JP2008307486A - Methane fermentation treatment apparatus and control method of methane fermentation tank - Google Patents

Methane fermentation treatment apparatus and control method of methane fermentation tank Download PDF

Info

Publication number
JP2008307486A
JP2008307486A JP2007159056A JP2007159056A JP2008307486A JP 2008307486 A JP2008307486 A JP 2008307486A JP 2007159056 A JP2007159056 A JP 2007159056A JP 2007159056 A JP2007159056 A JP 2007159056A JP 2008307486 A JP2008307486 A JP 2008307486A
Authority
JP
Japan
Prior art keywords
methane
bacteria
fermentation
methane fermentation
fermenter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007159056A
Other languages
Japanese (ja)
Other versions
JP4827021B2 (en
Inventor
Miyako Hitomi
美也子 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2007159056A priority Critical patent/JP4827021B2/en
Publication of JP2008307486A publication Critical patent/JP2008307486A/en
Application granted granted Critical
Publication of JP4827021B2 publication Critical patent/JP4827021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a methane fermentation treatment apparatus and a control method of a methane fermentation tank, which is capable of finding out bad fermentation caused by inhibition, always maintaining in a good condition in the tank, and stabilizing methane fermentation. <P>SOLUTION: In the methane fermentation treatment apparatus 1 having a methane fermentation tank 15 generating a biogas constituted by methane gas as a principal constituent by feeding an organic waste, a slurry feeding amount is controlled by an opening 21 for taking out a part of a fermentation liquid from the methane tank 15, a bacterium number measuring device 23 for measuring a total active bacterium number and a methane fermentation bacterium number in a fermentation liquid taken out, and a control part 24 outputting an alarm to an unstable operational condition of the methane fermentation tank when a rate of the number of methane fermentation bacteria to that of total bacteria in the fermentation liquid measured by the bacterium number measuring device 23 comes to below a predetermined threshold value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、メタン発酵処理装置およびメタン発酵槽の制御方法に関する。   The present invention relates to a methane fermentation treatment apparatus and a method for controlling a methane fermentation tank.

生ごみ、汚泥等の有機性廃棄物のほとんどは、焼却や埋立処分されているが、焼却に伴うダイオキシンの発生や埋立処分地の逼迫、悪臭などの問題から、環境負荷の少ない処理方法が求められている。これらの問題を解決するために有機性廃棄物をメタン発酵処理し、発生したメタンガスを燃料電池やガスエンジンを用いて発電するシステムが開発されている。   Most organic waste such as garbage and sludge is incinerated or landfilled. However, due to problems such as dioxin generation due to incineration, tightness of landfill sites, and bad odors, treatment methods with low environmental impact are required. It has been. In order to solve these problems, a system has been developed in which organic waste is subjected to methane fermentation treatment, and the generated methane gas is generated using a fuel cell or a gas engine.

メタン発酵は、有機性廃棄物を粉砕・スラリー化した後、このスラリーを発酵槽に投入し、嫌気性下でメタン菌により発酵処理することで、有機性廃棄物をメタンガスに転換するもので、投入原料の性状や運転条件などにより様々な処理方法、発酵槽が提案されている。   In methane fermentation, organic waste is crushed and slurried, and then this slurry is put into a fermentor and fermented with methane bacteria under anaerobic conditions to convert organic waste into methane gas. Various treatment methods and fermenters have been proposed depending on the properties of the input raw materials and operating conditions.

メタン発酵法は、有機性廃棄物をバイオガスと水とに分解して大幅に減量することができ、嫌気性のため曝気動力が不要であるため省エネルギーな処理法であり、しかも副産物として生成するメタンガスをエネルギーとして回収できるメリットがある。生ごみ等の有機性廃棄物をメタン発酵法で効率的に処理するシステムとして、有機性廃棄物をペースト状に粉砕して、50〜60℃で大きな活性を示す高温メタン菌で処理するシステムが特許文献1や特許文献2等に開示されている。高温菌は36〜38℃の中温で活性が大きくなる中温菌に比べ2〜3倍の活性を持っており、高温菌でメタン発酵を行うことで分解速度の向上と消化率の向上を図ることができるとしている。   The methane fermentation method decomposes organic waste into biogas and water, greatly reducing the amount of waste, and is anaerobic and does not require aeration power. There is an advantage that methane gas can be recovered as energy. As a system that efficiently treats organic waste such as garbage by methane fermentation, a system that pulverizes organic waste into a paste and treats it with a high-temperature methane bacterium that exhibits high activity at 50 to 60 ° C. It is disclosed in Patent Document 1, Patent Document 2, and the like. Thermophilic bacteria are 2 to 3 times more active than mesophilic bacteria whose activity increases at a medium temperature of 36 to 38 ° C, and the decomposition rate and digestibility are improved by performing methane fermentation with the high temperature bacteria. I can do it.

メタン発酵槽を円滑に維持するためには、いくつかの因子を測定し管理することが必要である。運転の管理指標に槽内温度、pH、活性汚泥浮遊物質量(MLSS)、有機酸量、アンモニア性窒素濃度、バイオガス発生量などがある。しかしながら、本来発酵を担っているのは嫌気性細菌であり、これらの挙動を直接把握することができれば、より確実に発酵状態を診断できるようになる。
特開平10−137730号公報 特開平13−46997号公報 特開2004−8078号公報
In order to maintain a methane fermenter smoothly, it is necessary to measure and manage several factors. The management index of operation includes the temperature in the tank, pH, the amount of activated sludge suspended solids (MLSS), the amount of organic acid, the concentration of ammoniacal nitrogen, the amount of biogas generated. However, it is the anaerobic bacteria that are primarily responsible for fermentation, and if these behaviors can be directly understood, the fermentation state can be diagnosed more reliably.
Japanese Patent Laid-Open No. 10-137730 Japanese Patent Laid-Open No. 13-46997 JP 2004-8078 A

ところで、メタン発酵で重要なのは、効率よくメタンガスを取り出すことである。そのため、温度や生ゴミ負荷量などの管理が必要とされる。実際、温度、pH、MLSS、有機酸量、アンモニア性窒素濃度、バイオガス発生量などの値を経過日数ごとに測定して管理しているが、管理するファクターが多すぎて発酵を不安定にさせる直接の要因をつかめない。そのため、メタン発酵槽の中身、つまり活動している菌体数に着目し、これを制御ファクターとして取り扱うことが、発酵槽の定常状態を維持するのに適切である。   By the way, what is important in methane fermentation is to efficiently extract methane gas. Therefore, management such as temperature and garbage load is required. Actually, the temperature, pH, MLSS, organic acid amount, ammonia nitrogen concentration, biogas generation amount, etc. are measured and managed for each elapsed day, but there are too many factors to manage and the fermentation becomes unstable. I can't figure out the direct factors that make it happen. Therefore, paying attention to the contents of the methane fermentation tank, that is, the number of active cells, and handling this as a control factor is appropriate for maintaining the steady state of the fermentation tank.

