JPH06246288A - Operation method for high temperature upward stream type anaerobic sludge bed device - Google Patents

Operation method for high temperature upward stream type anaerobic sludge bed device

Info

Publication number
JPH06246288A
JPH06246288A JP5935393A JP5935393A JPH06246288A JP H06246288 A JPH06246288 A JP H06246288A JP 5935393 A JP5935393 A JP 5935393A JP 5935393 A JP5935393 A JP 5935393A JP H06246288 A JPH06246288 A JP H06246288A
Authority
JP
Japan
Prior art keywords
temperature
sludge
high temperature
medium
cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5935393A
Other languages
Japanese (ja)
Inventor
Taira Hanaoka
平 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP5935393A priority Critical patent/JPH06246288A/en
Publication of JPH06246288A publication Critical patent/JPH06246288A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To provide a reliable operation method in which the steady operation can be performed within a short period of time and the high temperature granular sludge can be formed securely by means of an easy operation control and other features can be performed in a high UASB device operating more efficiently than a medium temperature UASB device. CONSTITUTION:Medium temperature granular sludge prepared as seeding sludge by a medium temperature anaerobic treatment device is used, and the process is started from a temperature zone in the high temperature methane fermentation treatment, and the operation is carried out while salts such as Fe, Ni and Co as nutrient salt is controlled to the given quantities in the operation method for a high temperature upward stream type anaerobic sludge floor device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、食品廃水等の有機性廃
水を高温域で生物学的にメタン発酵処理する上向流式嫌
気性汚泥床装置(以下、UASB装置という)の運転方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating an upflow type anaerobic sludge bed apparatus (hereinafter referred to as UASB apparatus) for biologically performing methane fermentation treatment of organic wastewater such as food wastewater in a high temperature range. .

【0002】[0002]

【従来の技術】従来のUASB装置としては、処理温度
が30〜40℃の中温UASB装置が一般的に用いられ
ており、処理温度が45〜60℃の高温UASB装置は
殆ど用いられていない。
2. Description of the Related Art As a conventional UASB apparatus, a medium temperature UASB apparatus having a processing temperature of 30 to 40 ° C. is generally used, and a high temperature UASB apparatus having a processing temperature of 45 to 60 ° C. is rarely used.

【0003】高温UASB装置はメタン生成活性の高い
高温グラニュ−ル汚泥により処理するため、有機物の分
解能力に優れ、且つ高い容積負荷で効率的にメタン発酵
処理が可能であることが知られているにもかかわらず、
広く実施されていない理由としては、グラニュ−ル形成
の植種汚泥として用いられる高温消化汚泥のメタン菌が
非常にグラニュ−ルを形成しにくく、グラニュ−ルが形
成するとしても長期間かかり、又グラニュ−ル形成の確
実な運転方法も確立されていないこと等によるためであ
る。
It is known that the high-temperature UASB apparatus treats with high-temperature granule sludge having a high methanogenic activity, so that it has an excellent ability to decompose organic substances and can efficiently perform methane fermentation treatment with a high volume load. in spite of,
The reason why it is not widely practiced is that methane bacteria of high temperature digested sludge used as seed sludge for granule formation are very difficult to form granules, and even if granules are formed, it takes a long time, or This is because a reliable operation method for granule formation has not been established.

【0004】しかし、従来高温UASB装置は一部で実
施されており、その運転上最も重要なスタ−トアップ方
法においても、各種の方法が鋭意検討されている。以下
従来の公知となっているスタ−トアップ方法について述
べる。
However, the conventional high temperature UASB apparatus has been partially implemented, and various methods have been earnestly studied even in the start-up method which is the most important for its operation. The conventionally known start-up method will be described below.

【0005】多くの下水処理場の消化槽は、中温メタン
発酵処理であるため、植種汚泥として最も入手し易く、
又グラニュ−ル形成に適した形状のメタン菌群で構成さ
れている中温消化汚泥を用い、中温メタン発酵の温度域
からスタ−トアップし、馴養を図りながら徐々に高温メ
タン発酵の温度域まで高め、高温グラニュル汚泥を形成
する方法。この方法はグラニュ−ル形成に長期間かかる
と共に、昇温、負荷増加等の運転管理が非常に難しい欠
点がある。
Since most digester tanks of sewage treatment plants use medium-temperature methane fermentation treatment, they are most easily available as planted sludge,
Also, by using a medium temperature digested sludge composed of a group of methane bacteria with a shape suitable for granule formation, start up from the temperature range of medium temperature methane fermentation and gradually increase to the temperature range of high temperature methane fermentation while acclimatizing. , A method of forming high temperature granulated sludge. This method has drawbacks that it takes a long time to form granules, and operation management such as temperature increase and load increase is very difficult.

