JPH09220593A - Treatment of ammonia nitrogen-containing organic waste liquid - Google Patents

Treatment of ammonia nitrogen-containing organic waste liquid

Info

Publication number
JPH09220593A
JPH09220593A JP2962096A JP2962096A JPH09220593A JP H09220593 A JPH09220593 A JP H09220593A JP 2962096 A JP2962096 A JP 2962096A JP 2962096 A JP2962096 A JP 2962096A JP H09220593 A JPH09220593 A JP H09220593A
Authority
JP
Japan
Prior art keywords
magnesium
phosphate
methane fermentation
ions
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2962096A
Other languages
Japanese (ja)
Inventor
Tetsuro Fukase
哲朗 深瀬
Motoyuki Yoda
元之 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2962096A priority Critical patent/JPH09220593A/en
Publication of JPH09220593A publication Critical patent/JPH09220593A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance methane fermentation efficiency within a short stagnation time in a small-sized treatment tank by treating a liquid to be treated in the presence of phosphate ions and magnesium ions in a state of specific pH or more to form magnesium ammonium phosphate and separating this phosphate to perform methane fermentation. SOLUTION: A liquid to be treated being an ammonia nitrogen-containing org. waste liquid is treated in the presence of phosphate ions and magnesium ions to form magnesium ammonium phosphate which is, in turn, separated to perform methane fermentation. As this waste liquid, there is excretion. In this case, as a source of phosphate ions, phosphoric acid or sodium phosphate can be used. As a source of magnesium ions, magnesium chloride or magnesium sulfate is used. As the magnesium source, seawater may be used. pH is pref. adjusted to 8-11 if necessary by adding a pH controller, for example, sodium hydroxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアンモニア性窒素を
含有する有機性排液をメタン発酵により処理する方法に
関するものである。
TECHNICAL FIELD The present invention relates to a method for treating an organic effluent containing ammoniacal nitrogen by methane fermentation.

【0002】[0002]

【従来の技術】し尿、活性汚泥の余剰汚泥等の有機性窒
素含有排液を嫌気処理すると、まず酸生成菌の作用によ
り有機酸発酵が起こり、高分子の固形有機物が低分子化
して溶解し、有機酸を生成する。その後メタン生成菌の
作用によりメタン発酵が起こり、有機酸はメタンと炭酸
ガスに分解される。一相式の嫌気性消化法では有機酸発
酵とメタン発酵は並列的に起こるが、二相式の嫌気性処
理では有機酸発酵とメタン発酵は別の槽で行われる。
BACKGROUND ART When anaerobic treatment of organic nitrogen-containing effluent such as human waste and surplus sludge of activated sludge is carried out, organic acid fermentation first occurs due to the action of acid-producing bacteria, and low molecular weight solid organic matter is dissolved. , Produces organic acids. After that, methane fermentation occurs due to the action of methanogens, and organic acids are decomposed into methane and carbon dioxide. In the one-phase anaerobic digestion method, organic acid fermentation and methane fermentation occur in parallel, but in the two-phase anaerobic treatment, organic acid fermentation and methane fermentation are performed in separate tanks.

【0003】ところでし尿、汚泥等に含まれる有機性窒
素化合物は酸発酵の段階で低分子化してアンモニア性窒
素に分解される。このアンモニア性窒素はメタン生成菌
に対して毒性を示し、高濃度のアンモニア性窒素が存在
するとメタン生成菌は阻害を受け、メタン発酵の速度が
低下する。メタン発酵におけるアンモニア性窒素の毒性
はpHに依存し、高pHほど毒性が強いが、pH7付近
ではNH4−Nが1000mg/l以上で毒性が現わ
れ、2000mg/lになるとメタン発酵の速度は約1
/2、3000mg/lでは約1/4になる。
By the way, organic nitrogen compounds contained in human waste, sludge and the like are decomposed into ammoniacal nitrogen by lowering the molecular weight in the stage of acid fermentation. This ammoniacal nitrogen is toxic to methanogenic bacteria, and when a high concentration of ammoniacal nitrogen is present, the methanogenic bacteria are inhibited and the rate of methane fermentation is reduced. The toxicity of ammonia nitrogen in methane fermentation depends on pH, and the higher the pH, the stronger the toxicity. However, near pH 7, NH 4 -N shows toxicity at 1000 mg / l or more, and at 2000 mg / l, the rate of methane fermentation is about 1
It becomes about 1/4 at / 2 and 3000 mg / l.