これまで、メタン発酵槽内に存在する活性菌のすべての菌数を把握するために、生菌の体内に存在する加水分解酵素(エステラーゼ酵素)の作用を利用し、加水分解により蛍光を発する蛍光試薬を実際の消化汚泥に投入、蛍光顕微鏡により観察した画像を加工し菌をカウントする方法を採用していた(特許文献3)。この方法で測定した全活性菌数とガス発生量は相関が認められた。従って、菌数の低下が察知できれば生ごみスラリーの投入量を抑える制御を行うことができ、発酵を破綻させることなく運転することができる。   Until now, in order to grasp the total number of active bacteria present in the methane fermenter, the action of the hydrolase (esterase enzyme) present in the living bacteria and the fluorescence that fluoresces by hydrolysis A method was adopted in which the reagent was put into actual digested sludge, the image observed with a fluorescence microscope was processed, and the bacteria were counted (Patent Document 3). There was a correlation between the total number of active bacteria measured by this method and the amount of gas generated. Therefore, if a decrease in the number of bacteria can be detected, it is possible to control to suppress the input amount of the garbage slurry, and it is possible to operate without breaking the fermentation.

しかしながら、全菌数では、菌数の低下が起きたとき、単に生ごみ中の有機物が少なくなったためか、投入する生ごみの成分変動による阻害物質の影響か判断しにくかった。また、有機物量の低下を調べるには、スラリーのTS濃度、炭素、水素、窒素からの元素分析が必要になり手間がかかる。有機物が少ないために菌数低下が起こるのは当然のことなので(増殖に必要な栄養がないと考えてよい)、特にスラリー量を減らすなどの処置は必要ない。一方、投入生ごみ中のタンパク質の量が増えるなどしてアンモニア性窒素等の菌を直接阻害する物質が存在した場合、すばやくアンモニアを希釈するなどの対処が必要になり、菌数が低下したことで対処方法を迷っている時間はない。   However, it was difficult to judge the total number of bacteria when the number of bacteria declined, because the organic matter in the garbage was simply reduced, or the influence of the inhibitory substance due to the fluctuation of the ingredients in the garbage. In addition, in order to investigate the decrease in the amount of organic substances, elemental analysis from the TS concentration of the slurry, carbon, hydrogen, and nitrogen is required, which is troublesome. Since it is natural that the number of bacteria decreases due to the small amount of organic matter (it may be considered that there is no nutrition necessary for growth), it is not particularly necessary to take measures such as reducing the amount of slurry. On the other hand, if there is a substance that directly inhibits bacteria such as ammonia nitrogen due to an increase in the amount of protein in the input garbage, it is necessary to take measures such as diluting ammonia quickly, and the number of bacteria has decreased. There is no time to get lost.

本発明は、上記問題点に鑑みなされたものであり、発酵槽内の菌数を適切に管理することにより阻害による発酵不良を見極めることができ、常に槽内を良好な状態に保持し、メタン発酵の安定化を図ることができるメタン発酵処理装置およびメタン発酵槽の制御方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and can appropriately determine the number of bacteria in the fermenter so that fermentation failure due to inhibition can be determined. It aims at providing the control method of the methane fermentation processing apparatus which can aim at stabilization of fermentation, and a methane fermentation tank.

上記課題を解決するために、本発明は、有機性廃棄物を供給してメタンガスを主成分とするバイオガスを発生する発酵槽を有するメタン発酵処理装置において、前記発酵槽から発酵液の一部を取り出す手段と、前記取り出された発酵液中の全活性菌数およびメタン発酵菌数を計測する菌数計測計と、前記菌数計測計で計測した発酵液中の全活性菌に対するメタン発酵菌の割合が所定のしきい値以下になったときに、前記発酵槽の不安定な運転状態に対する警報を出力する警報出力手段と、を有することを特徴とする。   In order to solve the above problems, the present invention provides a fermenter for supplying organic waste and generating biogas containing methane gas as a main component. , A microbial fermentation counter for measuring the total number of active bacteria and methane fermentation bacteria in the extracted fermentation broth, and a methane fermentation bacterium for all active bacteria in the fermentation broth measured by the bacterial count And an alarm output means for outputting an alarm for an unstable operation state of the fermenter when the ratio of the above becomes a predetermined threshold value or less.

発明によれば、発酵液中の全活性菌に対するメタン発酵菌の割合を調べることで、単に生ごみ中の有機物が少なくなったためか、あるいは投入する生ごみの成分変動による阻害物質の影響かを見極めることかでき、常に槽内を良好な状態に保持し、メタン発酵の安定化を図ることができる。   According to the invention, by examining the ratio of methane-fermenting bacteria to the total active bacteria in the fermentation broth, whether the organic matter in the garbage is simply reduced, or the influence of the inhibitory substance due to the fluctuation of the ingredients of the garbage to be introduced It can be determined, and the inside of the tank can always be kept in a good state, and methane fermentation can be stabilized.

アンモニア性窒素濃度が2000mg/Lを越えた領域では、メタン菌/全菌比が0.2以下に低下し、酢酸濃度が1000mg/L以上に上昇する。このため、本発明では、前記全活性菌に対するメタン発酵菌の菌数の割合が0.2以下になったときに、発酵槽に対する運転状態の警報を出力する。これによって、発酵槽に対する復旧操作を行うことで、メタン発酵をより安定に行うことができる。   In the region where the ammoniacal nitrogen concentration exceeds 2000 mg / L, the methane bacteria / total bacteria ratio decreases to 0.2 or less, and the acetic acid concentration increases to 1000 mg / L or more. For this reason, in the present invention, when the ratio of the number of methane fermentation bacteria to the total active bacteria becomes 0.2 or less, an operation state alarm for the fermenter is output. Thereby, methane fermentation can be performed more stably by performing recovery operation with respect to a fermenter.

本発明のメタン発酵処理装置は、前記発酵槽への投入スラリーを調整する調整手段をさらに有し、前記調整手段は、前記警報出力手段からの警報が出力されたときに、前記発酵槽へ供給するスラリー投入量を調整することを特徴とする。これによって、メタン菌と全活性菌の割合は、再び所定以上となり、かつ、アンモニア性窒素濃度および酢酸濃度は低下するので、安定な発効が可能となる。   The methane fermentation treatment apparatus of the present invention further includes adjusting means for adjusting the slurry charged into the fermenter, and the adjusting means is supplied to the fermenter when an alarm is output from the alarm output means. The amount of slurry charged is adjusted. As a result, the ratio of the methane bacteria to the total active bacteria becomes a predetermined value or more again, and the ammonia nitrogen concentration and the acetic acid concentration are lowered, so that stable effect can be achieved.

