5.0で馴養し
た培養液を種汚泥として、エタノールを基質としてpH
が5.8,6.5という比較的低pH条件下においてメタ
ン発酵を行うことにより、非電離VFAに対する耐性が
高い酢酸資化性メタン生成菌を集積培養することができ
る。
According to Japanese Patent Application No. 7-266555,
By adding ethanol as a substrate and further adding sodium bicarbonate NaHCO 3 to adjust the pH, normal methane fermentation can be progressed even in a low pH condition of about pH 5.8 in methane fermentation using ethanol as a substrate. It becomes possible, and the addition of sodium bicarbonate promotes the production of methane from hydrogen and carbon dioxide, and the action of promoting the production of VFA from ethanol. Furthermore, the culture medium conditioned at pH 5.0 with methanol as the substrate is used as seed sludge, and the ethanol is used as the substrate with pH.
By carrying out methane fermentation under a relatively low pH condition of 5.8 and 6.5, acetic acid-assimilating methanogens having high resistance to non-ionized VFA can be accumulated and cultured.

【0013】[0013]

【発明が解決しようとする課題】前記したようにメタン
発酵の異常を早期に検知してシステムフェイリュアーを
防止する制御方法として、現状では非電離VFAを測定
し、この非電離VFA濃度を指標としてpHや基質投入
量を制御する方法が有望であるものと考えられる。この
非電離VFA濃度は液相pHとVFAを測定すれば計算
によって求めることができる上、両者ともに自動測定が
可能であるという利点がある。
As described above, as a control method for detecting an abnormality in methane fermentation at an early stage to prevent system failure, at present, non-ionized VFA is measured and this non-ionized VFA concentration is used as an index. As a method, it is considered promising to control the pH and the input amount of the substrate. This non-ionized VFA concentration can be calculated by measuring the liquid phase pH and VFA, and both have the advantage that they can be automatically measured.

【0014】現在VFAの計測は、酸,塩基滴定法によ
って総VFAを測定する方法が行われている。更にイオ
ンクロマトグラフィーによりVFAを成分別に測定する
ことが可能であり、自動化した測定器も開発されてい
る。
Currently, the VFA is measured by a method of measuring the total VFA by an acid / base titration method. Furthermore, it is possible to measure VFA for each component by ion chromatography, and an automated measuring device has been developed.

【0015】非電離VFA以外にも長鎖脂肪酸も阻害性
があることが知られており、嫌気性分解の過程で長鎖脂
肪酸が中間生成物として生成する可能性がある基質、例
えば炭化水素とか脂肪、蛋白質などの複合基質を用いた
メタン発酵においては、長鎖脂肪酸がメタン生成菌を阻
害する。そのために長鎖脂肪酸が生成しない基質を用い
たメタン発酵系において、非電離VFAの阻害性につい
て検討することが望ましい。
In addition to non-ionized VFA, long-chain fatty acids are known to have an inhibitory effect, and long-chain fatty acids may be produced as an intermediate product in the process of anaerobic decomposition, such as hydrocarbons. In methane fermentation using complex substrates such as fats and proteins, long-chain fatty acids inhibit methanogens. Therefore, it is desirable to study the inhibitory property of non-ionized VFA in a methane fermentation system using a substrate that does not produce long-chain fatty acids.

【0016】従来の学説によると、非電離VFAはメタ
ン生成菌に対する阻害作用が10〜20(mg/l)で
現れ、非電離プロピオン酸は非電離酢酸よりも阻害作用
が強いと言われている。このプロピオン酸は難分解性を
持ち、メタン生成菌はプロピオン酸を基質として直接利
用することができない。
According to the conventional theory, it is said that non-ionized VFA has an inhibitory effect on methanogens of 10 to 20 (mg / l), and non-ionized propionic acid has a stronger inhibitory effect than non-ionized acetic acid. . This propionic acid is hardly decomposable, and methanogens cannot directly use propionic acid as a substrate.

【0017】又、VFAの成分別に阻害性の強弱がある
ことが当然予想されるが、この点に関する従来の研究報
告をみると非電離のプロピオン酸がその他のVFAに比
較して阻害性が強いという報告と、これを否定する見解
とが共存する。プロピオン酸以外の各種のVFAの阻害
性についても定説はないものと思われる。
It is naturally expected that the components of VFA have different inhibitory strengths. However, according to the conventional research reports on this point, non-ionized propionic acid has a stronger inhibitory effect than other VFAs. And the view to deny it coexist. It seems that there is no established theory about the inhibitory properties of various VFAs other than propionic acid.

【0018】以上の観点から非電離VFA濃度を指標と
したメタン発酵システムの制御においては、非電離VF
Aの阻害性を明確にする必要性がある。
From the above viewpoint, in controlling the methane fermentation system using the non-ionized VFA concentration as an index, the non-ionized VF is used.
There is a need to clarify the inhibitory effect of A.

【0019】そこで本発明は上記に鑑みてなされたもの
であって、メタン発酵タンク内液相のpHと成分別揮発
性有機酸濃度から酢酸以外の非電離揮発性有機酸濃度を
算出し、これを指標としてメタン発酵タンクへの基質投
入量又はpH値を制御することにより、異常発酵(シス
テムフェイリュアー)が起こる兆候を早い時期に察知し
て適切な対策をとることができるメタン発酵制御方法を
提供することを目的とするものである。
Therefore, the present invention has been made in view of the above, and calculates the non-ionizing volatile organic acid concentration other than acetic acid from the pH of the liquid phase in the methane fermentation tank and the volatile organic acid concentration of each component. By controlling the amount of substrate input to the methane fermentation tank or the pH value using as an index, it is possible to detect signs of abnormal fermentation (system failure) at an early stage and take appropriate measures. It is intended to provide.