【0006】中温消化汚泥よりも入手しにくいが、高温
メタン発酵処理の消化槽から得られる高温消化汚泥を植
種汚泥として用い、高温メタン発酵の温度域からスタ−
トアップする方法。この方法は前記した通り、高温消化
汚泥はグラニュ−ルを形成しにくくグラニュ−ル化に長
期間かかると共に、グラニュ−ル形成の確実な運転方法
も確立されていない。
Although it is more difficult to obtain than medium-temperature digested sludge, the high-temperature digested sludge obtained from the digestion tank of the high-temperature methane fermentation treatment is used as the seed sludge, and the temperature range of the high-temperature methane fermentation is used for starting.
How to upgrade. In this method, as described above, high temperature digested sludge hardly forms granules and it takes a long time to granulate, and a reliable operation method for granule formation has not been established.

【0007】実施されている中温UASB装置から得ら
れる中温グラニュ−ル汚泥を植種汚泥として用い、中温
メタン発酵の温度域からスタ−トアップする方法。この
方法はグラニュ−ル形成の期間は短縮できるが、中温消
化汚泥を用いる方法と同様に、昇温、負荷増加等の運転
管理が難しく、処理性能が長期間安定しない欠点があ
る。
A method of starting up from the temperature range of medium temperature methane fermentation by using medium temperature granule sludge obtained from the medium temperature UASB apparatus which is being used as a seed sludge. This method can shorten the period of granule formation, but like the method using medium-temperature digested sludge, it has the drawback that operation management such as temperature rise and load increase is difficult and the treatment performance is not stable for a long time.

【0008】更に、最初から高温グラニュ−ル汚泥を植
種汚泥として用い、高温メタン発酵の温度域からスタ−
トアップする方法。この方法は最もスタ−トアップ期間
が短く、又運転管理も容易であるが、現在稼働している
高温UASB装置の基数が極めて少なく、高温グラニュ
−ル汚泥の入手が困難であるという欠点がある。
Further, from the beginning, high temperature granulated sludge was used as a seed sludge, and the temperature range of high temperature methane fermentation was changed to start.
How to upgrade. Although this method has the shortest start-up period and easy operation management, it has a drawback in that the number of high temperature UASB devices currently in operation is extremely small and it is difficult to obtain high temperature granulated sludge.

【0009】[0009]

【発明が解決しようとする課題】前記の通り、従来から
検討又は実施化されている高温UASB装置におけるス
タ−トアップ方法は、それぞれ困難な問題を抱えてお
り、高温UASB装置の普及が図られていないのが現状
である。
As described above, each of the start-up methods in the high temperature UASB device which has been studied or implemented conventionally has a difficult problem, and the high temperature UASB device has been popularized. The current situation is that there are none.

【0010】従って本発明は、中温UASB装置よりも
効率的な処理が可能な高温UASB装置の普及を図るた
め、短期間で定常運転が可能となり、又容易な管理で高
温グラニュ−ルが確実に形成される等、信頼できる運転
方法を提供する目的で成されたものである。
Therefore, according to the present invention, since a high temperature UASB apparatus capable of more efficient treatment than a medium temperature UASB apparatus is spread, steady operation can be performed in a short period of time, and high temperature granules can be surely secured by easy management. It is formed for the purpose of providing a reliable operation method such as being formed.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
の本発明の要旨は、有機性廃水を高温UASB装置によ
りメタン発酵処理する方法において、植種汚泥として中
温嫌気性処理装置から得られる中温グラニュ−ル汚泥を
用い、高温メタン発酵処理における温度域からスタ−ト
アップし、栄養塩としてFe、Ni及びCoの塩類を所
定量に制御しながら運転することを特徴とするとする高
温UASB装置の運転方法である。
Means for Solving the Problems The gist of the present invention for achieving the above-mentioned object is to provide a method for methane fermentation treatment of organic wastewater with a high temperature UASB apparatus, in which a medium temperature anaerobic treatment apparatus is used as seed sludge. Operation of a high-temperature UASB device characterized by starting up from a temperature range in high-temperature methane fermentation treatment using granule sludge and operating while controlling salts of Fe, Ni, and Co as nutrient salts to predetermined amounts Is the way.

