JP2004025088A - Methane fermentation treatment method - Google Patents

Methane fermentation treatment method Download PDF

Info

Publication number
JP2004025088A
JP2004025088A JP2002187470A JP2002187470A JP2004025088A JP 2004025088 A JP2004025088 A JP 2004025088A JP 2002187470 A JP2002187470 A JP 2002187470A JP 2002187470 A JP2002187470 A JP 2002187470A JP 2004025088 A JP2004025088 A JP 2004025088A
Authority
JP
Japan
Prior art keywords
methane fermentation
hydrogen sulfide
methane
nickel
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002187470A
Other languages
Japanese (ja)
Other versions
JP3900341B2 (en
Inventor
Miyako Hitomi
人見 美也子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002187470A priority Critical patent/JP3900341B2/en
Publication of JP2004025088A publication Critical patent/JP2004025088A/en
Application granted granted Critical
Publication of JP3900341B2 publication Critical patent/JP3900341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a methane fermentation treatment method which can improve treatment efficiency in methane fermentation and maintain a stable fermentation condition over a long period. <P>SOLUTION: In the methane fermentation treatment method for organic waste which can be decomposed by anaerobic microorganisms, a hydrogen sulfide concentration in a methane fermentation tank 14 is measured by a hydrogen sulfide concentration analysis meter 20. After the hydrogen sulfide concentration in the tank 14 is adjusted so that the measured value is a prescribed value or below, a nickel compound and/or a cobalt compound are added into the tank 14 by a nickel/cobalt supply tank 19. The hydrogen sulfide concentration is preferably adjusted by adding an iron compound by an iron supply tank 18. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、嫌気性微生物を用いて、生ゴミ、食品加工残滓、活性汚泥処理等の余剰汚泥等の有機性廃棄物を処理するメタン発酵処理方法に関する。
【0002】
【従来の技術】
生ゴミ等の有機性廃棄物のほとんどは、焼却や埋立処分されているが、焼却に伴うダイオキシンの発生や埋立処分地の逼迫、悪臭などの問題から、環境負荷の少ない処理方法が求められている。これらの問題を解決するために有機性廃棄物をメタン発酵処理し、発生したメタンガスを燃料電池やガスエンジンを用いて発電するシステムが研究、開発されている。
【0003】
メタン発酵処理は、有機性廃棄物を粉砕、スラリー化した後、このスラリーを発酵槽に投入し、嫌気性下でメタン菌により発酵処理して有機性廃棄物をバイオガスと水とに分解する方法であり、有機性廃棄物を大幅に減量することができると共に、副産物として生成するメタンガスをエネルギーとして回収できるメリットがある。また、嫌気性のため曝気動力が不要であるため省エネルギーな処理法である。
【0004】
ここで、上記のメタン発酵においては、効率よく有機性廃棄物を分解してメタンガスを取り出す必要があるため、メタン発酵槽内の発酵状態を最適に制御することが重要である。このような、メタン発酵槽内の発酵効率を向上させる方法として、メタン菌の栄養素となる金属である、ニッケルやコバルト等をメタン発酵槽内に添加することが知られている。
【0005】
例えば、特開平3−154692号公報には、過負荷によって、全有機性炭素(TOC)が低下した際に、メタン菌の代謝に必要なニッケル化合物、コバルト化合物、窒素化合物、リン酸化合物が所定の比率になるように、前記化合物のいずれか、あるいは、すべてを添加することが開示されている。
【0006】
また、特開平11−28445号公報には、嫌気性生物にて分解可能な固形状の有機性廃棄物を含有する廃棄物を破砕した破砕物をメタン発酵処理する廃棄物処理方法において、メタン発酵処理時の前記破砕物中の全蒸発残留物の濃度(TS濃度)が5%以上となる場合、鉄化合物、コバルト化合物及びニッケル化合物の少なくともいずれか一方を添加する廃棄物処理方法が開示されている。
【0007】
【発明が解決しようとする課題】
ニッケル、コバルトは、メタン菌の代謝に必要な金属として菌体内に存在する補酵素に含有されており、酢酸や水素、二酸化炭素の基質からメタンを生成する際の代謝経路を速やかに進行させる働きがある。ここで、上記のニッケル、コバルトがメタン菌に有効に取り込まれるには、それぞれニッケルイオン、コバルトイオンなるフリーの金属イオンの状態であることが必要とされる。
【0008】
しかしながら、生ゴミなどの有機性廃棄物を投入するメタン発酵処理方法においては、この有機性廃棄物中に含まれる硫酸イオンが、硫酸還元菌によって還元されて硫化水素を発生する。そして、硫化水素はイオン化して溶解性硫化水素イオン(HS−)の状態で存在している。
【0009】
したがって、ニッケル化合物およびコバルト化合物のみをメタン発酵槽内へ添加するか、又は原料となる有機性廃棄物スラリーに添加すると、ニッケル、コバルトが発酵槽内の硫化水素イオンと容易に結合して硫化ニッケルおよび硫化コバルトとなってしまい、メタン菌には有効に取り込まれない。
【0010】
よって、上記の特開平3−154692号公報の方法や、特開平11−28445号公報の方法においては、上記の硫化水素が、メタン菌へのニッケルやコバルトの取り込みを妨害するので、メタン菌の活性を充分に向上できないという問題があった。
【0011】
したがって、本発明の目的は、上記の問題を解決して、メタン菌の活性を充分に向上して安定した発酵状態を長期間維持できる、メタン発酵処理方法を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明者等は鋭意検討した結果、あらかじめメタン発酵槽内の硫化水素を取除き、その後に、ニッケル、コバルトをメタン発酵槽内に添加することにより、上記の問題点を解決できることを見出し本発明を完成するに至った。
【0013】
すなわち、本発明のメタン発酵処理方法は、嫌気性微生物によって分解可能な有機性廃棄物のメタン発酵処理方法であって、
メタン発酵槽内の硫化水素濃度を測定し、この測定値が所定値以下となるように前記メタン発酵槽内の硫化水素濃度を調整した後、前記メタン発酵槽内にニッケル化合物及び/又はコバルト化合物を添加することを特徴とする。
【0014】
本発明のメタン発酵処理方法によれば、ニッケル化合物、コバルト化合物の添加前に、あらかじめ硫化水素濃度が低下されているので、ニッケル、コバルトを金属イオンの状態でメタン菌内へ有効に取り込むことができる。したがって、メタン菌の活性を充分に向上して、安定した発酵状態を長期間にわたって維持することができる。
【0015】
本発明においては、前記硫化水素濃度の調整を、前記メタン発酵槽内に鉄化合物を添加することにより行なうことが好ましい。これによれば、硫化水素が鉄化合物と反応して硫化鉄となるので、メタン発酵槽内の硫化水素濃度の低下を迅速、確実に行なうことができる。