【0020】[0020]

【課題を解決するための手段】本発明は上記の目的を達
成するために、先ず請求項1により、メタン発酵タンク
にpH計と揮発性有機酸の成分別測定器及び基質投入量
制御手段を設置して、液相pH値の測定及び成分別測定
器によって酢酸以外の非電離揮発性有機酸の測定を行っ
てから計算手段によって非電離の揮発性有機酸濃度を求
め、これを指標として該非電離揮発性有機酸濃度が15
〜20(mg/l)を越えないようにメタン発酵タンク
への投入基質量を制御するようにしたメタン発酵制御方
法を提供する。
In order to achieve the above object, the present invention firstly provides a methane fermentation tank with a pH meter, a volatile organic acid component-by-ingredient measuring device, and a substrate input control means. It is installed and the non-ionizing volatile organic acid other than acetic acid is measured by measuring the liquid phase pH value and the component-specific measuring instrument, and then the non-ionizing volatile organic acid concentration is calculated by calculation means. Ionizing volatile organic acid concentration is 15
Provided is a methane fermentation control method in which the amount of a base material charged into a methane fermentation tank is controlled so as not to exceed -20 (mg / l).

【0021】更に請求項2により、メタン発酵タンクに
pH計と揮発性有機酸の成分別測定器及びpH制御手段
を設置して、液相pH値の測定及び成分別測定器によっ
て酢酸以外の非電離揮発性有機酸の測定を行ってから計
算手段によって非電離の揮発性有機酸濃度を求め、これ
を指標として該非電離揮発性有機酸濃度が15〜20
(mg/l)を越えないようにメタン発酵タンクのpH
を制御するようにしたメタン発酵制御方法を提供する。
Further, according to the present invention, a methane fermentation tank is provided with a pH meter, a component-by-component measuring device for volatile organic acids and a pH control means, and a liquid phase pH value is measured and a component-by-component measuring device is used to measure non-acetic acid After the ionized volatile organic acid is measured, the non-ionized volatile organic acid concentration is calculated by a calculating means, and the non-ionized volatile organic acid concentration is 15 to 20 as an index.
PH of methane fermentation tank should not exceed (mg / l)
There is provided a method for controlling methane fermentation adapted to control

【0022】かかるメタン発酵制御方法によれば、廃棄
物を嫌気性処理によってメタン発酵させる際の有機物の
過負荷とかHRTの短縮もしくは毒物の流入等に起因す
るシステムフェイリュアーを非電離の揮発性有機酸濃度
の変化から早期に察知して、投入基質量の制御及び液相
pH値の制御等の対策をとることが可能となる。
According to such a method for controlling methane fermentation, the system fouling caused by the overload of organic substances, the shortening of HRT, the inflow of toxic substances, etc. when the waste is subjected to methane fermentation by anaerobic treatment is non-ionizable. It becomes possible to detect early from the change of the organic acid concentration and take measures such as control of the amount of input substrate and control of the liquid phase pH value.

【0023】[0023]

【発明の実施の形態】以下本発明にかかるメタン発酵制
御方法の具体的な実施例を説明する。本実施例では先ず
メタン発酵における非VFAの阻害性を明確にすること
を目的として、各種VFAまたは低級アルコールを基質
としてメタン発酵時のpH依存性の試験を実施した。
BEST MODE FOR CARRYING OUT THE INVENTION Specific examples of the method for controlling methane fermentation according to the present invention will be described below. In this example, first, for the purpose of clarifying the inhibitory effect of non-VFA in methane fermentation, a pH dependency test during methane fermentation was carried out using various VFAs or lower alcohols as substrates.

【0024】図3は本実施例にかかるメタン生成菌の培
養に用いた実験装置の概要図であり、1はプラスチック
等で構成された水槽であって、この水槽1内には投げ込
みヒータ2が配備されている。尚、水槽1の容積は20
リットルとした。
FIG. 3 is a schematic diagram of the experimental apparatus used for culturing the methanogenic bacterium according to the present embodiment. Reference numeral 1 denotes a water tank made of plastic or the like. It has been deployed. The volume of the water tank 1 is 20
It was liter.

【0025】上記水槽1の両端にまたがって2本の支持
棒4,4が設置され、この支持棒4,4に一端部が連結
された紐5,5の他端部が容積1リットルの細口ビン
3,3に連結されており、合計6本の細口ビン3,3が
水槽1内に浸漬されている。7は洗気ビン、8はガスホ
ルダであり、このガスホルダ8にはガスの上下動を測定
するスケール9が配備されている。
Two support rods 4, 4 are installed over both ends of the water tank 1. The other ends of the strings 5, 5 each having one end connected to the support rods 4, 4 have a narrow mouth of 1 liter in volume. A total of six narrow-mouthed bottles 3, 3 connected to the bottles 3, 3 are immersed in the water tank 1. Reference numeral 7 denotes an air-washing bottle, and reference numeral 8 denotes a gas holder. The gas holder 8 is provided with a scale 9 for measuring the vertical movement of gas.