【0012】[0012]

【作用】UASB装置で有機性廃水を処理する方法は、
廃水をメタン菌で形成されたグラニュ−ル汚泥を充填し
たUASB装置の反応槽の下部から上向流通させて、グ
ラニュ−ル汚泥の流動化汚泥床を形成し、廃水中の有機
物を汚泥床メタン菌の生物学的作用によって分解してメ
タン化する発酵処理が行われる。
[Operation] The method of treating organic wastewater with the UASB device is as follows:
The wastewater is circulated upward from the lower part of the reaction tank of the UASB device filled with the granule sludge formed by methane bacteria to form a fluidized sludge bed of the granule sludge, and organic matter in the wastewater is sludge bed methane. A fermentation process is carried out in which the biological action of the fungus decomposes and decomposes into methanation.

【0013】次に汚泥床で処理された廃水は、生成ガス
と共に上向流し、反応槽の上部においてガス−処理水−
汚泥の三相に分離される。ガス及び処理水は反応槽の上
部から系外に排出され、又汚泥は下部の汚泥床に沈降循
環されることにより、常に汚泥床が安定した状態に維持
される方法である。
Next, the wastewater treated in the sludge bed flows upward together with the produced gas, and gas-treated water-in the upper part of the reaction tank.
It is separated into three phases of sludge. Gas and treated water are discharged from the upper part of the reaction tank to the outside of the system, and sludge is settled and circulated in the lower sludge bed, whereby the sludge bed is always maintained in a stable state.

【0014】前記充填されるグラニュ−ル汚泥として、
中温UASB装置により既に形成されて成る中温グラニ
ュ−ル汚泥を用い、高温メタン発酵処理における温度域
である45〜60℃に高めてスタ−トアップすると共
に、継続して維持することにより、昇温管理が不要とな
る。
As the granule sludge to be filled,
Using medium-temperature granule sludge that has already been formed by the medium-temperature UASB device, raising the temperature to 45-60 ° C, which is the temperature range for high-temperature methane fermentation, to start-up and maintaining it continuously, thereby increasing the temperature. Is unnecessary.

【0015】従来は、中温消化汚泥処理の経験から、ス
タ−トアップ時から高温域に設定すると、グラニュ−ル
を形成する中温メタン菌の死滅を生じ、グラニュ−ルが
破壊されて処理水と共に流出し、処理効率の低下を来す
と考えられていたが、中温メタン菌のグラニュ−ルは温
度変化の影響を受けにくく、又相互に絡み合って強固に
結合し、その結合は容易に破壊しないことが判明した。
In the past, from experience with the treatment of medium-temperature digested sludge, when the temperature was set to a high temperature range from the time of start-up, the medium-temperature methane bacteria forming the granules were killed, and the granules were destroyed and flowed out together with the treated water. However, it was thought that the treatment efficiency would decrease, but the granules of mesophilic methane bacteria are not easily affected by temperature changes, and they are entwined with each other to form a strong bond, and the bond is not easily broken. There was found.

【0016】又中温グラニュ−ル汚泥は高温域において
もメタン生成活性が高く、グラニュ−ル内が高温メタン
菌の増殖に適した環境(菌体近傍の酢酸濃度が200m
g/l以下)に保たれることにより、グラニュ−ルの内
部及び表面で高温メタン菌が効率よく増殖して付着固定
化されるため、菌体の流出が起こりにくいことも判明し
た。
The medium-temperature granulated sludge has a high methanogenic activity even in a high temperature range, and the inside of the granule is suitable for growth of high-temperature methane bacteria (acetic acid concentration near the cells is 200 m).
It was also found that by keeping it at a level of g / l or less), high-temperature methane bacteria efficiently grow and adhere and immobilize inside and on the surface of the granules, so that the bacterial cells do not easily flow out.

【0017】前記高温域においてのスタ−トアップ及び
継続運転では、Fe、Ni及びCo等の栄養塩の濃度を
一定量以上に制御することによって、高温メタン菌の増
殖及びメタン生成活性の向上がより図られ、高負荷運転
が可能となる。
In the above-mentioned start-up and continuous operation in the high temperature range, by controlling the concentration of nutrient salts such as Fe, Ni and Co to a certain amount or more, the growth of high temperature methane bacteria and the improvement of methanogenic activity are improved. Thus, high load operation becomes possible.

