JPH0753279B2 - Sludge treatment system Return water treatment method - Google Patents

Sludge treatment system Return water treatment method

Info

Publication number
JPH0753279B2
JPH0753279B2 JP62046608A JP4660887A JPH0753279B2 JP H0753279 B2 JPH0753279 B2 JP H0753279B2 JP 62046608 A JP62046608 A JP 62046608A JP 4660887 A JP4660887 A JP 4660887A JP H0753279 B2 JPH0753279 B2 JP H0753279B2
Authority
JP
Japan
Prior art keywords
return water
treatment
water
sludge
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62046608A
Other languages
Japanese (ja)
Other versions
JPS63214396A (en
Inventor
正博 藤井
良晴 田中
俊男 春田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP62046608A priority Critical patent/JPH0753279B2/en
Publication of JPS63214396A publication Critical patent/JPS63214396A/en
Publication of JPH0753279B2 publication Critical patent/JPH0753279B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,汚泥処理プロセスより発生する返流水に含有
する窒取,リンをよく効率よく除去する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for efficiently and efficiently removing nitrogen and phosphorus contained in return water generated in a sludge treatment process.

(従来の技術) 下水処理場にて発生する多量の有機性汚泥は,いくつか
の工程を経て処理され,各処理プロセス中で発生する分
離液等は,通常水処理プロセスに返流されることが一般
に行われていた。ところが,この返流水の水量及び水質
は,汚泥処理方式や運転管理方式によって異なるが,一
般的にBOD,SSが2000mg/以上で,しかもアンモニア性
窒素(NH4 +−N)やリン酸性−リン(PO4 3-−P)の濃
度も高いため,この返流水に伴う負荷が処理水質悪化の
一因となり,最近では汚泥処理系における返流水の高度
処理の重要性が強調されており,特に窒素とリンの除去
を目的とした種々の方法が提案されている。すなわち,
上記処理水質悪化の要因の中でBOD及びSSについては,
処理場施設の能力と維持管理の努力により低減化がなさ
れているが,窒素とリンについては,現状の設備施設で
は十分に効率的な処理ができないからである。
(Prior art) A large amount of organic sludge generated in a sewage treatment plant is treated through several steps, and the separated liquid generated in each treatment process is normally returned to the water treatment process. Was generally done. However, the amount and quality of the returned water differ depending on the sludge treatment method and operation management method, but generally BOD and SS are 2000 mg / or more, and ammonia nitrogen (NH 4 + -N) and phosphoric acid-phosphorus-phosphorus. since high concentrations of (PO 4 3- -P), the return load of the flowing water contribute treated water quality deterioration, it is emphasized the importance of advanced treatment in running water return in sludge treatment system recently, especially Various methods have been proposed for the purpose of removing nitrogen and phosphorus. That is,
Regarding BOD and SS among the above factors that deteriorate the quality of treated water,
This has been reduced by the capacity of the treatment plant facilities and efforts for maintenance, but nitrogen and phosphorus cannot be treated sufficiently efficiently in the current facilities.

具体的には,窒素の除去方法としては,生物学的脱窒法
が,リンの除去方法としては,Al塩やCa塩による凝集沈
澱法が採用され,基本的にはこれら2つの処理方法を組
み合わせた方法が現在採用されている。
Specifically, the biological denitrification method is adopted as the nitrogen removal method, and the coagulation precipitation method using Al salt or Ca salt is adopted as the phosphorus removal method. Basically, these two treatment methods are combined. This method is currently adopted.