【0004】[0004]

【発明が解決しようとする課題】従来の嫌気性処理法で
はアンモニア性窒素の毒性に対しては考慮が払われてお
らず、アンモニア性窒素を含まない液で希釈するか、あ
るいは大容量の処理槽を使用して長い滞留時間で処理し
ている。例えば阻害がなければ約10日間の滞留でよい
ものが約30日間の滞留時間が必要となるため、装置が
大型化し、処理効率が悪い。
In the conventional anaerobic treatment method, the toxicity of ammoniacal nitrogen is not taken into consideration, and it is diluted with a liquid containing no ammoniacal nitrogen or treated with a large volume. Processing is performed with a long residence time using a tank. For example, if there is no inhibition, a residence time of about 10 days is sufficient, but a residence time of about 30 days is required, so the apparatus becomes large and the treatment efficiency is poor.

【0005】また、UASB、固定床式等の高負荷嫌気
性処理ではアンモニア性窒素により活性が低下するこ
と、ならびに被処理液中にリンが含まれる場合には、リ
ン酸カルシウムやリン酸マグネシウムアンモニウム等の
スケールが配管やメタン発酵槽に析出して目詰まりを起
こしやすいことなどの理由により、アンモニア性窒素含
有排液の処理には高負荷嫌気性処理が適用できないとい
う問題点がある。
[0005] Further, in high load anaerobic treatment such as UASB and fixed bed, the activity is reduced by ammonia nitrogen, and when the liquid to be treated contains phosphorus, calcium phosphate, magnesium ammonium phosphate, etc. There is a problem that the high-load anaerobic treatment cannot be applied to the treatment of the ammoniacal nitrogen-containing waste liquid because the scale is likely to be deposited in the pipes and the methane fermentation tank to cause clogging.

【0006】本発明の目的は、上記問題点を解決するた
め、アンモニア性窒素のメタン発酵に対する阻害を除去
あるいは軽減し、これにより小型の処理槽を用いて短い
滞留時間で効率よくメタン発酵を行うことができるとと
もに、高負荷嫌気性処理の適用も可能なアンモニア性窒
素含有有機性排液の処理方法を提案することである。
In order to solve the above problems, an object of the present invention is to eliminate or reduce the inhibition of ammonia nitrogen on methane fermentation, and thereby efficiently perform methane fermentation with a short residence time using a small treatment tank. It is to propose a method of treating an organic waste liquid containing ammoniacal nitrogen, which is capable of applying high-load anaerobic treatment as well.

【0007】[0007]

【課題を解決ための手段】本発明は、アンモニア性窒素
含有有機性排液をメタン発酵により処理する方法におい
て、被処理液をリン酸イオンおよびマグネシウムイオン
の存在下にpH8以上の状態で、リン酸マグネシウムア
ンモニウムを生成させて分離し、メタン発酵を行うこと
を特徴とするアンモニア性窒素含有有機性排液の処理方
法である。
The present invention relates to a method for treating an ammoniacal nitrogen-containing organic waste liquid by methane fermentation, wherein the liquid to be treated is treated with phosphorus at pH 8 or higher in the presence of phosphate ions and magnesium ions. A method for treating an organic effluent containing ammoniacal nitrogen, which comprises producing and separating magnesium ammonium salt and performing methane fermentation.

【0008】本発明において処理対象とする排液はアン
モニア性窒素を含有する有機性排液である。ここでアン
モニア性窒素はアンモニウムイオン(アンモニア)の状
態で含まれるものであり、有機性窒素化合物の分解によ
り生成したものでも、元々アンモニア性窒素の状態で含
まれていたものでもよい。
The waste liquid to be treated in the present invention is an organic waste liquid containing ammonia nitrogen. Here, the ammoniacal nitrogen is contained in the state of ammonium ion (ammonia), and may be generated by decomposition of the organic nitrogen compound or originally contained in the state of ammoniacal nitrogen.