【0016】
また、本発明においては、前記硫化水素濃度が100ppm以下となるように調整することが好ましい。これによれば、硫化水素の影響を充分に低下させた状態でニッケル、コバルトを添加できるので、メタン菌の活性を更に向上できる。
【0017】
更に、本発明においては、前記メタン発酵処理を50〜60℃で行なうことが好ましい。これによれば、より活性の高い、高温メタン菌での発酵が行なえるので、有機性廃棄物の分解速度を更に向上することができる。
【0018】
【発明の実施の形態】
以下、本発明について図面を用いて更に詳細に説明する。図1には、本発明のメタン発酵処理方法に用いることができるメタン発酵処理装置の概略構成図が示されている。
【0019】
まず、図1の処理装置について説明すると、この処理装置は、有機性廃棄物を粉砕する粉砕機11、微粉砕機12と、これをスラリー化するスラリー調整槽13と、メタン発酵槽14と、生成したバイオガスを貯留するためのガスタンクホルダー16とで主に構成されている。
【0020】
有機性廃棄物を投入、粉砕するための粉砕機11は、供給配管によって微粉砕機12に連結され、更に、有機性廃棄物をスラリー化するスラリー調整槽13に連結されるように構成されている。そして、スラリー調整槽13からの供給配管が、メタン発酵槽14に接続され、スラリー調整槽13とメタン発酵槽14とが連結されている。
【0021】
メタン発酵槽14には、鉄化合物を添加するための鉄供給タンク18、及び、ニッケル化合物及び/又はコバルト化合物を供給するためのニッケル・コバルト供給タンク19が接続されている。ここで、鉄供給タンク18、ニッケル・コバルト供給タンク19としては、従来公知の溶液供給装置等が使用できる。
【0022】
また、メタン発酵槽14内には、スラリー化された有機性廃棄物を攪拌するための攪拌羽根15が配置されている。
【0023】
メタン発酵槽14の上部空間からは、ガスホルダー16に連結される配管が接続されており、メタン発酵槽14において発生したバイオガスが、ガスホルダー16に貯蔵されるように構成されている。これによって、このガスホルダー16に貯蔵されたバイオガスが、燃料電池発電装置、ガスエンジン等の発電機やボイラーの燃料として、ガス利用システム17で有効利用されるようになっている。
【0024】
また、この配管には、硫化水素濃度分析計20が接続されており、バイオガスの一部をサンプリングして硫化水素濃度が計測できるように構成されている。硫化水素濃度分析計20としては、従来公知の分析計を用いることができ特に限定されない。
【0025】
更に、メタン発酵槽14の底部からは、発酵後のスラリーを消化液として取出すための配管が接続されており、この消化液は、処理後の残渣として、図示しない固液分離槽等の後処理装置に送られるように構成されている。
【0026】
次に、この処理装置を用いた、本発明のメタン発酵処理方法について説明する。
図1において、有機性廃棄物は、粉砕機11で粗砕された後、更に分解速度及び消化率の向上を図るために、微粉砕機12で微粉砕・ペースト化されてスラリー調整槽13に投入される。その後、スラリー調整槽13においてペースト化された有機性廃棄物は、希釈水により適当な固形物濃度に調整されてスラリー化され、図示しないポンプによりメタン発酵槽14に送られる。
【0027】
このメタン発酵槽14には、メタン菌等の嫌気性微生物が付着・担持された固定化微生物を充填した固定ろ床等が設置されており、ここでスラリー状の有機性廃棄物のメタン発酵が行なわれ、嫌気性微生物による有機性廃棄物の分解が行われる。
【0028】
なお、メタン発酵槽15内では、攪拌羽根15によって、スラリーの攪拌が行なわれる。なお、スラリーの攪拌方法としては、他にポンプにより有機性廃棄物を循環させてもよく、また、バイオガスの一部をポンプによりメタン発酵槽14の下部に吹き込んでバブリングして攪拌してもよい。
【0029】
その後、発酵により生成したバイオガスは、ガスホルダー16に回収され、ガスタービンや燃料電池などのガス利用システム17でエネルギーとして利用される。
【0030】
ここで、本発明においては、メタン発酵槽14内の硫化水素濃度を、硫化水素濃度分析計20によってモニタリングし、この測定値が所定値以下となるようにメタン発酵槽14内の硫化水素濃度を調整する。
【0031】
このような、硫化水素濃度の調整方法としては、例えば、鉄供給タンク18によって、メタン発酵槽14内に鉄化合物を添加することが好ましく行なわれる。これによって、硫化水素が鉄化合物と反応して硫化鉄となるので、硫化水素濃度の低下を迅速、確実に行なうことができる。
【0032】
鉄化合物としては、例えば、塩化第一鉄、塩化第一鉄・四水和物、塩化第一鉄・六水和物等が挙げられ、水溶性の鉄化合物を用いることが好ましい。
【0033】
また、このとき、硫化水素濃度が少なくとも100ppm以下となるまで鉄化合物を添加することが好ましい。硫化水素濃度が100ppmを超えると、ニッケル、コバルトが発酵槽内の硫化水素イオンと容易に結合して硫化ニッケル及び硫化コバルトとなってしまい、ニッケル、コバルトがメタン菌に有効に取り込まれないので好ましくない。
【0034】
このような鉄化合物の添加量としては、消化汚泥1Lに対して、鉄イオンに換算して100〜300mg/Lが好ましい。鉄イオンの添加量が100mg/L未満であると、バイオガス中の硫化水素が規定値まで低減しないので好ましくなく、300mg/Lを超えると、メタン菌活性に悪影響を及ぼし、更に、消化脱離液中の鉄イオン濃度が高くなるので好ましくない。
【0035】
また、上記の硫化水素濃度は鉄化合物の添加によって一旦急激に低下した後、徐々に増加する。したがって、上記の鉄化合物の添加は適宜所定の間隔で繰返し行なうことが好ましい。所定の間隔は硫化水素濃度分析計20のモニタリング値によって適宜設定可能であるが、鉄化合物の添加量が、鉄イオンに換算して100〜300mg/Lの場合には、鉄化合物の添加間隔は5〜24時間が好ましい。
【0036】
次に、上記の硫化水素濃度が所定値以下になった状態で、ニッケル・コバルト供給タンク19から、ニッケル化合物及び/又はコバルト化合物を供給する。ここで、上記の鉄化合物の添加により、あらかじめ硫化水素濃度が低下されているので、ニッケル、コバルトをイオンの状態でメタン菌内へ有効に取り込むことができる。したがって、メタン菌の活性を充分に向上して、安定した発酵状態を長期間にわたって維持することができる。
【0037】
ニッケル化合物としては、塩化ニッケル、塩化ニッケル・四水和物、塩化ニッケル・六水和物等が挙げられる。また、コバルト化合物としては、塩化コバルト、塩化コバルト・四水和物、塩化コバルト・六水和物等が挙げられる。これらは水溶性化合物であることが好ましい。
【0038】
なお、上記の化合物はそれぞれ単独で添加してもよいが、ニッケル化合物とコバルト化合物を併用して添加することが好ましい。この場合、両者の配合割合としてはニッケルイオン及びコバルトイオンとして、1:1〜2:1とすることが好ましい。
【0039】
また、添加量としては、消化汚泥1Lに対して、ニッケルイオン及び/又はコバルトイオンに換算して、0.1〜30mg/Lとすることが好ましい。ニッケルイオン及び/又はコバルトイオンの添加量が0.1mg/L未満であると、菌体活性に必要な摂取量とならないので好ましくなく、30mg/Lを超えると、上記の鉄化合物と同様に菌活性に悪影響を及ぼすので好ましくない。なお、上記のニッケル化合物及び/又はコバルト化合物は、水溶液として添加することが好ましい。
【0040】
なお、上記のメタン発酵における温度は50〜60℃で行なうことが好ましい。これによれば、より活性の高い、高温メタン菌での発酵が行なえるので、有機性廃棄物の分解速度を更に向上することができる。
【0041】
以上のメタン発酵処理方法によれば、ニッケル、コバルトを効率良くメタン菌内に取り込めるので、メタン菌の活性が向上する。したがって、メタン発酵槽内の安定した発酵状態を長期間維持できるので、処理効率が向上するとともに、効率よくバイオガスを得ることができる。
【0042】
【実施例】
以下、本発明を実施例によって更に詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
【0043】
実施例
図1に示すような処理装置を用い、本発明のメタン発酵処理方法を用いて連続運転を行なった。メタン発酵槽14としては容量は10リットルの発酵槽を使用し、発酵温度は55℃とした。
【0044】
鉄供給タンク18に投入する鉄化合物としては、塩化第一鉄・4水和物を用いた。また、ニッケル・コバルト供給タンク19に投入する化合物としては、塩化ニッケル及び塩化コバルトを用い、質量部で、塩化ニッケル:塩化コバルト=1:1となるように投入した。
【0045】
また、硫化水素濃度計としては、コーンズ・シュマックバイオガス株式会社のバイオガス分析計SSM6000を使用した。
【0046】
なお、有機性廃棄物としては表1に示す組成の生ゴミ原料を使用した。
【0047】
【表1】