【0018】尚、前記Fe、Ni及びCo等の栄養塩の
濃度は、それぞれFe:1×10-5Fe/CODCr、N
i:1×10-6Ni/CODCr、及びCo:1×10-6
Co/CODCr以上の濃度に制御する必要がある。
The concentrations of the nutrient salts such as Fe, Ni and Co are Fe: 1 × 10 -5 Fe / COD Cr , N
i: 1 × 10 −6 Ni / COD Cr , and Co: 1 × 10 −6
It is necessary to control the concentration to at least Co / COD Cr .

【0019】又Fe、Ni及びCo等のCODCrに対す
る濃度は廃水の性状により異なり、酸発酵処理された廃
水は、処理されていない廃水よりも少なくてよく、更に
他の栄養塩としてN及びP等の濃度も廃水の性状によっ
て適宜調整される。
The concentrations of Fe, Ni, Co, etc. with respect to COD Cr differ depending on the properties of the wastewater. The acid-fermented wastewater may be less than the untreated wastewater, and N and P as other nutrient salts. The concentration of etc. is appropriately adjusted depending on the properties of the wastewater.

【0020】[0020]

【実施例】以下有機性廃水としてデンプンを単一の炭素
源とし、全CODCr濃度25,000mg/lの合成排
水(以下原水という。)を用い、本発明の方法の一実施
例と従来の方法とを比較したテストについてのべる。
EXAMPLE An organic wastewater, which uses starch as a single carbon source, and synthetic wastewater (hereinafter referred to as raw water) having a total COD Cr concentration of 25,000 mg / l, is used as an example of the method of the present invention and a conventional method. About the test comparing the method.

【0021】(実施例1)前処理部として高温消化汚泥
を植種した酸発酵部を設け、酸発酵処理した後の原水を
植種汚泥を相違させた高温UASB装置に導入し、植種
汚泥の影響について検討した。
(Example 1) An acid fermentation unit in which high temperature digested sludge was planted was provided as a pretreatment unit, and raw water after the acid fermentation treatment was introduced into a high temperature UASB apparatus in which the planted sludge was different from that of the planted sludge. Was examined.

【0022】原水に栄養塩を添加しておのおのの成分を
以下の濃度に制御した。 N :CODCr×1.1×10-2mg/l(尿素添加) P :CODCr×2.6×10-3mg/l(りん酸添
加) Fe:CODCr×3.1×10-4mg/l(塩化第一鉄
添加) Ni:CODCr×1.7×10-5mg/l(塩化ニッケ
ル添加) Co:CODCr×1.3×10-5mg/l(塩化コバル
ト添加)
Nutrient salts were added to raw water to control the components to the following concentrations. N: COD Cr × 1.1 × 10 -2 mg / l ( urea addition) P: COD Cr × 2.6 × 10 -3 mg / l ( added phosphate) Fe: COD Cr × 3.1 × 10 - 4 mg / l (addition of ferrous chloride) Ni: COD Cr x 1.7 x 10 -5 mg / l (addition of nickel chloride) Co: COD Cr x 1.3 x 10 -5 mg / l (addition of cobalt chloride) )

【0023】テスト条件は、酸発酵槽をPH5.6〜
6.0、滞留時間24HR、温度52℃、又高温UAS
B装置の温度52℃とし、処理液中の揮発性有機酸濃度
1,000mg/l以下、CODCr除去率80%以上を
達成した段階で容積負荷量を30%増加する方法で運転
した。
The test conditions are as follows:
6.0, residence time 24HR, temperature 52 ° C, high temperature UAS
The temperature of the apparatus B was set to 52 ° C., and when the concentration of the volatile organic acid in the treatment liquid was 1,000 mg / l or less and the COD Cr removal rate was 80% or more, the volumetric load was increased by 30%.