【0009】このような排液としては、し尿、活性汚泥
の余剰汚泥の液状化物、肥料製造排水などがあげられ
る。し尿のように元々アンモニア性窒素を含むものはそ
のまま被処理液とすることができるが、有機性窒素化合
物、固形物その他の高分子物質を含む場合は、さらに液
状化を行ったものを被処理液とするのが好ましい。
Examples of such drainage liquid include night soil, liquefied surplus sludge of activated sludge, and fertilizer production wastewater. Liquids that originally contain ammoniacal nitrogen, such as human waste, can be directly used as the liquid to be treated, but if they contain organic nitrogen compounds, solids, or other polymeric substances, those that have been liquefied should be treated. It is preferably a liquid.

【0010】し尿、汚泥等の液状化は、前述の酸発酵の
ほか、湿式酸化などによって行うことができる。酸発酵
はし尿、汚泥等を酸発酵槽において嫌気状態に維持し、
酸生成菌を増殖させて有機性窒素化合物、固形物、高分
子物質を分解し、液状化する。湿式酸化は例えば10〜
70Kg/cm2の加圧下に150〜250℃で酸素の
存在下に加熱処理して分解する。
Liquefaction of night soil, sludge and the like can be carried out by the above-mentioned acid fermentation or wet oxidation. Acid fermentation manure, sludge, etc. are maintained in an anaerobic state in an acid fermentation tank,
Acid-producing bacteria are grown to decompose organic nitrogen compounds, solids, and polymeric substances, and liquefy. Wet oxidation is, for example, 10 to
It is decomposed by heat treatment under pressure of 70 Kg / cm 2 at 150 to 250 ° C. in the presence of oxygen.

【0011】上記のようなアンモニア性窒素含有有機性
排液は被処理液としてリン酸イオンおよびマグネシウム
イオンの存在下にpH8以上の状態でリン酸マグネシウ
ムアンモニウム(以下、MAPという)を生成させて分
離する。被処理液中においてMAPは次式により生成す
る。
The above ammoniacal nitrogen-containing organic waste liquid is separated by generating magnesium ammonium phosphate (hereinafter referred to as MAP) at a pH of 8 or more in the presence of phosphate ions and magnesium ions as a liquid to be treated. To do. MAP is generated in the liquid to be treated by the following equation.

【化1】 Mg(OH)2+NH4OH+H3PO4+4H2O→MgNH4PO4・7H2O ・・・(1)[Chemical formula 1] Mg (OH) 2 + NH 4 OH + H 3 PO 4 + 4H 2 O → MgNH 4 PO 4 · 7H 2 O ・ ・ ・ (1)

【0012】(1)式の反応は等モル反応であり、リン
酸イオンおよびマグネシウムイオンは被処理液中に含ま
れる場合には添加しなくてもよいが、不足する場合には
添加する。し尿、余剰汚泥等は通常リン化合物を含むた
め、その液状化物はリン酸イオンを含んでいるため、新
たに添加する必要はないが、マグネシウムイオンは通常
含まれないので、外部から添加する。
The reaction of the formula (1) is an equimolar reaction, and the phosphate ion and the magnesium ion need not be added when they are contained in the liquid to be treated, but they are added when they are insufficient. Since human waste, excess sludge and the like usually contain phosphorus compounds, the liquefaction thereof does not need to be newly added because it contains phosphate ions, but magnesium ions are not usually added, so they are added externally.

【0013】リン酸イオンとしてはリン酸、リン酸ナト
リウム、リン酸カリウムなどを添加することができる。
マグネシウムイオンとしては塩化マグネシウム、硫酸マ
グネシウム、水酸化マグネシウムなどを添加することが
できる。海水中にはマグネシウムが1000〜1500
mg/l含まれているので、マグネシウム源として海水
を添加してもよい。これらの添加量はアンモニウムイオ
ンの濃度によって変わり、通常は等モルの添加でよい
が、場合によっては過剰に添加してもよい。
As the phosphate ion, phosphoric acid, sodium phosphate, potassium phosphate or the like can be added.
Magnesium chloride, magnesium sulfate, magnesium hydroxide or the like can be added as magnesium ions. 1000-1500 magnesium in seawater
Since it is contained in mg / l, seawater may be added as a magnesium source. The addition amount of these varies depending on the concentration of ammonium ions and is usually equimolar, but in some cases it may be added in excess.