Figure 2004025088
【0048】
<鉄化合物添加による硫化水素濃度の測定>
上記の条件でメタン発酵処理装置を運転し、メタン発酵槽14へ、上記の生ゴミ原料を固形分濃度10%に調整された生ゴミスラリーとして導入した。
【0049】
次に、鉄供給タンク18からメタン発酵槽14に、上記の鉄化合物である塩化第一鉄・4水和物を、生ゴミスラリー1Lに対して鉄イオン換算で100mg/Lとなるように添加し、発生したバイオガスに含まれる硫化水素濃度の経時変化を、硫化水素濃度分析計20により測定した。その結果を図2に示す。
【0050】
図2によれば、鉄化合物添加前のメタン発酵槽14内の硫化水素濃度は約2000〜3000ppmであり、鉄化合物の添加後に徐々に硫化水素濃度が低下し、添加後5時間後で100ppm以下に低下した。また、鉄化合物の添加24時間後においても、次の生ゴミスラリー投入までは200ppm程度を維持していた。
【0051】
<メタン発酵処理装置の連続運転>
上記の条件でメタン発酵処理装置を連続運転し、メタン発酵槽14へ、上記の生ゴミ原料を固形分濃度10%に調整された生ゴミスラリーとして導入した。
【0052】
なお、CODcr(化学的酸素要求量)負荷は、図3、4に示すように、運転8日目までは5g/L/日、その後運転16日目までは7.5g/L/日、その後運転日数23日目までは10g/L/日、24日目以降は15g/L/日となるように4段階に設定した。
【0053】
鉄化合物は、生ゴミスラリー1Lに対して鉄イオンに換算して200mg/Lとなるように添加し、これを24時間毎に添加した。なお、最初の鉄化合物の添加は運転9日目に行なった。
【0054】
また、塩化ニッケル及び塩化コバルトは水溶液の状態で添加し、生ゴミスラリー1Lに対してニッケルイオン及びコバルトイオンに換算して、0.3〜1.0mg/Lとなるように24時間毎に添加した。なお、塩化ニッケル及び塩化コバルトの添加は、鉄化合物の添加の5時間後に行なった。
【0055】
比較例
上記の実施例のメタン発酵処理装置の連続運転において、鉄化合物、ニッケル化合物、コバルト化合物の添加をいずれも行なわない以外は、実施例と同様の条件で運転を行なった。
【0056】
試験例
実施例及び比較例について、メタン発酵処理装置の運転中の硫化水素濃度を測定した結果を図5、6に、有機酸濃度を測定した結果を図7、8に、pHを測定した結果を図9、10に示す。
【0057】
図5、7、9より、実施例である本発明のメタン発酵処理方法においては、総運転日数として60日以上の運転が可能であり、CODcr負荷が15g/L/日においても40日以上の運転が可能であった。また、運転中、硫化水素濃度は100ppm以下と低く、有機酸濃度も概ね500ppm以下であり、pHも7.5〜8.0の間で安定した運転状態であった。
【0058】
一方、図6、8、10より、金属添加を行なわない比較例においては、硫化水素濃度が約2000〜3000ppmと高く、特に、CODcr負荷が15g/L/日である高負荷の状態においては、有機酸濃度が2000ppm以上に急上昇し、pHも6付近まで低下して発酵が停止した。
【0059】
したがって、比較例においては総運転日数が28日間に留まり、また、CODcr負荷が15g/L/日の高負荷運転においては、5日間しか連続運転することができなかった。
【0060】
【発明の効果】
以上説明したように、本発明によれば、ニッケル、コバルトを効率良くメタン菌内に取り込めるので、メタン菌の活性が向上する。したがって、メタン発酵における処理効率を向上し、安定した発酵状態を長期にわたって維持できるメタン発酵処理方法を提供できる。
【図面の簡単な説明】
【図1】本発明のメタン発酵処理方法に用いることができるメタン発酵処理装置の概略構成図である。
【図2】実施例における鉄化合物添加後の発酵槽の運転時間と硫化水素濃度の変化を測定した図表である。
【図3】実施例における発酵槽の運転期間とCODcr負荷の変化を測定した図表である。
【図4】比較例における発酵槽の運転期間とCODcr負荷の変化を測定した図表である。
【図5】実施例における発酵槽の運転期間と硫化水素濃度の変化を測定した図表である。
【図6】比較例における発酵槽の運転期間と硫化水素濃度の変化を測定した図表である。
【図7】実施例における発酵槽の運転期間と有機酸濃度の変化を測定した図表である。
【図8】比較例における発酵槽の運転期間と有機酸濃度の変化を測定した図表である。
【図9】実施例における発酵槽の運転期間とpHの変化を測定した図表である。
【図10】比較例における発酵槽の運転期間とpHの変化を測定した図表である。
【符号の説明】
11 粉砕機
12 微粉砕機
13 スラリー調整槽
14 メタン発酵槽
15 攪拌羽根
16 ガスホルダー
17 ガス利用システム
18 鉄供給タンク
19 コバルト・ニッケル供給タンク
20 硫化水素濃度分析計[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a methane fermentation treatment method for treating organic waste such as garbage, food processing residues, and excess sludge such as activated sludge treatment using an anaerobic microorganism.
[0002]
[Prior art]
Most organic wastes such as garbage are incinerated or landfilled.However, due to problems such as dioxin generation, tight landfill sites, and bad odors due to incineration, treatment methods with low environmental impact are required. I have. In order to solve these problems, a system in which organic waste is subjected to methane fermentation and a generated methane gas is generated using a fuel cell or a gas engine has been researched and developed.
[0003]
In the methane fermentation treatment, after the organic waste is pulverized and slurried, the slurry is put into a fermentation tank and fermented with methane bacteria under anaerobic to decompose the organic waste into biogas and water. This method has the advantages that organic waste can be significantly reduced and methane gas generated as a by-product can be recovered as energy. In addition, since it is anaerobic and does not require aeration power, it is an energy-saving treatment method.
[0004]
Here, in the above-mentioned methane fermentation, it is necessary to efficiently decompose organic waste and take out methane gas, so it is important to optimally control the fermentation state in the methane fermentation tank. As a method for improving the fermentation efficiency in such a methane fermenter, it is known to add nickel, cobalt, or the like, which is a metal serving as a nutrient of methane bacteria, to the methane fermenter.
[0005]
For example, JP-A-3-154692 discloses that when the total organic carbon (TOC) decreases due to overload, the nickel compound, cobalt compound, nitrogen compound and phosphate compound required for metabolism of methane bacteria are specified. It is disclosed that any or all of the above compounds are added so that the ratio becomes as follows.
[0006]
Japanese Patent Application Laid-Open No. H11-28445 discloses a waste treatment method in which crushed material containing solid organic waste decomposable by anaerobic organisms is methane fermented. A waste treatment method in which at least one of an iron compound, a cobalt compound and a nickel compound is added when the concentration (TS concentration) of the total evaporation residue in the crushed material at the time of treatment is 5% or more is disclosed. I have.
[0007]
[Problems to be solved by the invention]
Nickel and cobalt are contained in coenzymes present in the cells as metals required for the metabolism of methane bacteria, and work to rapidly advance the metabolic pathway when methane is produced from acetic acid, hydrogen, and carbon dioxide substrates. There is. Here, in order for nickel and cobalt to be effectively taken into methane bacteria, they must be in the state of free metal ions of nickel ions and cobalt ions, respectively.
[0008]
However, in a methane fermentation treatment method in which organic waste such as garbage is thrown, sulfate ions contained in the organic waste are reduced by sulfate-reducing bacteria to generate hydrogen sulfide. Hydrogen sulfide is ionized and exists in the form of soluble hydrogen sulfide ions (HS-).
[0009]
Therefore, when only the nickel compound and the cobalt compound are added to the methane fermentation tank or added to the organic waste slurry as a raw material, nickel and cobalt are easily bonded to hydrogen sulfide ions in the fermentation tank and nickel sulfide is added. And cobalt sulfide, and are not effectively taken up by methane bacteria.
[0010]
Therefore, in the method disclosed in JP-A-3-154692 and the method described in JP-A-11-28445, the hydrogen sulfide hinders the incorporation of nickel and cobalt into methanogens. There was a problem that the activity could not be sufficiently improved.
[0011]
Therefore, an object of the present invention is to solve the above problems and to provide a methane fermentation treatment method capable of sufficiently improving the activity of methane bacteria and maintaining a stable fermentation state for a long period of time.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted intensive studies and as a result, previously removed hydrogen sulfide in the methane fermentation tank, and then added nickel and cobalt into the methane fermentation tank, thereby causing the above problems. And found that the present invention was completed.
[0013]
That is, the methane fermentation treatment method of the present invention is a methane fermentation treatment method for organic waste decomposable by anaerobic microorganisms,
After measuring the concentration of hydrogen sulfide in the methane fermentation tank and adjusting the concentration of hydrogen sulfide in the methane fermentation tank so that the measured value is equal to or less than a predetermined value, a nickel compound and / or a cobalt compound are contained in the methane fermentation tank. Is added.
[0014]
According to the methane fermentation treatment method of the present invention, since the concentration of hydrogen sulfide is reduced before the addition of the nickel compound and the cobalt compound, nickel and cobalt can be effectively taken into methane bacteria in the form of metal ions. it can. Therefore, the activity of methane bacteria can be sufficiently improved, and a stable fermentation state can be maintained for a long period of time.
[0015]
In the present invention, the adjustment of the hydrogen sulfide concentration is preferably performed by adding an iron compound into the methane fermentation tank. According to this, since hydrogen sulfide reacts with the iron compound to form iron sulfide, the concentration of hydrogen sulfide in the methane fermentation tank can be reduced quickly and reliably.
[0016]
