JPH04341395A - Keeping method of methane fermentation relating bacteria - Google Patents
Keeping method of methane fermentation relating bacteriaInfo
- Publication number
- JPH04341395A JPH04341395A JP3143814A JP14381491A JPH04341395A JP H04341395 A JPH04341395 A JP H04341395A JP 3143814 A JP3143814 A JP 3143814A JP 14381491 A JP14381491 A JP 14381491A JP H04341395 A JPH04341395 A JP H04341395A
- Authority
- JP
- Japan
- Prior art keywords
- methane fermentation
- bacteria
- bioreactor
- methane
- relating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 148
- 238000000855 fermentation Methods 0.000 title claims abstract description 61
- 230000004151 fermentation Effects 0.000 title claims abstract description 61
- 241000894006 Bacteria Species 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 23
- 150000002505 iron Chemical class 0.000 claims abstract description 8
- 244000144992 flock Species 0.000 abstract description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 230000001580 bacterial effect Effects 0.000 description 9
- 238000010979 pH adjustment Methods 0.000 description 8
- 239000002351 wastewater Substances 0.000 description 8
- 230000000717 retained effect Effects 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 4
- 159000000014 iron salts Chemical class 0.000 description 4
- 241000205286 Methanosarcina sp. Species 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000003100 immobilizing effect Effects 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000294108 Methanothrix sp. Species 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000008394 flocculating agent Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000000696 methanogenic effect Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 241001478240 Coccus Species 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Sludge (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、産業廃水、下水汚泥な
どの有機性廃水に含まれる有機物をメタン発酵関連菌に
よって分解処理する際に採用されて好適なメタン発酵関
連菌の保持方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for retaining methane fermentation-related bacteria which is suitable for use in decomposing organic matter contained in organic wastewater such as industrial wastewater and sewage sludge using methane fermentation-related bacteria.
【0002】0002
【従来の技術】従来、有機物をメタンに変換する性質を
有するメタン生成細菌(メタン発酵関連菌)を利用した
メタン発酵による有機性廃水の処理は、曝気のためのエ
ネルギーが不要である、余剰汚泥の発生量が少ない、生
成するメタンガスをエネルギーとして利用可能であるな
どの点で、活性汚泥法等の好気性処理に比べ、エネルギ
ー的に有利な方法とされている。[Prior Art] Conventionally, the treatment of organic wastewater by methane fermentation using methane-producing bacteria (bacteria related to methane fermentation) that has the property of converting organic matter into methane has been carried out using excess sludge, which does not require energy for aeration. It is considered to be an energy-efficient method compared to aerobic treatments such as the activated sludge method because it generates only a small amount of methane gas and the generated methane gas can be used as energy.
【0003】0003
【発明が解決しようとする課題】しかしながら、メタン
生成細菌は増殖が遅いうえに、これらの菌体の沈降性が
悪いために、せっかく増殖した菌体が処理水とともに系
外へ流出してしまうという問題がある。そこで、これら
の問題を解決するために開発された方法の一つに固定床
法がある。固定床法は、メタン発酵関連菌を固定するた
めの担体となる抗火石などを導入し、この抗火石にメタ
ン発酵関連菌を固定化してメタン発酵を行うというもの
で、この固定床法の開発に伴って、メタン発酵用のバイ
オリアクター内の菌体濃度を高濃度に保持することが可
能となる。ところが、前記固定床法によっても、菌体の
補促量にも限度があり、より高濃度の菌体を保持する方
法の開発が望まれている。[Problem to be solved by the invention] However, since methane-producing bacteria grow slowly and the sedimentation properties of these bacteria are poor, the bacteria that have proliferated will flow out of the system along with the treated water. There's a problem. Therefore, one of the methods developed to solve these problems is the fixed bed method. The fixed bed method involves introducing anti-flinder stones, etc., which serve as carriers for immobilizing methane fermentation-related bacteria, and immobilizing methane fermentation-related bacteria on these anti-flinder stones to perform methane fermentation.The development of this fixed bed method Accordingly, it becomes possible to maintain a high bacterial cell concentration in the bioreactor for methane fermentation. However, even with the fixed bed method, there is a limit to the amount of bacterial cells that can be supplemented, and there is a desire to develop a method that can maintain a higher concentration of bacterial cells.
