TW201231410A - Method and device for anaerobically treating wastewater containing terephthalic acid - Google Patents

Method and device for anaerobically treating wastewater containing terephthalic acid Download PDF

Info

Publication number
TW201231410A
TW201231410A TW100135605A TW100135605A TW201231410A TW 201231410 A TW201231410 A TW 201231410A TW 100135605 A TW100135605 A TW 100135605A TW 100135605 A TW100135605 A TW 100135605A TW 201231410 A TW201231410 A TW 201231410A
Authority
TW
Taiwan
Prior art keywords
drainage
sulfate
terephthalic acid
anaerobic treatment
acid
Prior art date
Application number
TW100135605A
Other languages
Chinese (zh)
Other versions
TWI511937B (en
Inventor
Yoshimi Taguchi
Michiaki Tanaka
Kou Satou
Original Assignee
Kurita Water Ind Ltd
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Ind Ltd, Mitsui Chemicals Inc filed Critical Kurita Water Ind Ltd
Publication of TW201231410A publication Critical patent/TW201231410A/en
Application granted granted Critical
Publication of TWI511937B publication Critical patent/TWI511937B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Removal Of Specific Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Wastewater that contains terephthalic acid, which is difficult to decompose, is anaerobically treated efficiently at low cost, without requiring the use of any complicated apparatus or any complicated operation, to thereby decompose and remove the terephthalic acid to a high degree. When wastewater which contains terephthalic acid is anaerobically treated, sulfuric acid radicals are added to the wastewater to be anaerobically treated, so that the wastewater comes to have a sulfuric acid ion concentration of 5-200 mg/L. The addition of a given amount of sulfuric acid radicals to terephthalic-acid-containing wastewater to be anaerobically treated greatly improves the efficiency of terephthalic acid decomposition by the anaerobic treatment. It is preferred that sulfuric acid radicals be added so as to result in a content thereof of 10 mass% or more of the terephthalic acid contained in the wastewater.

Description

201231410 六、發明說明 【發明所屬之技術領域】 本發明係有關一種含對苯二甲酸之排 方法及處理裝置,特別是藉由厭氣性處理 去排水中之難分解性對苯二甲酸之方法及 【先前技術】 來自聚對苯二甲酸乙二酯之製造步驟 有對苯二甲酸或對甲苯酸、苯甲酸等。 使排水進行厭氣性處理時,在厭氣性 有爲合成菌體時之營養鹽類、微量金屬等 子對排水中之CODcr而言,S042·必須爲g 系之排水或電子產業排水中,在此等之菌 全不含必要的成分。於此等排水之厭氣性 物成分。硫酸離子因在甲烷發酵槽內藉由 解’產生硫化氫氣體,而增加排氣處理之 氫會阻害甲烷發酵且降低處理效率,硫酸 合成時必要的濃度以上的方式添加。 對苯二甲酸及對甲苯酸,對厭氣性處 性。 厭氣性處理中含有不易分解的難分f 水,被好氣性處理。厭氣性處理與好氣性 有可高負荷處理的運轉費用降低且co2 : 點。