JPS63214396A - Treatment of returned water in sludge treatment system - Google Patents

Treatment of returned water in sludge treatment system

Info

Publication number
JPS63214396A
JPS63214396A JP4660887A JP4660887A JPS63214396A JP S63214396 A JPS63214396 A JP S63214396A JP 4660887 A JP4660887 A JP 4660887A JP 4660887 A JP4660887 A JP 4660887A JP S63214396 A JPS63214396 A JP S63214396A
Authority
JP
Japan
Prior art keywords
treatment
tank
denitrification
water
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4660887A
Other languages
Japanese (ja)
Other versions
JPH0753279B2 (en
Inventor
Masahiro Fujii
正博 藤井
Yoshiharu Tanaka
田中 良晴
Toshio Haruta
春田 俊男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP62046608A priority Critical patent/JPH0753279B2/en
Publication of JPS63214396A publication Critical patent/JPS63214396A/en
Publication of JPH0753279B2 publication Critical patent/JPH0753279B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To efficiently remove nitrogen and phosphorus by regulating returned water generated from a sludge treatment process to a specified pH value, and thereafter adding water soluble magnesium salt and the subjecting it to biological denitrification treatment. CONSTITUTION:A pH modifier 2 such as caustic soda is added to returned water 1 to regulate the pH value to 8-9 and after adding magnesium salt 3, it is introduced into a biological denitrification process of a system for circulating nitrification liquid. The effluent of a denitrification tank 4 is introduced into a nitrification tank 5 and remaining ammoniac nitrogen is changed into nitrate nitrogen and also oxidation and decomposition of BOD component are performed. The effluent of the nitrification tank 5 is subjected to precipitation treatment 7, and thereafter returned or discharged. Further one part 6 thereof is circulated to the denitrification tank 4. Thereby the load of returned water is easily reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、汚泥処理プロセスより発生する返流水に含有
する窒素、リンを効率よ(除去する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for efficiently removing nitrogen and phosphorus contained in return water generated from a sludge treatment process.

(従来の技術) 下水処理場にて発生する多量の有機性汚泥は。(Conventional technology) A large amount of organic sludge is generated at sewage treatment plants.

いくつかの工程を経て処理され、各処理プロセス中で発
生する分離液等は1通常水処理プロセスに返流されるこ
とが一般に行われていた。ところが。
Generally, water is treated through several steps, and the separated liquid generated during each treatment process is returned to one normal water treatment process. However.

この返流水の水量及び水質は、汚泥処理方式や運転管理
方式によって異なるが、一般的にBOD、SSが200
0mg/ 1以上で、しかもアンモニア性窒素(Nl+
、”−N)やリン酸性−リン(PO4’−P)の濃度も
高いため。
The amount and quality of this return water vary depending on the sludge treatment method and operation management method, but generally the BOD and SS are 200
0mg/1 or more, and ammonia nitrogen (Nl+
, ”-N) and phosphoric acid-phosphorus (PO4'-P).

この返流水に伴う負荷が処理水質悪化の一因となり、最
近では汚泥処理系における返流水の高度処理の重要性が
強調されており、特に窒素とリンの除去を目的とした種
々の方法が提案されている。
The load associated with this return water contributes to the deterioration of treated water quality, and recently the importance of advanced treatment of return water in sludge treatment systems has been emphasized, and various methods have been proposed with the aim of removing nitrogen and phosphorus in particular. has been done.

すなわち、上記処理水質悪化の要因の中でBOD及びS
Sについては、処理場施設の能力と維持管理の努力によ
り低減化がなされているが、窒素とリンについては、現
状の設備施設では十分に効率的な処理ができないからで
ある。
In other words, among the factors that deteriorate the treated water quality, BOD and S
Although S has been reduced through the capacity of treatment plant facilities and efforts to maintain and manage them, nitrogen and phosphorus cannot be treated efficiently with the current facilities.