【0004】また、従来、メタン発酵に関与するメタン
生成細菌で、有機物をメタンに変換する性質を有するも
のは、Methanothrix sp.あるいはM
ethanosarcina sp.であることが知
られている。Methanothrix sp.は、
グラニュールを形成し、沈降性の良い汚泥を形成するが
、低濃度の酢酸にしか適用できないという問題がある。
一方、Methanosarcina sp.は、M
ethanothrix sp.に比べて、比較的高
濃度の酢酸、メタノール、メチルアミンをメタンに変換
できることから、その利用が望まれているが、本菌は球
菌でありグラニュールを形成しにくいため、沈降性が悪
く、バイオリアクター内に高濃度に菌体を保持すること
が難しいという問題がある。したがって、Methan
osarcina sp.を利用して、高負荷、高効
率のメタン発酵を行うことができないという問題を抱え
ているのが実情である。[0004] Conventionally, among the methanogenic bacteria involved in methane fermentation, those that have the property of converting organic matter into methane are Methanothrix sp. Or M
ethanosarcina sp. It is known that Methanothrix sp. teeth,
Although it forms granules and sludge with good settling properties, it has the problem that it can only be applied to low concentrations of acetic acid. On the other hand, Methanosarcina sp. Ha, M
ethanothrix sp. Its use is desirable because it can convert relatively high concentrations of acetic acid, methanol, and methylamine into methane compared to methane, but since this bacterium is a coccus and does not easily form granules, it has poor sedimentation. There is a problem in that it is difficult to maintain a high concentration of bacterial cells in a bioreactor. Therefore, Methan
osarcina sp. The reality is that the problem is that it is not possible to perform high-load, high-efficiency methane fermentation using methane.
【0005】本発明は、前記事情に鑑みてなされたもの
であって、メタン発酵用バイオリアクター内の菌体を高
濃度に保持して高負荷、高効率でメタン発酵を行うこと
ができるようなメタン発酵関連菌の保持方法を提供する
ことを目的としている。The present invention has been made in view of the above-mentioned circumstances, and is capable of maintaining a high concentration of bacterial cells in a bioreactor for methane fermentation to carry out methane fermentation under high load and with high efficiency. The purpose is to provide a method for retaining methane fermentation-related bacteria.
【0006】[0006]
【課題を解決するための手段】本発明は、メタン発酵関
連菌を保持したメタン発酵用のバイオリアクター内に、
鉄塩等の無機凝集剤を添加してフロックを発生させ、こ
のフロックにメタン発酵関連菌を保持することを解決手
段とした。[Means for Solving the Problems] The present invention provides a bioreactor for methane fermentation that holds bacteria related to methane fermentation.
The solution was to generate flocs by adding an inorganic flocculant such as iron salts, and to retain methane fermentation-related bacteria in the flocs.
【0007】[0007]
【作用】本発明のメタン発酵関連菌の保持方法によれば
、メタン発酵用のバイオリアクター内に、微生物を固定
する担体を充填する代わりに、鉄塩等の無機凝集剤を添
加してフロックを発生させるので、該フロック内にメタ
ン発酵関連菌を保持することができる。フロックに保持
されたことによって、このメタン発酵関連菌は、菌体の
沈降性が促進され、系外への流出が防止される。また、
同時に、バイオリアクター内で発生する硫化水素と鉄塩
等の無機凝集剤が反応して硫化物を形成するので、メタ
ン発酵への阻害も防止される。[Function] According to the method for retaining bacteria related to methane fermentation of the present invention, instead of filling a bioreactor for methane fermentation with a carrier that immobilizes microorganisms, an inorganic flocculant such as iron salt is added to prevent flocs. As a result, methane fermentation-related bacteria can be retained within the floc. By being retained in the flocs, the methane fermentation-related bacteria promote sedimentation of the bacterial cells and are prevented from flowing out of the system. Also,
At the same time, hydrogen sulfide generated in the bioreactor reacts with inorganic flocculants such as iron salts to form sulfides, which prevents inhibition of methane fermentation.