(発明が解決しようとする問題点) この凝集沈澱法におけるリンの除去は,水中に存在する
リン酸塩類に,硫酸アルミニウムやポリ塩化アルミニウ
ムなどのアルミニウム塩,硫酸第2鉄や塩化第2鉄及び
消石灰の凝集剤を添加することにより,難溶性塩を形成
させて沈澱除去する方法である。ところが,凝集沈澱処
理の欠点は, (1) アルミニウム塩や鉄塩により生じるフロック
は,コロイド状であり,沈澱性や濃縮性が極めて悪く,
脱水性が劣ること (2) アルミニウム塩や鉄塩の場合,BODも一緒に除去
されるため栄養バランスがくずれ,生物処理が後続する
処理方法においては処理が困難となること (3) 石炭によるリンの除去機構は,pH値が高い程,
除去率が上昇するのでpH値10を越えた高アルカリ側で脱
リン処理を行うため処理後に中和処理が必要となること 等の欠点がある。
(Problems to be Solved by the Invention) Phosphorus is removed by the coagulation-precipitation method by adding phosphates existing in water to aluminum salts such as aluminum sulfate and polyaluminum chloride, ferric sulfate and ferric chloride, and This is a method of forming a sparingly soluble salt by adding a flocculant of slaked lime to remove the precipitate. However, the disadvantages of coagulation-precipitation treatment are: (1) The flocs produced by aluminum salts and iron salts are colloidal, and their precipitation and concentration properties are extremely poor.
Poor dehydration (2) In the case of aluminum salts and iron salts, BOD is also removed together, which impairs the nutritional balance and makes it difficult to treat by treatment methods that follow biological treatment. (3) Phosphorus by coal The higher the pH value,
Since the removal rate increases, there is a drawback that the dephosphorization treatment is performed on the high-alkali side where the pH value exceeds 10 and thus neutralization treatment is required after the treatment.

一方,生物学的脱窒法による窒素除去に関しては,汚水
中の有機物そのものを水素供与体として利用する脱窒素
工程→硝化工程を直列的に結合させ,硝化工程からの流
出水(硝化液)を脱窒素工程にリサイクルさせるという
硝化液循環生物学的脱窒プロセスが採用できるものであ
る。
On the other hand, regarding nitrogen removal by biological denitrification, denitrification process that uses organic matter in wastewater itself as a hydrogen donor → Nitrification process is connected in series to remove effluent (nitrification liquid) from the nitrification process. A nitrification solution circulation biological denitrification process of recycling to a nitrogen process can be adopted.

ところが,上記生物学的脱窒法において,Al塩又はFe塩
が添加されて凝集沈澱処理が行われた場合,pH値の低
下,アルカリ度の低下及びアルミニウムによる硝化菌,
脱窒菌への活性阻害等の問題がある。
However, in the above-mentioned biological denitrification method, when Al salt or Fe salt was added and coagulation-precipitation treatment was performed, the pH value decreased, the alkalinity decreased, and the nitrifying bacteria caused by aluminum,
There are problems such as inhibition of activity against denitrifying bacteria.

このようにリン,窒素の除去に関し,確立した技術であ
るにもかかわらず,実用上問題をかかえているのが現状
である。
Thus, despite the established technology for removing phosphorus and nitrogen, there are currently problems in practical use.

本発明は,このような従来技術の欠点を解消しようとす
るものであって,その目的は,極めて簡単な操作で排水
中の窒素及びリンを効率よく除去できる方法を提供する
ことにある。
The present invention is intended to eliminate such drawbacks of the prior art, and an object thereof is to provide a method capable of efficiently removing nitrogen and phosphorus in wastewater by an extremely simple operation.

(問題点を解決するための手段) 本発明者らは,上記問題点を解決するため鋭意研究の結
果,本発明に到達したものである。
(Means for Solving Problems) The inventors of the present invention have arrived at the present invention as a result of earnest research for solving the above problems.

すなわち,本発明は,汚泥処理プロセスより発生する返
流水をpH値で8〜9に調整し,次いで水溶性マグネシウ
ム塩を返流水中のリン酸濃度に対してMg/Pモル比が0.5
〜1.0となるように添加し,しかる後に生物学的脱窒処
理を行うことを特徴とする汚泥処理系返流水の処理方法
を要旨とするものである。
That is, in the present invention, the return water generated from the sludge treatment process is adjusted to a pH value of 8 to 9, and the water-soluble magnesium salt is then added to the return water in a Mg / P molar ratio of 0.5.
The gist is a treatment method for returning water in a sludge treatment system, which is characterized by adding biological denitrification treatment after adding it so that it becomes ~ 1.0.

以下,本発明を図面により説明する。Hereinafter, the present invention will be described with reference to the drawings.

先ず,第1図において,返流水1にカセイソーダ等のpH
調整剤2を加え,pH値を8〜9に調整し,次いで塩化マ
グネシウム等の水溶液でイオン化するマグネシウム塩3
を添加し,硝化液循環方式の生物学的脱窒工程に流入さ
せる。
First, as shown in Fig. 1, the pH of caustic soda, etc. is
Adjusting the pH value to 8-9 by adding regulator 2 and then ionizing magnesium salt with an aqueous solution of magnesium chloride, etc. 3
Is added, and the solution is introduced into the biological denitrification process of the nitrification solution circulation system.