In the present invention, it is preferable to adjust the hydrogen sulfide concentration so as to be 100 ppm or less. According to this, nickel and cobalt can be added in a state where the influence of hydrogen sulfide is sufficiently reduced, so that the activity of methane bacteria can be further improved.
[0017]
Furthermore, in the present invention, the methane fermentation treatment is preferably performed at 50 to 60 ° C. According to this, the fermentation with higher activity, high temperature methane bacteria can be performed, so that the decomposition rate of organic waste can be further improved.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 shows a schematic configuration diagram of a methane fermentation treatment apparatus that can be used in the methane fermentation treatment method of the present invention.
[0019]
First, the processing apparatus of FIG. 1 will be described. This processing apparatus includes a pulverizer 11 for pulverizing organic waste, a fine pulverizer 12, a slurry adjusting tank 13 for slurrying the same, a methane fermentation tank 14, It mainly comprises a gas tank holder 16 for storing the generated biogas.
[0020]
A pulverizer 11 for charging and pulverizing organic waste is connected to a fine pulverizer 12 by a supply pipe, and further connected to a slurry adjusting tank 13 for slurrying the organic waste. I have. The supply pipe from the slurry adjustment tank 13 is connected to the methane fermentation tank 14, and the slurry adjustment tank 13 and the methane fermentation tank 14 are connected.
[0021]
The methane fermenter 14 is connected to an iron supply tank 18 for adding an iron compound and a nickel / cobalt supply tank 19 for supplying a nickel compound and / or a cobalt compound. Here, as the iron supply tank 18 and the nickel / cobalt supply tank 19, a conventionally known solution supply device or the like can be used.
[0022]
Further, a stirring blade 15 for stirring the slurried organic waste is disposed in the methane fermentation tank 14.
[0023]
A pipe connected to the gas holder 16 is connected from the upper space of the methane fermenter 14 so that the biogas generated in the methane fermenter 14 is stored in the gas holder 16. As a result, the biogas stored in the gas holder 16 is effectively used in the gas utilization system 17 as a fuel for a power generator such as a fuel cell power generator, a gas engine, or a boiler.
[0024]
Further, a hydrogen sulfide concentration analyzer 20 is connected to this pipe, and is configured so that a part of the biogas can be sampled to measure the hydrogen sulfide concentration. As the hydrogen sulfide concentration analyzer 20, a conventionally known analyzer can be used and is not particularly limited.
[0025]
Further, from the bottom of the methane fermentation tank 14, a pipe for taking out the slurry after fermentation as a digestion liquid is connected, and this digestion liquid is used as a post-treatment residue such as a solid-liquid separation tank (not shown) as a residue after the treatment. It is configured to be sent to the device.
[0026]
Next, the methane fermentation treatment method of the present invention using this treatment device will be described.
In FIG. 1, after the organic waste is pulverized by a pulverizer 11, the organic waste is pulverized and pasted by a pulverizer 12 to further improve the decomposition rate and digestibility in a slurry adjusting tank 13. It is thrown. Thereafter, the organic waste pasted in the slurry adjustment tank 13 is adjusted to an appropriate solid concentration by diluting water to be slurried, and is sent to the methane fermentation tank 14 by a pump (not shown).
[0027]
The methane fermentation tank 14 is provided with a fixed filter bed or the like filled with immobilized microorganisms to which anaerobic microorganisms such as methane bacteria are attached and supported. Here, methane fermentation of organic waste in a slurry state is performed. And the decomposition of organic waste by anaerobic microorganisms.
[0028]
In the methane fermentation tank 15, the stirring of the slurry is performed by the stirring blades 15. In addition, as a method of stirring the slurry, the organic waste may be circulated by a pump, or a part of the biogas may be blown into the lower part of the methane fermentation tank 14 by a pump and stirred by bubbling. Good.
[0029]
Thereafter, the biogas produced by the fermentation is collected in the gas holder 16 and used as energy in a gas utilization system 17 such as a gas turbine or a fuel cell.
[0030]
Here, in the present invention, the hydrogen sulfide concentration in the methane fermentation tank 14 is monitored by the hydrogen sulfide concentration analyzer 20, and the hydrogen sulfide concentration in the methane fermentation tank 14 is adjusted so that the measured value becomes a predetermined value or less. adjust.
[0031]
As such a method for adjusting the concentration of hydrogen sulfide, for example, it is preferable to add an iron compound into the methane fermentation tank 14 by the iron supply tank 18. As a result, hydrogen sulfide reacts with the iron compound to form iron sulfide, so that the concentration of hydrogen sulfide can be reduced quickly and reliably.
[0032]
Examples of the iron compound include ferrous chloride, ferrous chloride tetrahydrate, ferrous chloride hexahydrate, and the like, and it is preferable to use a water-soluble iron compound.
[0033]
At this time, it is preferable to add an iron compound until the concentration of hydrogen sulfide becomes at least 100 ppm or less. When the concentration of hydrogen sulfide exceeds 100 ppm, nickel and cobalt are easily combined with hydrogen sulfide ions in the fermenter to form nickel sulfide and cobalt sulfide, and nickel and cobalt are not effectively taken up by methane bacteria. Absent.
[0034]
The amount of such an iron compound to be added is preferably 100 to 300 mg / L in terms of iron ions per 1 L of digested sludge. If the addition amount of iron ions is less than 100 mg / L, hydrogen sulfide in the biogas is not reduced to a specified value, which is not preferable. If it exceeds 300 mg / L, methane bacteria activity is adversely affected, and This is not preferable because the concentration of iron ions in the liquid increases.
[0035]
In addition, the above-mentioned hydrogen sulfide concentration once decreases rapidly by the addition of the iron compound, and then gradually increases. Therefore, it is preferable that the above-mentioned addition of the iron compound is appropriately repeated at predetermined intervals. The predetermined interval can be appropriately set according to the monitoring value of the hydrogen sulfide concentration analyzer 20, but when the addition amount of the iron compound is 100 to 300 mg / L in terms of iron ions, the addition interval of the iron compound is 5 to 24 hours are preferred.
[0036]
Next, a nickel compound and / or a cobalt compound is supplied from the nickel / cobalt supply tank 19 in a state where the hydrogen sulfide concentration has become a predetermined value or less. Here, since the concentration of hydrogen sulfide is previously reduced by the addition of the iron compound, nickel and cobalt can be effectively taken into methane bacteria in the form of ions. Therefore, the activity of methane bacteria can be sufficiently improved, and a stable fermentation state can be maintained for a long period of time.
[0037]
Examples of the nickel compound include nickel chloride, nickel chloride tetrahydrate, nickel chloride hexahydrate and the like. Examples of the cobalt compound include cobalt chloride, cobalt chloride tetrahydrate, and cobalt chloride hexahydrate. These are preferably water-soluble compounds.
[0038]
The above compounds may be added alone, but it is preferable to add a nickel compound and a cobalt compound in combination. In this case, the mixing ratio of the two is preferably 1: 1 to 2: 1 as nickel ions and cobalt ions.
[0039]
The amount of addition is preferably 0.1 to 30 mg / L in terms of nickel ions and / or cobalt ions with respect to 1 L of digested sludge. If the addition amount of nickel ions and / or cobalt ions is less than 0.1 mg / L, it is not preferable because the intake amount required for bacterial cell activity is not obtained. It is not preferable because it adversely affects the activity. The above nickel compound and / or cobalt compound are preferably added as an aqueous solution.