【0026】かかる装置によれば、細口ビン3,3は水
槽1中の水に浮いており、投げ込みヒータ2によって水
槽1内を後述する温度条件に保ちながら細口ビン3,3
内に汚泥と培地を入れてインペラーによって撹拌するこ
とにより、各細口ビン3,3が揺動してガスが発生す
る。
According to such an apparatus, the narrow-mouthed bottles 3, 3 float on the water in the water tank 1, and the throw-in heater 2 keeps the inside of the water tank 1 at a temperature condition which will be described later.
The sludge and the medium are put into the container, and the mixture is stirred by the impeller, so that each of the narrow-mouthed bottles 3 and 3 swings to generate gas.

【0027】これによって発生したガスは、各細口ビン
3,3の上部のガス出口からガス導管6,6を通過して
1N−NaOHを満たした洗気ビン7を通り、CO2
除去されたガスがガス導管10を通過してガスホルダ8
に貯留される。そしてガスホルダ8の上下動をスケール
9で読み取り、メタンガス発生量を算出する。
The gas thus generated passes through gas conduits 6 and 6 from the gas outlets at the upper portions of the narrow-mouthed bottles 3 and 3, and passes through a gas-washing bottle 7 filled with 1N NaOH to remove CO 2 . The gas passes through the gas conduit 10 and passes through the gas holder 8.
Is stored in Then, the vertical movement of the gas holder 8 is read by the scale 9 to calculate the amount of methane gas generated.

【0028】培地としては表1に示す組成を持つ基本培
地を用いた。
As the medium, a basic medium having the composition shown in Table 1 was used.

【0029】[0029]

【表1】 [Table 1]

【0030】実際にはこの10倍濃度の培地を作り、こ
れをストック溶液として使用の都度10倍に希釈して用
いた。
In practice, a 10-fold concentration medium was prepared and used as a stock solution diluted 10-fold each time it was used.

【0031】先ず第1実施例の説明を行うと、基質とし
てのVFAはギ酸、酢酸、プロピオン酸、イソ酪酸を用
い、低級アルコールとしてはメタノールとエタノールを
用いた。そして嫌気性消化を行っている汚泥を汚泥消化
タンクから採取し、室温下で保存してある消化汚泥を種
汚泥として、この種汚泥の250mlと基本培地500
mlを上記細口ビン3,3に入れ、1N,HCl又は1
N,NaOHを用いてpHを7.3,6.5,5.8,5.
0に調整して培養を行った。
First of all, the VFA as the substrate was formic acid, acetic acid, propionic acid, and isobutyric acid, and the lower alcohols were methanol and ethanol. Then, the sludge that has undergone anaerobic digestion is collected from the sludge digestion tank, and the digested sludge stored at room temperature is used as seed sludge, and 250 ml of this seed sludge and the basic medium 500
ml into the narrow mouth bottles 3 and 3 and 1N, HCl or 1
The pH was adjusted to 7.3, 6.5, 5.8, and 5.5 using N and NaOH.
The culture was adjusted to 0.

【0032】実験期間中は水槽1内の温度は30℃に設
定し、1日〜2日に1回程度メタン発生量とpHの測定
及びpH調整とメタン発生速度の測定を行った。又、適
時に培養液を少量採取して濾紙を用いて濾過し、濾液を
採取してイオンクロマトグラフィによりVFA(揮発性
有機酸)濃度を測定した。
During the experimental period, the temperature in the water tank 1 was set to 30 ° C., and the methane generation amount and pH were measured, pH adjustment, and methane generation rate were measured once a day or two. In addition, a small amount of the culture solution was sampled at appropriate times and filtered using filter paper, and the filtrate was sampled to measure the VFA (volatile organic acid) concentration by ion chromatography.

【0033】基質の投入は同一基質では原則としてpH
に関係なく同じとし、時間の経過とともに1回当たりの
投入量を増加させるようにした。そして各種基質毎に最
高メタン生成速度を算出してこれを100%として各p
Hにおけるメタン生成速度を百分率で表した。VFAを
基質とした場合には、メタン生成速度の外にVFA分解
速度を算出して、最高VFA分解速度との比を百分率で
表した。更にプロピオン酸が残留している系にギ酸又は
酢酸を添加した場合も実施した。
As for the substrate input, in principle, the same substrate is used for pH.
The same was applied regardless of the above, and the input amount per one time was increased with the passage of time. Then, calculate the maximum methane production rate for each substrate and set this as 100%
The methane production rate in H was expressed as a percentage. When VFA was used as the substrate, the VFA decomposition rate was calculated in addition to the methane production rate, and the ratio to the maximum VFA decomposition rate was expressed as a percentage. Further, it was carried out when formic acid or acetic acid was added to the system in which propionic acid remained.

【0034】非電離VFAは酢酸イオンと非電離の酢酸
の存在比が下記の(1)式で現されるpHの関数である
ことを利用して、先ずpHからこの存在比率を計算し、
これにVFA濃度を乗じることによって計算した。 但しプロピオン酸と酪酸、吉草酸などは酢酸とpKの値
が近似しているので、この方法で計算できるが、ギ酸は
強酸であるため、pHが5〜7の範囲では非電離型は存
在しないものと考えられる。
In the non-ionized VFA, the existence ratio of acetate ion and non-ionized acetic acid is a function of pH expressed by the following equation (1), and the existence ratio is first calculated from pH,
It was calculated by multiplying this by the VFA concentration. However, since propionic acid, butyric acid, and valeric acid have similar pK values to acetic acid, it can be calculated by this method, but since formic acid is a strong acid, there is no non-ionizing type in the pH range of 5 to 7. It is considered to be a thing.

