JP2000102779A - Method for accelerating generation of methane gas - Google Patents

Method for accelerating generation of methane gas

Info

Publication number
JP2000102779A
JP2000102779A JP10274110A JP27411098A JP2000102779A JP 2000102779 A JP2000102779 A JP 2000102779A JP 10274110 A JP10274110 A JP 10274110A JP 27411098 A JP27411098 A JP 27411098A JP 2000102779 A JP2000102779 A JP 2000102779A
Authority
JP
Japan
Prior art keywords
gas
digested
methane gas
digested sludge
fermentation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10274110A
Other languages
Japanese (ja)
Inventor
Shinichiro Wakahara
慎一郎 若原
Toshihiro Komatsu
敏宏 小松
Hideki Iwabe
秀樹 岩部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP10274110A priority Critical patent/JP2000102779A/en
Publication of JP2000102779A publication Critical patent/JP2000102779A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the concn. of soluble nutrient salts which can be biologically used in an anaerobic fermentation tank and to increase the production amt. of methane gas by reducing the ion concn. of sulfides in digested sludge when org. waste is introduced into the fermentation tank and decomposed by anaerobic digestion to produce methane gas. SOLUTION: Garbage which is an easily decomposable org. substance as the object 1 of digestion is fed to a fermentation tank 2 and subjected to anaerobic digestion at a specified temp. for specified days, and the digested sludge 3 is drained. In this process, the digested gas 4 produced in the fermentation tank 2 is introduced into a desulfurization tower 5 and desulfurized. The desulfurized gas 6 is separated and introduced into a gas holder 7 while a part of the gas is returned to the fermentation tank 2 and blown into the digested sludge 3. By this method, for example, the amt. of propionic acid accumulated in the digested sludge 3 in the fermentation tank 2 is about 2000 mg/L (pH 7.9) amt. and the decomposition rate of the substrate reaches 85%. Namely, the concn. of hydrogen sulfide in the digested gas 4 is decreased and the emission of hydrogen sulfide in the digested sludge 3 is accelerated, while the ion concn. of sulfides is decreased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性廃棄物を発
酵槽に導き、嫌気性消化により分解してメタンガスを発
生させる際のメタンガス発生促進方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accelerating methane gas generation when organic waste is introduced into a fermenter and decomposed by anaerobic digestion to generate methane gas.

【0002】[0002]

【従来の技術】従来より有機性廃棄物の再資源化が図ら
れており、たとえば特開平9−201699号には、し
尿、浄化槽汚泥、下水汚泥、農集汚泥、家畜ふん尿、生
ごみ、食品廃棄物など、性状や濃度が異なる有機性廃棄
物を同一システムで処理して、メタンガスなどの有用物
質を回収する方法が開示されている。
2. Description of the Related Art Conventionally, organic waste has been recycled. For example, Japanese Patent Application Laid-Open No. Hei 9-201699 discloses that human waste, septic tank sludge, sewage sludge, agricultural sludge, livestock manure, garbage and foods are disclosed. A method is disclosed in which organic wastes having different properties and concentrations, such as wastes, are treated with the same system to recover useful substances such as methane gas.

【0003】[0003]

【発明が解決しようとする課題】ところで、有機性廃棄
物を嫌気性発酵槽で処理する場合、有機物の分解に、あ
る濃度以上の栄養塩類が必要であることは周知である。
ところが、嫌気性消化で発生する消化ガス中に含まれる
硫化水素は金属と結合して硫化物沈殿を形成する性質が
あるため、生物増殖に不可欠な溶解性金属が硫化物とし
て沈殿してしまい、結果として栄養塩類不足を招く要因
となる。なかでも、高温メタン発酵系では、硫化物の溶
解度が中温メタン発酵系のそれと比較して低いため、溶
解性栄養塩類の濃度に特に気を配る必要がある。
It is well known that when organic waste is treated in an anaerobic fermenter, nutrients at a certain concentration or higher are required for the decomposition of the organic matter.
However, since hydrogen sulfide contained in digestive gas generated in anaerobic digestion has the property of forming sulfide precipitates by binding to metals, soluble metals essential for biological growth precipitate as sulfides, As a result, this is a factor that causes a shortage of nutrients. In particular, in the high-temperature methane fermentation system, since the solubility of sulfide is lower than that in the medium-temperature methane fermentation system, it is necessary to pay particular attention to the concentration of soluble nutrients.

