JP2008030008A - Methane fermentation method of organic waste - Google Patents
Methane fermentation method of organic waste Download PDFInfo
- Publication number
- JP2008030008A JP2008030008A JP2006209450A JP2006209450A JP2008030008A JP 2008030008 A JP2008030008 A JP 2008030008A JP 2006209450 A JP2006209450 A JP 2006209450A JP 2006209450 A JP2006209450 A JP 2006209450A JP 2008030008 A JP2008030008 A JP 2008030008A
- Authority
- JP
- Japan
- Prior art keywords
- methane
- organic waste
- acid
- methane fermentation
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/40—Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse
Landscapes
- Treatment Of Sludge (AREA)
- Fertilizers (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
本発明は、有機性廃棄物の処理方法の改良、更に詳しくは、有機性廃棄物を処理する際に、メタンガスの発生量を増量することができて、かつ、汚泥の発生量を減少せしめることができ、しかも、着色反応も起き難く、更には、廃棄物からのリンの回収量を劇的に増加させることができる有機性廃棄物のメタン発酵処理方法に関するものである。 The present invention is an improvement of a method for treating organic waste, more specifically, when treating organic waste, the amount of methane gas generated can be increased, and the amount of sludge generated can be reduced. Further, the present invention relates to a method for methane fermentation treatment of organic waste, which is less likely to cause a coloring reaction and can dramatically increase the amount of phosphorus recovered from waste.
周知のとおり、有機性廃棄物のメタン発酵処理とは、有機物を分解しながら最終産物としてメタンガス(CH4)を生成することができ、さらに分解されなかった残渣も有機肥料やセメント原料などとして再利用できる微生物学的処理方法であることから、環境保全とバイオマスのエネルギー転換を兼ねた21世紀にふさわしい技術であると言える。 As is well known, methane fermentation treatment of organic waste can produce methane gas (CH 4 ) as a final product while decomposing organic matter, and the residue that has not been decomposed can be reused as organic fertilizer or cement raw material. Since it is a microbiological treatment method that can be used, it can be said that this technology is suitable for the 21st century, which combines environmental conservation and biomass energy conversion.
ところで、この有機性廃棄物は、種類によってメタン発酵処理における分解性が大きく異なる。例えば、生ゴミのように分解しやすい有機性廃棄物は80%以上の分解性を得ることができるが、汚泥、し尿、家畜糞尿などの大半の有機性廃棄物の分解性はそれより低く、例えば、下水汚泥の場合には平均的に50%程度である。 By the way, this organic waste has greatly different decomposability in methane fermentation treatment depending on the type. For example, organic waste that is easy to decompose such as garbage can obtain more than 80% degradability, but most organic waste such as sludge, human waste and livestock manure is less degradable, For example, in the case of sewage sludge, the average is about 50%.
したがって、メタン発酵処理してもまだ大量の発酵残渣が残ることとなり、その再利用が図られているものの、産業廃棄物として焼却や埋め立てなどの最終処分が避けられない状況にある。 Therefore, even after methane fermentation treatment, a large amount of fermentation residue remains, and although it is being reused, final disposal such as incineration and landfilling is inevitable as industrial waste.
このように、嫌気性微生物のみによる分解では限界があるため、これに加え、物理的、化学的、あるいは生物学的処理の併用が検討されてきた。その代表的なものには、加熱処理、酸またはアルカリ処理、ボールミルやホモジナイザー等の機械的処理、オゾンや過酸化水素等を用いる化学的酸化処理、高温好気性細菌や酵素などを用いる生物学的処理や二種類以上の処理を組み合わせる方法などがある。しかしながら、これらほとんどの方法は多量のエネルギーを必要とし、費用対効果に乏しいという不満がある。 Thus, since there is a limit in the decomposition | disassembly by only anaerobic microorganisms, in addition to this, combined use of physical, chemical, or biological treatment has been examined. Typical examples include heat treatment, acid or alkali treatment, mechanical treatment such as ball mill and homogenizer, chemical oxidation treatment using ozone or hydrogen peroxide, biological using high temperature aerobic bacteria or enzymes, etc. There are methods such as processing and combining two or more types of processing. However, most of these methods are unsatisfactory because they require large amounts of energy and are not cost effective.