因此’企求使含有對苯二甲酸或對甲 水的厭氣性處理 ,有效地分解除 裝置。 的排水,通常含 處理系內必須具 。例如,硫酸離 句1 · 5 %。於化學 體合成時幾乎完 處理時,添加礦 硫酸還原菌被分 負荷。由於硫化 離子必須以菌體 理而言爲難分解 军性有機物之排 處理相比時,具 出量亦少的優 苯酸之排水進行 -5- 201231410 厭氣性處理。 於專利文獻1中記載,爲提高厭氣性處理時之對苯二 甲酸的分解效率時,於含有對苯二甲酸之排水進行臭氧處 理後,再進行厭氣性處理。然而,該方法雖爲處理效率高 者,惟爲進行臭氧處理時之裝置複雜且處理成本亦高。 於專利文獻2中記載,爲防止小顆粒污泥浮出、流出 時,於排水中添加鐵鹽與硫酸離子源,以鐵鹽與硫酸離子 反應生成硫化鐵(FeS),以硫化鐵塡充小顆粒污泥之空洞 的厭氣性排水處理方法。該方法由於所添加的硫酸離子源 作爲FeS析出,故必須提高厭氣性處理槽內之硫酸離子濃 度。 如前所述’於排水之厭氣性處理中,提高系內之硫酸 離子濃度時,產生硫化氫氣體。爲抑制硫化氫氣體產生 時,習知的排水之厭氣性處理方法,沒有使硫酸離子濃度 較菌體合成時必要的濃度更高。 [習知技術文獻] [專利文獻] 專利文獻1:日本特開平6-269797號公報 專利文獻2:日本專利第3814851號公報 【發明內容】 本發明係以提供一種將含難分解性對苯二甲酸之排水 在不需複雜的裝置設備或繁雜的操作下,以低成本且有·效 地進行厭氣性處理,高度地分解除去對苯二甲酸之方法及 -6- 201231410 裝置爲課題》 本發明人等爲解決上述課題,再三深入硏究檢討的結 果’發現含有對苯二甲酸之排水的厭氣性處理,添加一定 量的硫酸根(so42·)時,厭氣性處理中對苯二甲酸的分解效 率會跳躍性地提高。 本發明係以該見解爲基準所達成者,以下述爲主旨。 -[1] 一種含對苯二甲酸之排水的厭氣性處理方法,其 係使含有對苯二甲酸之排水進行厭氣性處理的方法,其特 徵爲以於厭氣性處理水中之硫酸離子濃度爲5〜200mg/L 的方式,在該排水中添加硫酸根。 [2] 如[1]記載的含對苯二甲酸之排水的厭氣性處理 方法,其係以於前述排水中之硫酸根的含量爲 60〜 4〇Omg/L的方式,在該排水中添加硫酸根。 [3] 如[1]或[2]記載的含對苯二甲酸之排水的厭氣性 處理方法’其中在前述排水中,以相對於該排水中對苯二 甲酸而言硫酸根之含量爲10質量%以上的方式添加硫酸 根。 [4] 如[1]〜[3]中任一項記載的含對苯二甲酸之排水 的厭氣性處理方法,其中前述排水含有50〜2000mg/L之 對苯二甲酸。 [5] 如[1]〜[4]中任一項記載的含對苯二甲酸之排水 的厭氣性處理方法,其中前述排水中另含有對甲苯酸。 [6] 如Π]〜[5]中任一項記載的含對苯二甲酸之排水 的厭氣性處理方法’其中爲了於排水中添加硫酸根,係在 201231410 排水中添加選自由硫酸、硫酸鐵(1)、硫酸鐵(II) '聚硫酸 鐵、硫酸銨、硫酸鋁’硫酸鈉及硫酸鉀所成群之至少1 種。 [7] 一種含對苯二甲酸之排水的厭氣性處理裝置,其 係使含對苯二甲酸之排水進行厭氣性處理的裝置,其特徵 爲具有以於厭氣性處理水中之硫酸離子濃度爲 5〜 2 00m g/L的方式,在該排水中添加硫酸根的手段。 [8] 如[7]記載之含對苯二甲酸之排水的厭氣性處理 裝置,其係具有以於前述排水中之硫酸根的含量爲60〜 400mg/L的方式,在該排水中添加硫酸根的手段。 [9] 如[7]或[8]記載之含對苯二甲酸之排水的厭氣性 處理裝置,其中於前述排水中’以相對於該排水中之對苯 二甲酸而言硫酸根之含量爲10質量%以上的方式’添加 硫酸根。 [10] 如[7]〜[9]中任一項記載之含對苯二甲酸之排水 的厭氣性處理裝置,其中前述排水中含有50〜2000mg/L 之對苯二甲酸。 [11] 如[7]〜[10]中任一項記載之含對苯二甲酸之排 水的厭氣性處理裝置,其中前述排水中另含有對甲苯酸。 [發明之效果] 藉由本發明,以厭氣性處理水中之硫酸離子濃度爲5 〜2 00mg/L的方式,藉由在含有對苯二甲酸之排水中添加 硫酸根(S042·),可藉由厭氣性處理有效地分解除去難分解 201231410 性對苯二甲酸’製得高水質的處理水(申請專利範圍第i,7 項)。 本發明可在不需複雜的裝置設備或繁雜的操作下,以 簡單的裝置、容易且以低成本實施。 於本發明中,硫酸根以相對於排水中之對苯二甲酸而 百爲1〇質量%以上,排水中之含量爲60〜400mg/L的方 式添加較佳(申請專利範圍第2,3,8,9項)。 本發明係以含有5〇〜2000m g/L之對苯二甲酸,且含 有對甲苯酸之含對苯二甲酸之排水的處理爲宜(申請專利 範圍第 4,5,10,11)。 [爲實施發明之形態] 於下述中,詳細地說明本發明之實施形態。 於本發明中,於含有對苯二甲酸之排水的厭氣性處理 時,於排水中添加一定量的硫酸根。藉由於排水中添加較 菌體合成時必要量的過剩量之硫酸根,可促進硫酸還原反 應。藉此考慮降低氫氣分壓,結果形成厭氣性處理系內爲 還原狀態,促進甲烷生成反應,分解除去難分解性對苯二 甲酸。 [含對苯二甲酸之排水] 本發明中處理的原水,爲含有對苯二甲酸之排水,自 化學產業領域或電子產業領域等之各種產業領域所排出的 含有對苯二甲酸之排水,例如聚對苯二甲酸乙二酯之製造 9 - 201231410 步驟排水等。 含有對苯二甲酸之排水中的對苯二甲酸濃度,通常約 爲 50〜2000mg/L,較佳者約爲100〜1000mg/L,惟不受 此等所限制。排水中之對苯二甲酸濃度較該下限値更少 時,一般處理之有意差値變小;較該上限値更多時,恐會 有對苯二甲酸容易結晶化,處理效率降低。 含有對苯二甲酸之排水,亦尙可含有對甲苯酸、苯甲 酸、糖、有機酸等之易分解性有機物等。 在厭氣性處理添加硫酸根,對提高對甲苯酸之厭氣性 處理效率亦極爲有效,即使對含有對苯二甲酸與對甲苯酸 之排水而言,亦展現良好的處理效果。 