また、前記警報出力手段からの警報が出力されたときに、前記発酵槽内の有機酸を一部取り除く操作を行うことを特徴とする。これによって、メタン菌と全活性菌の割合は、再び所定以上となり、かつ、アンモニア性窒素濃度および酢酸濃度は低下するので、安定な発効が可能となる。   Further, when an alarm is output from the alarm output means, an operation of removing a part of the organic acid in the fermenter is performed. As a result, the ratio of the methane bacteria to the total active bacteria becomes a predetermined value or more again, and the ammonia nitrogen concentration and the acetic acid concentration are lowered, so that stable effect can be achieved.

本発明は、有機性廃棄物を供給してメタンガスを主成分とするバイオガスを発生するメタン発酵槽の制御方法において、前記発酵槽から発酵液の一部を取り出し、前記取り出した発酵液中の全活性菌数およびメタン発酵菌数を計測し、前記計測結果に基づき、前記発酵液中の全活性菌に対するメタン発酵菌の割合を算出し、前記算出した発酵液中の全活性菌に対するメタン発酵菌の割合が所定のしきい値以下になったときに、警報を出力することを特徴とする。本発明によれば、メタン発酵槽内の全活性菌およびメタン発酵菌の菌数比に着目し、発酵槽内の菌数を適切に管理することにより阻害による発酵不良を見極めることができ、常に槽内を良好な状態に保持し、メタン発酵の安定化を図ることができる。   The present invention provides a method for controlling a methane fermentation tank that supplies organic waste and generates biogas mainly composed of methane gas. In the methane fermentation tank, a part of the fermentation liquid is extracted from the fermentation tank, The total number of active bacteria and the number of methane fermentation bacteria are measured, and based on the measurement result, the ratio of methane fermentation bacteria to the total active bacteria in the fermentation broth is calculated, and the methane fermentation for all active bacteria in the calculated fermentation broth An alarm is output when the proportion of bacteria falls below a predetermined threshold value. According to the present invention, paying attention to the number ratio of all active bacteria and methane fermentation bacteria in the methane fermenter, by appropriately managing the number of bacteria in the fermenter, it is possible to determine the fermentation failure due to inhibition, always The inside of the tank can be maintained in a good state, and methane fermentation can be stabilized.

また、本発明は、前記全活性菌に対するメタン発酵菌の菌数の割合が0.2以下になったとき、前記警報を出力することを特徴とする。本発明によれば、アンモニア性窒素濃度2000mg/Lを越えた領域では、メタン菌/全菌比が0.2以下に低下し、酢酸濃度が1000mg/L以上に上昇するため、発酵槽に対する復旧操作を行うことで、メタン発酵をより安定に行うことができる。   In addition, the present invention is characterized in that the alarm is output when the ratio of the number of methane fermentation bacteria to the total active bacteria becomes 0.2 or less. According to the present invention, in the region where the ammoniacal nitrogen concentration exceeds 2000 mg / L, the ratio of methane bacteria / total bacteria decreases to 0.2 or less, and the acetic acid concentration increases to 1000 mg / L or more. By performing the operation, methane fermentation can be performed more stably.

また本発明は、前記警報が出力されたときに、前記発酵液中の全活性菌に対するメタン発酵菌の割合に基づいて前記発酵槽へ供給するスラリー投入量を調整することを特徴とする。本発明によれば、スラリー供給部から前記発酵槽へ供給するスラリー投入量を調整することにより、発酵液中の阻害物質である有機酸濃度が低下し、メタン菌/全菌比も0.2以上となりメタン発酵をより安定に行うことができる。   In addition, the present invention is characterized in that when the alarm is output, the amount of slurry charged to be supplied to the fermenter is adjusted based on the ratio of methane fermentation bacteria to the total active bacteria in the fermentation broth. According to the present invention, by adjusting the amount of slurry supplied from the slurry supply unit to the fermenter, the concentration of organic acid, which is an inhibitory substance in the fermentation liquid, is reduced, and the methane bacteria / total bacteria ratio is also 0.2. Thus, methane fermentation can be performed more stably.

また本発明は、前記警報が出力されたときに、前記発酵液中の全活性菌に対するメタン発酵菌の割合に基づいて前記発酵槽内の有機酸を一部取り除くことを特徴とする。本発明によれば、発酵槽内の有機酸を一部取り除くことにより、発酵液中の阻害物質である有機酸濃度が低下し、メタン菌/全菌比も0.2以上となりメタン発酵をより安定に行うことができる。   Further, the present invention is characterized in that when the alarm is output, a part of the organic acid in the fermenter is removed based on a ratio of methane fermentation bacteria to all active bacteria in the fermentation broth. According to the present invention, by removing a part of the organic acid in the fermenter, the concentration of the organic acid that is an inhibitory substance in the fermented liquid is reduced, and the methane bacteria / total bacteria ratio becomes 0.2 or more, so that the methane fermentation is further performed. It can be performed stably.

本発明によれば、発酵槽内の菌数を適切に管理することにより阻害による発酵不良を見極めることができ、常に槽内を良好な状態に保持し、メタン発酵の安定化を図ることができるメタン発酵処理装置およびメタン発酵槽の制御方法を提供できる。   According to the present invention, it is possible to determine a fermentation failure due to inhibition by appropriately managing the number of bacteria in the fermenter, always maintaining the inside of the fermenter in a good state, and stabilizing the methane fermentation. A method for controlling a methane fermentation treatment apparatus and a methane fermentation tank can be provided.

以下、本発明の最良の実施形態について、添付図面を参照しつつ説明する。図1は、本発明の実施形態に係るメタン発酵槽の模式図である。図1に示すように、メタン発酵処理装置1は、粉砕機11、微粉砕機12、スラリー調整槽13、スラリー供給ポンプ14(調整手段)、メタン発酵槽15、廃液処理槽17、ガスホルダー18、ガス利用システム19、ポンプ20、取出し口(取り出し手段)21、スラリー引抜きポンプ22、菌数計測計23、制御部(警報出力手段)24及び希釈水供給ポンプ25を備えている。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic view of a methane fermenter according to an embodiment of the present invention. As shown in FIG. 1, a methane fermentation treatment apparatus 1 includes a pulverizer 11, a fine pulverizer 12, a slurry adjustment tank 13, a slurry supply pump 14 (adjustment means), a methane fermentation tank 15, a waste liquid treatment tank 17, and a gas holder 18. , A gas utilization system 19, a pump 20, an extraction port (extraction means) 21, a slurry extraction pump 22, a bacteria count meter 23, a control unit (alarm output means) 24, and a dilution water supply pump 25.