【0008】[0008]
【実施例】以下、実施例を示して、本発明のメタン発酵
関連菌の保持方法について説明する。[Examples] The method for retaining methane fermentation-related bacteria of the present invention will be explained below with reference to Examples.
【0009】図1は、メタン発酵関連菌の保持方法にお
いて用いられるメタン発酵装置の一例を示すものである
。この装置は、概略、pH調整槽1とバイオリアクター
2とを主体として構成されている。pH調整槽1は、メ
タノール廃水等の有機性廃水を導入する導入管3に接続
されている。また、pH調整槽1とバイオリアクター2
とは、循環配管4によって連結され、循環ポンプ5によ
り両者は互いに循環可能とされている。また、バイオリ
アクター2内には、メタン発酵に関与するメタン生成細
菌(メタン発酵関連菌)が保持されている。メタンガス
生成細菌には、Methanosarcina sp
.が用いられる。
また、このバイオリアクター2内には、生成したメタン
ガスを捕集する捕集用屋根6が設けられてメタンガスを
回収できるように構成されるとともに、上部には、メタ
ン生成細菌沈降後の清澄水を排水するための排水管7が
接続されている。FIG. 1 shows an example of a methane fermentation apparatus used in a method for preserving methane fermentation-related bacteria. This device is generally composed of a pH adjustment tank 1 and a bioreactor 2. The pH adjustment tank 1 is connected to an introduction pipe 3 into which organic wastewater such as methanol wastewater is introduced. In addition, pH adjustment tank 1 and bioreactor 2
are connected to each other by a circulation pipe 4, and a circulation pump 5 allows circulation between the two. Furthermore, the bioreactor 2 retains methane-producing bacteria (bacteria related to methane fermentation) that are involved in methane fermentation. Methanosarcina sp.
.. is used. In addition, a collection roof 6 is provided inside the bioreactor 2 to collect the generated methane gas, and the upper part is provided with a collection roof 6 for collecting the methane gas. A drain pipe 7 for draining water is connected.
【0010】このようにして構成されたメタン発酵装置
を用いてメタン発酵を行う方法について説明すると、p
H調整槽1内に、導入管3を通じて有機性廃水を導入し
た後、該pH調整槽1内に、無機凝集剤8を添加する。
無機凝集剤8には、塩化第二鉄等の鉄塩などが用いられ
るが、これ以外にも、硫酸バンドあるいはPACなど、
通常無機凝集剤として使用されているものは全て使用可
能である。また、pH調整槽1内に、苛性ソーダや水酸
化カリウム等のアルカリ剤9を添加して、該pH調整槽
1内のpHを調整する。[0010] To explain the method of carrying out methane fermentation using the methane fermentation apparatus constructed in this way, p.
After organic wastewater is introduced into the pH adjustment tank 1 through the introduction pipe 3, an inorganic flocculant 8 is added into the pH adjustment tank 1. As the inorganic flocculant 8, iron salts such as ferric chloride are used, but in addition to these, iron salts such as sulfuric acid band or PAC, etc.
All commonly used inorganic flocculants can be used. Further, an alkaline agent 9 such as caustic soda or potassium hydroxide is added into the pH adjustment tank 1 to adjust the pH in the pH adjustment tank 1.
【0011】pH調整後の調整液を、バイオリアクター
2内に流入し、循環経路4を通じて、該バイオリアクタ
ー2とpH調整槽1内とを循環させる。The pH-adjusted solution flows into the bioreactor 2 and is circulated between the bioreactor 2 and the pH adjustment tank 1 through the circulation path 4 .