【0024】尚、高温UASB装置に充填した植種汚泥
としては、 No.1:中温グラニュ−ル汚泥をスタ−トアップ時の
汚泥濃度として10kgvss/m3 充填、本汚泥のメ
タン生成活性は0.4kgCH4-CODCr/kgvs
s.dであった。 No.2:中温消化汚泥をスタ−トアップ時の汚泥濃度
として5kgvss/m3 充填、本汚泥のメタン生成活
性は0.01kgCH4-CODCr/kgvss.dであ
った。 No.3:高温消化汚泥をスタ−トアップ時の汚泥濃度
として5kgvss/m3 充填、本汚泥のメタン生成活
性は0.4kgCH4-CODCr/kgvss.dであっ
た。
As the seed sludge filled in the high temperature UASB apparatus, No. 1: 10 kgvss / m 3 was charged as the sludge concentration at the start-up of medium-temperature granulated sludge, and the sludge had a methanogenic activity of 0.4 kgCH 4 -COD Cr / kgvs
s. It was d. No. 2: Medium temperature digested sludge was packed at 5 kgvss / m 3 as the sludge concentration at start-up, and the methanogenic activity of this sludge was 0.01 kg CH 4 -COD Cr / kgvss. It was d. No. 3: High-temperature digested sludge was packed at 5 kgvss / m 3 as the sludge concentration during start-up, and the methanogenic activity of this sludge was 0.4 kgCH 4 -COD Cr / kgvss. It was d.

【0025】前記テストの結果は、図1に示した。図か
ら本発明の方法であるNo.1の中温グラニュ−ル汚泥
を植種する方法では、スタ−トアップ時の容積負荷が高
く取れると共に、約30日という短期間で通常の容積負
荷である約30kgCODCr/m3 .d以上となり、更
に高い負荷運転が可能であることが確認できた。
The results of the above test are shown in FIG. From the figure, the No. In the method of planting the medium-temperature granulated sludge of No. 1 as described above, a high volume load can be obtained at the time of start-up, and a normal volume load of about 30 kg COD Cr / m 3 . It was confirmed that it was d or more and that a higher load operation was possible.

【0026】又比較例であるNo.2の中温消化汚泥を
植種する方法では、容積負荷を上げると、CODCr除去
率が低下し、負荷増加の条件を満足しなくなるため、殆
ど負荷の増加が図れず、更にグラニュ−ルも確認できな
かった。
In addition, No. In the method of planting medium temperature digested sludge of No. 2, if the volume load is increased, the COD Cr removal rate decreases and the load increase condition is no longer satisfied, so the load hardly increases and the granules are also confirmed. could not.

【0027】更に他の比較例であるNo.3高温消化汚
泥を植種する方法では、約30日位から一部グラニュ−
ル化が確認されたが、50日を経ても容積負荷は前記通
常の負荷運転条件以上には達しなかった。
Still another comparative example No. 3 In the method of planting high temperature digested sludge, some granules are started from around 30 days.
However, the volumetric load did not reach the above normal load operating condition even after 50 days.

【0028】(実施例2)前処理部として高温消化汚泥
を植種した酸発酵部を設け、酸発酵処理した後の原水を
中温グラニュ−ル汚泥を植種した高温UASB装置に導
入し、Fe、Ni及びCoの栄養塩を添加した方法(実
施例1のNo.1)と添加ししない方法(No.4)と
についてテストし、栄養塩の影響について検討した。
尚、原水性状及びテスト条件等は実施例1に同様とし
た。
(Example 2) An acid fermentation section in which high temperature digested sludge was inoculated was provided as a pretreatment section, and raw water after the acid fermentation treatment was introduced into a high temperature UASB apparatus in which medium temperature granulated sludge was inoculated, and Fe , The method of adding the nutrient salts of Ni and Co (No. 1 of Example 1) and the method of not adding the nutrient salts (No. 4) were examined, and the influence of the nutrient salts was examined.
The raw water condition and the test conditions were the same as in Example 1.

【0029】前記テストの結果は、図2、図3及び図4
に示した。図から栄養塩を添加した本発明の方法は、前
記の通り、約30日という短期間で通常容積負荷である
約30kgCODCr/m3 .d以上となり、更に高い負
荷運転が可能であることが確認でき、又メタン生成活性
は、50日後には中温UASB装置(温度35℃)の2
倍以上まで高くなった。
The results of the above test are shown in FIGS. 2, 3 and 4.
It was shown to. As described above, the method of the present invention in which the nutrient salt is added from the figure shows that the normal volume load is about 30 kg COD Cr / m 3 .3 in a short period of about 30 days. It was confirmed that higher load operation was possible, and the methanogenic activity was 50% after 2 days of the medium temperature UASB device (temperature 35 ° C).
It was more than doubled.