[0040]
The temperature in the methane fermentation is preferably 50 to 60 ° C. According to this, the fermentation with higher activity, high temperature methane bacteria can be performed, so that the decomposition rate of organic waste can be further improved.
[0041]
According to the above-mentioned methane fermentation treatment method, nickel and cobalt can be efficiently taken into methane bacteria, so that the activity of methane bacteria is improved. Therefore, a stable fermentation state in the methane fermentation tank can be maintained for a long period of time, so that the processing efficiency is improved and biogas can be obtained efficiently.
[0042]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples. Note that the present invention is not limited to the following examples.
[0043]
Example A continuous operation was carried out using the treatment apparatus as shown in FIG. 1 and using the methane fermentation treatment method of the present invention. As the methane fermenter 14, a 10-liter fermenter was used, and the fermentation temperature was 55 ° C.
[0044]
Ferrous chloride tetrahydrate was used as the iron compound to be charged into the iron supply tank 18. Nickel chloride and cobalt chloride were used as the compounds to be charged into the nickel / cobalt supply tank 19, and were charged so that nickel chloride: cobalt chloride = 1: 1 in parts by mass.
[0045]
Further, as the hydrogen sulfide concentration meter, a biogas analyzer SSM6000 manufactured by Corns Schmack Biogas Co., Ltd. was used.
[0046]
In addition, the raw garbage raw material of the composition shown in Table 1 was used as organic waste.
[0047]
[Table 1]
Figure 2004025088
[0048]
<Measurement of hydrogen sulfide concentration by addition of iron compound>
The methane fermentation treatment apparatus was operated under the above conditions, and the raw garbage raw material was introduced into the methane fermentation tank 14 as a raw garbage slurry adjusted to a solid concentration of 10%.
[0049]
Next, ferrous chloride tetrahydrate, which is the above iron compound, was added from the iron supply tank 18 to the methane fermentation tank 14 so as to be 100 mg / L in terms of iron ion with respect to 1 L of the garbage slurry. Then, the change over time in the concentration of hydrogen sulfide contained in the generated biogas was measured by the hydrogen sulfide concentration analyzer 20. The result is shown in FIG.
[0050]
According to FIG. 2, the hydrogen sulfide concentration in the methane fermentation tank 14 before the addition of the iron compound is about 2000 to 3000 ppm, the hydrogen sulfide concentration gradually decreases after the addition of the iron compound, and 100 ppm or less 5 hours after the addition. Has dropped. Further, even after 24 hours from the addition of the iron compound, the content was maintained at about 200 ppm until the next addition of the garbage slurry.
[0051]
<Continuous operation of methane fermentation treatment equipment>
The methane fermentation treatment apparatus was continuously operated under the above conditions, and the raw garbage raw material was introduced into the methane fermentation tank 14 as a raw garbage slurry adjusted to have a solid content of 10%.
[0052]
As shown in FIGS. 3 and 4, the CODcr (chemical oxygen demand) load was 5 g / L / day up to the 8th day of operation, 7.5 g / L / day up to the 16th day of operation, and thereafter, The setting was made in four steps so that the amount was 10 g / L / day until the 23rd operating day and 15 g / L / day from the 24th day.
[0053]
The iron compound was added to 1 L of the garbage slurry at a concentration of 200 mg / L in terms of iron ions, and added every 24 hours. The first addition of the iron compound was performed on the 9th day of operation.
[0054]
Nickel chloride and cobalt chloride are added in the form of an aqueous solution, and are added every 24 hours so as to be 0.3 to 1.0 mg / L in terms of nickel ions and cobalt ions per liter of garbage slurry. did. The addition of nickel chloride and cobalt chloride was performed 5 hours after the addition of the iron compound.
[0055]
Comparative Example In the continuous operation of the methane fermentation treatment apparatus of the above example, the operation was performed under the same conditions as in the example except that no addition of an iron compound, a nickel compound, and a cobalt compound was performed.
[0056]
5 and 6 show the results of measuring the hydrogen sulfide concentration during operation of the methane fermentation treatment apparatus, and FIGS. 7 and 8 show the results of measuring the pH during the operation of the methane fermentation treatment apparatus. 9 and 10 are shown in FIGS.
[0057]
5, 7, and 9, in the methane fermentation treatment method of the present invention, which is an example, the operation can be performed for 60 days or more as the total number of operation days, and even when the CODcr load is 15 g / L / day, 40 days or more. Driving was possible. During the operation, the concentration of hydrogen sulfide was as low as 100 ppm or less, the concentration of the organic acid was approximately 500 ppm or less, and the pH was in a stable operation state between 7.5 and 8.0.
[0058]
On the other hand, from FIGS. 6, 8 and 10, in the comparative example where no metal is added, the concentration of hydrogen sulfide is as high as about 2000 to 3000 ppm, and in particular, in a high load state where the CODcr load is 15 g / L / day, The fermentation was stopped when the organic acid concentration rapidly increased to 2000 ppm or more and the pH also dropped to around 6.
[0059]
Therefore, in the comparative example, the total number of operating days was limited to 28 days, and in the high-load operation in which the CODcr load was 15 g / L / day, continuous operation could be performed only for 5 days.
[0060]
【The invention's effect】
As described above, according to the present invention, nickel and cobalt can be efficiently taken into methane bacteria, so that the activity of methane bacteria is improved. Therefore, it is possible to provide a methane fermentation treatment method capable of improving the treatment efficiency in methane fermentation and maintaining a stable fermentation state for a long time.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a methane fermentation treatment apparatus that can be used in the methane fermentation treatment method of the present invention.
FIG. 2 is a table in which the operation time of a fermenter after the addition of an iron compound and the change in the concentration of hydrogen sulfide are measured.
FIG. 3 is a table showing measured changes in the CODcr load and the operation period of the fermenter in the example.
FIG. 4 is a table in which a change in a CODcr load and an operation period of a fermenter in a comparative example were measured.
FIG. 5 is a table showing measured changes in the operating period of the fermenter and the concentration of hydrogen sulfide in the example.
FIG. 6 is a table in which a change in a hydrogen sulfide concentration and an operation period of a fermenter in a comparative example were measured.
FIG. 7 is a table in which the change in the operating period and the organic acid concentration of the fermenter in the example is measured.
FIG. 8 is a table in which changes in the operating period of the fermenter and the concentration of the organic acid in the comparative example were measured.
FIG. 9 is a table in which a change in the operating period and the pH of the fermenter in the example was measured.
FIG. 10 is a chart in which a change in the operating period and the pH of the fermenter in the comparative example was measured.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Crusher 12 Fine crusher 13 Slurry adjustment tank 14 Methane fermentation tank 15 Stirrer blade 16 Gas holder 17 Gas utilization system 18 Iron supply tank 19 Cobalt / nickel supply tank 20 Hydrogen sulfide concentration analyzer