【0014】(1)式の反応はpH8以上、好ましくは
pH8〜11で進行するから、必要によりpH調整剤を
添加してpH調整する。pH調整剤として水酸化ナトリ
ウム、水酸化カルシウム、水酸化マグネシウムなどがあ
げられる。水酸化マグネシウムはマグネシウム源として
も、pH調整剤としても使用できるため好ましい。
Since the reaction of the formula (1) proceeds at a pH of 8 or higher, preferably pH 8 to 11, a pH adjusting agent is added if necessary to adjust the pH. Examples of pH adjusters include sodium hydroxide, calcium hydroxide, magnesium hydroxide and the like. Magnesium hydroxide is preferable because it can be used as both a magnesium source and a pH adjuster.

【0015】被処理液に必要な量のリン酸イオン、マグ
ネシウムイオン、pH調整剤を添加することによりMA
P(通常は7水塩)が生成し、不溶性の結晶として析出
するので、これを反応液から分離する。MAPの分離は
晶析、凝集分離などの方法によることができる。晶析は
種結晶の充填層に反応液を通して、種結晶表面にMAP
を析出させて造粒し、MAP粒として回収して肥料等に
利用することができる。凝集沈澱は反応槽において反応
させてMAPを析出させ、沈澱、膜分離等の固液分離手
段により分離する。
By adding the required amount of phosphate ion, magnesium ion and pH adjusting agent to the liquid to be treated, MA
P (usually heptahydrate) is generated and precipitated as insoluble crystals, which are separated from the reaction solution. The MAP can be separated by a method such as crystallization and aggregation separation. Crystallization was carried out by passing the reaction solution through the packed bed of seed crystals and MAP on the seed crystal surface.
Can be precipitated and granulated, and can be collected as MAP particles and used as a fertilizer or the like. The aggregated precipitate is reacted in a reaction tank to precipitate MAP, and separated by solid-liquid separation means such as precipitation and membrane separation.

【0016】MAPを分離した液はメタン発酵を行うこ
とにより、有機物を分解する。メタン発酵はメタン生成
菌を含む汚泥の存在下に嫌気性処理することにより行わ
れる。この工程は固形有機物、高分子化合物等の可溶化
と有機酸発酵の終了した被処理液について、メタン生成
菌によるメタン発酵のみを行うのが好ましいが、固形有
機物、高分子化合物等が残留する被処理液については酸
生成菌およびメタン生成菌を含む汚泥を用いて、酸発酵
とメタン発酵を並列的に行うこともできる。
The liquid from which MAP has been separated decomposes organic substances by carrying out methane fermentation. Methane fermentation is performed by anaerobic treatment in the presence of sludge containing methanogens. In this step, it is preferable that only the methane fermentation by the methanogen is performed on the liquid to be treated after the solubilization of the solid organic matter, the high molecular weight compound, etc. and the organic acid fermentation, but the solid organic matter, the high molecular weight compound, etc. remain. Regarding the treatment liquid, sludge containing acid-producing bacteria and methanogenic bacteria can be used to perform acid fermentation and methane fermentation in parallel.

【0017】メタン発酵の方法は浮遊式、UASB(上
向流式スラッジブランケット式)、固定床式、流動床式
など、任意の方式のメタン発酵法を採用することができ
る。浮遊式は浮遊状態の生物汚泥と被処理液を混合して
嫌気処理する方法であり、比較的長い滞留時間を必要と
する。メタン発酵のみでも行われるが、酸発酵とメタン
発酵を並列的に行うこともできる。
As the methane fermentation method, any method such as a floating type, a UASB (upflow type sludge blanket type), a fixed bed type and a fluidized bed type can be used. The floating type is a method in which biological sludge in a floating state and a liquid to be treated are mixed and treated anaerobically, and a relatively long residence time is required. Although it is carried out only by methane fermentation, it is also possible to carry out acid fermentation and methane fermentation in parallel.