【0004】本発明は上記問題を解決するもので、嫌気
性発酵槽において生物利用可能な溶解性栄養塩類の濃度
を増大することができ、メタンガスの発生量を増大でき
るメタンガス発生促進方法を提供することを目的とする
ものである。
[0004] The present invention solves the above-mentioned problems, and provides a methane gas generation promoting method capable of increasing the concentration of bioavailable soluble nutrients in an anaerobic fermenter and increasing the amount of methane gas generated. The purpose is to do so.

【0005】[0005]

【課題を解決するための手段】上記問題を解決するため
に、本発明のメタンガス発生促進方法は、有機性廃棄物
を発酵槽に導き、嫌気性消化により分解してメタンガス
を発生させるに際し、槽内の消化汚泥中の硫化物イオン
濃度を低下させるようにしたものである。
In order to solve the above-mentioned problems, a method for promoting methane gas generation according to the present invention is directed to a method for introducing organic waste into a fermenter and decomposing it by anaerobic digestion to generate methane gas. This is to reduce the sulfide ion concentration in the digested sludge inside.

【0006】硫化物イオン濃度の低下は、槽内の消化ガ
ス中の硫化水素を除去し、消化汚泥より硫化水素を放出
させることにより行うことができる。また硫化物イオン
濃度の低下は、有機性廃棄物に発酵槽の前段であるいは
発酵槽で脱硫剤を混合することにより行うことができ
る。
[0006] The sulfide ion concentration can be reduced by removing hydrogen sulfide in digested gas in the tank and releasing hydrogen sulfide from digested sludge. Further, the reduction of the sulfide ion concentration can be performed by mixing a desulfurizing agent with the organic waste in a stage preceding the fermenter or in the fermenter.

【0007】また硫化物イオン濃度の低下は、槽内の消
化汚泥のpHを低下させることにより行うことができ
る。発酵槽内の溶解性金属量は以下の式で表わされる。
[0007] The sulfide ion concentration can be reduced by lowering the pH of digested sludge in the tank. The amount of soluble metal in the fermenter is represented by the following equation.

【0008】[0008]

【数1】 (Equation 1)

【0009】つまり、溶解性金属濃度{Me2+}は、硫
化物イオン濃度{S2-}に反比例し、したがって硫化水
素濃度{H2S}に反比例するとともに、水素イオン濃
度{H+}の2乗に比例する。
That is, the soluble metal concentration {Me 2+ } is inversely proportional to the sulfide ion concentration {S 2- }, and therefore inversely proportional to the hydrogen sulfide concentration {H 2 S}, and the hydrogen ion concentration {H + } Is proportional to the square of

【0010】このため、硫化物イオン濃度{S2-}、硫
化水素濃度{H2S}、水素イオン濃度{H+}を調整す
ることによって、溶解性金属量をコントロールすること
ができる。
For this reason, the amount of soluble metal can be controlled by adjusting the sulfide ion concentration {S 2- }, the hydrogen sulfide concentration {H 2 S}, and the hydrogen ion concentration {H + }.