具体的には、窒素の除去方法としては、生物学的脱窒法
が、リンの除去方法としては、Al塩やCa塩による凝
集沈澱法が採用され、基本的にはこれら2つの処理方法
を組み合わせた方法が現在採用されている。
Specifically, the biological denitrification method is used to remove nitrogen, and the coagulation-sedimentation method using Al salts and Ca salts is used to remove phosphorus.Basically, these two treatment methods are combined. The method is currently being used.

(発明が解決しようとする問題点) この凝集沈澱法におけるリンの除去は、水中に存在する
リン酸塩類に、硫酸アルミニウムやポリ塩化アルミニウ
ムなどのアルミニウム塩、硫酸第2鉄や塩化第2鉄及び
消石灰の凝集剤を添加することにより、難溶性塩を形成
させて沈澱除去する方法である。ところが、凝集沈澱処
理法の欠点は。
(Problems to be Solved by the Invention) Phosphorus removal in this coagulation-sedimentation method involves using phosphates present in water such as aluminum salts such as aluminum sulfate and polyaluminum chloride, ferric sulfate, ferric chloride, etc. This method involves adding a coagulant of slaked lime to form poorly soluble salts, which are then precipitated and removed. However, there are drawbacks to the coagulation and sedimentation treatment method.

(1)  アルミニウム塩や鉄塩により生じるフロック
は、コロイド状であり、沈澱性や濃縮性が極めて悪く、
脱水性が劣ること (2)  アルミニウム塩や鉄塩の場合、 BODも一
緒に除去されるため栄養バランスがくずれ、生物処理が
後続する処理方法においては処理が困難となること (3)石灰によるリンの除去機構は、 pH値が高い程
、除去率が上昇するのでp)I値10を超えた高アルカ
リ側で脱リン処理を行うため処理後に中和処理が必要と
なること 等の欠点がある。
(1) The flocs produced by aluminum salts and iron salts are colloidal and have extremely poor settling and concentration properties.
(2) In the case of aluminum salts and iron salts, BOD is also removed, which disrupts the nutritional balance and makes treatment difficult with subsequent biological treatment. (3) Phosphate removal by lime The removal mechanism has drawbacks such as the fact that the higher the pH value, the higher the removal rate, so p) dephosphorization is performed on the high alkaline side where the I value exceeds 10, so neutralization treatment is required after treatment. .

一方、生物学的脱窒法による窒素除去に関しては、汚水
中の有機物そのものを水素供与体として利用する脱窒素
工程−硝化工程を直列的に結合させ、硝化工程からの流
出水(硝化液)を脱窒素工程にリザイクルさせるという
硝化液循環生物学的脱窒プロセスが採用できるものであ
る。
On the other hand, regarding nitrogen removal by biological denitrification, the denitrification process, which utilizes the organic matter itself in wastewater as a hydrogen donor, and the nitrification process are connected in series, and the effluent from the nitrification process (nitrified liquid) is desorbed. A biological denitrification process in which nitrified liquid is recycled into the nitrogen process can be adopted.

ところが、上記生物学的脱窒法において、AN塩又はF
e塩が添加されて凝集沈澱処理が行われた場合、pH値
の低下、アルカリ度の低下及びアルミニウムによる硝化
菌、脱窒菌への活性阻害等の問題がある。
However, in the above biological denitrification method, AN salt or F
If e-salt is added and a coagulation-sedimentation treatment is performed, there are problems such as a decrease in pH value, a decrease in alkalinity, and inhibition of the activity of nitrifying bacteria and denitrifying bacteria due to aluminum.

このようにリン、窒素の除去に関し、確立した技術であ
るにもかかわらず、実用上問題をかかえているのが現状
である。
As described above, despite the established technology for removing phosphorus and nitrogen, there are currently problems in practical use.

本発明は、このような従来技術の欠点を解消しようとす
るものであって、その目的は、極めて簡単な操作で排水
中の窒素及びリンを効率よく除去できる方法を提供する
ことにある。
The present invention aims to eliminate these drawbacks of the prior art, and its purpose is to provide a method that can efficiently remove nitrogen and phosphorus from wastewater with extremely simple operations.