また、上記の付加的処理のうち、既往の研究によって、加熱処理にpH調整を組み合わせると固形物分解性が向上することが知られており、その場合のpHは、圧倒的にアルカリ側が良いと考えられていた(特許文献1参照)。 In addition, among the above-mentioned additional treatments, it is known from past research that solid heat decomposability is improved when pH adjustment is combined with heat treatment, and the pH in that case is overwhelmingly better on the alkali side. It was considered (see Patent Document 1).
しかしながら、本発明者の研究において、その後の汚泥脱水の悪化や加熱処理に伴う着色反応(メイラード反応)はアルカリ側で著しいことが明らかとなった。したがって、アルカリ性下における加熱処理は、メタン発酵処理システム全体として必ずしも優れていない。
本発明は、従来の処理方法に上記のような問題があったことに鑑みて為されたものであり、その目的とするところは、有機性廃棄物を処理する際に、メタンガスの発生量を増量することができて、かつ、汚泥の発生量を減少せしめることができ、しかも、着色反応も起き難く、更には、廃棄物からのリンの回収量を劇的に増加させることができる有機性廃棄物のメタン発酵処理方法を提供することにある。 The present invention has been made in view of the above-mentioned problems in the conventional treatment method, and the object of the present invention is to reduce the amount of methane gas generated when treating organic waste. An organic material that can increase the amount of sludge, reduce the generation of sludge, hardly cause a color reaction, and can dramatically increase the amount of phosphorus recovered from waste. The object is to provide a method for methane fermentation treatment of waste.
本発明者が上記課題を解決するために採用した手段を添付図面を参照して説明すれば次のとおりである。 Means employed by the present inventor for solving the above-described problems will be described with reference to the accompanying drawings.
即ち、本発明は、有機性廃棄物Aをメタン発酵槽1に送入し、嫌気状態で微生物学的に分解処理してメタンガスを発生せしめ、
このメタン発酵槽1から発酵液Bを酸加熱処理装置2に送って、当該発酵液Bに無機酸を加えて、かつ、加熱処理するとともに、
この酸加熱処理装置2において発生した酸加熱処理液Cを前記メタン発酵槽1に再び送還せしめるという技術的手段を採用した。
That is, the present invention sends the organic waste A to the methane fermentation tank 1, and microbiologically decomposes it in an anaerobic state to generate methane gas,
While sending the fermented liquor B from this methane fermenter 1 to the acid
The technical means of returning the acid heat treatment liquid C generated in the acid
また、本発明は、上記課題を解決するために、必要に応じて上記手段に加え、メタン発酵槽1を、第1メタン発酵槽1Aおよび第2メタン発酵槽1Bの二段式に構成し、前記第1メタン発酵槽1Aにおける有機性廃棄物Aの不完全発酵分を第2メタン発酵槽1Bにおいて分解処理してメタンガスを発生せしめるという技術的手段を採用した。
Moreover, in order to solve the said subject, in addition to the said means, this invention comprises the methane fermenter 1 in the two-stage type of the 1st methane fermenter 1A and the
更にまた、本発明は、上記課題を解決するために、必要に応じて上記手段に加え、メタン発酵槽1から排出された発酵液Bを沈殿分離槽3に送って、発酵液Bに含有した固形分を沈殿せしめて、この沈殿物Dを酸加熱処理装置2に送る一方、
残りの排出液Eを排出するという技術的手段を採用した。
Furthermore, in order to solve the above-mentioned problems, the present invention sends the fermentation liquid B discharged from the methane fermentation tank 1 to the precipitation separation tank 3 and contains it in the fermentation liquid B in addition to the above means as necessary. While precipitating solids and sending this precipitate D to the acid
The technical means of discharging the remaining effluent E was adopted.