メタン発酵処理装置1は、有機性廃棄物を供給してメタンガスを主成分とするバイオガスを発生する。有機性廃棄物には、たとえば生ゴミや活性汚泥の余剰汚泥などが含まれる。粉砕機11は、投入された有機性廃棄物を粗砕するものである。微粉砕機12は、更に分解速度及び消化率の向上を図るために、粗砕した有機性廃棄物をペースト化し、スラリー調整槽13に投入する。スラリー調整槽13は、ペースト化された有機性廃棄物を希釈水供給ポンプ25により供給される希釈水により適当な固形物濃度に調整してスラリー化を行う。スラリー供給ポンプ14は、スラリー調整槽13によりスラリー化された有機性廃棄物をメタン発酵槽15に送る。   The methane fermentation treatment apparatus 1 supplies organic waste and generates biogas mainly composed of methane gas. Organic waste includes, for example, garbage and surplus sludge from activated sludge. The crusher 11 crushes the input organic waste. The pulverizer 12 pastes the crushed organic waste into a slurry adjusting tank 13 in order to further improve the decomposition rate and digestibility. The slurry adjusting tank 13 adjusts the pasted organic waste to a suitable solid concentration with the dilution water supplied from the dilution water supply pump 25 to perform slurrying. The slurry supply pump 14 sends the organic waste slurried in the slurry adjustment tank 13 to the methane fermentation tank 15.

メタン発酵槽15は、スラリー化された有機性廃棄物からメタンガスを主成分とするバイオガスを発生する。このメタン発酵槽15は、メタン菌等の嫌気性微生物が付着・担持された固定化微生物を充填した固定ろ床16が設置されている。メタン発酵槽15内では、(1)スラリー供給ポンプ14により有機性廃棄物を循環させる、(2)攪拌羽根15aで攪拌する、(3)バイオガスの一部をポンプ20によりメタン発酵槽15の下部に吹き込んでバブリングして攪拌する、などの方法で攪拌が行われ、嫌気性微生物による分解が行われる。   The methane fermentation tank 15 generates biogas mainly composed of methane gas from the slurried organic waste. The methane fermentation tank 15 is provided with a fixed filter bed 16 filled with immobilized microorganisms on which anaerobic microorganisms such as methane bacteria are attached and supported. In the methane fermentation tank 15, (1) organic waste is circulated by the slurry supply pump 14, (2) stirring is performed by the stirring blade 15 a, and (3) part of the biogas is stored in the methane fermentation tank 15 by the pump 20. Stirring is performed by a method such as blowing into the lower part and bubbling and stirring, and decomposition by anaerobic microorganisms is performed.

このメタン発酵槽15内には、メタン生成菌のほか、生ゴミ等の固形分をメタン菌がガス化できるまでに分解(有機酸)する酸生成菌などが存在する。バイオガスの効率的な発生には、活性メタン菌の存在は言うまでもなく、その他の酸生成菌らの存在も重要になる。   In this methane fermenter 15, in addition to methane-producing bacteria, there are acid-producing bacteria that decompose (organic acid) solid matter such as garbage before gasification of methane bacteria is possible. In order to efficiently generate biogas, not only the presence of active methane bacteria but also the presence of other acid-producing bacteria becomes important.

廃液処理槽17は、メタン発酵槽15の発酵液を廃水基準以下に処理され下水放流する。発酵により生成したバイオガスは、ガスホルダー18に回収され、ガスタービンや燃料電池などのガス利用システム19でエネルギーとして利用される。   The waste liquid treatment tank 17 treats the fermentation liquid in the methane fermentation tank 15 below the waste water standard and discharges the sewage. The biogas produced by fermentation is collected in the gas holder 18 and used as energy in a gas utilization system 19 such as a gas turbine or a fuel cell.

メタン発酵槽15には、発酵液の一部をサンプリングできる取出し口21を設け、この取出し口21から発酵液を毎日取り出す。スラリー引抜きポンプ22は、メタン菌/全活性菌比を計測するため、メタン発酵層15内の一部の発酵液を菌数計測計23に送る。所定の前処理が施されたサンプルとしての発酵液を2分割し、菌数計測計23を用いて、一方は蛍光試薬を添加して全活性菌数を測定し、もう一方はメタン菌数を蛍光顕微鏡により測定する。菌数計測計23は、取出し口21から取り出された発酵液中の全活性菌数およびメタン発酵菌数を計測するものである。   The methane fermentation tank 15 is provided with a take-out port 21 that can sample a part of the fermented liquid, and the fermented liquid is taken out from the take-out port 21 every day. The slurry extraction pump 22 sends a part of the fermentation broth in the methane fermentation layer 15 to the bacteria count meter 23 in order to measure the methane bacteria / total active bacteria ratio. The fermented liquor as a sample that has been subjected to a predetermined pretreatment is divided into two parts, and the number of active bacteria is measured by adding a fluorescent reagent on one side, and the number of methane bacteria is measured on the other side. Measure with a fluorescence microscope. The bacterial count meter 23 measures the total number of active bacteria and the number of methane fermentation bacteria in the fermentation liquid taken out from the outlet 21.

制御部24は、発酵液中の全活性菌数及びメタン発酵菌数に基づいて全活性菌数に対するメタン発酵菌の割合(メタン菌/全活性菌比)を算出し、発酵液中の全活性菌に対するメタン発酵菌の割合が所定のしきい値(例えば0.2)以下になったときに、メタン発酵槽15の不安定な運転状態に対する警報を出力する。   The control unit 24 calculates the ratio of methane-fermenting bacteria to the total number of active bacteria based on the total number of active bacteria and the number of methane-fermenting bacteria (methane bacteria / total active bacteria ratio), and the total activity in the fermentation liquid. When the ratio of the methane fermentation bacteria to the bacteria becomes a predetermined threshold value (for example, 0.2) or less, an alarm for an unstable operation state of the methane fermentation tank 15 is output.

ここで、例えば、制御部24は、メタン発酵槽15内の安定化を図るため、菌数計測計23で計測した発酵液中の全活性菌に対するメタン発酵菌の割合が所定のしきい値以下になったときに、メタン発酵槽15の不安定な運転状態に対する警報をスラリー供給ポンプ14へ出力する。そして、スラリー供給ポンプ14は、メタン発酵槽15へ供給するスラリー投入量を調整することにより投入有機物負荷を軽減してメタン発酵槽15に対する復旧操作を制御する。また、制御部24は、メタン発酵槽15内の有機酸を一部取り除くことによりメタン発酵槽15に対する復旧操作を制御する。   Here, for example, in order for the control part 24 to stabilize in the methane fermentation tank 15, the ratio of the methane fermentation microbe with respect to all the active microbes in the fermentation liquid measured with the microbe count meter 23 is below a predetermined threshold value. When it becomes, the alarm with respect to the unstable operation state of the methane fermentation tank 15 is output to the slurry supply pump 14. And the slurry supply pump 14 reduces the input organic substance load by adjusting the slurry input amount supplied to the methane fermentation tank 15, and controls the recovery operation for the methane fermentation tank 15. Moreover, the control part 24 controls the recovery operation with respect to the methane fermentation tank 15 by removing a part of the organic acid in the methane fermentation tank 15.