(問題点を解決するための手段) 本発明者らは、上記問題点を解決するため鋭意研究の結
果9本発明に到達したものである。
(Means for Solving the Problems) The present inventors have arrived at the present invention as a result of intensive research to solve the above problems.

すなわち1本発明は、汚泥処理プロセスより発生する返
流水をpH値8〜9に調整し1次いで水溶性マグネシウ
ム塩を添加し、しかる後に生物学的脱窒処理を行うこと
を特徴とする汚泥処理系返流水の処理方法を要旨とする
ものである。
That is, 1 the present invention provides a sludge treatment characterized by adjusting return water generated from a sludge treatment process to a pH value of 8 to 9, first adding a water-soluble magnesium salt, and then performing biological denitrification treatment. The gist of this paper is a method for treating system return water.

以下1本発明を図面により説明する。The present invention will be explained below with reference to the drawings.

先ず、第1図において、返流水1にカセイソーダ等のp
H調整剤2を加え+pH値を8〜9に調整し5次いで塩
化マグネシウム等の水溶液でイオン化するマグネシウム
塩3を添加し、硝化液循環方式の生物学的脱窒工程に流
入させる。
First, in Fig. 1, P of caustic soda etc. is added to the return water 1.
A H regulator 2 is added to adjust the pH value to 8 to 9, and then a magnesium salt 3 which is ionized with an aqueous solution such as magnesium chloride is added, and the mixture is introduced into a biological denitrification process using a nitrification liquid circulation system.

この硝化液循環方式とは、脱窒槽4に後続する硝化槽5
から硝化液の一部6を脱窒槽4に循環させ、硝化槽5に
て生成した硝酸態窒素NO,−Nを脱窒槽4でN、ガス
に還元するものである。また、脱窒槽4では、返流水中
のBOD成分を脱窒菌の水素供与体として利用しNoX
−Nのガス化(Ntガス)を行う。
This nitrification liquid circulation system is a nitrification tank 5 that follows the denitrification tank 4.
A part 6 of the nitrification liquid is circulated from the nitrification tank 6 to the denitrification tank 4, and the nitrate nitrogen NO and -N produced in the nitrification tank 5 are reduced to N and gas in the denitrification tank 4. In addition, in the denitrification tank 4, the BOD component in the return water is used as a hydrogen donor for denitrifying bacteria, and NoX
-N gasification (Nt gas) is performed.

この時、返流水中でマグネシウムイオン(Mg”)とリ
ン酸イオン(po4.’−)とアンモニウムイオン(N
H4つとの反応がほぼモル比通りに進行し、リン酸マグ
ネシウムアンモニウムの結晶粒子が生成される。
At this time, magnesium ions (Mg''), phosphate ions (po4.'-) and ammonium ions (N
The reaction with H4 proceeds in approximately the same molar ratio, producing crystalline particles of magnesium ammonium phosphate.

すなわち、返流水に溶解していたリン酸及び一部のアン
モニア性窒素が下記(i1式によりリン酸マグネシウム
アンモニウムが生成し、固形分として除去される。
That is, phosphoric acid and a part of ammonia nitrogen dissolved in the return water are produced as magnesium ammonium phosphate according to the following formula (i1), and are removed as a solid content.