更にまた、本発明は、上記課題を解決するために、必要に応じて上記手段に加え、メタン発酵槽1から発酵液Bを固液分離装置4に送って、この発酵液Bを液体分Fおよび濃縮物Gとに分離し、この濃縮物Gを酸加熱処理装置2に送るという技術的手段を採用した。
Furthermore, in order to solve the above-described problems, the present invention sends the fermentation broth B from the methane fermentation tank 1 to the solid-liquid separator 4 in addition to the above means as necessary, and the fermentation broth B is divided into a liquid component F. And a technical means of separating the concentrate G into the acid
更にまた、本発明は、上記課題を解決するために、必要に応じて上記手段に加え、メタン発酵槽1を、第1メタン発酵槽1Aおよび第2メタン発酵槽1Bの二段式に構成し、第2メタン発酵槽1Bからの発酵液B′を固液分離装置4に送って、この発酵液Bを液体分Fおよび濃縮物Gとに分離し、この濃縮物Gを酸加熱処理装置2に送るという技術的手段を採用した。
Furthermore, in order to solve the above-mentioned problems, the present invention comprises a methane fermenter 1 in a two-stage system including a first methane fermenter 1A and a
更にまた、本発明は、上記課題を解決するために、必要に応じて上記手段に加え、酸加熱処理装置2から発生した酸加熱処理液Cから固体残渣を排出するという技術的手段を採用した。
Furthermore, in order to solve the above problems, the present invention employs technical means for discharging solid residue from the acid heat treatment liquid C generated from the acid
更にまた、本発明は、上記課題を解決するために、必要に応じて上記手段に加え、酸加熱処理装置2において、塩酸あるいは硫酸を加えるという技術的手段を採用した。
Furthermore, in order to solve the above-described problems, the present invention employs technical means of adding hydrochloric acid or sulfuric acid in the acid
更にまた、本発明は、上記課題を解決するために、必要に応じて上記手段に加え、メタン発酵槽1において、有機性廃棄物A中の含有物、または硫酸塩還元反応により発生した硫化物を、脱硫装置を用いて除去するという技術的手段を採用した。 Furthermore, in order to solve the above-described problems, the present invention provides, in addition to the above means as necessary, the contents in the organic waste A or the sulfide generated by the sulfate reduction reaction in the methane fermentation tank 1. Was removed using a desulfurization apparatus.
更にまた、本発明は、上記課題を解決するために、必要に応じて上記手段に加え、酸加熱処理装置2における加熱温度を40℃以上にするという技術的手段を採用した。
Furthermore, in order to solve the above-mentioned problems, the present invention employs technical means for setting the heating temperature in the acid
更にまた、本発明は、上記課題を解決するために、必要に応じて上記手段に加え、酸加熱処理装置2における酸処理をpH6以下の無機酸処理をするという技術的手段を採用した。
Furthermore, in order to solve the above-mentioned problems, the present invention employs technical means for performing an acid treatment in the acid
本発明にあっては、有機性廃棄物をメタン発酵槽に送入し、嫌気状態で微生物学的に分解処理してメタンガスを発生せしめ、このメタン発酵槽から発酵液を酸加熱処理装置に送って、当該発酵液に無機酸を加えて、かつ、加熱処理するとともに、この酸加熱処理装置において発生した酸加熱処理液を前記メタン発酵槽に再び送還せしめることによって、有機性廃棄物を高効率的に処理することができる。 In the present invention, organic waste is fed into a methane fermentation tank, and anaerobic conditions are microbiologically decomposed to generate methane gas. From this methane fermentation tank, the fermentation liquor is sent to an acid heat treatment apparatus. In addition, an inorganic acid is added to the fermentation broth and the heat treatment is performed, and the acid heat treatment liquid generated in the acid heat treatment apparatus is returned again to the methane fermentation tank, so that organic waste is highly efficient. Can be processed automatically.
このように、メタン発酵に続いて無機酸による酸加熱処理を組み込むと、微生物学的に難分解な固形物を酸加熱処理の力を借りて分解・可溶化させ、それをメタン発酵槽に戻すことによって、固形物分解性とメタン発生量を高めることができる。また、pH酸性下では、汚泥脱水性の向上と着色反応の抑制が可能となり、システム全体としてのパフォーマンスが改善されることから、実用的利用価値は頗る高いものがある。 In this way, when acid heat treatment with an inorganic acid is incorporated following methane fermentation, the microbiologically difficult-to-decompose solid matter is decomposed and solubilized with the help of acid heat treatment and returned to the methane fermentation tank. By this, solid matter decomposability and methane generation can be increased. Moreover, under pH acidity, the sludge dewaterability can be improved and the coloring reaction can be suppressed, and the performance of the entire system is improved. Therefore, the practical utility value is very high.
本発明を実施するための最良の形態を具体的に図示した図面に基づいて更に詳細に説明すると、次のとおりである。 BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described in more detail with reference to the drawings specifically shown as follows.