排水中之對甲苯酸的含量,較佳者爲500 0m g以下、 更佳者爲 50〜5000mg/L、最佳者爲100〜2000mg/L,惟 不受此等所限制。 [硫酸根] 爲在排水中添加硫酸根(S〇42·)時之藥劑,以硫酸、硫 酸鐵(I)、硫酸鐵(π)、聚硫酸鐵等之含有s〇42_i酸性溶 液、硫酸銨、硫酸鋁、硫酸鈉、硫酸鉀等之可溶性硫酸鹽 等之1種或2種以上較佳,惟不受此等所限制。 硫酸鈣、硫酸鎂對水爲難溶性,惟爲低濃摩時,可溶 於水中。 爲添加硫酸根時之藥劑,較佳者以S〇42_濃度爲5〜 3 0質量%之水溶液的方式添加。 -10- 201231410 硫酸根對排水之添加量過少時,藉由添加硫酸根,無 法得到充分的本發明之效果;過多時,會產生多量的硫化 氫氣體。 硫酸根係以排水中之S〇42_濃度爲30〜400mg/L的方 式添加較佳,更佳者爲60〜400mg/L,特佳者爲50〜 2 0 0 m g/ L > 最佳者爲 70 〜200mg/L。 硫酸根相對於排水中之對苯二甲酸而言爲1 〇質量% 以上、即以1 5〜30質量%之比例添加於排水中較佳。對 排水中之對苯二甲酸而言,硫酸根含量過少時,無法充分 提高對苯二甲酸之分解效率。 處理對象排水含有對苯二甲酸與對甲苯酸時,硫酸根 相對於排水中之對苯二甲酸與對甲苯酸之合計量而爲1〇 質量%以上,特別是以1 5〜30質量%之比例添加於排水中 較佳。 硫酸根以厭氣性處理所得的處理水中之硫酸離子濃度 爲5〜200mg/L(較佳者爲10〜20mg/L)的方式添加於排水 中。厭氣性處理水之硫酸離子濃度低於5mg/L之硫酸根添 加量,無法充分得到本發明之硫酸根的添加效果。厭氣性 處理水之硫酸離子濃度過高時,會有硫化氫氣體產生量變 多,同時厭氣性處理水本身之水質惡化,且後段的處理步 驟之負荷增大。 [厭氣性處理] 厭氣性處理方式,可在同一槽內以一相式進行藉由酸 -11 · 201231410 生成菌之酸生成步驟與藉由甲烷生成菌之甲烷發酵步驟, 亦可在不同槽中以二相式進行此等步驟。 厭氣性處理之反應槽,可爲固定床式、流動床式、可 甲烷生成細菌藉由小顆粒之高負荷處理的UASB(Upflow Anaerobic Sludge Blanket;上向流厭氣性污泥床)方式 E G S B (E X p an d ed Granule Slugde Bed;展開粒狀污泥床)方 式等之任一種,較佳者爲可高負荷處理的UASB方式或 EGSB方式。 於一相式之厭氣性處理裝置中,硫酸根可添加於厭氣 性處理槽、及流入厭氣性處理槽之原水中任一種之中。添 加硫酸作爲硫酸根時,爲以添加硫酸來降低pH値,設置 pH値調整槽時,以在其前段添加較佳。 於二相式厭氣性處理裝置中,硫酸根之添加處係視排 水中之被處理物質的量而定予以選擇。排水中之易分解性 物質多時,以在接近甲烷發酵槽的位置添加硫酸根較佳。 排水中之易分解性物質少時,以於前段側、例如在酸生成 槽中添加硫酸根較佳。此係因易分解性物質於分解時會消 耗硫酸根,而導致對苯二甲酸或對甲苯酸之分解促進效果 降低的情形。 於二相式處理裝置時,於添加硫酸作爲硫酸根時,爲 降低PH値,設置pH値調整槽時,以在其前段添加硫酸 較佳。 厭氣性處理之條件,係視採用的方式而不同,以pH 値6〜8、溫度2 5〜3 9 °C、滯留時間4小時〜3日間、厭氣 -12- 201231410 性污泥濃度 10,000〜40,00011^-¥33/1^、負荷量1〜15]^-BOD/m3 . day、CODcr 負荷 2 〜3 0kg-COD cr/m3 · day 較 佳。 厭氣性處理水,爲分解殘留的有機物時’尙可提供給 活性污泥處理等之好氣性處理、其他之後處理。於本發明 中,厭氣性處理係可藉由厭氣性處理更有效地分解除去難 分解性對苯二甲酸。使排水進行厭氣性處理後,即使進行 好氣性處理時,仍可減輕厭氣性處理之負荷,且減低處理 成本。 [硫化氫氣體之處理] 於本發明中,相對於含有對苯二甲酸之排水而言,由 於以前述添加量添加硫酸根,不會阻害甲烷發酵,且可抑 制硫化氫氣體產生,對苯二甲酸之分解效率變高。產生少 量的硫化氫氣體時,亦可使硫化氫氣體進行生物脫硫處 理。一般而言,生物脫硫處理係在被處理氣體中之硫化氫 濃度有變動時,無法安定地生育硫氧化細菌,處理變得不 安定。本發明藉由在排水中添加一定量的硫酸根,由於排 氣中之硫化氫濃度安定,可安定地進行生物脫硫處理。 含有硫化氫之排氣的生物脫硫處理,以藉由專利第 3 23 5 1 3 1號公報中記載的方法進行爲宜。該方法係使含有 硫化氫之排氣接觸洗淨液(例如有機性物質之好氣性微生 物氧化時之處理液),吸收氣體中之硫化氫,使所得的吸 收液進行好氣性微生物氧化,藉由硫氧化細菌之氧化作用 -13- 201231410 以使硫化氫氧化成硫酸離子或單體硫而無害化。 藉由該方法,不會降低甲烷氣體之含率,以低成本、 有效地且不會伴隨脫硫而生成新的廢液,以高的脫硫率進 行脫硫處理。惟硫化氫氣體之處理方法,不受限於該方 法。 【實施方式】 於下述中,以實施例及比較例更具體地說明本發明。 實施例及比較例中厭氣性處理的原水之水質,如下所 述。 <原水水質> C OD cr 對苯二甲酸濃度 對甲苯酸濃度 S 042-濃度 pH値 :4050mg/L :400mg/L :6 2 0 m g / L :3 0 〜40mg/L :10 [實施例1〜3、比較例1,2] 藉由具備酸生成槽與EG SB甲烷發酵槽之2相式厭氣 性處理裝置進行處理原水。在酸生成槽中導入原水進行處 理後,在甲烷發酵槽中進行處理,在酸生成槽中循環部分 甲烷發酵槽之處理水,同時取出殘留成份作爲處理水。 各槽的形式及處理條件,如下所述,原水流量爲 5L/day。 