【0018】UASBはメタン生成菌を高密度でグラニ
ュール化した汚泥を用い、上向流で通液することによ
り、スラッジブランケットを形成し、嫌気性処理する方
法である。固定床方式は固定床式の担体の表面にメタン
生成菌を高密度で付着させた汚泥を用いて嫌気処理を行
う方法である。流動床法はメタン菌を高密度で含む生物
汚泥を粒状担体に担持させ、流動床を形成して嫌気性処
理を行う方法である。これらは高負荷嫌気性処理であっ
て、いずれも高負荷かつ高流速で通液して比較的短時間
で処理する方法であり、酸発酵の終了した溶液状の被処
理液について、メタン発酵だけを行うように処理するの
が好ましい。
UASB is a method in which sludge blanket is formed by anaerobic treatment by using sludge in which methanogens are granulated with high density and passing through in an upward flow. The fixed bed system is a method of performing anaerobic treatment using sludge in which methanogens are attached to the surface of a fixed bed type carrier at high density. The fluidized bed method is a method in which biological sludge containing methane bacteria at a high density is supported on a granular carrier to form a fluidized bed for anaerobic treatment. These are high-load anaerobic treatments, both of which are methods of passing a liquid at a high load and a high flow rate for a relatively short time. It is preferred that the treatment is performed as follows.

【0019】メタン発酵は35℃前後における活性が高
い中温菌を用いる場合は、30〜40℃の温度、6時間
〜25日間の滞留時間で嫌気処理を行うことができる。
55℃前後における活性が高い高温菌を用いるのが好ま
しく、この場合は、45〜60℃の温度、3時間〜20
日間の滞留時間で嫌気処理を行うことができる。これら
の場合、酸発酵とメタン発酵を並列的に行う場合は滞留
時間を長くする必要があるが酸発酵を終った液状物につ
いてメタン発酵のみを行う場合は滞留時間を短くするこ
とができる。
When mesophilic bacteria having a high activity at around 35 ° C. are used for methane fermentation, anaerobic treatment can be carried out at a temperature of 30 to 40 ° C. and a residence time of 6 hours to 25 days.
It is preferable to use a thermophilic bacterium having a high activity at around 55 ° C., in which case a temperature of 45-60 ° C. for 3 hours-20
Anaerobic treatment can be performed with a residence time of one day. In these cases, it is necessary to lengthen the residence time when acid fermentation and methane fermentation are performed in parallel, but the retention time can be shortened when only methane fermentation is performed on the liquid matter that has undergone acid fermentation.

【0020】メタン発酵はMAPの生成、分離の後に行
われるが、場合によってはメタン発酵工程で処理した反
応液をMAP生成工程に戻してMAPを分離し、メタン
発酵工程に循環することにより、メタン発酵工程におけ
るアンモニア性窒素の濃度を低下させることもできる。
しかしUASB、固定床式などの高負荷嫌気性処理で
は、酸発酵およびMAP分離の終った液状化物について
メタン発酵のみを行うことにより、生物汚泥のメタン生
成菌の密度を高めることができ、高負荷、高速処理が可
能になるとともに、MAPの析出およびスケール化も防
止できる。
Methane fermentation is carried out after the production and separation of MAP. In some cases, the reaction liquid treated in the methane fermentation step is returned to the MAP production step to separate MAP and circulate in the methane fermentation step to produce methane. It is also possible to reduce the concentration of ammoniacal nitrogen in the fermentation process.
However, in high-load anaerobic treatments such as UASB and fixed bed, by performing only methane fermentation on the liquefied product after acid fermentation and MAP separation, it is possible to increase the density of methanogenic bacteria in biological sludge, and thus high load. In addition to high-speed processing, MAP precipitation and scale formation can be prevented.