PO,”  +Mg”  +  NH4+→ MgNH
4POt  (1)次に、脱窒槽4の流出水は、硝化槽
5に流入し、残存するアンモニア性窒素を硝酸態窒素N
0X−Nに変化させるとともに、 BOD成分の酸化分
解を行う。硝化槽5の流出液は、沈殿処理7を行った後
、返流或いは放流される。また、その一部6は、脱窒槽
4に循環される。この際、返流水中のリン酸濃度に対し
てマグネシウム塩の添加量は、 Mg/Pモル比で0.
5〜1.0の範囲が好ましい。本発明では5モル比通り
に反応が進行するため後続の生物学的硝化脱窒処理にお
いては、一般的にBODと窒素とリンとの比がほぼ10
0:5:1になる時、@生物の生存環境が良好になり、
生物処理が支障なく行われることがよく知られているた
め、その最適条件を作成するように添加量を調節するこ
とが可能となる。
PO,” +Mg” + NH4+→ MgNH
4POt (1) Next, the outflow water from the denitrification tank 4 flows into the nitrification tank 5, and the remaining ammonia nitrogen is converted to nitrate nitrogen.
At the same time as converting it to 0X-N, the BOD component is oxidized and decomposed. The effluent from the nitrification tank 5 is subjected to a precipitation treatment 7 and then returned or discharged. Further, a portion 6 of it is circulated to the denitrification tank 4. At this time, the amount of magnesium salt added to the phosphoric acid concentration in the return water was 0.00 in Mg/P molar ratio.
The range of 5 to 1.0 is preferable. In the present invention, the reaction proceeds according to the molar ratio of 5, so in the subsequent biological nitrification and denitrification treatment, the ratio of BOD to nitrogen to phosphorus is generally approximately 10.
When the ratio becomes 0:5:1, the survival environment for living things becomes better,
Since it is well known that biological treatment can be carried out without any problems, it is possible to adjust the amount added to create the optimum conditions.

第2図は、生物学的脱窒法として曝気−非曝気の間歇曝
気方式の活性汚泥法の一例であり、返流水1にpH11
整剤2を添加し1次いで水溶性Mg塩を添加した返流水
を間歇曝気方式活性汚泥法の曝気槽8に流入させる。曝
気槽では曝気装置の0N−OFF運転により好気−嫌気
状態が交互に起こり、返流水中のBOD成分を除去する
。また、NH,”−Nの硝化作用、N0X−Nのガス化
が起こるとともに添加されたマグネシウムイオンMgz
″″と返流水中のリン酸イオンPO43−とアンモニウ
ムイオンNH,”が反応し、リン酸マグネシウムアンモ
ニウムの結晶が生成し、引抜汚泥10とともに除去され
、一部返送汚泥9として曝気槽に返送される。このよう
に返流水中の溶解性リン及びNO,”−Nが固形物で除
去される。なお。
Figure 2 shows an example of an activated sludge method using an aeration-non-aeration intermittent aeration method as a biological denitrification method.
The return water to which the conditioner 2 was added and then the water-soluble Mg salt was added is allowed to flow into the aeration tank 8 of the intermittent aeration type activated sludge method. In the aeration tank, aerobic and anaerobic conditions occur alternately by ON-OFF operation of the aeration device, and BOD components in the return water are removed. In addition, the nitrification effect of NH,''-N and the gasification of NOX-N occur, and the added magnesium ion Mgz
``'' reacts with phosphate ions PO43- and ammonium ions NH,'' in the return water to form magnesium ammonium phosphate crystals, which are removed together with the drawn sludge 10 and partially returned to the aeration tank as return sludge 9. In this way, soluble phosphorus and NO, -N in the return water are removed with solid matter. In addition.

この固液分離処理については、上記のように沈澱槽で行
ってもよいし、返流水に水薄性マグネシウムを添加した
後、10〜30分間攪拌処理を行い、曝気槽に返流水を
流入させる前に生成したリン酸マグネシウムアンモニウ
ムを沈澱分離し1回収させた後8間欠曝気による生物処
理を行ってもよい。
This solid-liquid separation treatment may be performed in a settling tank as described above, or after adding water-thin magnesium to the return water, stirring is performed for 10 to 30 minutes, and the return water is flowed into the aeration tank. The previously produced magnesium ammonium phosphate may be separated by precipitation and recovered once, followed by biological treatment by 8 intermittent aerations.