【0011】換言すると、上記したような方法によっ
て、硫化物イオン濃度{S2-}、硫化水素濃度{H
2S}、水素イオン濃度{H+}を調整することにより、
嫌気性消化に必須の金属が硫化物として沈殿するのを抑
制して、発酵槽で不足しがちな溶解性栄養塩類の不足を
防止することができる。その結果、嫌気性消化活性を高
め、メタンガスの発生量を増大させることができる。
In other words, the sulfide ion concentration {S 2- } and the hydrogen sulfide concentration {H
By adjusting 2 S} and hydrogen ion concentration {H +
Prevention of precipitation of metals essential for anaerobic digestion as sulfides can prevent shortage of soluble nutrients, which tends to be insufficient in fermenters. As a result, anaerobic digestion activity can be increased, and the amount of methane gas generated can be increased.

【0012】[0012]

【発明の実施の形態】以下、本発明を実施例を挙げて説
明する。 (実施例1)図1に示したように、易分解性有機物であ
る厨芥を消化対象物1として、発酵槽2の内部に投入
し、約55℃に加温する状態において、水利学的滞留時
間(HRT)を16日として嫌気性消化し、消化汚泥3
を引き抜いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. (Example 1) As shown in Fig. 1, kitchen garbage, which is an easily decomposable organic substance, is put into a fermentation tank 2 as a digestion target 1, and is heated to about 55 ° C and retained in a hydrological state. Anaerobic digestion with a time (HRT) of 16 days, digested sludge 3
Was pulled out.

【0013】その際、発酵槽2内で発生した消化ガス4
を脱硫塔5に導入して脱硫し、それにより硫化水素が除
去された脱硫ガス6を分流してガスホルダー7に導くと
ともに、その一部を発酵槽2へ返送して消化汚泥3中に
吹き込んだ。
At this time, the digested gas 4 generated in the fermenter 2
Is introduced into a desulfurization tower 5 for desulfurization, whereby the desulfurization gas 6 from which hydrogen sulfide has been removed is diverted and guided to a gas holder 7, and a part of the gas is returned to the fermenter 2 and blown into the digested sludge 3. It is.

【0014】その結果、発酵槽2内の消化汚泥3中に蓄
積したプロピオン酸は2000mg/L程度となり(p
H7.9)、基質分解率は85%となった。脱硫ガス6
の吹き込みを行わない以外は上記と同様の従来の方法で
は、プロピオン酸が5000mg/L程度蓄積し、基質
分解率も60%程度になるのと比較すると、嫌気性消化
活性が高まり、メタンガスの発生量(基質分解率)が増
大したことがわかる。
As a result, the amount of propionic acid accumulated in the digested sludge 3 in the fermenter 2 is about 2000 mg / L (p
H7.9), and the substrate decomposition rate was 85%. Desulfurization gas 6
In the conventional method similar to the above, except that the blowing of methane gas is not performed, the anaerobic digestion activity is increased and the generation of methane gas is increased as compared with the case where propionic acid is accumulated at about 5000 mg / L and the substrate decomposition rate is also about 60%. It can be seen that the amount (substrate decomposition rate) increased.

【0015】これは、消化ガス4の脱硫および脱硫ガス
6の吹き込みによって、槽内の消化ガス4中の硫化水素
濃度が低下し、消化汚泥3中の硫化水素の放出が促進さ
れ、硫化物イオン濃度が低下し、嫌気性消化に必須の金
属の硫化物としての沈殿が抑制されて、溶解状態に維持
されたからである。
This is because the concentration of hydrogen sulfide in the digested gas 4 in the tank is reduced by the desulfurization of the digested gas 4 and the blowing of the desulfurized gas 6, and the release of hydrogen sulfide in the digested sludge 3 is promoted. This is because the concentration was reduced, and the precipitation of metal essential for anaerobic digestion as sulfide was suppressed, and the metal was maintained in a dissolved state.