『第1実施形態』
本発明の第1実施形態を図1から図3に基づいて説明する。図中、符号1で指示するものはメタン発酵槽であり、このメタン発酵槽1は、槽内において有機性廃棄物を嫌気状態で微生物により消化可能なものである。この微生物としては、メタノサルシナ属、メタノコッカス属、メタノバクテリウム属などを選択することができる。
“First Embodiment”
A first embodiment of the present invention will be described with reference to FIGS. In the figure, what is indicated by reference numeral 1 is a methane fermentation tank, and this methane fermentation tank 1 is capable of digesting organic waste in an anaerobic state by microorganisms. As this microorganism, Methanosarcina genus, Methanococcus genus, Methanobacteria genus and the like can be selected.
また、符号2で指示するものは酸加熱処理装置であり、この酸加熱処理装置2は、例えば、ポンプなどにより装置内に強酸を添加可能であって、かつ、電熱ヒーターや熱交換器、高温水蒸気噴射などの加熱機構を備えている。
Also, what is indicated by
本発明のメタン発酵処理方法の具体的手順を以下に説明する。まず、有機性廃棄物Aをメタン発酵槽1に送入し、嫌気状態で微生物学的に分解処理してメタンガスを発生せしめる。この有機性廃棄物Aは、例えば、下排水の処理汚泥、生ごみ、し尿、家畜糞尿、その他の一般および産業廃棄物類である。また、この際、適宜、メタン発酵槽1の槽内を攪拌することにより、均一に分解させることもできる。 The specific procedure of the methane fermentation treatment method of the present invention will be described below. First, the organic waste A is sent into the methane fermenter 1 and microbiologically decomposed in an anaerobic state to generate methane gas. This organic waste A is, for example, sewage treatment sludge, garbage, human waste, livestock manure, and other general and industrial wastes. Further, at this time, the inside of the methane fermentation tank 1 can be appropriately decomposed by stirring appropriately.
次いで、この発酵液Bを酸加熱処理装置2に送って、この発酵液Bに無機酸として塩酸または硫酸を加える。本実施形態において、塩酸または硫酸を強酸として採用する理由を以下に説明する。
Subsequently, this fermentation broth B is sent to the acid
まず、塩酸(HCl)を用いた場合は、ステンレスを腐食しやすい性質があるが、微生物反応が伴わないので、単純にpHを低下させる作用のみと考えて良い。このとき、廃棄物からのリンの回収に関しては、リンの液相への溶出は固形物の分解に比例して増えると解釈される。したがって、発酵残渣の固形物中にまだリンを多く含むので、そのままで有機肥料としての再利用や、埋め立て、焼却処分などの最終処分に適している。 First, when hydrochloric acid (HCl) is used, it has a property of easily corroding stainless steel, but since it does not involve a microbial reaction, it may be considered to be merely an action of lowering pH. At this time, regarding the recovery of phosphorus from the waste, it is interpreted that the elution of phosphorus into the liquid phase increases in proportion to the decomposition of the solid matter. Therefore, since the solid matter of the fermentation residue still contains a lot of phosphorus, it is suitable for reuse as an organic fertilizer as it is, final disposal such as landfill and incineration.
一方、硫酸(H2SO4)を用いた場合には、メタン発酵槽内において微生物学的に硫酸塩還元反応が生じて、硫酸は硫化物に転換される。その分メタン発酵前期物質が消費され、メタン発生量がやや減少するので、硫酸の投入のし過ぎには注意を要する。なお、セルロースなどの繊維分に対する分解作用が強いので、木質系廃棄物を対象としたメタン発酵の可能性が期待される。 On the other hand, when sulfuric acid (H 2 SO 4 ) is used, a sulfate reduction reaction occurs microbiologically in the methane fermentation tank, and sulfuric acid is converted to sulfide. Since the amount of methane fermentation is consumed and the amount of methane generated is slightly reduced, care should be taken when adding too much sulfuric acid. In addition, since the decomposition | disassembly effect | action with respect to fiber parts, such as a cellulose, is strong, the possibility of the methane fermentation for woody waste is anticipated.