以上述べたように1本発明方法の重要な構成としては、
過剰のアンモニウムイオンとリン酸イオンをマグネシウ
ムイオンの添加により、リン酸マグネシウムアンモニウ
ムの形で沈澱除去し、さらに残ったアンモニウムイオン
と微生物の資化に必要なリン酸イオンを生物学的硝化脱
窒処理にて除去することである。
As mentioned above, the important components of the method of the present invention are:
Excess ammonium ions and phosphate ions are precipitated and removed in the form of magnesium ammonium phosphate by adding magnesium ions, and the remaining ammonium ions and phosphate ions necessary for assimilation by microorganisms are subjected to biological nitrification and denitrification treatment. It is to be removed by

(作用) 本発明方法によれば、汚泥処理プロセスより発生する返
流水中に含まれている窒素及びリンを効率よく除去する
ことが可能となる。その理由については、必ずしも明確
ではないが1本発明者らは次のように推測している。
(Function) According to the method of the present invention, it becomes possible to efficiently remove nitrogen and phosphorus contained in the return water generated from the sludge treatment process. The reason for this is not necessarily clear, but the inventors of the present invention speculate as follows.

すなわち、返流水中のリンを除去する機構は、リン酸イ
オンの定性分析に見られるように、リン酸マグネシウム
アンモニウムとして析出させることであるが、マグネシ
ウム塩の添加量としてMg/Pモル比で0.5〜1.0
の範囲が好ましく、後続の生物学的硝化脱窒処理に支障
のない程度のリン酸濃度が残存するように添加すること
が好ましい。このように返流水中のリンを全て除去させ
るのではなく。
In other words, the mechanism for removing phosphorus from the return water is to precipitate it as magnesium ammonium phosphate, as seen in the qualitative analysis of phosphate ions, but the amount of magnesium salt added is 0 at the Mg/P molar ratio. .5-1.0
It is preferable to add the phosphoric acid so that the concentration of phosphoric acid remains at a level that does not interfere with the subsequent biological nitrification and denitrification treatment. Instead of removing all the phosphorus in the return water like this.

後続の生物学的硝化脱窒処理でpo、 ’−イオンが生
物の資化に消費され、一方、NH,+イオンが硝化菌及
び脱窒菌により嫌気及び好気の条件下で生物学的脱窒処
理を行えることである0本発明方法によれば、NH4”
イオンは、マグネシウムイオンの添加により、大部分除
去されるため、負荷が軽減され、後続の生物処理で十分
脱窒処理が行えるものと考えられる。
In the subsequent biological nitrification-denitrification process, po, '- ions are consumed by living organisms, while NH, + ions are used for biological denitrification by nitrifying and denitrifying bacteria under anaerobic and aerobic conditions. According to the method of the present invention, it is possible to treat NH4”
Since most of the ions are removed by adding magnesium ions, the load is reduced, and it is thought that the subsequent biological treatment will be able to perform sufficient denitrification treatment.

(実施例) 以下に本発明の詳細な説明を実施例により説明する。(Example) A detailed explanation of the present invention will be given below with reference to examples.

実施例1 汚泥の嫌気性消化槽脱離液CpH値=7.4. BOD
=2470mg/β、SS=6860mg/ l 、 
 NH*”−N=560mg/ l 。
Example 1 Sludge anaerobic digestion tank desorbed liquid CpH value = 7.4. BOD
=2470mg/β, SS=6860mg/l,
NH*”-N=560mg/l.

リン酸(PO*’−P) −140mg/ l ) 2
.5m ”/日を水酸化ナトリウムによりptt値を8
.3に調整した後、塩化マグネシウムをM g 2 +
とじて107mg/ 1を添加し、第1図に示される硝
化液循環方式による生物学的脱窒工程に導入した。なお
、この生物学的脱窒工程の運転条件は、下記の設定条件
により行った。
Phosphoric acid (PO*'-P) -140mg/l) 2
.. 5 m”/day to a PTT value of 8 with sodium hydroxide.
.. After adjusting the amount of magnesium chloride to M g 2 +
107 mg/1 was added and introduced into the biological denitrification process using the nitrification solution circulation method shown in FIG. The operating conditions for this biological denitrification process were set as follows.

