JPH02131196A - Treatment process for organic waste water - Google Patents

Treatment process for organic waste water

Info

Publication number
JPH02131196A
JPH02131196A JP63285334A JP28533488A JPH02131196A JP H02131196 A JPH02131196 A JP H02131196A JP 63285334 A JP63285334 A JP 63285334A JP 28533488 A JP28533488 A JP 28533488A JP H02131196 A JPH02131196 A JP H02131196A
Authority
JP
Japan
Prior art keywords
gas
amount
metal salt
generated
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63285334A
Other languages
Japanese (ja)
Inventor
Ichiro Nakano
一郎 中野
Akio Toriyama
明夫 鳥山
Tadaaki Kawasugi
河杉 忠昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63285334A priority Critical patent/JPH02131196A/en
Publication of JPH02131196A publication Critical patent/JPH02131196A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To increase efficiency by adding iron family metal salt as a reaction accelerator, branching a part of generated gas by the given ratio, passing the same through an acid absorption tower, measuring the remaining gas volume and adjusting the adding volume in digesting under the anaerobic condition. CONSTITUTION:Organic waste water 2 is fed into a digestion tank 1, methane fermented and disgested under anaerobic condition, and at least one kind of water solution of iron family metal salt is added from a tank 5 by a pump 6 in said process, and the same is separated into digestion elimination liquid 3 and sludge 4 to be discharged out of a system. Generated gas is stored in a storage tank 8 through a drawn tube 7, a part of which is branched by the given ratio passed from a branching valve 7a through an acid absorption tower 9, and CO2, H2S and the like in the branched gas generated are removed. The volume of the remaining gas, turned into CH4 gas by almost 100%, is metered by a flow meter 10, from which adding volume of metal salt solution is computed by a control section 11 to control the flow rate of the pump 6. Thus, organic waste water can be treated efficiently.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は有機物を含んだ廃水を嫌気性消化処理する有機
性廃水の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for treating organic wastewater by anaerobic digestion of wastewater containing organic substances.

従来の技術 生活廃水、し尿、産業廃水などの有機物を多量に含む有
機性廃水の浄化方法の一つとして、37℃〜55゜Cの
温度下で嫌気的に有機物を分解する、メタン醗酵といわ
れる嫌気性消化処理が広く行なわれている。この方法の
利点は、発生汚泥量が少ないこと、処理に要する動力消
費量が活性汚泥法などの好気的処理法に比べて少ないこ
と、発生ガスをエネルギー源として利用できることなど
である。
Conventional technology One method for purifying organic wastewater containing large amounts of organic matter, such as domestic wastewater, human waste, and industrial wastewater, is called methane fermentation, which decomposes organic matter anaerobically at a temperature of 37°C to 55°C. Anaerobic digestion is widely used. The advantages of this method are that the amount of sludge generated is small, the power consumption required for treatment is lower than that of aerobic treatment methods such as activated sludge method, and the generated gas can be used as an energy source.

発明が解決しようとする課題 上記の嫌気性消化処理、すなわちメタン醗酵は、通常3
7゜C〜55°C程度のほぼ一定の温度で、一定の滞留
日数すなわち一定の有機物負荷の下で行なう。
Problems to be Solved by the Invention The above-mentioned anaerobic digestion treatment, that is, methane fermentation, usually involves three steps.
It is carried out at a substantially constant temperature of about 7° C. to 55° C. and under a fixed residence time, that is, a fixed organic matter load.

この場合メタン醗酵速度は極めて遅く、一般に滞留日数
は30日程度と非常に長い。したがって消化槽などの数
、大きさなどを増大させることが必要となり、このため
広大な設置用地などが必要となる。これらの対策として
、いわゆるメタン醗酵の速度を増大させて、消化槽など
の大きさ、数などの減少を実現することが強く求められ
ている。
In this case, the methane fermentation rate is extremely slow, and the residence time is generally very long, about 30 days. Therefore, it is necessary to increase the number and size of digesters, etc., and this requires a vast amount of land for installation. As a countermeasure against these problems, there is a strong demand for increasing the speed of so-called methane fermentation and reducing the size and number of digesters.