【0016】この方法は、従来の消化ガス脱硫ラインに
脱硫ガス6の返送ラインを加えるだけでよいので、新た
な設備投資は最低限ですみ、格別の制御も不要である。
上記した方法に代えて、消化ガス4を、発酵槽2に脱硫
性化合物を入れた脱硫手段を具備するか、あるいは同一
処理系の他処理工程に存在する脱硫性化合物を利用して
脱硫すること、または硫化水素不含の別途の攪拌ガスを
吹き込むことによっても、メタンガスの発生促進は可能
である。 (実施例2)図2に示したように、実施例1と同様にし
て厨芥を消化対象物1として嫌気性消化するとともに、
発酵槽2に塩酸8を投入することにより、消化汚泥3の
pHを7.9から7.2に低下させた。
In this method, since only a return line for the desulfurization gas 6 is added to the conventional digestion gas desulfurization line, new capital investment is minimized, and no special control is required.
Instead of the above-described method, the digestion gas 4 is provided with a desulfurization means in which the desulfurization compound is put in the fermenter 2 or is desulfurized by using a desulfurization compound existing in another treatment step of the same treatment system. Alternatively, the generation of methane gas can be promoted by blowing a separate stirring gas containing no hydrogen sulfide. (Example 2) As shown in FIG. 2, kitchen garbage is digested anaerobically as digestion target 1 in the same manner as in Example 1,
The pH of digested sludge 3 was reduced from 7.9 to 7.2 by adding hydrochloric acid 8 to fermenter 2.

【0017】その結果、基質分解率は90%にまで向上
した。これは、塩酸8による水素イオン濃度の上昇によ
って、消化汚泥3からの硫化水素の放出が促進されたか
らである。この場合、硫化水素の放出量の増大によっ
て、脱硫塔5での脱硫剤の消費量は約2倍に増加した
が、このランニングコスト増はメタンガスの回収量の増
大で十分に補えた。 (実施例3)図3に示したように、し尿処理場に搬入さ
れるし尿と浄化槽汚泥とを処理対象物9として、重力濃
縮槽や脱水機などの濃縮装置10に導入するとともに、
凝集剤として固形物あたり8%の塩化鉄11を添加して
凝集させた。そして、凝集物を消化対象物12として、
実施例1と同様の発酵槽2の内部に投入し、約55℃に
加温し、攪拌ガス13で攪拌する状態において、水利学
的滞留時間(HRT)を16日として嫌気性消化した。
As a result, the substrate decomposition rate was improved to 90%. This is because the release of hydrogen sulfide from the digested sludge 3 was promoted by the increase in the hydrogen ion concentration by the hydrochloric acid 8. In this case, the consumption of the desulfurizing agent in the desulfurization tower 5 increased about twice by the increase in the amount of hydrogen sulfide released, but this increase in running cost was sufficiently compensated by the increase in the amount of methane gas recovered. (Embodiment 3) As shown in FIG. 3, human waste and septic tank sludge carried into a human waste processing plant are introduced into a concentration apparatus 10 such as a gravity concentration tank or a dehydrator as a treatment object 9, and
As a coagulant, 8% of iron chloride per solid was added to coagulate. Then, the aggregate is used as the digestion target 12.
The fermenter 2 was charged into the same fermenter 2 as in Example 1, heated to about 55 ° C., and agitated with the stirring gas 13 to perform anaerobic digestion with a hydrological residence time (HRT) of 16 days.