【0012】バイオリアクター2内には、常時、低濃度
の鉄塩等の無機凝集剤8が補給され、前記メタン生成細
菌のフロック10が形成される。ここで言うフロック1
0とは、綿屑状の沈澱物である。このようにメタン生成
細菌はフロック10内に保持されるので、この菌体は沈
降性が良くなり、バイオリアクター2の下部に沈澱する
。バイオリアクター2内の上部は、菌体のない清澄水で
あり、排水管7を通じて系外へ流出される。また、バイ
オリアクター2内で生成したメタンガスは、捕集用屋根
6で捕集されて回収される。また、バイオリアクター2
内で発生した硫化水素は、鉄塩等の無機凝集剤8と反応
して硫化物を形成する。[0012] Inside the bioreactor 2, an inorganic flocculant 8 such as a low concentration of iron salt is constantly replenished, and flocs 10 of the methanogenic bacteria are formed. Flock 1 here
0 is a fluffy precipitate. Since the methane-producing bacteria are thus retained within the floc 10, the bacteria have good sedimentation properties and settle at the bottom of the bioreactor 2. The upper part of the bioreactor 2 is clear water free of bacterial cells, and is drained out of the system through the drain pipe 7. Furthermore, methane gas generated within the bioreactor 2 is collected and recovered by the collection roof 6. Also, bioreactor 2
Hydrogen sulfide generated inside reacts with an inorganic flocculant 8 such as iron salt to form sulfide.
【0013】このように、本実施例のメタン発酵関連菌
の保持方法によれば、メタン発酵用のバイオリアクター
2内に、微生物を固定する担体を充填する代わりに、鉄
塩等の無機凝集剤8を添加してフロック10を発生させ
るので、該フロック10内にメタン発酵関連菌を保持す
ることができる。したがって、このメタン発酵関連菌は
その沈降性が促進され、バイオリアクター2の底部に沈
降するので、バイオリアクター2上部から系外へ流出さ
れることが防止される。したがって、バイオリアクター
2内の菌体を常時高濃度に保持して、高負荷、高効率で
のメタン発酵の運転が可能となる。As described above, according to the method for retaining methane fermentation-related bacteria of this embodiment, instead of filling the bioreactor 2 for methane fermentation with a carrier for immobilizing microorganisms, an inorganic flocculant such as an iron salt is used. Since flocs 10 are generated by adding 8, bacteria related to methane fermentation can be retained in the flocs 10. Therefore, the sedimentation properties of the methane fermentation-related bacteria are promoted and they settle at the bottom of the bioreactor 2, so that they are prevented from flowing out of the system from the top of the bioreactor 2. Therefore, the bacterial cells in the bioreactor 2 can be maintained at a high concentration at all times, and methane fermentation can be operated under high load and with high efficiency.
【0014】また同時に、バイオリアクター2内で発生
した硫化水素は鉄塩等の無機凝集剤8と反応して硫化物
を形成するので、硫化水素によって引き起こされるメタ
ン発酵への阻害も防止され、メタン発酵の効率向上を図
ることができる。At the same time, the hydrogen sulfide generated in the bioreactor 2 reacts with the inorganic flocculant 8 such as iron salt to form sulfide, so the inhibition of methane fermentation caused by hydrogen sulfide is also prevented. It is possible to improve the efficiency of fermentation.
【0015】なお、本発明のメタン発酵関連菌の保持方
法は、前記実施例に限定されるものではなく、例えば使
用されるメタン発酵装置の構成、メタン生成細菌の種類
、あるいは無機凝集剤の種類など、具体的構成要件は、
実施にあたり適宜変更可能とされることはもちろんであ
る。[0015] The method for retaining methane fermentation-related bacteria of the present invention is not limited to the above-mentioned embodiments, and may be modified, for example, by the configuration of the methane fermentation equipment used, the type of methane-producing bacteria, or the type of inorganic flocculant. The specific configuration requirements are as follows:
It goes without saying that changes can be made as appropriate during implementation.