この硝化液循環方式とは,脱窒槽4に後続する硝化槽5
からの硝化液の一部6を脱窒槽4に循環させ,硝化槽5
にて生成した硝酸態窒素NOX−Nを脱窒槽4でN2ガスに
還元するものである。また,脱窒槽4では,返流水中の
BOD成分を脱窒菌の水素供与体として利用しNOX−Nのガ
ス化(N2ガス)を行う。この時,返流水中でマグネシウ
ムイオン(Mg2+)とリン酸イオン(PO4 3-)とアンモニ
ウムイオン(NH4 +)との反応がほぼモル比通りに進行
し,リン酸マグネシウムアンモニウムの結晶粒子が生成
される。
This nitrification liquid circulation system is a nitrification tank 5 that follows the denitrification tank 4.
Part 6 of the nitrification liquid from the
Nitrate nitrogen NO X -N generated by those reduced to N 2 gas in the denitrification tank 4. In addition, in the denitrification tank 4,
Utilizing BOD components as hydrogen donors denitrifying bacteria gasification of NO X -N an (N 2 gas) performed. At this time, the reaction of magnesium ion (Mg 2+ ), phosphate ion (PO 4 3− ) and ammonium ion (NH 4 + ) proceeds in the returning water almost at the molar ratio, and the crystal of magnesium ammonium phosphate crystal Particles are produced.

すなわち,返流水に溶解していたリン酸及び一部のアン
モニア性窒素が下記(1)式よりリン酸マグネシウムア
ンモニウムが生成し,固形分として除去される。
That is, the phosphoric acid and a part of the ammoniacal nitrogen dissolved in the return water form magnesium ammonium phosphate according to the following formula (1), and are removed as a solid content.

PO4 3-+Mg2++NH4 +→MgNH4PO4 (1) 次に,脱窒槽4の流出水は,硝化槽5に流入し,残存す
るアンモニア性窒素を硝酸態窒素NOX−Nに変化させる
とともに,BOD成分の酸化分解を行う。硝化槽5の流出液
は,沈澱処理7を行った後,返流或いは放流される。ま
た,その一部6は,脱窒槽4に循環される。この際,返
流水中のリン酸濃度に対してマグネシウム塩の添加量
は,Mg/Pモル比で0.5〜1.0の範囲であることが必要であ
る。本発明では,モル通りに反応が進行するため後続の
生物学的硝化脱窒処理においては,一般的にBODと窒素
とリンとの比がほ100:5:1になる時,微生物の生存環境
が良好になり,生物処理が支障なく行われることがよく
知られており,その最適条件を作成することが可能とな
る。
PO 4 3− + Mg 2+ + NH 4 + → MgNH 4 PO 4 (1) Next, the outflow water of the denitrification tank 4 flows into the nitrification tank 5, and the residual ammoniacal nitrogen is converted to nitrate nitrogen NO X −N. The BOD component is oxidatively decomposed while being changed. The effluent of the nitrification tank 5 is returned or discharged after the precipitation treatment 7. Further, a part 6 thereof is circulated to the denitrification tank 4. At this time, the amount of magnesium salt added relative to the concentration of phosphoric acid in the return water must be in the range of 0.5 to 1.0 in terms of Mg / P molar ratio. In the present invention, since the reaction proceeds in a molar manner, in the subsequent biological nitrifying and denitrifying treatment, when the ratio of BOD to nitrogen and phosphorus is generally about 100: 5: 1, the microbial survival environment is It is well known that the biological treatment will be improved and biological treatment will be performed without any problems, and it will be possible to create the optimum conditions.