【0018】その結果、発酵槽2で発生した消化ガス4
中の硫化水素濃度は50ppmとなった。ポリ塩化アル
ミニウム(PAC)を用いた場合には、消化ガス中の硫
化水素濃度が1000ppmに達したのに比較すると、
硫化水素濃度は大幅に低下しており、メタンガスも1.
3倍回収された。これは、塩化鉄11が脱硫剤として作
用し、消化汚泥3中の硫化物イオン濃度が低下したため
である。 (実施例4)図4に示したように、実施例3と同様のし
尿と浄化槽汚泥とを処理対象物9として濃縮装置10に
導入するとともに、凝集剤として固形物あたり8%のポ
リ塩化アルミニウム(PAC)14を添加して凝集させ
た。そして、凝集物を消化対象物12として、発酵槽2
の内部に投入し、約55℃に加温し、攪拌ガス13で攪
拌する状態において、脱硫剤としての塩化鉄11を20
00ppm程度となるように投入した。
As a result, the digested gas 4 generated in the fermenter 2
The concentration of hydrogen sulfide therein became 50 ppm. When using polyaluminum chloride (PAC), the concentration of hydrogen sulfide in the digested gas reached 1000 ppm,
Hydrogen sulfide concentration has dropped significantly, and methane gas has also been reduced to 1.
It was recovered three times. This is because the iron chloride 11 acts as a desulfurizing agent, and the sulfide ion concentration in the digested sludge 3 decreases. (Embodiment 4) As shown in FIG. 4, the same human waste and septic tank sludge as in Embodiment 3 were introduced into a concentrating apparatus 10 as a treatment object 9, and 8% polyaluminum chloride per solid as a coagulant (PAC) 14 was added for aggregation. Then, the aggregate is used as the digestion target 12 and the fermenter 2
, Heated to about 55 ° C., and stirred with stirring gas 13, and iron chloride 11 as a desulfurizing agent
It was introduced so as to be about 00 ppm.

【0019】結果は実施例3と同様であった。さらに、
塩化鉄11の投入により消化汚泥3のpHが8.0から
6.8まで低下した。つまり、塩化鉄11は脱硫とpH
低下の双方に作用し、金属硫化物の沈殿を効果的に抑制
した。 (実施例5)図5に示したように、塩化鉄11に代えて
鉄粉15を10000ppm程度となるように投入した
以外は、実施例4と同様にして嫌気性消化を行った。結
果は実施例4と同様であった。
The results were the same as in Example 3. further,
By the addition of the iron chloride 11, the pH of the digested sludge 3 was lowered from 8.0 to 6.8. In other words, iron chloride 11 is desulfurized and pH
Both of these effects were effective in suppressing the precipitation of metal sulfide. (Example 5) As shown in Fig. 5, anaerobic digestion was carried out in the same manner as in Example 4 except that iron powder 15 was introduced so as to be about 10000 ppm instead of iron chloride 11. The results were the same as in Example 4.

【0020】実施例4のようにして塩化鉄を投入するの
は、消化汚泥3のpHが高い場合はpH低下をもたらす
ため効果的であるが、pHが既にある程度低い場合は酸
敗を招く恐れがあり、こうした場合、実施例5のように
鉄粉、あるいは鉄スクラップを投入するのが効果的であ
る。
The introduction of iron chloride as in Example 4 is effective because the pH of the digested sludge 3 is lowered when the pH is high, but may be rancid when the pH is already low to some extent. In such a case, it is effective to add iron powder or iron scrap as in the fifth embodiment.

【0021】[0021]

【発明の効果】以上のように、本発明によれば、発酵槽
内の消化汚泥中の硫化物イオン濃度を低下させることに
より、嫌気性消化に必須の金属が沈殿するのを抑制する
ことができ、嫌気性消化活性を高め、メタンガスの発生
量を増大させることができる。
As described above, according to the present invention, it is possible to suppress the precipitation of metals essential for anaerobic digestion by reducing the sulfide ion concentration in digested sludge in a fermenter. Thus, anaerobic digestion activity can be enhanced, and the amount of methane gas generated can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のメタンガス発生促進方法の実施例1を
説明する説明図である。
FIG. 1 is an explanatory diagram illustrating a first embodiment of a methane gas generation promoting method of the present invention.

【図2】本発明のメタンガス発生促進方法の実施例2を
説明する説明図である。
FIG. 2 is an explanatory view illustrating a methane gas generation promoting method according to a second embodiment of the present invention.

【図3】本発明のメタンガス発生促進方法の実施例3を
説明する説明図である。
FIG. 3 is an explanatory diagram for explaining a methane gas generation promoting method according to a third embodiment of the present invention.