【0016】また、前記実施例では、メタノール廃水の
メタン発酵へ適用した例を示したが、酢酸廃水のメタン
発酵への適用はもちろん、二槽式メタン発酵における酸
発酵槽の後段メタン発酵槽への適用や、あるいは酸生成
細菌への適用なども可能であり、またその他のすべての
有機性廃水のメタン発酵への適用が可能である。In addition, in the above embodiment, an example was shown in which methanol wastewater is applied to methane fermentation, but it can of course be applied to methane fermentation of acetic acid wastewater, as well as to a methane fermentation tank downstream of an acid fermentation tank in a two-tank methane fermentation. It is also possible to apply it to acid-producing bacteria, and to methane fermentation of all other organic wastewaters.
【0017】[0017]
【発明の効果】以上説明したように、本発明のメタン発
酵関連菌の保持方法によれば、メタン発酵用のバイオリ
アクター内に、鉄塩等の無機凝集剤を添加してフロック
を発生させるので、該フロック内にメタン発酵関連菌を
保持することができる。フロックに保持されたことによ
って、メタン発酵関連菌は沈降性が促進され、系外への
流出が防止される。したがって、バイオリアクター内の
菌体を常に高濃度に保持して、高負荷、高効率でのメタ
ン発酵の運転が可能となる。[Effects of the Invention] As explained above, according to the method for retaining methane fermentation-related bacteria of the present invention, an inorganic flocculant such as iron salt is added to the bioreactor for methane fermentation to generate flocs. , methane fermentation-related bacteria can be retained within the floc. By being retained in the flocs, methane fermentation-related bacteria promote sedimentation and are prevented from flowing out of the system. Therefore, it is possible to maintain a high concentration of bacterial cells in the bioreactor at all times and operate methane fermentation under high load and with high efficiency.
【図1】本発明のメタン発酵関連菌の保持方法において
用いられるメタン発酵装置の一例を示す概念図である。FIG. 1 is a conceptual diagram showing an example of a methane fermentation apparatus used in the method for retaining methane fermentation-related bacteria of the present invention.
2 バイオリアクター 8 無機凝集剤 10 フロック 2 Bioreactor 8 Inorganic flocculant 10 Flock
Claims (1)
酵用のバイオリアクター内に、鉄塩等の無機凝集剤を添
加してフロックを発生させ、このフロックにメタン発酵
関連菌を保持することを特徴とするメタン発酵関連菌の
保持方法。Claim 1: The method is characterized in that an inorganic flocculant such as iron salt is added to a bioreactor for methane fermentation that holds methane fermentation-related bacteria to generate flocs, and the methane fermentation-related bacteria are held in the flocs. A method for preserving methane fermentation-related bacteria.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3143814A JPH04341395A (en) | 1991-05-20 | 1991-05-20 | Keeping method of methane fermentation relating bacteria |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3143814A JPH04341395A (en) | 1991-05-20 | 1991-05-20 | Keeping method of methane fermentation relating bacteria |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04341395A true JPH04341395A (en) | 1992-11-27 |
Family
ID=15347590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3143814A Withdrawn JPH04341395A (en) | 1991-05-20 | 1991-05-20 | Keeping method of methane fermentation relating bacteria |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04341395A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1152094A (en) * | 1997-07-30 | 1999-02-26 | Mitsubishi Heavy Ind Ltd | Method for treating drain containing ethanolamine |
JP2004025088A (en) * | 2002-06-27 | 2004-01-29 | Fuji Electric Holdings Co Ltd | Methane fermentation treatment method |
JP2009522095A (en) * | 2006-01-05 | 2009-06-11 | バイオタン システムズ インターナショナル ビー.ブイ. | Method and reactor for anaerobic wastewater purification |
JP2009522096A (en) * | 2006-01-05 | 2009-06-11 | バイオタン システムズ インターナショナル ビー.ブイ. | Method and reactor for anaerobic wastewater purification |
JP2014133210A (en) * | 2013-01-10 | 2014-07-24 | Swing Corp | Anaerobic treatment method and anaerobic treatment apparatus of organic effluent |
-
1991
- 1991-05-20 JP JP3143814A patent/JPH04341395A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1152094A (en) * | 1997-07-30 | 1999-02-26 | Mitsubishi Heavy Ind Ltd | Method for treating drain containing ethanolamine |