Claims (4)

嫌気性微生物によって分解可能な有機性廃棄物のメタン発酵処理方法であって、
メタン発酵槽内の硫化水素濃度を測定し、この測定値が所定値以下となるように前記メタン発酵槽内の硫化水素濃度を調整した後、前記メタン発酵槽内にニッケル化合物及び/又はコバルト化合物を添加することを特徴とするメタン発酵処理方法。
A methane fermentation treatment method for organic waste decomposable by anaerobic microorganisms,
After measuring the concentration of hydrogen sulfide in the methane fermentation tank and adjusting the concentration of hydrogen sulfide in the methane fermentation tank so that the measured value is equal to or less than a predetermined value, a nickel compound and / or a cobalt compound are contained in the methane fermentation tank. A methane fermentation treatment method comprising adding methane.
前記硫化水素濃度の調整を、前記メタン発酵槽内に鉄化合物を添加することにより行なう請求項1記載のメタン発酵処理方法。The methane fermentation treatment method according to claim 1, wherein the adjustment of the hydrogen sulfide concentration is performed by adding an iron compound into the methane fermentation tank. 前記硫化水素濃度が100ppm以下となるように調整する請求項1又は2に記載のメタン発酵処理方法。The methane fermentation treatment method according to claim 1 or 2, wherein the hydrogen sulfide concentration is adjusted to be 100 ppm or less. 前記メタン発酵処理を50〜60℃で行なう請求項1〜3のいずれか一つに記載のメタン発酵処理方法。The methane fermentation treatment method according to any one of claims 1 to 3, wherein the methane fermentation treatment is performed at 50 to 60C.
JP2002187470A 2002-06-27 2002-06-27 Methane fermentation treatment method Expired - Lifetime JP3900341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002187470A JP3900341B2 (en) 2002-06-27 2002-06-27 Methane fermentation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002187470A JP3900341B2 (en) 2002-06-27 2002-06-27 Methane fermentation treatment method