脱窒槽 M L S 3     4700mg/ 1滞留時間
      6時間 硝化液循環比    4倍 硝化槽 M L S S      4600mg/ 1滞留時
間      6時間 次に、この脱窒槽に流入する返流水を濾別し、返流水中
のSS及びリン酸マグネシウムアンモニウムの結晶を除
去した後の水質を分析したところ、 BOD= 290
+sg/ l 、リン酸イオン(Pot’−P) =3
.8mg/ l 。
Denitrification tank M L S 3 4700 mg/1 residence time 6 hours Nitrification liquid circulation ratio 4 times Nitrification tank M L S S 4600 mg/1 residence time 6 hours Next, the return water flowing into this denitrification tank is filtered and returned When the water quality was analyzed after removing the SS and magnesium ammonium phosphate crystals in the water, BOD = 290
+sg/l, phosphate ion (Pot'-P) = 3
.. 8mg/l.

アンモニウムイオン(NH,”−N) = 480mg
/ l テ、1) ッf:=。
Ammonium ion (NH, “-N) = 480mg
/ l te, 1) ff:=.

また、生物学的脱窒処理を行った後の沈澱槽からの流出
水を分析したところ、 ROD = 20mg/ l 
、リン酸イオン(PO4’−P)−0,8mg/j2,
77モニ’7ムイオ7(NH4”−N) =0.9mg
/ lの極めて良好な水質のものであった。
Furthermore, when we analyzed the water flowing out from the settling tank after biological denitrification treatment, we found that ROD = 20 mg/l.
, phosphate ion (PO4'-P)-0.8mg/j2,
77moni'7muio7 (NH4"-N) = 0.9mg
/l of extremely good water quality.

(発明の効果) 本発明によれば、汚泥処理プロセスより発生する返流水
のリン及び窒素を極めて高効率に除去することが可能で
あり、従来から問題となっていた返流水の負荷を極めて
平易な技術で解決できるものであり、排水処理技術とし
て広く利用できる技術である。
(Effects of the Invention) According to the present invention, it is possible to remove phosphorus and nitrogen from the return water generated from the sludge treatment process with extremely high efficiency, and it is possible to extremely easily reduce the load on the return water, which has been a problem in the past. This can be solved using advanced technology, and this technology can be widely used as a wastewater treatment technology.

4、図面の説明 第1図は1本発明の硝化液循環方式における脱リン脱窒
処理の説明図、第2図は1間欠曝気力式における脱リン
脱窒処理の説明図である。
4. Description of the Drawings FIG. 1 is an explanatory diagram of the dephosphorization and denitrification treatment in the nitrification liquid circulation method of the present invention, and FIG. 2 is an explanatory diagram of the dephosphorization and denitrification treatment in the intermittent aeration method.

1−−−−−−一返流水     2−−−−−−− 
p H調整剤3−・−一−−−マグネシウム塩 4・−
−−−−一説窒槽5−−−−−−一硝化槽 6−・−一一一一硝化液の一部返送 7−−−−−−−一沈澱処理    8−−−−−−一
曝気槽9−−−−−−一返送汚泥    10−−−−
−−一引抜汚泥特許出願人   ユニチカ株式会社 第 1図
1----------1 return water 2----------
pH adjuster 3--1--magnesium salt 4-
-----One theory Nitrogen tank 5---One nitrification tank 6---11 Partial return of nitrified solution 7---One precipitation treatment 8--------- One aeration Tank 9------1 Return sludge 10------
---Ichipu sludge patent applicant Unitika Co., Ltd. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)汚泥処理プロセスより発生する返流水をpH値8
〜9に調整し、次いで水溶性マグネシウム塩を添加し、
しかる後に生物学的脱窒処理を行うことを特徴とする汚
泥処理系返流水の処理方法。
(1) Return water generated from the sludge treatment process has a pH value of 8.
~9, then add water-soluble magnesium salt,
A method for treating return water of a sludge treatment system, which is characterized in that biological denitrification treatment is subsequently performed.
(2)前記水溶性マグネシウム塩添加の際のMg/Pモ
ル比が0.5以上1.0以下であることを特徴とする特
許請求の範囲第1項記載の汚泥処理系返流水の処理方法
(2) The method for treating return water of a sludge treatment system according to claim 1, characterized in that the Mg/P molar ratio when adding the water-soluble magnesium salt is 0.5 or more and 1.0 or less. .
JP62046608A 1987-02-28 1987-02-28 Sludge treatment system Return water treatment method Expired - Lifetime JPH0753279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62046608A JPH0753279B2 (en) 1987-02-28 1987-02-28 Sludge treatment system Return water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62046608A JPH0753279B2 (en) 1987-02-28 1987-02-28 Sludge treatment system Return water treatment method