本発明は上記の問題を解決するものであり、嫌気性消化
処理すなわちメタン醗酵の速度を増して効率的に処理で
きる有機性廃水の処理方法を提供することを目的とする
ものである。
The present invention solves the above problems, and aims to provide a method for treating organic wastewater that can be efficiently treated by increasing the speed of anaerobic digestion, that is, methane fermentation.

課題を解決するための手段 上記の課題を解決するために本発明の有機性廃水の処理
方法は、有機性廃水を嫌気性条件下で消化処理するに際
し、鉄族金属の塩の少なくとも1種を反応促進剤として
添加し、かつ消化槽からの発生ガスの一部を所定比率で
取出して酸吸収塔を通過させた後、残部ガス量を計測し
、前記残部ガス量に基づいて前記金属塩の添加量を調整
することを特徴とするものである。
Means for Solving the Problems In order to solve the above problems, the method for treating organic wastewater of the present invention includes at least one salt of an iron group metal when digesting organic wastewater under anaerobic conditions. A part of the gas generated from the digestion tank is taken out at a predetermined ratio and passed through an acid absorption tower, the amount of remaining gas is measured, and the amount of the metal salt is determined based on the amount of remaining gas. It is characterized by adjusting the amount added.

本発明においては、有機性廃水を嫌気性条件下で消化処
理を行ない、廃水中の有機物を嫌気性菌特にメタン菌に
よりメタン醗酵を行なわせて分解し、分解生成物として
メタンガスを取出そうとするに際し、反応促進剤として
鉄族金属の塩、すなわち鉄(Fe),:+バルト(Co
) , :− 7ケ#(Ni)のハロゲン化物.硫酸塩
、硝酸塩.炭酸塩,酢酸塩などの塩の1種またはそれ以
上を添加する。この金属塩の添加により、消化槽内のメ
タン菌はその代謝プロセスにおいて活性化され、メタン
の生成速度が増す。その結果として廃水中の有機物の消
化処理のために消化槽に滞留させる時間を短縮すること
ができ、また消化槽などの設置スペースを小さくでき、
あるいは消化槽への有機物負荷を大きくできる。これら
の金属塩の添加量は対象有機物により大きく異なるが、
負荷有機物に対し、たとえばFe : 5 〜20mM
 , Co :o.s 〜smM , Ni :0.0
2 〜0.2mMの範囲で適宜選択する。また必要に応
じて前記金属塩の少なくとも1種以外のMoその他の金
属の塩も添加してもよい。
In the present invention, organic wastewater is digested under anaerobic conditions, organic matter in the wastewater is decomposed by methane fermentation using anaerobic bacteria, particularly methane bacteria, and methane gas is extracted as a decomposition product. In this process, salts of iron group metals, namely iron (Fe), :+balt (Co), are used as reaction accelerators.
), :-7 #(Ni) halide. Sulfates, nitrates. Add one or more salts such as carbonates, acetates, etc. The addition of this metal salt activates the methane bacteria in the digester in its metabolic process, increasing the rate of methane production. As a result, the time that organic matter in wastewater remains in the digestion tank for digestion processing can be shortened, and the installation space for the digestion tank etc. can be reduced.
Alternatively, the organic matter load to the digester can be increased. The amount of these metal salts added varies greatly depending on the target organic substance, but
For example, Fe: 5 to 20mM to the loaded organic matter.
, Co:o. s ~ smM, Ni: 0.0
Selection is made as appropriate within the range of 2 to 0.2mM. Further, salts of Mo and other metals other than at least one of the metal salts mentioned above may also be added if necessary.