第2図は,生物学的脱窒法として曝気−非曝気の間欠曝
気方式の活性汚泥法の一例であり,返流水1にpH調整剤
2を添加し,次いで水溶性Mg塩を添加した返流水を間欠
曝気方式活性汚泥法の曝気槽8に流入させる。曝気槽で
は曝気装置のON−OFF運転により好気−嫌気状態が交互
に起こり,返流水中のBOD成分を除去する。また,NH4 +
Nの硝化作用,NOX−Nのガス化が起こるとともに添加さ
れたマグネシウムイオンMg2+と返流水中のリン酸イオン
PO4 3-とアンモニウムイオンNH4 +が反応し,リン酸マグ
ネシウムアンモニウムの結晶が生成し,引抜汚泥10とと
もに除去され,一部返送汚泥9として曝気槽に返送され
る。このように返流水中の溶解性リン及びNH4 +−Nが固
形物で除去される。なお,この固液分離処理について
は,上記のように沈澱槽で行ってもよいし,返流水に水
溶性マグネシウムを添加した後,10〜30分間撹拌処理を
行い,曝気槽に返流水を流入させる前に生成したリン酸
マグネシウムアンモニウムを沈澱分離し,回収させた
後,間欠曝気による生物処理を行ってもよい。
Fig. 2 is an example of an activated sludge method of aeration-non-aeration intermittent aeration as a biological denitrification method, in which pH adjusting agent 2 is added to return water 1 and then water-soluble Mg salt is added to return water. Is introduced into the aeration tank 8 of the intermittent aeration type activated sludge method. In the aeration tank, the aerobic-anaerobic state alternates due to the ON / OFF operation of the aeration device, and the BOD component in the return water is removed. Also, NH 4 +
Nitrification of N, phosphate ion of added magnesium ions Mg 2+ and return running water with the gas of the NO X -N occurs
PO 4 3- reacts with ammonium ion NH 4 + to form magnesium ammonium phosphate crystals, which are removed together with the drawn sludge 10 and returned to the aeration tank as partly returned sludge 9. Thus, the soluble phosphorus and NH 4 + -N in the return water are removed as a solid. This solid-liquid separation treatment may be performed in the precipitation tank as described above, or after adding water-soluble magnesium to the return water, stirring treatment is performed for 10 to 30 minutes, and the return water is poured into the aeration tank. The generated magnesium ammonium phosphate may be precipitated and separated before being collected, and then recovered, and then biological treatment by intermittent aeration may be performed.

以上述べたように,本発明方法の重要な構成としては,
過剰のアンモニウムイオンとリン酸イオンをマグネシウ
ムイオンの添加により,リン酸マグネシウムアンモニウ
ムの形で沈澱除去し,さらに残ったアンモニウムイオン
と微生物の資化に必要なリン酸イオンを生物学的硝化脱
窒処理にて除去することである。
As described above, the important constitution of the method of the present invention is:
Excess ammonium ion and phosphate ion are removed by precipitation in the form of magnesium ammonium phosphate by addition of magnesium ion, and the remaining ammonium ion and phosphate ion necessary for microbial assimilation are treated by biological nitrification and denitrification. It is to remove in.

(作用) 本発明方法によれば,汚泥処理プロセスより発生する返
流水中に含まれている窒素及びリンを効率よく除去する
ことが可能となる。その理由については,必ずしも明確
ではないが,本発明者らは次のように推測している。
(Operation) According to the method of the present invention, it is possible to efficiently remove nitrogen and phosphorus contained in the return water generated in the sludge treatment process. The reason for this is not necessarily clear, but the present inventors presume as follows.

すなわち,返流水中のリンを除去する機構は,リン酸イ
オンの定性分析に見られるように,リン酸マグネシウム
アンモニウムとして析出させることであるが,マグネシ
ウム塩の添加量をMg/Pモル比で0.5〜1.0の範囲にする
と,後続の生物学的硝化脱窒処理に支障のない程度のリ
ン酸濃度が残存する。このように返流水中のリンを全て
除去させるのではなく,後続の生物学的硝化脱窒処理で
PO4 3-イオンが生物を資化に消費され,一方,NH4 +イオン
が硝化菌及び脱窒菌により嫌気及び好気の条件下で生物
学的脱窒処理を行えることである。本発明方法によれ
ば,NH4 +イオンは,マグネシウムイオンの添加により,
大部分除去されるため,負荷が軽減され,後続の生物処
理で十分脱窒処理が行えるものと考えられる。
That is, the mechanism for removing phosphorus in the return water is to precipitate it as magnesium ammonium phosphate, as seen in the qualitative analysis of phosphate ions, but the addition amount of magnesium salt was 0.5 in terms of Mg / P molar ratio. In the range of up to 1.0, the concentration of phosphoric acid remains at a level that does not interfere with the subsequent biological nitrification and denitrification treatment. Thus, instead of removing all of the phosphorus in the return water, the subsequent biological nitrification denitrification treatment
PO 4 3− ions are consumed for assimilation of organisms, while NH 4 + ions can be biologically denitrified by nitrifying and denitrifying bacteria under anaerobic and aerobic conditions. According to the method of the present invention, NH 4 + ions are
Since most of it is removed, the load will be reduced, and it is considered that denitrification can be sufficiently performed in the subsequent biological treatment.