上述したメタン発酵槽内の全活性菌の測定は、以下の通りである。メタン発酵槽15内に存在する活性菌のすべての菌数を把握するために、生菌の体内に存在する加水分解酵素(エステラーゼ酵素)の作用を利用し、加水分解により蛍光を発する蛍光試薬を実際の消化汚泥に投入し、蛍光顕微鏡により観察した画像を加工し菌数をカウントする方法を取り入れている(特許文献3参照)。蛍光試薬には、5-(6-)カルボキシフルオレセインジアセテート、5-カルボキシフルオレセインジアセテートアセトキシメチルエステートなどからなる群を用いる。エステラーゼ酵素により、蛍光試薬のエステル結合が加水分解され、その際に蛍光を発する。この方法により計測された菌は、酸生成菌、メタン菌のほか、発酵に関わる菌が全て含まれているとみなす。   The measurement of all the active bacteria in the methane fermenter mentioned above is as follows. In order to grasp the total number of active bacteria present in the methane fermenter 15, a fluorescent reagent that emits fluorescence by hydrolysis is utilized using the action of hydrolase (esterase enzyme) present in the body of live bacteria. A method of counting the number of bacteria by processing the image observed with a fluorescence microscope and introducing it into actual digested sludge is adopted (see Patent Document 3). As the fluorescent reagent, a group consisting of 5- (6-) carboxyfluorescein diacetate, 5-carboxyfluorescein diacetate acetoxymethyl estate and the like is used. The ester bond of the fluorescent reagent is hydrolyzed by the esterase enzyme and emits fluorescence. The bacteria measured by this method are considered to contain all bacteria related to fermentation in addition to acid-producing bacteria and methane bacteria.

また、メタン菌の測定は、以下の通りである。メタン菌は、上述の全活性菌のように酵素を利用して蛍光染色しなくても、メタン菌の体内には特異的な蛍光性補酵素(8-ヒドロキシ−5−ジアザフラビン誘導体)があり、420nmの波長により励起され、472nmの蛍光波長を生ずる。通常、補酵素F420と呼ばれ、メタン菌を観察する簡易的な方法として知られる。特開平8−154662号公報では、この原理を利用し、蛍光分光光度計により蛍光強度を測定することによりメタン菌の活性を把握して、不測の事態に備えている。本発明では、全活性菌の菌数測定と同じ手段を用い、蛍光顕微鏡により観察した画像を加工し菌数をカウントする方法を取り入れている。   Measurement of methane bacteria is as follows. Methane bacteria have a specific fluorescent coenzyme (8-hydroxy-5-diazaflavin derivative) in the body of methane bacteria without fluorescent staining using enzymes like the above all active bacteria, Excitation with a wavelength of 420 nm results in a fluorescence wavelength of 472 nm. It is usually called coenzyme F420 and is known as a simple method for observing methane bacteria. In JP-A-8-154661, this principle is used to measure the fluorescence intensity with a fluorescence spectrophotometer to grasp the activity of methane bacteria and prepare for an unexpected situation. In the present invention, the same means as that for measuring the number of all active bacteria is used, and a method of processing the image observed with a fluorescence microscope and counting the number of bacteria is incorporated.

図2は、一般的な55℃高温メタン発酵実験におけるメタン菌/全菌比と、主に阻害の原因になるアンモニア性窒素濃度、酢酸濃度との関係を示したグラフである。アンモニア性窒素濃度はイオンクロマトグラフ法より、酢酸濃度はガスクロマトグラフ法により分析した。アンモニア性窒素濃度2000mg/Lを越えた領域では、メタン菌/全菌比が0.2以下に低下し、酢酸濃度が1000mg/L以上に上昇した。表1に発酵液のデータを示す。

Figure 2008307486
FIG. 2 is a graph showing the relationship between the methane bacterium / total bacterium ratio in a general 55 ° C. high-temperature methane fermentation experiment, and the ammonia nitrogen concentration and acetic acid concentration that mainly cause inhibition. The ammoniacal nitrogen concentration was analyzed by ion chromatography, and the acetic acid concentration was analyzed by gas chromatography. In the region where the ammoniacal nitrogen concentration exceeded 2000 mg / L, the ratio of methane bacteria / total bacteria decreased to 0.2 or less, and the acetic acid concentration increased to 1000 mg / L or more. Table 1 shows the data of the fermentation broth.
Figure 2008307486

図2、表1では、アンモニアによるメタン菌の阻害が起こり、酢酸からメタンを生成するメタン菌の代謝機能が低下していることを示しており、発酵の悪化を表している。通常、安定発酵が行なわれているときは、酢酸濃度は1000mg/L以下となり、常に消費されているため、適正範囲に戻すように対処しければならない。メタン菌/全活性菌比とアンモニア性窒素濃度、メタン菌/全活性菌比と酢酸濃度は互いに相関があり、メタン菌/全活性菌比を0.2以上に管理することで、アンモニア性窒素濃度2000mg/L以下、酢酸濃度1000mg/L以下が可能となることが分かる。   FIG. 2 and Table 1 show that the inhibition of methane bacteria by ammonia has occurred, and the metabolic function of methane bacteria that produce methane from acetic acid is reduced, indicating a deterioration in fermentation. Usually, when stable fermentation is performed, the acetic acid concentration is 1000 mg / L or less, and since it is always consumed, it must be dealt with so that it returns to an appropriate range. The ratio of methane bacteria / total active bacteria and ammonia nitrogen concentration, and the ratio of methane bacteria / total active bacteria and acetic acid concentration are correlated with each other. By controlling the ratio of methane bacteria / total active bacteria to 0.2 or more, ammonia nitrogen It can be seen that a concentration of 2000 mg / L or less and an acetic acid concentration of 1000 mg / L or less are possible.

このため、制御部24は、メタン菌/全活性菌比が0.2以下となった場合、スラリー量を減らすなどの対策を行なう。具体的には、制御部24は、メタン菌/全菌比のしきい値を0.2とし、それ以下になった場合、次の対応を行なう。   For this reason, when the methane bacteria / total active bacteria ratio is 0.2 or less, the control unit 24 takes measures such as reducing the amount of slurry. Specifically, the control unit 24 sets the threshold value of the methane bacteria / total bacteria ratio to 0.2, and when it becomes lower than that, performs the following response.

制御部24は、メタン菌/全活性菌比がk<0.2のとき、現行のスラリー投入量をq1(L/D)とすると、kの場合、投入量q2(L/D)を式(1)で算出する。
・q2=q1×(k/0.2) ・・・ (1)
When the ratio of methane bacteria / total active bacteria is k <0.2, and the current slurry input amount is q1 (L / D), the control unit 24 calculates the input amount q2 (L / D) in the case of k. Calculate in (1).
・ Q 2 = q1 × (k / 0.2) (1)

図2、表1では、メタン菌/全活性菌比が0.25を越えると、アンモニア性窒素濃度および酢酸濃度が十分に下がるため、メタン菌/全活性菌比が0.25を確認した時点で、元のスラリー量に徐々に戻す操作をすればよい。   2 and Table 1, when the methane bacteria / total active bacteria ratio exceeds 0.25, the ammonia nitrogen concentration and the acetic acid concentration are sufficiently lowered. Then, an operation of gradually returning to the original slurry amount may be performed.