また、硫酸塩還元によって生成した硫化物イオンが、固形物中のリン酸イオンと置換して、リンの液相への溶出を促進する。この後、リンの回収工程を設ければ、枯渇資源であるリンが高効率に、かつ高純度に回収できる。したがって、硫酸は固形物からのリンの除去、あるいはリンの溶出・回収に適している。例えば、近年増えているセメント原料として下水汚泥再利用する場合には、リンが悪影響を及ぼすことが知られているので、リン含有量の少ない汚泥が得られる硫酸が適している。 In addition, sulfide ions generated by sulfate reduction substitute for phosphate ions in the solid matter, and promote elution of phosphorus into the liquid phase. Thereafter, if a phosphorus recovery step is provided, phosphorus as a depleted resource can be recovered with high efficiency and high purity. Therefore, sulfuric acid is suitable for removing phosphorus from solids or for elution and recovery of phosphorus. For example, when sewage sludge is reused as an increasing cement raw material in recent years, it is known that phosphorus has an adverse effect, so sulfuric acid that can obtain sludge with a low phosphorus content is suitable.
なお、代表的な強酸としては、硝酸(HNO3)が知られているが、硝酸を用いた場合には、メタン発酵槽内において微生物学的に脱窒反応が生じ、硝酸は窒素ガスに転換される。その分メタン発酵前期物質が消費され、メタン発生量が減少すると同時に、生成した窒素ガスによってガス中のメタン濃度が低下し好ましくない。 Nitric acid (HNO 3 ) is known as a representative strong acid, but when nitric acid is used, a denitrification reaction occurs microbiologically in the methane fermentation tank, and nitric acid is converted to nitrogen gas. Is done. Accordingly, the amount of methane fermentation is reduced, and the amount of methane generated decreases. At the same time, the generated nitrogen gas lowers the methane concentration in the gas, which is not preferable.
更に、硝酸は発酵液中に残存しないので、硫酸のようにリンを溶出させる作用がない。以上より、固形物の分解のみならず、メタンの生成・回収も目的とする限りは、硝酸の利用にあまりメリットがないと考えられる。 Furthermore, since nitric acid does not remain in the fermentation broth, there is no action to elute phosphorus like sulfuric acid. From the above, it is considered that there is not much merit in using nitric acid as long as the purpose is not only the decomposition of solids but also the generation and recovery of methane.
よって、本実施形態では、強酸として塩酸または硫酸を用いるのである。そして、酸加熱処理装置2における加熱については、加熱温度を40℃以上、より好ましくは170〜180℃で加熱処理することができ、反応をより促進することができる。
Therefore, in this embodiment, hydrochloric acid or sulfuric acid is used as the strong acid. And about the heating in the acid
更にまた、本実施形態では、酸加熱処理装置2における前記酸処理をpH6以下で無機酸処理をすることができる。この際、酸加熱処理におけるpHは低いほど効果が高くなるが、投与する強酸の量そのものが多くなるのに加えて、メタン発酵は中性付近が適正な運転pHであるため、酸加熱処理時のpHが低いとその処理液へのアルカリ剤の添加が必要となる。少なくとも酸加熱処理時のpHが5程度までなら、メタン発酵槽のpHはアルカリ剤投与なしでも中性が維持されるので、経済的である。
Furthermore, in the present embodiment, the acid treatment in the acid
そして、この酸加熱処理装置2に残留した酸加熱処理液Cを前記メタン発酵槽1に再び送還せしめることにより、処理効率を向上させることができる。なお、酸加熱処理液Cは沈降性、脱水性に優れているので、酸加熱処理液Cから、適宜、固形物(残渣:c)を排出することができる。この固体残渣は廃棄する必要があるが、本実施形態の方法を採用したことにより、従来よりも少量しか発生しない。
And processing efficiency can be improved by returning the acid heat processing liquid C remaining in this acid
また、酸加熱処理装置2において、硫酸を加えることもできる。このように、強酸として硫酸を加える場合には、メタン発酵槽1に再び送還する際に、硫酸に含まれる硫黄分によって硫化水素などの有害な硫化物の発生が増加するため、適宜、メタン発酵槽1に脱硫装置を設置して、当該硫化物を除去できるようにすることが好ましい。なお、この脱硫装置は、有機性廃棄物Aの中に元々含まれていた硫化物も除去するものである。
In the acid
本実施形態では、図2に示すように、メタン発酵槽1が、第1メタン発酵槽1Aおよび第2メタン発酵槽1Bの二段式に構成されており、前記第1メタン発酵槽1Aにおける有機性廃棄物Aの不完全発酵分を第2メタン発酵槽1Bにおいて分解処理してメタンガスを発生せしめることができる。
In this embodiment, as shown in FIG. 2, the methane fermenter 1 is configured in a two-stage system including a first methane fermenter 1A and a
また、本実施形態では、図3に示すように、メタン発酵槽1から排出された発酵液Bを沈殿分離槽3に送って、発酵液Bに含有した固形分を沈殿せしめて、この沈殿物Dを酸加熱処理装置2に送ることができる。発酵液Bの汚泥沈降性が良い場合に有効である。なお、酸加熱処理液C、沈殿物Dからは、適宜、固形物(残渣:c、d)を排出することができる。
Moreover, in this embodiment, as shown in FIG. 3, the fermented liquid B discharged | emitted from the methane fermenter 1 is sent to the precipitation separation tank 3, and the solid content contained in the fermented liquid B is precipitated, This precipitate D can be sent to the acid
『第2実施形態』
本発明の第2実施形態を図4および図5に基づいて説明する。本実施形態では、符号4で指示する固液分離装置を設置する。
“Second Embodiment”
A second embodiment of the present invention will be described with reference to FIGS. In the present embodiment, a solid-liquid separation device indicated by reference numeral 4 is installed.