前記金属塩の廃水中への添加において、メタン醗酵の過
程での時期と量を適切に行なうことにより、メタン醗酵
の開始時の反応促進や醗酵過程でのメタン生成速度を最
大に保つことができる。すなわち、消化槽中の廃水がメ
タン醗酵により消化されて発生するメタンガスを主とす
る発生ガスの量、および組成は、メタン醗酵の進行の過
程に応じて変化するが、その変化に対応して前記金属塩
の添加量を調整することによりメタン生成速度を最大に
保つことができる。このメタン醗酵の進行状況を把握す
るために、発生ガス中のメタンガス量を計測する。すな
わち、発生ガスの一部を任意の所定比率で取出して酸吸
収塔を通し、混在するH!S, Co,を吸収させ、ほ
ぼ100%がメタン(CH,)で、ある残部ガスの量を
計測して発生ガス中のメタンガス量を把握し、このメタ
ンガス量に対応して、あらかじめ設定した条件に基づき
金属塩の添加量を決定して添加する。このようにして金
属塩の添加量をメタン醗酵の進行過程に応じて調整する
ことにより、メタンガスの生成速度を最大に保つことが
でき、それにともないメタン醗酵の速度が増し、消化槽
内の滞留時間が大幅に短縮され、装置設置面積を縮小す
るか、消化槽への有機物負荷を大きくすることができる
By adding the metal salts to wastewater at appropriate times and amounts during the methane fermentation process, it is possible to accelerate the reaction at the start of methane fermentation and maintain the maximum methane production rate during the fermentation process. . In other words, the amount and composition of gas, mainly methane gas, generated when wastewater in the digestion tank is digested by methane fermentation changes depending on the progress of methane fermentation. By adjusting the amount of metal salt added, the methane production rate can be kept at a maximum. In order to understand the progress of this methane fermentation, the amount of methane gas in the generated gas is measured. That is, a part of the generated gas is taken out at an arbitrary predetermined ratio and passed through an acid absorption tower, and the H! After absorbing S, Co, and almost 100% methane (CH), the amount of residual gas is measured to understand the amount of methane gas in the generated gas, and the conditions set in advance are set in accordance with this amount of methane gas. The amount of metal salt to be added is determined and added based on the following. In this way, by adjusting the amount of metal salt added according to the progress of methane fermentation, the production rate of methane gas can be maintained at the maximum, and the rate of methane fermentation increases accordingly, reducing the residence time in the digester. It is possible to reduce the installation area of the equipment or increase the organic load on the digester.

作用 上記構成により、有機物を含有する廃水を嫌気性条件下
で消化処理するに際し、鉄族金属の塩の少なくとも1種
を添加し、かつ前記金属塩の添加量を、発生ガスの一部
を取出して計測した発生メタンガス量に対応して決定す
ることにより、消化処理におけるメタン醗酵をメタンガ
スの発生が最大となるように促進し、消化槽内における
廃水の滞留時間を短縮し、装置設置面積を縮小するか、
消化槽に対する有機物負荷を増大することが可能となる
Effect With the above structure, when wastewater containing organic matter is digested under anaerobic conditions, at least one salt of an iron group metal is added, and the amount of the metal salt added is adjusted to the amount of gas generated by removing a part of the generated gas. By determining the amount of methane gas generated by measuring the amount of methane gas generated, the system promotes methane fermentation in the digestion process to maximize the generation of methane gas, shortens the residence time of wastewater in the digester, and reduces the equipment installation area. Or,
It becomes possible to increase the organic load on the digester.

実施例 以下本発明を実施例により説明する。Example The present invention will be explained below with reference to Examples.

第1図は本発明の一実施例の有機性廃水の処理方法を説
明する説明図である。まず、消化槽1に有機物を含有す
る有機性廃水2を供給して、嫌気性条件下においてメタ
ン菌によりメタン醗酵させて消化させる。消化処理を終
了した処理液は消化脱離液3と汚泥4とに分離してそれ
ぞれ系外へ引抜く。前記消化処理の過程において、鉄族
金属(Fe, Co, Ni)の塩の少なくとも1種の
水溶液を、金属塩溶液タンク5からポンプ6により所定
量添加する。また前記消化処理の過程で発生する発生ガ
スはガス引抜管7を経て発生ガス貯留タンク8へ貯留す
るが、ガス引抜管7に設りた分岐弁7aを経て発生ガス
の一部を一定比率で分岐して酸吸収塔9を通過させ、こ
の酸吸収塔9で分岐発生ガス中の炭酸ガス(CO2),
硫化水fX ( R2 b )などを吸収除去し、ほぼ
100%メタン(CH4)ガスとなった残部ガスの量を
流量計10で計量した後、前記発生ガス貯留タンク8へ
貯留する。一方残部ガスの流量の計量値は制御部11へ
入力され、この制御部において前記残部ガスの流量から
発生ガスすなわちメタンガスの発生量を求めて、この値
からメタンガスの発生速度が最大となるようにあらかじ
め設定された条件に基づいて金属塩溶液の添加量を演算
して、ポンプ6の流量を制御する。
FIG. 1 is an explanatory diagram illustrating a method for treating organic wastewater according to an embodiment of the present invention. First, organic wastewater 2 containing organic matter is supplied to a digestion tank 1 and digested by methane fermentation by methane bacteria under anaerobic conditions. After the digestion process has been completed, the treated liquid is separated into a digested and desorbed liquid 3 and sludge 4, and each is drawn out of the system. In the process of the digestion treatment, a predetermined amount of an aqueous solution of at least one salt of an iron group metal (Fe, Co, Ni) is added from a metal salt solution tank 5 by a pump 6. Further, the generated gas generated during the digestion process is stored in the generated gas storage tank 8 through the gas extraction pipe 7, and a part of the generated gas is transferred at a fixed ratio through a branch valve 7a installed in the gas extraction pipe 7. The branched gas is passed through an acid absorption tower 9, and the carbon dioxide (CO2) in the branched gas is removed by the acid absorption tower 9.
After absorbing and removing sulfide water fX (R2 b ) and the like, the amount of the remaining gas, which is almost 100% methane (CH4) gas, is measured with a flow meter 10 and then stored in the generated gas storage tank 8 . On the other hand, the measured value of the flow rate of the remaining gas is input to the control unit 11, and this control unit calculates the generated gas, that is, the amount of methane gas generated, from the flow rate of the remaining gas, and uses this value to determine the amount of generated gas, that is, the amount of methane gas generated, so that the rate of generation of methane gas is maximized. The amount of metal salt solution added is calculated based on preset conditions, and the flow rate of the pump 6 is controlled.