以下、本発明のメタン菌/全活性菌比の計測によりメタン発酵槽15の槽内制御を行った実施例を説明する。メタン発酵槽15内の温度は55℃、メタン発酵槽15の容量は10リットルである。滞留時間(HRT)は10日であり、1日のスラリー投入量は、1L/dである。投入する有機性廃棄物は、厨芥ごみを希釈してミキシングしたスラリーである。スラリーの固形分濃度(TS)は100,000mg/Lに調整している。   Hereinafter, the Example which performed the tank control of the methane fermentation tank 15 by measurement of the methane bacteria / total active bacteria ratio of this invention is demonstrated. The temperature in the methane fermentation tank 15 is 55 ° C., and the capacity of the methane fermentation tank 15 is 10 liters. The residence time (HRT) is 10 days, and the daily slurry charge is 1 L / d. The organic waste to be input is a slurry obtained by diluting and mixing waste. The solid content concentration (TS) of the slurry is adjusted to 100,000 mg / L.

スラリー引抜きポンプ22により引き抜かれた発酵液をすばやく取り、その一部を水で5〜20倍に、好ましくは10〜15倍に希釈する。希釈後、固形分を除去するため、孔径20〜30μmのフィルターでろ過し、ろ液を超音波分散処理する。その後、pH緩衝液を加え、サンプルのpHをアルカリ性に調整する場合もある。pH緩衝液には、NaOHやKOHにKH2PO4を加えてアルカリ性に調整した試薬を使用した。 The fermentation liquor extracted by the slurry extraction pump 22 is quickly taken, and a part thereof is diluted 5 to 20 times, preferably 10 to 15 times with water. After dilution, in order to remove the solid content, the solution is filtered with a filter having a pore size of 20 to 30 μm, and the filtrate is subjected to ultrasonic dispersion treatment. Thereafter, a pH buffer solution may be added to adjust the pH of the sample to be alkaline. As the pH buffer, a reagent adjusted to be alkaline by adding KH 2 PO 4 to NaOH or KOH was used.

希釈・分散した発酵液サンプルを2個に分割し、一方は全活性菌数の測定を行うため蛍光試薬5-カルボキシフルオレセインジアセテートを加え、再び充分に混合し。もう一方はメタン菌数を計測するため、そのまま用いる。試料をバクテリア計測盤(エルマ株式会社)などのプレパラートに垂らし、蛍光顕微鏡(E−600,ニコン製)により観察をした。全活性菌およびメタン菌をそれぞれ蛍光観察し、観察画像を市販のソフト(Optimas6.51)で画像解析し、菌数をカウントした。   The diluted and dispersed fermentation broth sample is divided into two parts, and one of them is added with the fluorescent reagent 5-carboxyfluorescein diacetate to measure the total number of active bacteria, and thoroughly mixed again. The other is used as it is to measure the number of methane bacteria. The sample was hung on a preparation such as a bacteria measuring board (Elma Co., Ltd.) and observed with a fluorescence microscope (E-600, manufactured by Nikon). All active bacteria and methane bacteria were observed with fluorescence, and the observed images were analyzed with commercially available software (Optimas 6.51), and the number of bacteria was counted.

図3に、55℃のメタン発酵槽15の運転日数とメタン菌/全活性菌比、アンモニア性窒素濃度、酢酸濃度の変化を示す。測定開始約30日以降にメタン菌/全活性菌比が0.12を示し、それに伴いアンモニア性窒素濃度、酢酸濃度が上昇したことが確認できた。   FIG. 3 shows changes in the operating days of the methane fermenter 15 at 55 ° C. and the ratio of methane bacteria / total active bacteria, ammonia nitrogen concentration, and acetic acid concentration. About 30 days after the start of the measurement, the ratio of methane bacteria / total active bacteria was 0.12, and it was confirmed that the ammonia nitrogen concentration and the acetic acid concentration increased accordingly.

投入生ごみスラリー量を上述した式(1)を用いて、スラリー投入量q2を決定した。
・q2=1×(0.12/0.2)=0.6(L/d)
The slurry input amount q 2 was determined using the above formula (1) for the amount of input raw material slurry.
Q 2 = 1 × (0.12 / 0.2) = 0.6 (L / d)

次に、制御部24は、スラリー供給ポンプ14を制御することによりメタン発酵槽15内へのスラリー投入量を減少させた。この復旧操作により酢酸濃度が減少するとともに、メタン菌/全活性菌比が徐々に上昇し、アンモニア性窒素濃度も徐々に減少するきざしが見られた。このメタン菌/全活性菌比を計測してしきい値を0.2と置いてスラリー量の調整を行なったことで、メタン発酵槽15は、長期にわたって安定した運転ができた。
また、スラリー投入量を減少させる代わりに、有機酸を選択的に分離する透過膜を有する分離部にメタン発酵槽15内の発酵液を循環し、発酵液から有機酸の一部を取り除くことでも同様な効果が得られる。
Next, the control unit 24 decreased the amount of slurry charged into the methane fermentation tank 15 by controlling the slurry supply pump 14. As a result of this recovery operation, the acetic acid concentration decreased, the ratio of methane bacteria / total active bacteria gradually increased, and the ammonia nitrogen concentration gradually decreased. By measuring the methane bacteria / total active bacteria ratio and adjusting the amount of slurry by setting the threshold value to 0.2, the methane fermentation tank 15 was able to operate stably over a long period of time.
Alternatively, instead of reducing the slurry input amount, the fermentation liquid in the methane fermentation tank 15 may be circulated to the separation unit having a permeable membrane for selectively separating the organic acid, and a part of the organic acid may be removed from the fermentation liquid. Similar effects can be obtained.

以上述べてきたように、メタン発酵槽15内のアンモニア性窒素濃度、酢酸濃度、および発酵槽内の菌の挙動を観察することでメタン菌/全活性菌比のしきい値を決め、しきい値以下となったとき、式に従って、生ゴミの投入量を調整した。これにより、安定した発酵状態を長期にわたって管理・維持できるメタン発酵槽を実現することが可能となった。   As described above, the threshold of the methane bacteria / total active bacteria ratio is determined by observing the ammonia nitrogen concentration, acetic acid concentration in the methane fermenter 15 and the behavior of the bacteria in the fermenter, and the threshold value is determined. When the value was less than the value, the input amount of garbage was adjusted according to the formula. Thereby, it became possible to realize a methane fermentation tank capable of managing and maintaining a stable fermentation state over a long period of time.