そして、図4に示すように、前記メタン発酵槽1から発酵液Bを固液分離装置4に送って、この発酵液Bを液体分Fおよび濃縮物Gとに分離する。本実施形態では、この固液分離装置4として、高速回転式の遠心濃縮機や、加圧浮上法、膜分離法などを採用することができる。 And as shown in FIG. 4, the fermentation liquid B is sent to the solid-liquid separator 4 from the said methane fermenter 1, and this fermentation liquid B is isolate | separated into the liquid component F and the concentrate G. FIG. In the present embodiment, a high-speed rotary centrifugal concentrator, a pressure levitation method, a membrane separation method, or the like can be employed as the solid-liquid separation device 4.
また、図5に示すように、第1実施形態と同様、本実施形態においても、メタン発酵槽1を、第1メタン発酵槽1Aおよび第2メタン発酵槽1Bの二段式に構成し、前記第1メタン発酵槽1Aにおける有機性廃棄物Aの不完全発酵分を第2メタン発酵槽1Bにおいて分解処理してメタンガスを発生せしめることもでき、然る後、本実施形態における固液分離装置4に送ることができる。
Moreover, as shown in FIG. 5, similarly to 1st Embodiment, also in this embodiment, the methane fermentation tank 1 is comprised in the two-stage type of the 1st methane fermentation tank 1A and the 2nd
なお、酸加熱処理液C、濃縮物Gからは、適宜、固形物(残渣:c、g)を排出することができる。 In addition, from the acid heat treatment liquid C and the concentrate G, solids (residues: c, g) can be appropriately discharged.
更にまた、本実施形態では、図示しないが、メタン発酵槽1から排出された発酵液Bを沈殿分離槽3に送って、発酵液Bに含有した固形分を沈殿せしめて、この沈殿物Dを酸加熱処理装置2に送ることができ、残りの発酵液Bを固液分離装置4に送ることができるように構成することもできる。
Furthermore, in this embodiment, although not shown, the fermentation liquid B discharged from the methane fermentation tank 1 is sent to the precipitation separation tank 3 to precipitate the solid content contained in the fermentation liquid B, and this precipitate D is It can also be configured such that it can be sent to the acid
本実施形態のメタン発酵処理方法による実験結果を以下に示す。なお、従来処理方法とは、メタン発酵槽1のみの処理に該当する。
〔実験条件〕
下水汚泥(TS濃度約25g/L)を処理対象とした一段式メタン発酵、滞溜時間20日、発酵温度35℃、実験期間は塩酸、硫酸それぞれ63日間
酸加熱処理条件:170℃、1時間、pH5〜6、固液分離装置として遠心濃縮機(2000rpm、10分)を使用
〔実験結果〕
強酸の種類 従来処理方法との増減比
汚泥発生量(VTS基準) 塩酸 95%減
硫酸 63%減
メタン発生量 塩酸 22%増
硫酸 13%増
汚泥脱水性(CST/SS基準) 塩酸 20%増
硫酸 32%増
リン溶出量(PO4-P濃度基準) 塩酸 2倍増
硫酸 19倍増
The experimental result by the methane fermentation treatment method of this embodiment is shown below. The conventional treatment method corresponds to treatment of only the methane fermentation tank 1.