【0035】上記(1)式を用いて算出した遊離酢酸
(非電離)と酢酸イオン(電離)の存在比率及びpH依
存性の関係を図4に示す。
FIG. 4 shows the relationship between the abundance ratio of free acetic acid (non-ionized) and acetate ion (ionized) and pH dependency calculated using the above formula (1).

【0036】以下にこれらメタン発酵pH依存性試験の
結果を述べる。図5は各種VFAのメタン発酵における
pHと最高メタン生成速度との関係(COD換算,gC
OD/l・日,NaHCO3添加量5g/l)を示すグラ
フであり、図6は各種VFAのメタン発酵におけるpH
と最高VFA分解速度の関係(COD換算,gCOD/
l・日,NaHCO3添加量5g/l)を示すグラフであ
る。図5,図6から酢酸は酢酸以外のVFAに比較して
メタン生成速度とVFA分解速度が高く、pHを5まで
低下させても両速度の低下は緩やかであることが分か
る。
The results of these methane fermentation pH dependence tests will be described below. Figure 5 shows the relationship between pH and maximum methane production rate in methane fermentation of various VFAs (COD equivalent, gC
FIG. 6 is a graph showing OD / l · day, NaHCO 3 addition amount 5 g / l), and FIG. 6 shows pH in methane fermentation of various VFAs.
And the maximum VFA decomposition rate (COD conversion, gCOD /
1 is a graph showing the amount of NaHCO 3 added per day (5 g / l). 5 and 6 that acetic acid has a higher methane generation rate and VFA decomposition rate than VFA other than acetic acid, and that both rates decrease gradually even when pH is lowered to 5.

【0037】プロピオン酸以外のVFAは、pHを6.
5から7.3に高めると分解速度が低下する傾向があ
り、酢酸以外のVFAはpHを5.8から5.0に低下さ
せると、酢酸に比較して分解速度の低下が顕著であっ
た。ギ酸の分解速度もpH5.0では顕著に低下した
が、非電離のギ酸はほとんど無視できるほど低いことを
考慮すると、pH5.0では水素イオン濃度の上昇によ
る阻害性によるものと考えられる。
VFAs other than propionic acid have a pH of 6.
When it is increased from 5 to 7.3, the decomposition rate tends to decrease, and when the pH of VFA other than acetic acid is decreased from 5.8 to 5.0, the decomposition rate is significantly decreased as compared with acetic acid. . The decomposition rate of formic acid also decreased remarkably at pH 5.0, but considering that non-ionized formic acid is almost negligibly low, it is considered to be due to the inhibitory property due to the increase of hydrogen ion concentration at pH 5.0.

【0038】又、pH6.5と5.8の場合を比較する
と、pH5.8の方がメタン生成速度とVFA分解速度
が上昇している例(酢酸とギ酸)が見られることから、
このpH6.5からpH5.8の範囲では水素イオン濃度
の上昇によるメタン生成阻害作用は少ないものと考える
ことができる。
Further, comparing the cases of pH 6.5 and 5.8, it can be seen that pH 5.8 has higher methane generation rate and VFA decomposition rate (acetic acid and formic acid).
It can be considered that, in the range of pH 6.5 to pH 5.8, the methanogenesis-inhibiting effect due to the increase of the hydrogen ion concentration is small.

【0039】一方図7は各種VFAを基質としたメタン
発酵pH依存性試験における非電離VFAとVFA分解
速度の関係を示すグラフであり、酢酸を基質とした場
合、非電離VFA濃度が150(mg/l)でもVFA
分解速度はpH以外の条件が同じ場合のVFA分解速度
の最高値の84%であることから、酢酸はプロピオン酸
やイソ酪酸に比較して非電離型の阻害性が低いものと考
えられる。
On the other hand, FIG. 7 is a graph showing the relationship between the non-ionizing VFA and the VFA decomposition rate in a methane fermentation pH dependence test using various VFAs as substrates. When acetic acid was used as the substrate, the non-ionizing VFA concentration was 150 (mg / L) even VFA
Since the decomposition rate is 84% of the maximum value of the VFA decomposition rate when the conditions other than pH are the same, it is considered that acetic acid has a lower non-ionization type inhibitory property than propionic acid or isobutyric acid.

【0040】酢酸と酢酸以外のVFAの分解速度のpH
依存性の相違とか非電離VFAの阻害性の相違はプロピ
オン酸などから水素を産生して酢酸を生成する作用があ
る水素産生酢酸生成菌の菌数が少なく、非電離VFAに
より阻害されやすいためと考えられる。
PH of decomposition rate of acetic acid and VFA other than acetic acid
The difference in dependence and the non-ionizing VFA inhibitory difference are due to the fact that the number of hydrogen-producing acetogenic bacteria that have the action of producing hydrogen from propionic acid and the like to produce acetic acid is small, and that they are easily inhibited by non-ionizing VFA. Conceivable.

【0041】次にVFA及び低級アルコールのメタン発
酵pH依存性試験において非電離VFA濃度のメタン発
酵阻害性を明らかにするため、各種基質毎に最高メタン
発生速度あるいは最高VFA分解速度が得られるpHと
期間を選択して、その期間における他のpH条件下での
メタン発生速度とVFA分解速度との比を算出した。こ
の結果を表2に示す。
Next, in order to clarify the methane fermentation inhibitory effect of the non-ionized VFA concentration in the methane fermentation pH dependence test of VFA and lower alcohol, the pH at which the maximum methane generation rate or the maximum VFA decomposition rate was obtained for each substrate was determined. A period was selected and the ratio of methane generation rate to VFA decomposition rate under other pH conditions during that period was calculated. The results are shown in Table 2.