【0021】上記のようにしてメタン発酵を行うことに
より、被処理液中の有機酸がメタンおよび炭酸ガスに分
解する。被処理液中に固形有機物、高分子化合物等が存
在する場合は、ここで有機酸発酵により有機酸が生成し
たのちメタンおよび炭酸ガスに分解する。この場合、予
めアンモニア性窒素をMAPとして除去しておくことに
より、メタン生成菌の活性が高くなり、短い滞留時間で
処理が可能になるとともに、リン酸カルシウム、MAP
等の析出によるスケール化が防止される。
By carrying out the methane fermentation as described above, the organic acid in the liquid to be treated is decomposed into methane and carbon dioxide gas. When the liquid to be treated contains solid organic substances, polymer compounds and the like, organic acids are produced here by organic acid fermentation and then decomposed into methane and carbon dioxide gas. In this case, by removing ammoniacal nitrogen as MAP in advance, the activity of methanogens becomes high, and treatment with a short residence time becomes possible, and at the same time, calcium phosphate, MAP
It is possible to prevent scale formation due to precipitation of the like.

【0022】高負荷嫌気性処理の場合、アンモニア性窒
素が存在すると、活性低下により高速処理ができなくな
るほか、MAPの析出やリン酸カルシウムのスケール化
により目詰まりや有効容積の低下が起こるが、MAPの
分離によりこのような問題はなくなり、処理が効率化す
るとともに、運転管理も容易になる。このため高負荷嫌
気性処理の適用も可能になる。
In the case of high-load anaerobic treatment, the presence of ammoniacal nitrogen makes it impossible to perform high-speed treatment due to a decrease in activity and also causes clogging and reduction in effective volume due to precipitation of MAP and scaling of calcium phosphate. Separation eliminates such problems, streamlines processing, and facilitates operation management. Therefore, it is possible to apply high load anaerobic treatment.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施例について説
明する。 比較例1 3 liter容量のメタン発酵槽に表1の合成し尿を導入
し、浮遊状の生物汚泥と混合し、温度35℃で嫌気状態
下に攪拌して処理した。滞留時間30日ではTOC除去
率は平均94%であったが、滞留時間を20日にすると
TOC除去率平均91%になった。滞留時間を10日ま
で短くしたところ、TOC除去率は50%以下に低下し
た。
Embodiments of the present invention will be described below. Comparative Example 1 The synthetic urine shown in Table 1 was introduced into a methane fermenter having a capacity of 3 liters, mixed with floating biological sludge, and stirred at a temperature of 35 ° C. under anaerobic conditions for treatment. When the residence time was 30 days, the TOC removal rate was 94% on average, but when the retention time was 20 days, the TOC removal rate was 91% on average. When the residence time was shortened to 10 days, the TOC removal rate decreased to 50% or less.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例1 表1の合成し尿をpH9.0に調整し、塩化マグネシウ
ムを600mg/l添加してゆっくり60分攪拌し生成
した沈澱をろ過したところ、ろ液のりんは11mg/l
であった。アンモニアは(Nとして)2,610mg/
lであった。このろ液を比較例1と同様にメタン発酵し
たところ、滞留時間30日目ではTOC除去率は平均9
5%であった。滞留時間を20日にしたところ、TOC
除去率は平均93%になり、10日では80〜86%が
維持できた。
Example 1 The pH of the synthesized urine in Table 1 was adjusted to 9.0, magnesium chloride was added at 600 mg / l, the mixture was slowly stirred for 60 minutes, and the resulting precipitate was filtered. The phosphorus in the filtrate was 11 mg / l.
Met. Ammonia (as N) is 2,610 mg /
l. When this filtrate was subjected to methane fermentation in the same manner as in Comparative Example 1, the TOC removal rate was 9 on average at the retention time of 30 days.
5%. When the residence time was 20 days, TOC
The removal rate was 93% on average, and 80 to 86% could be maintained in 10 days.

【0026】実施例2 表1の合成排水に塩化マグネシウムを1.2重量%、リ
ン酸一カリウムを1.5重量%となるように添加し、p
Hを9に調整して60分間ゆっくり攪拌した。その結果
ろ液のアンモニアは(Nとして)976mg/lになっ
た。このろ液を比較例1と同様にメタン発酵したとこ
ろ、滞留時間10日で90〜92%のTOC除去率が得
られた。
Example 2 To the synthetic wastewater shown in Table 1, magnesium chloride was added in an amount of 1.2% by weight and monopotassium phosphate was added in an amount of 1.5% by weight.
The H was adjusted to 9 and slowly stirred for 60 minutes. As a result, the ammonia in the filtrate was 976 mg / l (as N). When this filtrate was subjected to methane fermentation in the same manner as in Comparative Example 1, a TOC removal rate of 90 to 92% was obtained at a residence time of 10 days.