以上本実施形態によれば、メタン菌と全活性菌の割合が所定以下となったときに、メタン発酵層15に投入するスラリー量を減少させる、あるいは、有機酸の一部を取り除くことによって、メタン発酵を安定させることができる。この操作によって、メタン菌と全活性菌の割合は、再び0.2以上となり、かつ、アンモニア性窒素濃度および酢酸濃度は低下するので、安定な発効が可能となる。   As described above, according to the present embodiment, when the ratio of methane bacteria and all active bacteria becomes a predetermined value or less, by reducing the amount of slurry to be introduced into the methane fermentation layer 15, or by removing a part of the organic acid, Methane fermentation can be stabilized. By this operation, the ratio of the methane bacteria to the total active bacteria becomes 0.2 or more again, and the ammonia nitrogen concentration and the acetic acid concentration are lowered, so that a stable effect can be achieved.

以上、本発明の好ましい実施形態について詳述したが、本発明は上述した実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。例えば、上記実施形態では、メタン発酵槽15に対する復旧操作の例として、スラリー供給ポンプ14からメタン発酵槽15へ供給するスラリー投入量を調整する場合やメタン発酵槽15内の有機酸を一部取り除く場合の例について説明したが本発明ではこれらの例に限定されることはない。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications may be made within the scope of the gist of the present invention described in the claims. It can be changed. For example, in the said embodiment, when adjusting the slurry input amount supplied to the methane fermentation tank 15 from the slurry supply pump 14 as an example of recovery operation with respect to the methane fermentation tank 15, or removing a part of organic acid in the methane fermentation tank 15 Examples of cases have been described, but the present invention is not limited to these examples.

本発明の実施形態に係るメタン発酵処理装置の構成例を説明するための模式図である。It is a schematic diagram for demonstrating the structural example of the methane fermentation processing apparatus which concerns on embodiment of this invention. 一般的なメタン発酵におけるアンモニア性窒素濃度(NH4 +-N)とメタン菌/全活性菌比および酢酸濃度の関係図である。It is a relationship diagram of ammonia nitrogen concentration (NH 4 + -N), methane bacteria / total active bacteria ratio, and acetic acid concentration in general methane fermentation. 発酵槽の運転日数におけるメタン菌/全活性菌比、アンモニア性窒素濃度および酢酸濃度の変化をモニタリングしたグラフである。It is the graph which monitored the change of the methane bacteria / total active bacteria ratio, the ammoniacal nitrogen concentration, and the acetic acid concentration in the operation days of a fermenter.

符号の説明Explanation of symbols

1・・・メタン発酵処理装置
11・・・粉砕機
12・・・微粉砕機
13・・・スラリー調整槽
14・・・スラリー供給ポンプ
15・・・メタン発酵槽
15a・・・攪拌羽根
16・・・固定ろ床
17・・・廃液処理槽
18・・・ガスホルダー
19・・・ガス利用システム
20・・・ポンプ
21・・・取出し口
22・・・スラリー引抜きポンプ
23・・・菌数計測計
24・・・制御部
25・・・希釈水供給ポンプ
DESCRIPTION OF SYMBOLS 1 ... Methane fermentation processing apparatus 11 ... Crusher 12 ... Fine pulverizer 13 ... Slurry adjustment tank 14 ... Slurry supply pump 15 ... Methane fermentation tank 15a ... Stirring blade 16. ..Fixed filter bed 17 ... Waste liquid treatment tank 18 ... Gas holder 19 ... Gas utilization system 20 ... Pump 21 ... Removal port 22 ... Slurry extraction pump 23 ... Bacteria count Total 24 ... Control unit 25 ... Dilution water supply pump

Claims (8)

有機性廃棄物を供給してメタンガスを主成分とするバイオガスを発生する発酵槽を有するメタン発酵処理装置において、
前記発酵槽から発酵液の一部を取り出し手段と、
前記取り出された発酵液中の全活性菌数およびメタン発酵菌数を計測する菌数計測計と、
前記菌数計測計で計測した発酵液中の全活性菌に対するメタン発酵菌の割合が所定のしきい値以下になったときに、前記発酵槽の不安定な運転状態に対する警報を出力する警報出力手段と、を有することを特徴とするメタン発酵処理装置。
In a methane fermentation treatment apparatus having a fermenter that supplies organic waste and generates biogas mainly composed of methane gas,
Means for removing a portion of the fermentation broth from the fermentor;
A bacterial count counter for measuring the total number of active bacteria and the number of methane fermentation bacteria in the extracted fermentation broth;
An alarm output that outputs an alarm for an unstable operation state of the fermenter when the ratio of methane fermentation bacteria to the total active bacteria in the fermentation broth measured by the microbe count is below a predetermined threshold value And a methane fermentation treatment apparatus.
前記警報出力手段は、前記全活性菌に対するメタン発酵菌の菌数の割合が0.2以下になったとき、前記発酵槽に対する運転状態の警報を出力することを特徴とする請求項1に記載のメタン発酵処理装置。 The alarm output means outputs an alarm of an operation state for the fermenter when the ratio of the number of methane fermentation bacteria to the total active bacteria becomes 0.2 or less. Methane fermentation treatment equipment. 前記発酵槽への投入スラリーを調整する調整手段をさらに有し、
前記調整手段は、前記警報出力手段からの警報が出力されたときに、前記発酵槽へ供給するスラリー投入量を調整することを特徴とする請求項1又は請求項2に記載のメタン発酵処理装置。
It further has adjusting means for adjusting the slurry charged to the fermenter,
3. The methane fermentation treatment apparatus according to claim 1, wherein the adjusting unit adjusts a slurry input amount to be supplied to the fermenter when an alarm is output from the alarm output unit. 4. .
前記警報出力手段からの警報が出力されたときに、前記発酵槽内の有機酸を一部取り除く操作を行うことを特徴とする請求項1又は請求項2に記載のメタン発酵処理装置。 3. The methane fermentation treatment apparatus according to claim 1, wherein when an alarm is output from the alarm output unit, an operation of removing a part of the organic acid in the fermenter is performed. 有機性廃棄物を供給してメタンガスを主成分とするバイオガスを発生するメタン発酵槽の制御方法において、
前記発酵槽から発酵液の一部を取り出し、
前記取り出した発酵液中の全活性菌数およびメタン発酵菌数を計測し、
前記計測結果に基づき、前記発酵液中の全活性菌に対するメタン発酵菌の割合を算出し、
前記算出した発酵液中の全活性菌に対するメタン発酵菌の割合が所定のしきい値以下になったときに、警報を出力することを特徴とするメタン発酵槽の制御方法。
In the control method of the methane fermentation tank that supplies organic waste and generates biogas mainly composed of methane gas,
Remove a portion of the fermentation broth from the fermentor,
Measure the total number of active bacteria and the number of methane fermentation bacteria in the extracted fermentation broth,
Based on the measurement results, calculate the ratio of methane fermentation bacteria to all active bacteria in the fermentation broth,
A control method for a methane fermenter, wherein an alarm is output when the ratio of the methane fermentation bacteria to the total active bacteria in the fermentation broth is equal to or less than a predetermined threshold value.
前記全活性菌に対するメタン発酵菌の菌数の割合が0.2以下になったとき、前記警報を出力することを特徴とする請求項5に記載のメタン発酵槽の制御方法。 6. The method for controlling a methane fermenter according to claim 5, wherein the alarm is output when a ratio of the number of methane fermentation bacteria to the total active bacteria becomes 0.2 or less. 前記警報が出力されたときに、前記発酵液中の全活性菌に対するメタン発酵菌の割合に基づいて前記発酵槽へ供給するスラリー投入量を調整することを特徴とする請求項5又は請求項6に記載のメタン発酵槽の制御方法。 The slurry input amount to be supplied to the fermenter is adjusted based on a ratio of methane fermentation bacteria to all active bacteria in the fermentation liquid when the alarm is output. The control method of the methane fermenter as described in 2. 前記警報が出力されたときに、前記発酵液中の全活性菌に対するメタン発酵菌の割合に基づいて前記発酵槽内の有機酸を一部取り除くことを特徴とする請求項5又は請求項6に記載のメタン発酵槽の制御方法。 The organic acid in the fermenter is partially removed based on a ratio of methane fermenting bacteria to all active bacteria in the fermentation liquid when the alarm is output. The control method of the methane fermenter of description.
JP2007159056A 2007-06-15 2007-06-15 Methane fermentation treatment apparatus and methane fermentation tank control method Active JP4827021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159056A JP4827021B2 (en) 2007-06-15 2007-06-15 Methane fermentation treatment apparatus and methane fermentation tank control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159056A JP4827021B2 (en) 2007-06-15 2007-06-15 Methane fermentation treatment apparatus and methane fermentation tank control method