【0030】比較例であるNo.4の栄養塩を添加しな
い方法では、高温UASB装置内の汚泥濃度は殆ど増加
せず、又汚泥のメタン生成活性の上昇も見られなかっ
た。従って容積負荷を上げるとCODCr除去率が低下す
るため、50日を経ても栄養塩を添加した方法に比べて
約1/3程度にしか上げることができなかった。
No. 3 which is a comparative example. In the method in which the nutrient salt of 4 was not added, the sludge concentration in the high temperature UASB device was hardly increased, and the methanogenic activity of the sludge was not increased. Therefore, when the volume load is increased, the COD Cr removal rate decreases, so that even after 50 days, the COD Cr removal rate could only be increased to about 1/3 of that of the method in which the nutrient salt was added.

【0031】(実施例3)酢酸を単一炭素源とし、全C
ODCr濃度3,000mg/lの合成廃水を原水として
用い、中温グラニュ−ル汚泥を植種した高温UASB装
置に導入し、Fe、Ni及びCoの栄養塩を添加した方
法と、添加しない方法とについてテストし、栄養塩の影
響について検討した。
(Example 3) Using acetic acid as a single carbon source, the total C
Using synthetic wastewater with an OD Cr concentration of 3,000 mg / l as raw water, introducing into a high temperature UASB apparatus in which medium-temperature granulated sludge was planted, and a method of adding nutrient salts of Fe, Ni and Co, and a method of not adding Were tested and the effects of nutrients were examined.

【0032】原水の栄養塩は以下の濃度に制御した。 N :CODCr×1.4×10-2mg/l(尿素添加) P :CODCr×2.9×10-3mg/l(りん酸添
加) Fe:CODCr×1.0×10-5mg/l(塩化第一鉄
添加) Ni:CODCr×2.0×10-6mg/l(塩化ニッケ
ル添加) Co:CODCr×2.0×10-6mg/l(塩化コバル
ト添加)
The nutrient concentration of raw water was controlled to the following concentrations. N: COD Cr × 1.4 × 10 -2 mg / l ( urea addition) P: COD Cr × 2.9 × 10 -3 mg / l ( added phosphate) Fe: COD Cr × 1.0 × 10 - 5 mg / l (addition of ferrous chloride) Ni: COD Cr x 2.0 x 10 -6 mg / l (addition of nickel chloride) Co: COD Cr x 2.0 x 10 -6 mg / l (addition of cobalt chloride) )

【0033】テスト条件は、酸発酵槽は設けず高温UA
SB装置の温度52℃とし、その他の条件は実施例1と
同じにした。
The test conditions are high temperature UA without acid fermentation tank.
The temperature of the SB device was 52 ° C., and the other conditions were the same as in Example 1.

【0034】栄養塩を添加した本発明の方法では、約3
0日で約50kgCODCr/m3 .d以上の高容積負荷
で安定処理が可能であったが、栄養塩を添加しない比較
例の方法では、30日で約20kgCODCr/m3 .d
の処理が可能となったのにとどまった。
In the method of the present invention in which nutrient salts are added, about 3 is added.
About 50 kg COD Cr / m 3 in 0 days. Although stable treatment was possible with a high volume load of not less than d, the method of the comparative example in which no nutrient salt was added was about 20 kg COD Cr / m 3 . d
It became possible to process the above.

【0035】又実施例2と同様に、栄養塩を添加した本
発明の方法では、汚泥濃度の増加とメタン生成活性の著
しい増加が観察されたが、栄養塩を添加しない比較例の
方法では汚泥の増加やメタン生成活性の増加は、殆ど見
られなかった。
Also, as in Example 2, the sludge concentration and the methanogenic activity were remarkably increased in the method of the present invention in which the nutrient salt was added, but in the method of the comparative example in which the nutrient salt was not added, the sludge was increased. Almost no increase was observed in the methane production activity or the methanogenic activity.

【0036】前記実施例から、高温UASB装置におい
て、中温グラニュ−ル汚泥を植種汚泥とし、栄養塩とし
て所定量のFe、Ni及びCoの塩類を添加制御する本
発明の方法が極めて処理効果を高めることが判る。
From the above examples, the method of the present invention in which a medium temperature granulated sludge is used as a seed sludge and a predetermined amount of salts of Fe, Ni and Co are added and controlled as a nutrient salt in a high temperature UASB apparatus is extremely effective. It turns out to increase.