14- 201231410201231410 VI. Description of the Invention [Technical Fields of the Invention] The present invention relates to a method and a device for treating terephthalic acid, particularly a method for decomposing terephthalic acid in dewatering by anaerobic treatment. And [Prior Art] The manufacturing steps from polyethylene terephthalate include terephthalic acid or p-toluic acid, benzoic acid, and the like. When the effluent is subjected to the anaerobic treatment, the CODcr in the drainage of the nutrient salt or the trace metal in the case of anaerobic synthesis of the bacteria, S042· must be the drainage system of the g system or the drainage of the electronic industry. The bacteria in this class do not contain the necessary ingredients. The anaerobic components of such drainage. The sulfuric acid ion is generated by the solution of hydrogen sulfide gas in the methane fermentation tank, thereby increasing the hydrogen content of the exhaust gas treatment, thereby suppressing the methane fermentation and reducing the treatment efficiency, and increasing the concentration necessary for the sulfuric acid synthesis. Terephthalic acid and p-toluic acid are anaerobic. In the anaerobic treatment, it is difficult to separate the f water, which is difficult to decompose, and is treated with aerobic treatment. Anaerobic treatment and aerobicity Reduced operating costs with high load handling and co2: point. Therefore, it is desirable to effectively disintegrate the device by anaerobic treatment of terephthalic acid or p-water. The drainage, usually containing the treatment system must have. For example, sulfuric acid is separated from the sentence by 1. 5 %. When the chemical synthesis is almost completed, the addition of the ore sulfate reducing bacteria is divided. Since the sulphide ions must be difficult to decompose in terms of bacterial culture, the drainage of benzoic acid with a small amount is carried out when the treatment is carried out. -5- 201231410 Anaerobic treatment. According to Patent Document 1, in order to improve the decomposition efficiency of terephthalic acid in the anaerobic treatment, the wastewater containing terephthalic acid is subjected to ozone treatment, and then anaerobic treatment is performed. However, this method is high in processing efficiency, but the apparatus for performing ozone treatment is complicated and the processing cost is high. Patent Document 2 discloses that in order to prevent small particle sludge from floating out and flowing out, iron salt and a sulfuric acid ion source are added