Publications (2)

Publication Number Publication Date
JP2004025088A true JP2004025088A (en) 2004-01-29
JP3900341B2 JP3900341B2 (en) 2007-04-04

Family

ID=31182507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187470A Expired - Lifetime JP3900341B2 (en) 2002-06-27 2002-06-27 Methane fermentation treatment method

Country Status (1)

Country Link
JP (1) JP3900341B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212467A (en) * 2005-02-01 2006-08-17 National Institute Of Advanced Industrial & Technology Organic waste treatment method
US7622286B2 (en) 2005-12-01 2009-11-24 Tekiniska Verken I Linkoping Ab Method, a device and an additive for digesting organic matter
JP2016055216A (en) * 2014-09-05 2016-04-21 栗田工業株式会社 Method and apparatus for anaerobically digesting sewage treatment sludge
KR101833867B1 (en) 2017-07-10 2018-03-05 금호산업주식회사 Horizontal type anaerobic digesting device
JP2018176005A (en) * 2017-04-03 2018-11-15 三井E&S環境エンジニアリング株式会社 Methane fermentation treatment system of garbage
US10590439B2 (en) 2012-01-12 2020-03-17 Blaygow Limited Anaerobic process
JP2021007949A (en) * 2020-10-16 2021-01-28 三井E&S環境エンジニアリング株式会社 Methane fermentation treatment system of garbage
US11193143B2 (en) 2012-11-16 2021-12-07 Blaygow Limited Grain processing