Publications (2)

Publication Number Publication Date
JPS63214396A true JPS63214396A (en) 1988-09-07
JPH0753279B2 JPH0753279B2 (en) 1995-06-07

Family

ID=12752017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62046608A Expired - Lifetime JPH0753279B2 (en) 1987-02-28 1987-02-28 Sludge treatment system Return water treatment method

Country Status (1)

Country Link
JP (1) JPH0753279B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294348A (en) * 1990-11-26 1994-03-15 Societe Nationale Elf Aquitaine Process for removing ammonia from waste waters
JP2002172400A (en) * 2000-12-06 2002-06-18 Unitika Ltd Method and apparatus for removing nitrogen in sludge return water
KR100468446B1 (en) * 2000-12-23 2005-01-29 주식회사 포스코 A method for removing total nitrogen content in waste water of process for preparing coke

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145596A (en) * 1979-05-01 1980-11-13 Ebara Infilco Co Ltd Treatment of organic waste liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145596A (en) * 1979-05-01 1980-11-13 Ebara Infilco Co Ltd Treatment of organic waste liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294348A (en) * 1990-11-26 1994-03-15 Societe Nationale Elf Aquitaine Process for removing ammonia from waste waters
JP2002172400A (en) * 2000-12-06 2002-06-18 Unitika Ltd Method and apparatus for removing nitrogen in sludge return water
KR100468446B1 (en) * 2000-12-23 2005-01-29 주식회사 포스코 A method for removing total nitrogen content in waste water of process for preparing coke

Also Published As

Publication number Publication date
JPH0753279B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
US4173531A (en) Nitrification-denitrification of wastewater
US7135116B2 (en) Process for recovery of nutrients from wastewater
WO2005049511A1 (en) Method of formation/recovery of magnesium ammonium phosphate and apparatus therefor
JP2716348B2 (en) Sewage return water treatment method
JPH1157773A (en) Biological dephosphorizing device
KR20090080594A (en) The system and method of removing BOD, N, and P removal from an animal wastewater
JP3799557B2 (en) Wastewater treatment method
JPS63214396A (en) Treatment of returned water in sludge treatment system
JP3955478B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
JP4608069B2 (en) Wastewater treatment equipment
JP4101498B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
JPH07124571A (en) Treatment process for organic drainage
JPH0416238B2 (en)
KR100314745B1 (en) Nitrogenous Wastwater Treatment Methods
JPH0810791A (en) Method for removing phosphorus
JPS6320600B2 (en)
JPS6153120B2 (en)
JPH08309366A (en) Removal of nitrogen and phosphorus from waste water
KR100453484B1 (en) Method of wasetwater treatment
KR100285016B1 (en) Nitrogen and phosphorus removal from livestock wastewater and manure treatment in liquid corrosion method
JPH0483594A (en) Biological treatment of organic sewage
KR100283127B1 (en) Wastewater treatment methods including denitrification and dephosphorization
KR100503632B1 (en) Method and apparatus for treating metal finishing waste which contains high nitrogen and phosphorus
JPH0291000A (en) Batch-wise type soil water treatment process
KR100448891B1 (en) Sulfuric media for wastewater treatment and manufacturing method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term