【0042】[0042]

【表2】 [Table 2]

【0043】表2のデータはpH6.5とpH5.8の場
合のみとした。表2において、メタン発生速度とVFA
分解速度との比が低いほどメタン生成の阻害性が強いも
のと考えられる。又、最高メタン生成速度と最高VFA
分解速度はプロピオン酸以外はpH6.5で記録した。
非電離VFA、非電離プロピオン酸、酢酸以外の非電離
VFAなどは対象期間の始めと終わりの平均値して、非
電離VFAと酢酸以外の非電離VFAは酢酸換算濃度と
したのに対して、非電離プロピオン酸は酢酸換算を行っ
ていない。
The data in Table 2 are only for pH 6.5 and pH 5.8. In Table 2, methane generation rate and VFA
It is considered that the lower the ratio with the decomposition rate, the stronger the inhibitory effect on methane production. Also, the highest methane production rate and the highest VFA
Degradation rates were recorded at pH 6.5 except for propionic acid.
Non-ionized VFA, non-ionized propionic acid, non-ionized VFA other than acetic acid are averaged at the beginning and end of the target period, whereas non-ionized VFA and non-ionized VFA other than acetic acid are converted to acetic acid equivalent concentrations. Non-ionized propionic acid is not converted to acetic acid.

【0044】表2のデータを用いて非電離VFA、非電
離プロピオン酸、酢酸以外の非電離VFAなどと〔メタ
ン生成速度〕/〔最高メタン生成速度〕及び〔VFA分
解速度〕/〔最高VFA分解速度〕の相関解析を行い、
相関係数と回帰式を求めた。その結果を表3,表4,表
5に示す。又、上記解析結果による相関関係の中で、特
に注目すべき関係を選んで図8,図9に示す。
Using the data in Table 2, non-ionized VFA, non-ionized propionic acid, non-ionized VFA other than acetic acid, etc. and [methane production rate] / [maximum methane production rate] and [VFA decomposition rate] / [maximum VFA decomposition] Speed] correlation analysis,
The correlation coefficient and regression equation were obtained. The results are shown in Tables 3, 4 and 5. Further, among the correlations obtained by the above analysis results, particularly noteworthy relations are selected and shown in FIGS.

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】[0047]

【表5】 [Table 5]

【0048】ギ酸を除くVFAを基質とした場合と酢酸
以外の非電離VFAと〔メタン生成速度〕/〔最高メタ
ン生成速度〕及び〔VFA分解速度〕/〔最高VFA分
解速度〕の相関は、それぞれ−0.930,−0.759
であり、非電離プロピオン酸(−0.834,−0.69
2)や非電離VFA(−0.063,−0.116)に比
較して負の相関が高くなっている。
Correlation between [non-ionized VFAs other than formic acid and non-ionized VFAs other than acetic acid and [methane production rate] / [maximum methane production rate] and [VFA decomposition rate] / [maximum VFA decomposition rate] is respectively -0.930, -0.759
And non-ionized propionic acid (-0.834, -0.69).
2) and non-ionized VFA (-0.063, -0.116) have a higher negative correlation.

【0049】基質をVFAと低級アルコールにした場合
においても〔メタン生成速度〕/〔最高メタン生成速
度〕との負の相関が比較的高いのは酢酸以外の非電離V
FA(相関係数−0.731)であった。一方、非電離
VFAは基質がVFAのみの場合とVFAと低級アルコ
ールの両者を合わせた場合でも相関係数が低かった。従
って非電離VFAの阻害性の強弱を評価する場合は、全
VFAやプロピオン酸のみの場合よりも酢酸以外のVF
Aを対象とした方が良いものと考えられる。
Even when VFA and lower alcohol are used as substrates, the negative correlation between [methane production rate] / [maximum methane production rate] is relatively high.
It was FA (correlation coefficient -0.731). On the other hand, the correlation coefficient of non-ionized VFA was low both when the substrate was VFA alone and when both VFA and lower alcohol were combined. Therefore, when assessing the inhibitory strength of non-ionized VFAs, VF other than acetic acid was used more than total VFAs and propionic acid alone.
It is considered better to target A.

【0050】酢酸以外の非電離VFAを阻害性の指標と
した場合、メタン生成速度が最高時の80%及び50%
に低下するのは、図8及び図9に示した濃度が夫々15
〜20、70(mg/l)の場合であった。実際にメタ
ン発酵を行う場合にはメタン生成速度が最高時の80%
以下に低下しないように制御する必要があるので、酢酸
以外の非電離VFA濃度を15〜20(mg/l)以下
に抑制すればよい。
When non-ionized VFA other than acetic acid is used as an index of inhibition, the methane production rate is 80% and 50% at the maximum.
The concentration decreases to 15% when the concentration shown in FIGS.
˜20, 70 (mg / l). When actually performing methane fermentation, the methane production rate is 80% of the maximum
Since it is necessary to control so as not to decrease below, the concentration of non-ionized VFA other than acetic acid may be suppressed to 15 to 20 (mg / l) or less.

【0051】そこで本実施例では、上記に述べた実験事
実に基づいて次の二つの具体的実施例に示すメタン発酵
方法を実現した。
Therefore, in this example, the methane fermentation method shown in the following two specific examples was realized based on the experimental facts described above.