(実施例) 以下に本発明の具体的な説明を実施例により説明する。(Example) Hereinafter, the specific description of the present invention will be described by way of examples.

実施例1 汚泥の嫌気性消化槽脱離液〔pH値=7.4,BOD=2470mg/
,SS=6860mg/,NH4 +−N=560mg/,リン酸(PO4 3-
−P)=140mg/〕2.5m3/日を水酸化ナトリウムにより
ph値を8.3に調整した後,塩化マグネシウムをMg2+とし
て107mg/を添加し,第1図に示される硝化液循環方式
による生物学的脱窒工程に導入した。なお,この生物学
的脱窒工程の運転条件は,下記の設定条件により行っ
た。
Example 1 Sludge anaerobic digester desorption solution [pH value = 7.4, BOD = 2470 mg /
, SS = 6860mg /, NH 4 + -N = 560mg /, phosphate (PO 4 3-
-P) = 140mg /] 2.5m 3 / day with sodium hydroxide
After adjusting the ph value to 8.3, magnesium chloride was added as Mg 2+ at a concentration of 107 mg / min and introduced into the biological denitrification process by the nitrification solution circulation system shown in FIG. The operating conditions of this biological denitrification process were as follows.

脱窒槽 MLSS 4700mg/ 滞留時間 6時間 硝化液循環比 4倍 硝化槽 MLSS 4600mg/ 滞留時間 6時間 次に,この脱窒槽に流入する返流水に濾別し,返流水中
のSS及びリン酸マグネシウムアンモニウムの結晶を除去
した後の水質を分析したところ,BOD=290mg/,リン酸
イオン(PO4 3-−P)=3.8mg/,アンモニウムイオン
(NH4 +−N)=480mg/であった。また,生物学的脱窒
処理を行った後の沈澱槽からの流出水を分析したとこ
ろ,BOD=20mg/,リン酸イオン(PO4 3-−P)=0.8mg/
,アンモニウムイオン(NH4 +−N)=0.9mg/の極め
て良好な水質のものであった。
Denitrification tank MLSS 4700 mg / retention time 6 hours Nitrification solution circulation ratio 4 times Nitrification tank MLSS 4600 mg / retention time 6 hours Next, the return water that flows into this denitrification tank is filtered and SS and magnesium ammonium phosphate in the return water are filtered. When the analyzed water quality after removal of the crystals, BOD = 290 mg /, phosphate ion (PO 4 3- -P) = 3.8mg /, ammonium ion (NH 4 + -N) = 480mg was /. Furthermore, analysis of the effluent from the settling tank after the biological denitrification, BOD = 20 mg /, phosphate ion (PO 4 3- -P) = 0.8mg /
, Ammonium ion (NH 4 + -N) = 0.9 mg /, and the water quality was extremely good.

(発明の効果) 本発明によれば,汚泥処理プロセスより発生する返流水
のリン及び窒素を極めて高効率に除去することが可能で
あり,従来から問題となっていた返流水の負荷を極めて
容易な技術で解決できるものであり,排水処理技術とし
て広く利用できる技術である。
(Effects of the Invention) According to the present invention, it is possible to remove phosphorus and nitrogen in return water generated from a sludge treatment process with extremely high efficiency, and it is extremely easy to load return water, which has been a problem in the past. It can be solved by various technologies and is a technology that can be widely used as wastewater treatment technology.

【図面の簡単な説明】[Brief description of drawings]