上記の方法で有機性廃水を処理することにより、消化処
理におけるメタン醗酵をメタンガスの発生が最大となる
ように促進し、メタンガスの発生速度を最大に保つこと
ができ、さらに消化槽内における廃水の滞留時間を大幅
に短縮でき、各装置の設置面積を小さくできて、消化槽
の単位大きさ当りの有機物負荷を増大するか、加温など
に要する消費エネルギーを減少することが可能となる。
By treating organic wastewater with the above method, methane fermentation in the digestion process can be promoted to the maximum generation of methane gas, and the rate of methane gas generation can be maintained at the maximum. Residence time can be significantly shortened, the installation area of each device can be reduced, and the organic load per unit size of the digestion tank can be increased or the energy consumption required for heating etc. can be reduced.

発明の効果 以上のように本発明により、有機物を含有する有機性廃
水を嫌気性条件下で消化処理するに際し、消化処理にお
けるメタン醗酵をメタンガスの発生が最大となるように
促進し、かつメタンガスの発生速度を最大に保つことが
できて、消化速度が増して消化槽内における廃水の滞留
時間を大幅に短縮でき、各装置の設置面積を小さくでき
、また消化槽の単位大きさ当りの有機物負荷を増大する
か、加温などに要する消費エネルギーを減少することが
可能となる。
Effects of the Invention As described above, according to the present invention, when organic wastewater containing organic matter is digested under anaerobic conditions, methane fermentation in the digestion treatment is promoted to maximize the generation of methane gas, and the methane gas is The generation rate can be maintained at maximum, the digestion rate can be increased, the residence time of wastewater in the digester can be significantly shortened, the installation area of each device can be reduced, and the organic matter load per unit size of the digester can be reduced. It is possible to increase the energy consumption or reduce the energy consumption required for heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の有機性廃水の処理方法を説
明する説明図である。 工・・・消化槽、2・・・有機性廃水、5・・・金属塩
貯留タンク、9・・・酸吸収塔、1o・・・流量計、1
1・・・制御部。
FIG. 1 is an explanatory diagram illustrating a method for treating organic wastewater according to an embodiment of the present invention. Engineering: Digestion tank, 2: Organic wastewater, 5: Metal salt storage tank, 9: Acid absorption tower, 1o: Flow meter, 1
1...control unit.