【0027】[0027]

【発明の効果】本発明によれば、アンモニア性窒素をM
APとして分離してメタン発酵することにより、アンモ
ニア性窒素による阻害を除去あるいは軽減して高効率で
メタン発酵を行うことができ、これにより小型の処理装
置を用いて短い滞留時間で効率よくアンモニア性窒素含
有有機性排液を処理することができ、またMAPの析出
やスケールの生成を防止できるため、高負荷嫌気性処理
も可能であるなどの効果が得られる。
According to the present invention, ammoniacal nitrogen is added to M
By separating as AP and performing methane fermentation, it is possible to remove or reduce the inhibition by ammoniacal nitrogen and perform methane fermentation with high efficiency, which enables efficient ammoniacal reaction with a short treatment time using a small processing apparatus. Since the nitrogen-containing organic waste liquid can be treated and the precipitation of MAP and the formation of scale can be prevented, it is possible to obtain effects such as high-load anaerobic treatment.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年2月16日[Submission date] February 16, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】[0007]

【課題を解決するための手段】本発明は、アンモニア性
窒素含有有機性排液をメタン発酵により処理する方法に
おいて、被処理液をリン酸イオンおよびマグネシウムイ
オンの存在下にpH8以上の状態で、リン酸マグネシウ
ムアンモニウムを生成させて分離し、メタン発酵を行う
ことを特徴とするアンモニア性窒素含有有機性排液の処
理方法である。
The present invention SUMMARY OF], in a method of treating a methane fermentation ammonium nitrogen-containing organic effluent, in pH8 or more states in the presence of a liquid to be treated phosphate ions and magnesium ions, A method for treating an organic effluent containing ammoniacal nitrogen, which comprises producing and separating magnesium ammonium phosphate and performing methane fermentation.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア性窒素含有有機性排液をメタ
ン発酵により処理する方法において、 被処理液をリン酸イオンおよびマグネシウムイオンの存
在下にpH8以上の状態で、リン酸マグネシウムアンモ
ニウムを生成させて分離し、 メタン発酵を行うことを特徴とするアンモニア性窒素含
有有機性排液の処理方法。
1. A method for treating an ammoniacal nitrogen-containing organic effluent by methane fermentation, which comprises producing magnesium ammonium phosphate in the presence of phosphate ions and magnesium ions at a pH of 8 or more. A method for treating an organic effluent containing ammoniacal nitrogen, which comprises separating and performing methane fermentation.
JP2962096A 1996-02-16 1996-02-16 Treatment of ammonia nitrogen-containing organic waste liquid Pending JPH09220593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2962096A JPH09220593A (en) 1996-02-16 1996-02-16 Treatment of ammonia nitrogen-containing organic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2962096A JPH09220593A (en) 1996-02-16 1996-02-16 Treatment of ammonia nitrogen-containing organic waste liquid

Publications (1)

Publication Number Publication Date
JPH09220593A true JPH09220593A (en) 1997-08-26

Family

ID=12281137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2962096A Pending JPH09220593A (en) 1996-02-16 1996-02-16 Treatment of ammonia nitrogen-containing organic waste liquid

Country Status (1)

Country Link
JP (1) JPH09220593A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015229A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for treating organic waste
JP2000015231A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for methane fermentation of organic waste
KR20030031640A (en) * 2001-10-15 2003-04-23 최식영 Method for removing ammonium nitrogen by using newberyite and for regenerating newberyite
WO2003086990A1 (en) * 2002-04-18 2003-10-23 Ebara Corporation Method of treating organic wastewater and sludge and treatment apparatus therefor
WO2005049511A1 (en) * 2003-11-21 2005-06-02 Ebara Corporation Method of formation/recovery of magnesium ammonium phosphate and apparatus therefor
JP2005193189A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Anaerobic treatment method and anaerobic treatment apparatus
CN100425544C (en) * 2006-06-21 2008-10-15 哈尔滨工业大学 Pretreatment method for wastewater of ammonia nitrogen in high density
CN110127830A (en) * 2019-05-27 2019-08-16 湖北省宏源药业科技股份有限公司 A kind of explosion-proof processing method of -5 nitroimidazole of 2- methyl production waste water
JP2021159828A (en) * 2020-03-31 2021-10-11 水ing株式会社 Method and apparatus for treating organic waste liquid