【0037】[0037]

【発明の効果】本発明の高温上向流式嫌気性汚泥床装置
の運転方法は次の効果が得られる。本発明の方法は、中
温UASB装置よりも、メタン生成活性の高いグラニュ
−ル汚泥が得られ、これにより有機物の分解能力に優
れ、高い容積負荷で効率的な処理が可能となる高温UA
SB装置を、入手し易い中温グラニュ−ル汚泥を用いて
短期間に定常運転とすることができ、又容易な管理で確
実に高温グラニュ−ル汚泥化が図れ、信頼性も高い運転
方法である。
EFFECT OF THE INVENTION The operation method of the high temperature upward flow type anaerobic sludge bed apparatus of the present invention has the following effects. According to the method of the present invention, a granular sludge having a higher methanogenic activity than that of a medium-temperature UASB apparatus can be obtained, which has an excellent ability to decompose organic substances and enables efficient treatment with a high volume load.
The SB device can be operated in a steady state for a short period of time by using an easily available medium-temperature granulated sludge, and can be surely converted to high-temperature granular sludge with easy management, which is a highly reliable operating method. .

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における容積負荷及びCODCr除去率
グラフ
FIG. 1 is a graph of volume load and COD Cr removal rate in Example 1.

【図2】実施例2における容積負荷及びCODCr除去率
グラフ
FIG. 2 is a graph of volume load and COD Cr removal rate in Example 2.

【図3】実施例2における汚泥濃度の推移グラフFIG. 3 is a transition graph of sludge concentration in Example 2.

【図4】実施例2におけるメタン生成活性の推移グラフFIG. 4 is a transition graph of methanogenic activity in Example 2.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】有機性廃水を高温上向流式嫌気性汚泥床装
置によりメタン発酵処理する方法において、植種汚泥と
して中温嫌気性処理装置から得られる中温グラニュ−ル
汚泥を用い、高温メタン発酵処理における温度域からス
タ−トアップし、栄養塩としてFe、Ni及びCoの塩
類を所定量に制御しながら運転することを特徴とすると
する高温上向流式嫌気性汚泥床装置の運転方法。
1. A method for methane fermentation treatment of organic wastewater by a high temperature upflow type anaerobic sludge bed apparatus, wherein high temperature methane fermentation is performed by using medium temperature granule sludge obtained from a medium temperature anaerobic treatment apparatus as seed sludge. A method for operating a high-temperature upward-flow anaerobic sludge bed apparatus, which is started up from a temperature range during treatment and is operated while controlling salts of Fe, Ni, and Co as nutrient salts to predetermined amounts.
JP5935393A 1993-02-25 1993-02-25 Operation method for high temperature upward stream type anaerobic sludge bed device Pending JPH06246288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5935393A JPH06246288A (en) 1993-02-25 1993-02-25 Operation method for high temperature upward stream type anaerobic sludge bed device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5935393A JPH06246288A (en) 1993-02-25 1993-02-25 Operation method for high temperature upward stream type anaerobic sludge bed device

Publications (1)

Publication Number Publication Date
JPH06246288A true JPH06246288A (en) 1994-09-06

Family

ID=13110833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5935393A Pending JPH06246288A (en) 1993-02-25 1993-02-25 Operation method for high temperature upward stream type anaerobic sludge bed device

Country Status (1)

Country Link
JP (1) JPH06246288A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290790A (en) * 2002-04-03 2003-10-14 Kurita Water Ind Ltd Method of starting up denitrification apparatus
JP2004025088A (en) * 2002-06-27 2004-01-29 Fuji Electric Holdings Co Ltd Methane fermentation treatment method
JP2004074111A (en) * 2002-08-22 2004-03-11 Kurita Water Ind Ltd Waste liquid treatment method
JP2004195441A (en) * 2002-12-20 2004-07-15 Mitsubishi Heavy Ind Ltd Method for operating moderate temperature digestion tank
JP2005152878A (en) * 2003-11-21 2005-06-16 Ind Technol Res Inst Method and system for treating wastewater containing organic compound
JP2007268468A (en) * 2006-03-31 2007-10-18 Toyo Eng Corp High temperature treatment method for hydrocarbon or manufacture plant waste water of oxygenated compound
CN102502958A (en) * 2011-11-22 2012-06-20 上海交通大学 Upflow anaerobic sludge blanket reactor system
CN103146759A (en) * 2013-03-07 2013-06-12 宁夏回族自治区环境监测中心站 Low-temperature methane accelerator and preparation method thereof
JP2015509831A (en) * 2012-01-12 2015-04-02 ブレイゴウ リミテッド Anaerobic process
CN105923764A (en) * 2016-06-27 2016-09-07 南京大学 Method for quickly starting anaerobic ammonia oxidation technology by manganese dioxide
JP2017029882A (en) * 2015-07-29 2017-02-09 株式会社クラレ Waste water treatment method using carrier
JP2018083139A (en) * 2016-11-21 2018-05-31 株式会社クラレ Processing method of organic waste water