【0052】[0052]

【実施例】【Example】

〔実施例1〕図1は実施例1の制御を行うためのシステ
ム構成を示す。図中の11はメタン発酵タンク、12は
pH計、13はVFA成分別測定器、14は非電離VF
A計算手段、15は基質投入量制御手段である。
[Embodiment 1] FIG. 1 shows a system configuration for controlling the embodiment 1. In the figure, 11 is a methane fermentation tank, 12 is a pH meter, 13 is a VFA component measuring instrument, and 14 is a non-ionizing VF.
A calculation means, 15 is a substrate input amount control means.

【0053】図示したように実施例1ではメタン発酵タ
ンク11にpH計12とVFA成分別測定器13を設置
し、pH計12によって液相pH値を測定するととも
に、VFA成分別測定器13によって酢酸以外の非電離
VFA測定を行ってから非電離VFA計算手段により非
電離VFAを求め、これを指標として、該非電離VFA
濃度が15〜20(mg/l)を越えないように基質投
入量制御手段15によりメタン発酵タンク11への投入
基質量を制御する。
As shown in the figure, in Example 1, a pH meter 12 and a VFA component-specific measuring device 13 were installed in a methane fermentation tank 11, and a pH value of the liquid phase was measured by the pH meter 12 and a VFA component-specific measuring device 13 was used. Non-ionized VFA other than acetic acid is measured, and then the non-ionized VFA is calculated by the non-ionized VFA calculation means.
The substrate input amount control means 15 controls the input substrate mass to the methane fermentation tank 11 so that the concentration does not exceed 15 to 20 (mg / l).

【0054】具体的には酢酸以外の非電離VFA濃度が
15〜20(mg/l)を越える場合には、基質の投入
を停止するか、あるいは投入量を減らして、上記濃度が
15〜20(mg/l)以下になるまで待つ。
Specifically, when the concentration of non-ionized VFA other than acetic acid exceeds 15 to 20 (mg / l), the above-mentioned concentration of 15 to 20 is stopped by stopping the input of the substrate or reducing the input amount. Wait until (mg / l) or less.

【0055】〔実施例2〕図2は実施例2の制御を行う
ためのシステム構成を示す。基本的な構成は図1と同一
であるため、同一の符号を付して表示してある。この実
施例2では前記実施例1における基質投入量制御手段1
5に代えて、pH制御手段16を設けてある。
[Second Embodiment] FIG. 2 shows a system configuration for controlling the second embodiment. Since the basic configuration is the same as that of FIG. 1, the same reference numerals are given and displayed. In the second embodiment, the substrate input amount control means 1 in the first embodiment is used.
Instead of 5, pH control means 16 is provided.

【0056】そしてpH計12によりメタン発酵タンク
11内の液相pHを測定するとともにVFA成分別測定
器13によって酢酸以外の非電離VFAの測定を行い、
非電離VFA計算手段により非電離VFAを求め、これ
を指標として該非電離VFA濃度が15〜20(mg/
l)を越えないようにpH制御手段16によりpHを制
御する。pH制御方法としてはアルカリを添加したりガ
スを水洗浄して気相中のCO2を除去して液相に揮散さ
せる方法がある。pHが上昇すると、〔非電離VFA〕
/〔全VFA〕の比率が低下して、酢酸以外の非電離V
FA濃度も低下する。
Then, the pH meter 12 measures the pH of the liquid phase in the methane fermentation tank 11, and the VFA component-specific measuring device 13 measures the non-ionized VFA other than acetic acid.
The non-ionizing VFA is calculated by the non-ionizing VFA calculating means, and the non-ionizing VFA concentration is 15 to 20 (mg /
The pH is controlled by the pH control means 16 so as not to exceed l). As a pH control method, there is a method in which an alkali is added or the gas is washed with water to remove CO 2 in the gas phase and volatilize into the liquid phase. When pH increases, [non-ionizing VFA]
/ [Total VFA] ratio decreases, and non-ionized V other than acetic acid
FA concentration also decreases.

【0057】[0057]

【発明の効果】以上詳細に説明したように、本発明にか
かるメタン発酵制御方法は、メタン発酵タンクにpH計
と揮発性有機酸の成分別測定器及び基質投入量制御手段
もしくはpH制御手段を設けて、液相pH値の測定及び
成分別測定器によって酢酸以外の非電離揮発性有機酸の
測定を行ってから計算手段によって非電離の揮発性有機
酸濃度を求め、これを指標として該非電離揮発性有機酸
濃度が15〜20(mg/l)を越えないようにメタン
発酵タンクへの投入基質量を制御するかpHの制御を実
施することにより、システムフェイリュアー(異常発
酵)を早期に察知して、適切な対策をとることが可能と
なる。
As described in detail above, the methane fermentation control method according to the present invention comprises a methane fermentation tank equipped with a pH meter, a volatile organic acid component-by-ingredient measuring device, and a substrate input amount control means or a pH control means. The concentration of the non-ionizing volatile organic acid other than acetic acid is measured by measuring the liquid phase pH value and the component-specific measuring instrument, and then the non-ionizing volatile organic acid concentration is calculated by a calculation means. The system failure (abnormal fermentation) can be accelerated by controlling the mass of the base material input to the methane fermentation tank or by controlling the pH so that the volatile organic acid concentration does not exceed 15 to 20 (mg / l). Therefore, it is possible to take appropriate measures.