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015229A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for treating organic waste
JP2000015231A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for methane fermentation of organic waste
KR20030031640A (en) * 2001-10-15 2003-04-23 최식영 Method for removing ammonium nitrogen by using newberyite and for regenerating newberyite
CN1301924C (en) * 2002-04-18 2007-02-28 株式会社荏原制作所 Method of treating organic wastewater and sludge and treatment apparatus therefor
WO2003086990A1 (en) * 2002-04-18 2003-10-23 Ebara Corporation Method of treating organic wastewater and sludge and treatment apparatus therefor
US7264715B2 (en) 2002-04-18 2007-09-04 Ebara Corporation Apparatus for treating organic wastewater and sludge
WO2005049511A1 (en) * 2003-11-21 2005-06-02 Ebara Corporation Method of formation/recovery of magnesium ammonium phosphate and apparatus therefor
JPWO2005049511A1 (en) * 2003-11-21 2007-06-07 株式会社荏原製作所 Method and apparatus for producing / recovering magnesium ammonium phosphate
CN100412013C (en) * 2003-11-21 2008-08-20 株式会社荏原制作所 Method of formation/recovery of magnesium ammonium phosphate and apparatus therefor
JP4516025B2 (en) * 2003-11-21 2010-08-04 荏原エンジニアリングサービス株式会社 Method and apparatus for producing / recovering magnesium ammonium phosphate
JP2005193189A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Anaerobic treatment method and anaerobic treatment apparatus
JP4501432B2 (en) * 2004-01-09 2010-07-14 栗田工業株式会社 Anaerobic treatment method and apparatus
CN100425544C (en) * 2006-06-21 2008-10-15 哈尔滨工业大学 Pretreatment method for wastewater of ammonia nitrogen in high density
CN110127830A (en) * 2019-05-27 2019-08-16 湖北省宏源药业科技股份有限公司 A kind of explosion-proof processing method of -5 nitroimidazole of 2- methyl production waste water
JP2021159828A (en) * 2020-03-31 2021-10-11 水ing株式会社 Method and apparatus for treating organic waste liquid

Similar Documents

Publication Publication Date Title
US10377653B2 (en) Removal and recovery of phosphate from liquid streams
US7264715B2 (en) Apparatus for treating organic wastewater and sludge
JP4516025B2 (en) Method and apparatus for producing / recovering magnesium ammonium phosphate
JP4729718B2 (en) Organic waste treatment methods
JPH09220593A (en) Treatment of ammonia nitrogen-containing organic waste liquid
Kalyuzhnyi et al. Integrated mechanical, biological and physico-chemical treatment of liquid manure streams
EP1650170B1 (en) Method and use of an apparatus of utilizing recovered magnesium ammonium phosphate
JP4642635B2 (en) High concentration organic waste liquid treatment method and apparatus
JPH09262599A (en) Dephosphorization apparatus
JP3844347B2 (en) Method and apparatus for removing and recovering phosphorus from organic wastewater
JPH08141592A (en) Anaerobic treatment method
JP3856218B2 (en) Startup method of activated sludge treatment equipment
JP4501432B2 (en) Anaerobic treatment method and apparatus
JP4368159B2 (en) Method for treating wastewater containing phosphate
JP4101498B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
JPH08155486A (en) Anaerobic treatment method for organic drainage
JPH08141591A (en) Treatment of organic waste water
JPS6324760B2 (en)
JP2003094014A (en) Treating method for organic waste and equipment therefor
JPH0291000A (en) Batch-wise type soil water treatment process
JPH0753279B2 (en) Sludge treatment system Return water treatment method
JP2016140818A (en) Phosphorus recovery apparatus and method
KR20030076547A (en) Treatment system and Method for Purifying Wastewater using Media Separator