【図4】本発明のメタンガス発生促進方法の実施例4を
説明する説明図である。
FIG. 4 is an explanatory diagram for explaining a methane gas generation promoting method according to a fourth embodiment of the present invention.

【図5】本発明のメタンガス発生促進方法の実施例5を
説明する説明図である。
FIG. 5 is an explanatory view illustrating a fifth embodiment of the methane gas generation promoting method of the present invention.

【符号の説明】[Explanation of symbols]

1 消化対象物 2 発酵槽 3 消化汚泥 4 消化ガス 5 脱硫塔 6 脱硫ガス 8 塩酸 9 処理対象物 11 塩化鉄 12 消化対象物 15 鉄粉 Reference Signs List 1 digestion target 2 fermenter 3 digestion sludge 4 digestion gas 5 desulfurization tower 6 desulfurization gas 8 hydrochloric acid 9 treatment target 11 iron chloride 12 digestion target 15 iron powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩部 秀樹 大阪府大阪市浪速区敷津東一丁目2番47号 株式会社クボタ内 Fターム(参考) 4D059 AA01 AA02 AA03 AA07 BA15 BA17 BE55 BF12 DA16 DA22 DA24 DA32  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideki Iwabe 2-47, Shishitsuhigashi, Namiwa-ku, Osaka-shi, Osaka F-term (reference) 4D059 AA01 AA02 AA03 AA07 BA15 BA17 BE55 BF12 DA16 DA22 DA24 DA32

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機性廃棄物を発酵槽に導き、嫌気性消
化により分解してメタンガスを発生させるに際し、槽内
の消化汚泥中の硫化物イオン濃度を低下させることを特
徴とするメタンガス発生促進方法。
1. A method for promoting methane gas generation, comprising: introducing organic waste into a fermenter, decomposing it by anaerobic digestion to generate methane gas, and reducing sulfide ion concentration in digested sludge in the tank. Method.
【請求項2】 硫化物イオン濃度の低下は、槽内の消化
ガス中の硫化水素を除去し、消化汚泥より硫化水素を放
出させることにより行うことを特徴とする請求項1記載
のメタンガス発生促進方法。
2. The methane gas generation promotion according to claim 1, wherein the reduction of the sulfide ion concentration is performed by removing hydrogen sulfide in the digested gas in the tank and releasing hydrogen sulfide from the digested sludge. Method.
【請求項3】 硫化物イオン濃度の低下は、有機性廃棄
物に発酵槽の前段であるいは発酵槽で脱硫剤を混合する
ことにより行うことを特徴とする請求項1記載のメタン
ガス発生促進方法。
3. The method for promoting methane gas generation according to claim 1, wherein the reduction of the sulfide ion concentration is carried out by mixing the organic waste with a desulfurizing agent before the fermenter or in the fermenter.
【請求項4】 硫化物イオン濃度の低下は、槽内の消化
汚泥のpHを低下させることにより行うことを特徴とす
る請求項1記載のメタンガス発生促進方法。
4. The method according to claim 1, wherein the sulfide ion concentration is lowered by lowering the pH of the digested sludge in the tank.
JP10274110A 1998-09-29 1998-09-29 Method for accelerating generation of methane gas Pending JP2000102779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10274110A JP2000102779A (en) 1998-09-29 1998-09-29 Method for accelerating generation of methane gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10274110A JP2000102779A (en) 1998-09-29 1998-09-29 Method for accelerating generation of methane gas

Publications (1)

Publication Number Publication Date
JP2000102779A true JP2000102779A (en) 2000-04-11

Family

ID=17537157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10274110A Pending JP2000102779A (en) 1998-09-29 1998-09-29 Method for accelerating generation of methane gas

Country Status (1)