第1図は,本発明の硝化液循環方式における脱リン脱窒
処理の説明図,第2図は,間欠曝気方式における脱リン
脱窒処理の説明図である。 1……返流水、2……pH調整剤 3……マグネシウム塩、4……脱窒槽 5……硝化槽 6……硝化液の一部返送 7……沈澱処理、8……曝気槽 9……返送汚泥、10……引抜汚泥
FIG. 1 is an explanatory diagram of the dephosphorization denitrification process in the nitrification solution circulation system of the present invention, and FIG. 2 is an explanatory diagram of the dephosphorization denitrification process in the intermittent aeration system. 1 ... Return water, 2 ... pH adjuster 3 ... Magnesium salt, 4 ... Denitrification tank 5 ... Nitrification tank 6 ... Partial return of nitrification liquid 7 ... Precipitation treatment, 8 ... Aeration tank 9 ... … Returned sludge, 10 …… Extracted sludge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】汚泥処理プロセスより発生する返流水をpH
値で8〜9に調整し,次いで水溶性マグネシウム塩を返
流水中のリン酸濃度に対してMg/Pモル比が0.5〜1.0とな
るように添加し,しかる後に生物学的脱窒処理を行うこ
とを特徴とする汚泥処理系返流水の処理方法。
1. The pH of the return water generated from the sludge treatment process
The value is adjusted to 8-9, and then water-soluble magnesium salt is added so that the Mg / P molar ratio becomes 0.5-1.0 with respect to the phosphoric acid concentration in the return water, followed by biological denitrification treatment. A method for treating return water of a sludge treatment system, which is characterized by carrying out.
JP62046608A 1987-02-28 1987-02-28 Sludge treatment system Return water treatment method Expired - Lifetime JPH0753279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62046608A JPH0753279B2 (en) 1987-02-28 1987-02-28 Sludge treatment system Return water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62046608A JPH0753279B2 (en) 1987-02-28 1987-02-28 Sludge treatment system Return water treatment method

Publications (2)

Publication Number Publication Date
JPS63214396A JPS63214396A (en) 1988-09-07
JPH0753279B2 true JPH0753279B2 (en) 1995-06-07

Family

ID=12752017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62046608A Expired - Lifetime JPH0753279B2 (en) 1987-02-28 1987-02-28 Sludge treatment system Return water treatment method

Country Status (1)

Country Link
JP (1) JPH0753279B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669619B1 (en) * 1990-11-26 1993-01-08 Elf Aquitaine PROCESS FOR THE DISPOSAL OF AMMONIA FROM WASTEWATER.
JP4587559B2 (en) * 2000-12-06 2010-11-24 ユニチカ株式会社 Method and apparatus for removing nitrogen from sludge return water
KR100468446B1 (en) * 2000-12-23 2005-01-29 주식회사 포스코 A method for removing total nitrogen content in waste water of process for preparing coke

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145596A (en) * 1979-05-01 1980-11-13 Ebara Infilco Co Ltd Treatment of organic waste liquid

Also Published As

Publication number Publication date
JPS63214396A (en) 1988-09-07

Similar Documents

Publication Publication Date Title
US4173531A (en) Nitrification-denitrification of wastewater
EP1012121B1 (en) Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater
US7135116B2 (en) Process for recovery of nutrients from wastewater
KR100271942B1 (en) Method for treating high density waste water and apparatus therefore using soil microbe with do controlling aeration tank
JP2716348B2 (en) Sewage return water treatment method
JP3442205B2 (en) Treatment method for phosphorus-containing wastewater
JP3799557B2 (en) Wastewater treatment method
JPH0753279B2 (en) Sludge treatment system Return water treatment method
JPS6254075B2 (en)
JPH0416238B2 (en)
JP3955478B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
KR100314745B1 (en) Nitrogenous Wastwater Treatment Methods
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
CN112939362A (en) Method for treating sewage in alpine region
JP3769772B2 (en) Method for treating selenium-containing water
JPH08309366A (en) Removal of nitrogen and phosphorus from waste water
JPH0810791A (en) Method for removing phosphorus
KR100322252B1 (en) Biological Treatment Systems and Methods for Removing Nitrogen and Phosphorus in Municipal Wastewater
JPH02198695A (en) Nitrite type nitrification method
Moriyama et al. Retrofitting and operation of small extended aeration plants for advanced treatment–some experiences in Japan
KR100285016B1 (en) Nitrogen and phosphorus removal from livestock wastewater and manure treatment in liquid corrosion method
KR100503632B1 (en) Method and apparatus for treating metal finishing waste which contains high nitrogen and phosphorus
KR100244376B1 (en) Method for removing nitrogen and phosphorous from drainage/wastewater having a low cod/tkn ratio and drainage/wastewater treating system for performing the same
JPH10128388A (en) Method and apparatus for treating selenium-containing waste water
KR20240123970A (en) Sewage, wastewater and leachate treatment system containing a large amount of nitrogen

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term