to the drainage water, and iron sulfide and sulfuric acid ions are reacted to form iron sulfide (FeS), which is filled with iron sulfide. An anaerobic drainage treatment method for voids in granular sludge. In this method, since the added sulfate ion source is precipitated as FeS, it is necessary to increase the concentration of sulfate ions in the anaerobic treatment tank. As described above, in the anaerobic treatment of the drainage, when the concentration of the sulfuric acid ions in the system is increased, hydrogen sulfide gas is generated. In order to suppress the generation of hydrogen sulfide gas, the conventional anaerobic treatment method of the drainage does not have a higher concentration of the sulfate ion concentration than that required for the synthesis of the bacteria. [PRIOR ART DOCUMENT] Patent Document 1: Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. Formic acid drainage is a low-cost and effective anaerobic treatment without complicated equipment or complicated operation, and a method for highly decomposing and removing terephthalic acid and a device of -6-201231410 In order to solve the above problems, the inventors have intensively reviewed the results of the review and found that anaerobic treatment of terephthalic acid-containing wastewater and the addition of a certain amount of sulfate (so42·), benzoic acid in the anaerobic treatment The decomposition efficiency of formic acid is leaping. The present invention has been achieved on the basis of this knowledge, and the following is intended. - [1] An anaerobic treatment method for terephthalic acid-containing drainage, which is a method for anaerobic treatment of terephthalic acid-containing drainage, characterized by anaerobic treatment of sulfate ions in water Sulfate is added to the drainage in a concentration of 5 to 200 mg/L. [2] The anaerobic treatment method of the terephthalic acid-containing drainage according to [1], wherein the content of the sulfate in the drainage is 60 to 4 〇Omg/L, in the drainage Add sulfate. [3] The anaerobic treatment method of terephthalic acid-containing drainage according to [1] or [2], wherein in the foregoing drainage, the content of sulfate in relation to the terephthalic acid in the drainage is Sulfate is added in a manner of 10% by mass or more. [4] The anaerobic treatment method of the terephthalic acid-containing drainage according to any one of [1] to [3] wherein the drainage contains 50 to 2000 mg/L of terephthalic acid. [5] The