【0058】特に非電離揮発性有機酸のメタン発酵阻害
性に関して従来は統一見解がなかったが、本実施例によ
れば、揮発性有機酸と低級アルコールのメタン発酵pH
依存性試験の結果から非電離の酢酸は阻害性が弱く、酢
酸以外の非電離VFAの阻害性が強いことが判明したの
で、液相pHと成分別VFA濃度の測定結果から酢酸以
外の非電離VFAを算出し、これを指標とする基質投入
量又はpHの制御を実施することにより前記の問題点を
効率的に解消することができる。
In particular, there has been no unified view on the methane fermentation inhibition property of non-ionizing volatile organic acids, but according to this Example, the methane fermentation pH of volatile organic acids and lower alcohols
From the results of the dependence test, it was found that non-ionized acetic acid had weak inhibitory properties and strong inhibitory effects on non-ionized VFAs other than acetic acid. By calculating VFA and controlling the substrate input amount or pH using this as an index, the above-mentioned problems can be efficiently solved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例にかかるメタン発酵制御シ
ステムを示す概要図。
FIG. 1 is a schematic diagram showing a methane fermentation control system according to a first embodiment of the present invention.

【図2】本発明の第2実施例にかかるメタン発酵制御シ
ステムを示す概要図。
FIG. 2 is a schematic diagram showing a methane fermentation control system according to a second embodiment of the present invention.

【図3】本実施例にかかるメタン生成菌の培養に用いた
実験装置の概要図。
FIG. 3 is a schematic diagram of an experimental apparatus used for culturing a methanogenic bacterium according to this example.

【図4】遊離酢酸(非電離)と酢酸イオン(電離)の存
在比率及びpH依存性の関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the abundance ratio of free acetic acid (non-ionized) and acetate ion (ionized) and pH dependence.

【図5】VFAのメタン発酵におけるpHと最高メタン
生成速度との関係を示すグラフ。
FIG. 5 is a graph showing the relationship between pH and the maximum methane production rate in methane fermentation of VFA.

【図6】各種VFAのメタン発酵におけるpHと最高V
FA分解速度の関係を示すグラフ。
FIG. 6 pH and maximum V in methane fermentation of various VFAs
The graph which shows the relationship of FA decomposition rate.

【図7】各種VFAを基質としたメタン発酵pH依存性
試験における非電離VFAとVFA分解速度の関係を示
すグラフ。
FIG. 7 is a graph showing the relationship between non-ionized VFA and VFA decomposition rate in a pH dependence test of methane fermentation using various VFAs as substrates.

【図8】酢酸以外の非電離VFAと〔メタン生成速度〕
/〔最高メタン生成速度〕の相関を示すグラフ。
FIG. 8: Nonionized VFA other than acetic acid and [Methane production rate]
The graph which shows the correlation of / [maximum methane production rate].

【図9】酢酸以外の非電離VFAと〔メタン生成速度〕
/〔最高メタン生成速度〕の相関を示すグラフ。
FIG. 9: Nonionized VFA other than acetic acid and [Methane production rate]
The graph which shows the correlation of / [maximum methane production rate].

【符号の説明】[Explanation of symbols]

1…水槽 2…投げ込みヒータ 3…細口ビン 4…支持棒 5…紐 6,10…ガス導管 7…洗気ビン 8…ガスホルダ 9…スケール 11…メタン発酵タンク 12…pH計 13…VFA成分別測定器 14…非電離VFA計算手段 15…基質投入量制御手段 16…pH制御手段 1 ... Water tank 2 ... Throwing heater 3 ... Narrow mouth bottle 4 ... Support rod 5 ... String 6, 10 ... Gas conduit 7 ... Rinsing bottle 8 ... Gas holder 9 ... Scale 11 ... Methane fermentation tank 12 ... pH meter 13 ... VFA component measurement Container 14 ... Non-ionizing VFA calculation means 15 ... Substrate input amount control means 16 ... pH control means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 メタン発酵タンクにpH計と揮発性有機
酸の成分別測定器及び基質投入量制御手段を設置して、
液相pH値の測定及び成分別測定器によって酢酸以外の
非電離揮発性有機酸の測定を行ってから計算手段によっ
て非電離の揮発性有機酸濃度を求め、これを指標として
該非電離揮発性有機酸濃度が15〜20(mg/l)を
越えないようにメタン発酵タンクへの投入基質量を制御
することを特徴とするメタン発酵制御方法。
1. A methane fermentation tank is provided with a pH meter, a volatile organic acid component-specific measuring device, and a substrate input amount control means,
Non-ionizing volatile organic acids other than acetic acid are measured by liquid phase pH value measurement and component-by-component measuring instrument, and then the non-ionizing volatile organic acid concentration is calculated by calculation means. A method for controlling methane fermentation, which comprises controlling a mass of a base material charged into a methane fermentation tank so that an acid concentration does not exceed 15 to 20 (mg / l).
【請求項2】 メタン発酵タンクにpH計と揮発性有機
酸の成分別測定器及びpH制御手段を設置して、液相p
H値の測定及び成分別測定器によって酢酸以外の非電離
揮発性有機酸の測定を行ってから計算手段によって非電
離の揮発性有機酸濃度を求め、これを指標として該非電
離揮発性有機酸濃度が15〜20(mg/l)を越えな
いようにメタン発酵タンクのpHを制御することを特徴
とするメタン発酵制御方法。
2. A methane fermentation tank is provided with a pH meter, a volatile organic acid component-by-ingredient measuring device and a pH control means, and a liquid phase p
After measuring non-ionizing volatile organic acids other than acetic acid by measuring H value and component-specific measuring instrument, the non-ionizing volatile organic acid concentration is calculated by calculation means, and the non-ionizing volatile organic acid concentration is used as an index. The method for controlling methane fermentation, which comprises controlling the pH of the methane fermentation tank so that the value does not exceed 15 to 20 (mg / l).
JP5432696A 1996-03-12 1996-03-12 Controlling method for methane fermentation Pending JPH09239397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5432696A JPH09239397A (en) 1996-03-12 1996-03-12 Controlling method for methane fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5432696A JPH09239397A (en) 1996-03-12 1996-03-12 Controlling method for methane fermentation