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919589A (en) * 1982-07-23 1984-02-01 Sumitomo Jukikai Envirotec Kk Desulfurization in methane fermentation treatment
JPH02131196A (en) * 1988-11-10 1990-05-18 Kubota Ltd Treatment process for organic waste water
JPH03154692A (en) * 1989-11-10 1991-07-02 Toshiba Corp Anaerobic water treatment apparatus
JPH03165895A (en) * 1989-08-25 1991-07-17 Ngk Insulators Ltd Method and apparatus for treating organic waste water by methane fermentation
JPH04341395A (en) * 1991-05-20 1992-11-27 Shimizu Corp Keeping method of methane fermentation relating bacteria
JPH06246288A (en) * 1993-02-25 1994-09-06 Mitsubishi Kakoki Kaisha Ltd Operation method for high temperature upward stream type anaerobic sludge bed device
JPH1029000A (en) * 1996-07-18 1998-02-03 Nittetsu Mining Co Ltd Method for suppressing hydrogen sulfide in sewage treatment
JPH1128445A (en) * 1997-07-14 1999-02-02 Ataka Kogyo Kk Waste treatment
JP2000102779A (en) * 1998-09-29 2000-04-11 Kubota Corp Method for accelerating generation of methane gas
JP2001137812A (en) * 1999-11-11 2001-05-22 Ataka Construction & Engineering Co Ltd Waste treatment method
JP2001276880A (en) * 2000-03-31 2001-10-09 Ataka Construction & Engineering Co Ltd Waste treatment method and device therefor
JP2002282826A (en) * 2001-03-29 2002-10-02 Mitsubishi Heavy Ind Ltd Methane fermentation method and its equipment

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919589A (en) * 1982-07-23 1984-02-01 Sumitomo Jukikai Envirotec Kk Desulfurization in methane fermentation treatment
JPH02131196A (en) * 1988-11-10 1990-05-18 Kubota Ltd Treatment process for organic waste water
JPH03165895A (en) * 1989-08-25 1991-07-17 Ngk Insulators Ltd Method and apparatus for treating organic waste water by methane fermentation
JPH03154692A (en) * 1989-11-10 1991-07-02 Toshiba Corp Anaerobic water treatment apparatus
JPH04341395A (en) * 1991-05-20 1992-11-27 Shimizu Corp Keeping method of methane fermentation relating bacteria
JPH06246288A (en) * 1993-02-25 1994-09-06 Mitsubishi Kakoki Kaisha Ltd Operation method for high temperature upward stream type anaerobic sludge bed device
JPH1029000A (en) * 1996-07-18 1998-02-03 Nittetsu Mining Co Ltd Method for suppressing hydrogen sulfide in sewage treatment
JPH1128445A (en) * 1997-07-14 1999-02-02 Ataka Kogyo Kk Waste treatment
JP2000102779A (en) * 1998-09-29 2000-04-11 Kubota Corp Method for accelerating generation of methane gas
JP2001137812A (en) * 1999-11-11 2001-05-22 Ataka Construction & Engineering Co Ltd Waste treatment method
JP2001276880A (en) * 2000-03-31 2001-10-09 Ataka Construction & Engineering Co Ltd Waste treatment method and device therefor
JP2002282826A (en) * 2001-03-29 2002-10-02 Mitsubishi Heavy Ind Ltd Methane fermentation method and its equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212467A (en) * 2005-02-01 2006-08-17 National Institute Of Advanced Industrial & Technology Organic waste treatment method
US7622286B2 (en) 2005-12-01 2009-11-24 Tekiniska Verken I Linkoping Ab Method, a device and an additive for digesting organic matter
US7947484B2 (en) 2005-12-01 2011-05-24 Tekniska Verken I Linkoping Ab Method, a device, and an additive for digesting organic matter
US10590439B2 (en) 2012-01-12 2020-03-17 Blaygow Limited Anaerobic process
US11193143B2 (en) 2012-11-16 2021-12-07 Blaygow Limited Grain processing
JP2016055216A (en) * 2014-09-05 2016-04-21 栗田工業株式会社 Method and apparatus for anaerobically digesting sewage treatment sludge
JP2018176005A (en) * 2017-04-03 2018-11-15 三井E&S環境エンジニアリング株式会社 Methane fermentation treatment system of garbage
KR101833867B1 (en) 2017-07-10 2018-03-05 금호산업주식회사 Horizontal type anaerobic digesting device
JP2021007949A (en) * 2020-10-16 2021-01-28 三井E&S環境エンジニアリング株式会社 Methane fermentation treatment system of garbage
JP7015893B2 (en) 2020-10-16 2022-02-03 Jfe環境テクノロジー株式会社 Swill methane fermentation processing system

Also Published As

Publication number Publication date
JP3900341B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
Gomez et al. The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process
Komilis et al. The effect of landfill design and operation practices on waste degradation behavior: a review
US20180178262A1 (en) Method for carrying out anaerobic digestion by using heavy metal ions-rich biomass waste materials
KR101152210B1 (en) Organic Waste Disposal System with Improved Methane Yield and Method
KR100592332B1 (en) Advanced high rate anaerobic digester apparatus
Paranjpe et al. Biogas yield using single and two stage anaerobic digestion: An experimental approach
Kouzi et al. Evaluation of the factors limiting biogas production in full-scale processes and increasing the biogas production efficiency
JP3900341B2 (en) Methane fermentation treatment method
CN114317253A (en) Organic matter methane fermentation circulation control integrated system and fermentation method
JP2004082017A (en) Methane fermentation method of organic waste and system therefor
JP2004237246A (en) Methane fermentation treating apparatus and method
JP3750662B2 (en) Methane fermentation treatment method
JP2006255538A (en) Method and apparatus for treatment of food waste
Bernat et al. Leachate after aerobic stabilization of municipal solid waste supplemented by waste glycerine from saponification to improve biogas production during co-digestion
CN101330156A (en) Method for implementing blue algae resource
CN111470744A (en) Method for producing volatile organic acid by anaerobic fermentation of sludge
Sun et al. Exogenous hydrogen supply improves in-situ biogas upgrading of sewage sludge: Performance and mechanisms
JP2004290921A (en) Methane fermentation method and system
CN216663104U (en) Organic matter methane fermentation circulation control integrated system
KR101605523B1 (en) Method and appratus for treating organic waste
JP4827021B2 (en) Methane fermentation treatment apparatus and methane fermentation tank control method
JP2009248042A (en) Method and system for methane fermentation treatment of organic waste
JP2004167382A (en) Methane fermentation method and methane fermentation apparatus of organic material
JP2003250519A (en) Method for producing hydrogen and apparatus for producing hydrogen
JP5301788B2 (en) Co-fermentation method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent or registration of utility model

Ref document number: 3900341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term