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290790A (en) * 2002-04-03 2003-10-14 Kurita Water Ind Ltd Method of starting up denitrification apparatus
JP2004025088A (en) * 2002-06-27 2004-01-29 Fuji Electric Holdings Co Ltd Methane fermentation treatment method
JP2004074111A (en) * 2002-08-22 2004-03-11 Kurita Water Ind Ltd Waste liquid treatment method
JP2004195441A (en) * 2002-12-20 2004-07-15 Mitsubishi Heavy Ind Ltd Method for operating moderate temperature digestion tank
JP2005152878A (en) * 2003-11-21 2005-06-16 Ind Technol Res Inst Method and system for treating wastewater containing organic compound
JP4679413B2 (en) * 2006-03-31 2011-04-27 東洋エンジニアリング株式会社 High temperature treatment method for hydrocarbon or oxygenated compound production plant wastewater
JP2007268468A (en) * 2006-03-31 2007-10-18 Toyo Eng Corp High temperature treatment method for hydrocarbon or manufacture plant waste water of oxygenated compound
CN102502958A (en) * 2011-11-22 2012-06-20 上海交通大学 Upflow anaerobic sludge blanket reactor system
JP2015509831A (en) * 2012-01-12 2015-04-02 ブレイゴウ リミテッド Anaerobic process
JP2018001169A (en) * 2012-01-12 2018-01-11 ブレイゴウ リミテッド Anaerobic process
US10590439B2 (en) 2012-01-12 2020-03-17 Blaygow Limited Anaerobic process
CN103146759A (en) * 2013-03-07 2013-06-12 宁夏回族自治区环境监测中心站 Low-temperature methane accelerator and preparation method thereof
JP2017029882A (en) * 2015-07-29 2017-02-09 株式会社クラレ Waste water treatment method using carrier
CN105923764A (en) * 2016-06-27 2016-09-07 南京大学 Method for quickly starting anaerobic ammonia oxidation technology by manganese dioxide
JP2018083139A (en) * 2016-11-21 2018-05-31 株式会社クラレ Processing method of organic waste water

Similar Documents

Publication Publication Date Title
CN1203011C (en) Process for the treatment of waste water containing ammonia
Chu et al. Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor
CN106242045B (en) A kind of aerobic particle mud fast culture process
CA2083199C (en) Method for the treatment of sewage and installation to be used for this method
EP2093196B1 (en) Method for controlling a waste water treatment system using a multiple step constructed wetland
CN104961229A (en) Nitrifying bacterium microbial film and preparing method of nitrifying bacterium microbial film
JPH06246288A (en) Operation method for high temperature upward stream type anaerobic sludge bed device
Münch et al. Suspended carrier technology allows upgrading high-rate activated sludge plants for nitrogen removal via process intensification
JP6662424B2 (en) Anaerobic digestion method and apparatus for sewage sludge
KR20170105950A (en) An autothermal aerobic/anaerobic digestion system in swine farms
JP2014024002A (en) Organic waste liquid treatment method and organic waste liquid treatment apparatus
JP2009066505A (en) Method of forming aerobic granule, water treatment method and water treatment apparatus
CN110357675A (en) A kind of breeding waste processing method and system
EP1129037A1 (en) Nitrification process
KR100879586B1 (en) Mehtod for making oxygenic liquid statefertilizer
CN112811582A (en) Nitrosation SBR device for promoting short-cut nitrification by adding hydrazine and improved process
KR20140087600A (en) Anaerobic fermentation of the feature-specific customized liquid device manufactur and manufactur method
JP4972817B2 (en) Anaerobic treatment method for organic wastewater
JPH07290088A (en) Method for biologically denitrifying organic waste water
JP3733705B2 (en) Supporting driving method of carrier
KR102488754B1 (en) Apparatus and Method for Treating Anaerobic Digestive Fluid
JP3607925B2 (en) Method for producing high spore seed sludge
KR102155524B1 (en) Livestock manure integrated treatment system and operating method thereof
KR100292432B1 (en) Modified oxidation ditch for organic wastewater treatment
CN101468852B (en) Method for aerobic synchronous nitration and denitrification of coking wastewater