[Experimental conditions]
Single-stage methane fermentation with a sewage sludge (TS concentration of about 25 g / L) as a treatment target, a retention time of 20 days, a fermentation temperature of 35 ° C., and an experiment period of 63 days for hydrochloric acid and sulfuric acid, respectively. , PH 5-6, using centrifugal concentrator (2000 rpm, 10 minutes) as solid-liquid separator [Experimental results]
Type of strong acid Change ratio with conventional treatment method Sludge generation amount (VTS standard) Hydrochloric acid 95% reduction
63% decrease in sulfuric acid
Sulfuric acid 13% increase Sludge dewaterability (CST / SS standard) Hydrochloric acid 20% increase
Sulfuric acid 32% increase Phosphorus elution amount (PO 4 -P concentration standard)
Sulfuric acid 19 times increase
〔考察〕
以上の実験結果により、本発明のメタン発酵処理方法によれば、以下の利点が認められる。
(1)汚泥発生量が減少するため、最終処分量および処分コストが減少する。
(2)メタン発生量が増加したことにより、利用可能なエネルギーが増量する。
(3)汚泥脱水性が向上するため、凝集剤量を減らすことができる。
(4)リン溶出量が増加したことにより、リンの回収可能な量が大幅に増加する。
[Discussion]
From the above experimental results, the following advantages are recognized according to the methane fermentation treatment method of the present invention.
(1) Since the amount of sludge generated decreases, the final disposal amount and disposal cost decrease.
(2) The amount of energy that can be used increases as the amount of methane generated increases.
(3) Since the sludge dewaterability is improved, the amount of the flocculant can be reduced.
(4) The increase in phosphorus elution amount greatly increases the recoverable amount of phosphorus.
1 メタン発酵槽
1A 第1メタン発酵槽
1B 第2メタン発酵槽
2 酸加熱処理装置
3 沈殿分離槽
4 固液分離装置
A 有機性廃棄物
B(B′) 発酵液
C 酸加熱処理液
D 沈殿物
E 排出液
F 液体分
G 濃縮物
c・d・g 固形物
DESCRIPTION OF SYMBOLS 1 Methane fermenter 1A
Claims (11)
このメタン発酵槽1から発酵液Bを酸加熱処理装置2に送って、当該発酵液Bに無機酸を加えて、かつ、加熱処理するとともに、
この酸加熱処理装置2において発生した酸加熱処理液Cを前記メタン発酵槽1に再び送還せしめることを特徴とする有機性廃棄物のメタン発酵処理方法。 Organic waste A is sent to the methane fermenter 1 and decomposed microbiologically in anaerobic condition to generate methane gas.
While sending the fermented liquor B from this methane fermenter 1 to the acid heat processing apparatus 2, adding an inorganic acid to the said fermented broth B, and heat-processing,
An organic waste methane fermentation treatment method, wherein the acid heat treatment liquid C generated in the acid heat treatment apparatus 2 is returned to the methane fermentation tank 1 again.
残りの排出液Eを排出することを特徴とする請求項1または2記載の有機性廃棄物のメタン発酵処理方法。 While sending the fermented liquor B discharged from the methane fermenter 1 to the precipitation separation tank 3, the solid content contained in the fermented liquor B is precipitated, and this precipitate D is sent to the acid heat treatment device 2,
3. The method for methane fermentation treatment of organic waste according to claim 1, wherein the remaining effluent E is discharged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006209450A JP2008030008A (en) | 2006-08-01 | 2006-08-01 | Methane fermentation method of organic waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006209450A JP2008030008A (en) | 2006-08-01 | 2006-08-01 | Methane fermentation method of organic waste |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008030008A true JP2008030008A (en) | 2008-02-14 |
Family
ID=39119979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006209450A Pending JP2008030008A (en) | 2006-08-01 | 2006-08-01 | Methane fermentation method of organic waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008030008A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2297052A1 (en) * | 2008-06-27 | 2011-03-23 | Mercatus Engineering AB | Dewatering of anaerobically digested sludge |
JP2018103079A (en) * | 2016-12-22 | 2018-07-05 | 大和ハウス工業株式会社 | Methane fermentation system and methane fermentation method |
CN110357373A (en) * | 2018-04-02 | 2019-10-22 | 上海敏建环保科技有限公司 | A kind of preprocess method for municipal sludge anaerobic digestion |