Publications (1)

Publication Number Publication Date
JPH09239397A true JPH09239397A (en) 1997-09-16

Family

ID=12967477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5432696A Pending JPH09239397A (en) 1996-03-12 1996-03-12 Controlling method for methane fermentation

Country Status (1)

Country Link
JP (1) JPH09239397A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015231A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for methane fermentation of organic waste
JP2004290921A (en) * 2003-03-28 2004-10-21 Fuji Electric Holdings Co Ltd Methane fermentation method and system
JP2006218422A (en) * 2005-02-10 2006-08-24 Mitsubishi Heavy Ind Ltd Process for treating organic waste and apparatus for the same
JP2007222802A (en) * 2006-02-24 2007-09-06 Ngk Insulators Ltd Management method of digestion tank operation situation
JP2008246359A (en) * 2007-03-30 2008-10-16 Kubota Corp Treating method and apparatus of organic waste
JP2008307486A (en) * 2007-06-15 2008-12-25 Fuji Electric Holdings Co Ltd Methane fermentation treatment apparatus and control method of methane fermentation tank
CN110340107A (en) * 2019-04-25 2019-10-18 山东盛唐电气有限公司 A kind of automated processing system and method for scrapping ammeter
KR20210027204A (en) * 2019-08-30 2021-03-10 허관용 An apparatus andmethod for improving dewaterability of digested sludge by sludge curing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015231A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for methane fermentation of organic waste
JP2004290921A (en) * 2003-03-28 2004-10-21 Fuji Electric Holdings Co Ltd Methane fermentation method and system
JP2006218422A (en) * 2005-02-10 2006-08-24 Mitsubishi Heavy Ind Ltd Process for treating organic waste and apparatus for the same
JP2007222802A (en) * 2006-02-24 2007-09-06 Ngk Insulators Ltd Management method of digestion tank operation situation
JP2008246359A (en) * 2007-03-30 2008-10-16 Kubota Corp Treating method and apparatus of organic waste
JP2008307486A (en) * 2007-06-15 2008-12-25 Fuji Electric Holdings Co Ltd Methane fermentation treatment apparatus and control method of methane fermentation tank
CN110340107A (en) * 2019-04-25 2019-10-18 山东盛唐电气有限公司 A kind of automated processing system and method for scrapping ammeter
CN110340107B (en) * 2019-04-25 2022-03-04 山东盛唐电气有限公司 Automatic processing system and method for scrapped electric meters
KR20210027204A (en) * 2019-08-30 2021-03-10 허관용 An apparatus andmethod for improving dewaterability of digested sludge by sludge curing

Similar Documents

Publication Publication Date Title
Alves et al. Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part II: Oleic acid toxicity and biodegradability
Montañés et al. Anaerobic mesophilic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: Effect of pH control
Wijekoon et al. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor
Yuan et al. VFA generation from waste activated sludge: effect of temperature and mixing
Elefsiniotis et al. Influence of pH on the acid‐phase anaerobic digestion of primary sludge
Hinken et al. Modified ADM1 for modelling an UASB reactor laboratory plant treating starch wastewater and synthetic substrate load tests
Kianmehr et al. An evaluation of protocols for characterization of ozone impacts on WAS properties and digestibility
Anzola‐Rojas et al. A novel anaerobic down‐flow structured‐bed reactor for long‐term stable H2 energy production from wastewater
Spyridonidis et al. Modeling of anaerobic digestion of slaughterhouse wastes after thermal treatment using ADM1
Senturk et al. Treatment efficiency and VFA composition of a thermophilic anaerobic contact reactor treating food industry wastewater
JPH09239397A (en) Controlling method for methane fermentation
JPS6114800B2 (en)
Yu et al. Inhibition by chromium and cadmium of anaerobic acidogenesis
WO2013152474A1 (en) Method for detecting biochemical oxygen demand
Liu et al. On-line monitoring of a two-stage anaerobic digestion process using a BOD analyzer
Corbellini et al. Hydrogenotrophic biogas upgrading integrated into WWTPs: enrichment strategy
Polettini et al. Continuous fermentative hydrogen production from cheese whey–new insights into process stability
Chang et al. Effect of different gas releasing methods on anaerobic fermentative hydrogen production in batch cultures
Fothergill et al. VFA production in thermophilic aerobic digestion of municipal sludges
Lee Relationship between oxidation reduction potential (ORP) and volatile fatty acid (VFA) production in the acid-phase anaerobic digestion process
Barañao et al. Modelling carbon oxidation in pulp mill activated sludge systems: calibration of Activated Sludge Model No 3
CN113391045A (en) Method for testing activity of anaerobic sludge
Rahman et al. A simple cost-effective manometric respirometer: design and application in wastewater biomonitoring
Alonso et al. Performance of up-flow anaerobic fixed bed reactor of the treatment of sugar beet pulp lixiviation in a thermophilic range
Binot et al. Methanogenic potential activity of mixed liquors: fluorimetric monitoring