Publications (2)

Publication Number Publication Date
JP2008307486A true JP2008307486A (en) 2008-12-25
JP4827021B2 JP4827021B2 (en) 2011-11-30

Family

ID=40235591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159056A Active JP4827021B2 (en) 2007-06-15 2007-06-15 Methane fermentation treatment apparatus and methane fermentation tank control method

Country Status (1)

Country Link
JP (1) JP4827021B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403781B1 (en) * 2023-05-16 2023-12-25 オリエンタル白石株式会社 Methane fermentation equipment and methane fermentation method
JP7547965B2 (en) 2019-12-18 2024-09-10 栗田工業株式会社 How to operate a methane fermentation treatment facility

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272175A (en) * 2019-06-28 2019-09-24 盐城恒清河湖整治有限公司 A kind of sewage-treatment plant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250044A (en) * 1988-03-30 1989-10-05 Akua Runesansu Gijutsu Kenkyu Kumiai Microorganism activity measuring instrument
JPH09239397A (en) * 1996-03-12 1997-09-16 Meidensha Corp Controlling method for methane fermentation
JP2002282897A (en) * 2001-03-28 2002-10-02 Mitsubishi Heavy Ind Ltd Methane fermentation system and its apparatus
JP2004008078A (en) * 2002-06-06 2004-01-15 Fuji Electric Holdings Co Ltd Method for measuring number of bacteria in methane fermentation tank and method for methane fermentation using the same
JP2005103371A (en) * 2003-09-29 2005-04-21 Fuji Electric Holdings Co Ltd Methane fermentation treatment method
JP2005152851A (en) * 2003-11-28 2005-06-16 Fuji Electric Holdings Co Ltd Power generation method using biogas and biogas power generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250044A (en) * 1988-03-30 1989-10-05 Akua Runesansu Gijutsu Kenkyu Kumiai Microorganism activity measuring instrument
JPH09239397A (en) * 1996-03-12 1997-09-16 Meidensha Corp Controlling method for methane fermentation
JP2002282897A (en) * 2001-03-28 2002-10-02 Mitsubishi Heavy Ind Ltd Methane fermentation system and its apparatus
JP2004008078A (en) * 2002-06-06 2004-01-15 Fuji Electric Holdings Co Ltd Method for measuring number of bacteria in methane fermentation tank and method for methane fermentation using the same
JP2005103371A (en) * 2003-09-29 2005-04-21 Fuji Electric Holdings Co Ltd Methane fermentation treatment method
JP2005152851A (en) * 2003-11-28 2005-06-16 Fuji Electric Holdings Co Ltd Power generation method using biogas and biogas power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7547965B2 (en) 2019-12-18 2024-09-10 栗田工業株式会社 How to operate a methane fermentation treatment facility
JP7403781B1 (en) * 2023-05-16 2023-12-25 オリエンタル白石株式会社 Methane fermentation equipment and methane fermentation method

Also Published As

Publication number Publication date
JP4827021B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
Wu et al. Commercial biogas plants: Review on operational parameters and guide for performance optimization
Gagliano et al. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge
Ghasimi et al. Microbial population dynamics during long-term sludge adaptation of thermophilic and mesophilic sequencing batch digesters treating sewage fine sieved fraction at varying organic loading rates
Merrylin et al. Biological pretreatment of non-flocculated sludge augments the biogas production in the anaerobic digestion of the pretreated waste activated sludge
El-Qelish et al. Bio-hydrogen production from sewage sludge: screening for pretreatments and semi-continuous reactor operation
JP4200886B2 (en) Power generation method and biogas power generation system using biogas
Eduok et al. Enhanced biogas production from anaerobic co-digestion of lignocellulosic biomass and poultry feces using source separated human urine as buffering agent
JP4827021B2 (en) Methane fermentation treatment apparatus and methane fermentation tank control method
Song et al. Upgrading the performance of high solids feeding anaerobic digestion of chicken manure under extremely high ammonia level
JP2019130486A (en) Operation method of wet type methane fermentation facility
Jokhio et al. Enhanced bio-methane and bio-hydrogen production using banana plant waste and sewage sludge through anaerobic co-digestion
JP2006314920A (en) Method for recovering energy from biomass
JP2004082017A (en) Methane fermentation method of organic waste and system therefor
Wang et al. Bioelectrochemical anaerobic membrane bioreactor enables high methane production from methanolic wastewater: Roles of microbial ecology and microstructural integrity of anaerobic biomass
JP4864339B2 (en) Organic waste processing apparatus and processing method
JP2004237246A (en) Methane fermentation treating apparatus and method
JP3747923B2 (en) Methane fermentation treatment method and apparatus
JP3750662B2 (en) Methane fermentation treatment method
Song et al. Cellulose hydrolysis by a methanogenic culture enriched from landfill waste in a semi-continuous reactor
Braguglia et al. Advanced anaerobic processes to enhance waste activated sludge stabilization
Makinde et al. Comparative study of the biogas potential of plantain and yam peels
JP5230243B2 (en) Method and system for methane fermentation treatment of organic waste
Nair et al. Enhanced degradation of waste grass clippings in one and two stage anaerobic systems
JP2004025088A (en) Methane fermentation treatment method
JP3775398B2 (en) Methane fermentation treatment method

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4827021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110904

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250