Country Link
JP (1) JP2000102779A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025088A (en) * 2002-06-27 2004-01-29 Fuji Electric Holdings Co Ltd Methane fermentation treatment method
KR100461759B1 (en) * 2002-07-16 2004-12-14 한국화학연구원 Hydrogen gas and methan gas production from highly concentrated wastewater
JP2008030008A (en) * 2006-08-01 2008-02-14 Kanai Educational Institution Methane fermentation method of organic waste
CN102775037A (en) * 2012-07-13 2012-11-14 同济大学 Three-step two-stage method for producing marsh gas from municipal sludge by anaerobic fermentation
CN103241908A (en) * 2013-05-30 2013-08-14 成都巨星农牧科技有限公司 Large-scale pig farm wastewater treatment method
JP2017119242A (en) * 2015-12-28 2017-07-06 株式会社サピエナント Organic matter treatment system and organic matter treatment method
KR20190052018A (en) 2016-09-26 2019-05-15 스미토모 세이카 가부시키가이샤 A method for purifying hydrogen or helium and a method for purifying hydrogen or helium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025088A (en) * 2002-06-27 2004-01-29 Fuji Electric Holdings Co Ltd Methane fermentation treatment method
KR100461759B1 (en) * 2002-07-16 2004-12-14 한국화학연구원 Hydrogen gas and methan gas production from highly concentrated wastewater
JP2008030008A (en) * 2006-08-01 2008-02-14 Kanai Educational Institution Methane fermentation method of organic waste
CN102775037A (en) * 2012-07-13 2012-11-14 同济大学 Three-step two-stage method for producing marsh gas from municipal sludge by anaerobic fermentation
CN103241908A (en) * 2013-05-30 2013-08-14 成都巨星农牧科技有限公司 Large-scale pig farm wastewater treatment method
JP2017119242A (en) * 2015-12-28 2017-07-06 株式会社サピエナント Organic matter treatment system and organic matter treatment method
KR20190052018A (en) 2016-09-26 2019-05-15 스미토모 세이카 가부시키가이샤 A method for purifying hydrogen or helium and a method for purifying hydrogen or helium

Similar Documents

Publication Publication Date Title
KR101019200B1 (en) Nitrogen-rich waste water treatment method and method for producing struvite
JP4729718B2 (en) Organic waste treatment methods
WO2005049511A1 (en) Method of formation/recovery of magnesium ammonium phosphate and apparatus therefor
JP5211769B2 (en) Biological treatment method and treatment apparatus for organic waste liquid
JP2003200199A (en) Sewage treatment method
JP6649769B2 (en) Organic matter processing system and organic matter processing method
JP2000102779A (en) Method for accelerating generation of methane gas
Kalyuzhnyi et al. Integrated mechanical, biological and physico-chemical treatment of liquid manure streams
JPH10512801A (en) Biomass treatment method for removing heavy metals with hydrogen sulfide
JP2008284428A (en) Method for treating organic matter-containing waste water
JPH09108690A (en) Treatment of phosphorus containing sewage
JP2014008491A (en) Organic waste treatment apparatus, and organic waste treatment method using the same
CN107055963A (en) The efficient advanced treatment apparatus of percolate and processing method
KR100343637B1 (en) Treatment of leachate
JP2007196172A (en) Liquid extract of humic substance, solidifying agent, concentrating agent and method for treating organic waste water by using them
CN103922551B (en) The preparation method of sludge heavy-metal extractant and application thereof
JPH09220593A (en) Treatment of ammonia nitrogen-containing organic waste liquid
JPH0425079B2 (en)
KR20130087992A (en) Food waste and excretions treatment system with crystallization apparatus for phosphorus recovery
JP3511430B2 (en) Organic wastewater treatment method
JP3693320B2 (en) Method and apparatus for methane fermentation treatment of organic waste
Plyatsuk et al. Intensification of the anaerobic microbiological degradation of sewage sludge under bio-sulfidogenic conditions
JP2005211724A (en) Treatment method for organic waste water
CA1329957C (en) Process for removing metal contaminants from liquids and slurries
JPH05192686A (en) Method for microbiological oxidization of sulfide waste