JP2004025088A (en) * | 2002-06-27 | 2004-01-29 | Fuji Electric Holdings Co Ltd | Methane fermentation treatment method |
JP2009522095A (en) * | 2006-01-05 | 2009-06-11 | バイオタン システムズ インターナショナル ビー.ブイ. | Method and reactor for anaerobic wastewater purification |
JP2009522096A (en) * | 2006-01-05 | 2009-06-11 | バイオタン システムズ インターナショナル ビー.ブイ. | Method and reactor for anaerobic wastewater purification |
US8021552B2 (en) | 2006-01-05 | 2011-09-20 | Veolia Water Solutions & Technologies Support | Process and reactor for anaerobic waste water purification |
US8043506B2 (en) | 2006-01-05 | 2011-10-25 | Biothane Systems International B.V. | Process and reactor for anaerobic waste water purification |
JP2014133210A (en) * | 2013-01-10 | 2014-07-24 | Swing Corp | Anaerobic treatment method and anaerobic treatment apparatus of organic effluent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107381815B (en) | Device and method for realizing deep denitrification of domestic sewage by mainstream endogenous short-range denitrification/anaerobic ammonia oxidation process | |
CN110395851B (en) | High-altitude town sewage treatment method based on nitrogen and phosphorus capture and completely autotrophic nitrogen removal | |
CN104129853B (en) | A kind of starting method of quick short distance nitration | |
CN112250176A (en) | Device and method for realizing advanced nitrogen and phosphorus removal of municipal sewage by integrated shortcut nitrification coupled with anaerobic ammonia oxidation denitrification phosphorus removal | |
JP7111300B2 (en) | Organic wastewater treatment device and organic wastewater treatment method | |
CN103880195A (en) | Method for synchronously culturing nitrosified, anammox and denitrified granule sludge | |
CN102745810A (en) | Synchronous denitrifying and decarburizing method for waste water | |
CN105236573A (en) | Fast cultivation method for SNAD biological film of urban sewage | |
CN104801166A (en) | Method and device for cooperative flue gas desulfurization and sewage organic matter degradation and denitrification | |
CN102701438A (en) | Normal temperature low-ammonia-nitrogen nitrosation starting method | |
CN104609651B (en) | A kind of Large-scale pig farm advanced waste treatment system | |
CN109650543B (en) | SPNA integrated denitrification method for treating low-matrix wastewater under continuous flow condition | |
CN104531783B (en) | The method that copper sulphate joint alkaline pH promotes excess sludge anaerobic fermentation production short chain fatty acids | |
CN109867352B (en) | Method for realizing autotrophic deep denitrification of nitrogen-containing wastewater by utilizing anaerobic MBR (membrane bioreactor) | |
CN103193320B (en) | Efficient autotrophic denitrification method of bacterial filter | |
CN113292197A (en) | Method and system for treating sewage of intensified oxidation pond | |
JPH04341395A (en) | Keeping method of methane fermentation relating bacteria | |
KR100670231B1 (en) | System for processing waste water using rumination sbr | |
CN107381803A (en) | It is a kind of that the device and method for promoting granular sludge is controlled based on magnetic method calcium carbonate crystal formation | |
De Smul et al. | Retention of sulfate‐reducing bacteria in expanded granular‐sludge‐blanket reactors | |
CN103771590A (en) | Method and device for processing sewage by virtue of multistage alternative microbial generator | |
CN102923859B (en) | Process for treating high-concentration printing-dyeing desizing waste water and aerobic excess sludge | |
CN102019169B (en) | Regeneration method of activated carbon in organosilicon wastewater treatment | |
CN105060623B (en) | Double dirt method for treating water based on hydrogenesis and acetogenesis/hydrogen autotrophic denitrification coupling | |
CN114590888A (en) | Efficient biological nitrification method for source separation of urine sewage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980806 |