JP2022525034A (en) * | 2019-03-05 | 2022-05-11 | ハスコニングディーエイチヴィー ネダーランド ビー.ブイ. | Digestion of organic sludge |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08318299A (en) * | 1995-05-26 | 1996-12-03 | Kubota Corp | Anaerobic digestion treatment of sludge |
JP2000102779A (en) * | 1998-09-29 | 2000-04-11 | Kubota Corp | Method for accelerating generation of methane gas |
JP2002159998A (en) * | 2000-11-24 | 2002-06-04 | Kurita Water Ind Ltd | Anaerobic treatment and equipment for organic matter- containing waste liquid |
JP2003112145A (en) * | 2001-10-01 | 2003-04-15 | Kobe Steel Ltd | Anaerobic treatment method for organic waste and apparatus therefor |
-
2006
- 2006-08-01 JP JP2006209450A patent/JP2008030008A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08318299A (en) * | 1995-05-26 | 1996-12-03 | Kubota Corp | Anaerobic digestion treatment of sludge |
JP2000102779A (en) * | 1998-09-29 | 2000-04-11 | Kubota Corp | Method for accelerating generation of methane gas |
JP2002159998A (en) * | 2000-11-24 | 2002-06-04 | Kurita Water Ind Ltd | Anaerobic treatment and equipment for organic matter- containing waste liquid |
JP2003112145A (en) * | 2001-10-01 | 2003-04-15 | Kobe Steel Ltd | Anaerobic treatment method for organic waste and apparatus therefor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2297052A1 (en) * | 2008-06-27 | 2011-03-23 | Mercatus Engineering AB | Dewatering of anaerobically digested sludge |
EP2297052A4 (en) * | 2008-06-27 | 2013-01-09 | Mercatus Engineering Ab | Dewatering of anaerobically digested sludge |
JP2018103079A (en) * | 2016-12-22 | 2018-07-05 | 大和ハウス工業株式会社 | Methane fermentation system and methane fermentation method |
CN110357373A (en) * | 2018-04-02 | 2019-10-22 | 上海敏建环保科技有限公司 | A kind of preprocess method for municipal sludge anaerobic digestion |
JP2022525034A (en) * | 2019-03-05 | 2022-05-11 | ハスコニングディーエイチヴィー ネダーランド ビー.ブイ. | Digestion of organic sludge |
JP7547358B2 (en) | 2019-03-05 | 2024-09-09 | ハスコニングディーエイチヴィー ネダーランド ビー.ブイ. | Digestion of organic sludge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006035594A1 (en) | Method and apparatus for biologically treating wastewater containing fats and oils | |
CA2754100A1 (en) | Method for producing non-putrescible sludge and energy and corresponding plant | |
KR20120130167A (en) | Improved digestion of biosolods in wastewater | |
JP5211769B2 (en) | Biological treatment method and treatment apparatus for organic waste liquid | |
JP6649769B2 (en) | Organic matter processing system and organic matter processing method | |
JP2008030008A (en) | Methane fermentation method of organic waste | |
JP5192134B2 (en) | Waste treatment method and system | |
JP3977174B2 (en) | Sludge treatment method and apparatus for reducing generation amount of excess sludge | |
JP2014008491A (en) | Organic waste treatment apparatus, and organic waste treatment method using the same | |
JP2002361293A (en) | Method and apparatus for reducing volume of organic sludge | |
JP2007216207A (en) | Method and apparatus for anaerobic digestion of organic waste liquid | |
JP4409928B2 (en) | Organic waste treatment methods | |
JP2006281035A (en) | Apparatus and method for treating organic waste | |
JP4457391B2 (en) | Organic sludge treatment method and treatment apparatus | |
JP2000246280A (en) | Treatment apparatus of organic waste water | |
JP3959843B2 (en) | Biological treatment method for organic drainage | |
JP2009207944A (en) | Method for removing hydrogen sulfide from biogas | |
JP3672091B2 (en) | Organic wastewater treatment method and equipment | |
JP5731209B2 (en) | Method and apparatus for treating soap production waste liquid | |
JP2006326438A (en) | Apparatus and method for treating sludge | |
JP2009195783A (en) | Organic wastewater treatment method | |
JP2006075730A (en) | Anaerobic treatment device | |
JP2005324173A (en) | Method and apparatus for treating sludge | |
JP3969144B2 (en) | Biological treatment method and biological treatment apparatus | |
JPH10128376A (en) | Method for treating organic waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110915 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120223 |