Claims (1)

【特許請求の範囲】[Claims] 1、有機性廃水を嫌気性条件下で消化処理するに際し、
鉄族金属の塩の少なくとも1種を反応促進剤として添加
し、かつ消化槽からの発生ガスの一部を所定比率で取出
して酸吸収塔を通過させた後、残部ガス量を計測し、前
記残部ガス量に基づいて前記金属塩の添加量を調整する
ことを特徴とする有機性廃水の処理方法。
1. When digesting organic wastewater under anaerobic conditions,
At least one salt of an iron group metal is added as a reaction accelerator, and a part of the gas generated from the digestion tank is taken out at a predetermined ratio and passed through an acid absorption tower, and the amount of remaining gas is measured. A method for treating organic wastewater, comprising adjusting the amount of the metal salt added based on the amount of residual gas.
JP63285334A 1988-11-10 1988-11-10 Treatment process for organic waste water Pending JPH02131196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63285334A JPH02131196A (en) 1988-11-10 1988-11-10 Treatment process for organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285334A JPH02131196A (en) 1988-11-10 1988-11-10 Treatment process for organic waste water

Publications (1)

Publication Number Publication Date
JPH02131196A true JPH02131196A (en) 1990-05-18

Family

ID=17690206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285334A Pending JPH02131196A (en) 1988-11-10 1988-11-10 Treatment process for organic waste water

Country Status (1)

Country Link
JP (1) JPH02131196A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100553A (en) * 1989-08-25 1992-03-31 Ngk Insulators, Ltd. Method for treating organic waste by methane fermentation
JP2004025088A (en) * 2002-06-27 2004-01-29 Fuji Electric Holdings Co Ltd Methane fermentation treatment method
JP2017029882A (en) * 2015-07-29 2017-02-09 株式会社クラレ Waste water treatment method using carrier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100553A (en) * 1989-08-25 1992-03-31 Ngk Insulators, Ltd. Method for treating organic waste by methane fermentation
JP2004025088A (en) * 2002-06-27 2004-01-29 Fuji Electric Holdings Co Ltd Methane fermentation treatment method
JP2017029882A (en) * 2015-07-29 2017-02-09 株式会社クラレ Waste water treatment method using carrier

Similar Documents

Publication Publication Date Title
Angelidaki et al. A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition
Zan et al. Sulfate in anaerobic co-digester accelerates methane production from food waste and waste activated sludge
CN101823806B (en) Piggery waste water treatment method based on strong-thin shunt
Wang et al. Anaerobic treatment of palm oil mill effluent in pilot-scale anaerobic EGSB reactor
Di Capua et al. Air side-stream ammonia stripping in a thin film evaporator coupled to high-solid anaerobic digestion of sewage sludge: Process performance and interactions
CN104193003A (en) Process for treating domestic sewage with low CN (Carbon-Nitrogen) ratio by use of anaerobic/aerobic SNDPR (Simultaneous Nitrification and Denitrification Phosphorus Removal) system capable of enriching phosphorus-accumulating bacteria
Pedizzi et al. Enhancing thermophilic co-digestion of nitrogen-rich substrates by air side-stream stripping
Sun et al. Simultaneous decrease in ammonia and hydrogen sulfide inhibition during the thermophilic anaerobic digestion of protein-rich stillage by biogas recirculation and air supply at 60 C
CN106915883A (en) A kind of minimizing of endogenous FNA pretreating sludges and process for reclaiming
Pelaz et al. Denitrification of the anaerobic membrane bioreactor (AnMBR) effluent with alternative electron donors in domestic wastewater treatment
Lamichhane et al. Treatment of high strength acidic wastewater using passive pH control
JPH02131196A (en) Treatment process for organic waste water
CN104150729A (en) System and method for treating sludge with efficient recycling and low pollution emission
Öztürk Degradation of acetate, propionate, and butyrate under shock temperature
Chan et al. The effects of microwave pretreatment of dairy manure on methane production
JP2000157255A (en) Method and apparatus for producing biogas
JPS5811100A (en) Anaerobic digesting method for organic waste
Boardman et al. Use of UASB technology to treat crab processing wastewaters
Plyatsuk et al. Intensification of the anaerobic microbiological degradation of sewage sludge under bio-sulfidogenic conditions
Sillapacharoenkul et al. Anaerobic biological treatment of frozen seafood wastewater
Park et al. High-rate anaerobic digestion of thermally hydrolyzed wasted sludge (THWS) with high-strength ammonia
CN204174053U (en) The sludge treating system of a kind of high efficient resourcing and low pollution emission
JPS58196897A (en) Anaerobic digesting treatment of organic sludge
CN204490693U (en) A kind of sludge treating system
JPS62279893A (en) Ph control of acid producing reactor in methane fermentation