anaerobic treatment method of the terephthalic acid-containing drainage according to any one of [1] to [4] wherein the wastewater further contains p-toluic acid. [6] The anaerobic treatment method of the terephthalic acid-containing drainage according to any one of [5], wherein in order to add sulfate to the drainage, the wastewater is added to the drainage from 201231410 to be selected from the group consisting of sulfuric acid and sulfuric acid. At least one of iron (1), iron (II) sulfate, polyferric sulfate, ammonium sulfate, aluminum sulfate 'sodium sulfate, and potassium sulfate. [7] An anaerobic treatment device containing terephthalic acid-containing drainage, which is an apparatus for anaerobic treatment of terephthalic acid-containing drainage, characterized by having sulfate ions for treating anaerobic water A method of adding sulfate to the drainage in a manner of a concentration of 5 to 2 00 m g/L. [8] The anaerobic treatment device for terephthalic acid-containing drainage according to [7], wherein the content of the sulfate in the drainage is 60 to 400 mg/L, and is added to the drainage. The means of sulfate. [9] The anaerobic treatment device for terephthalic acid-containing drainage as described in [7] or [8], wherein the content of sulfate in the aforementioned drainage is relative to terephthalic acid in the drainage Add sulfate to a method of 10% by mass or more. [10] The anaerobic treatment device for terephthalic acid-containing drainage according to any one of [7] to [9] wherein the wastewater contains 50 to 2000 mg/L of terephthalic acid. [11] The anaerobic treatment apparatus containing the terephthalic acid-containing water according to any one of [7] to [10] wherein the wastewater further contains p-toluic acid. [Effects of the Invention] According to the present invention, by adding sulfuric acid (S042·) to the wastewater containing terephthalic acid, the sulfuric acid ion concentration in the anaerobic treatment water is 5 to 200 mg/L. The anaerobic treatment effectively decomposes and removes the difficult-to-decompose 201231410 terephthalic acid' to produce high-quality treated water (Application No. i, 7). The present invention can be implemented in a simple device, easily and at low cost without complicated equipment or complicated operations. In the present invention, the sulfate is preferably added in an amount of not less than 1% by mass based on the terephthalic acid in the drainage, and the content in the drainage is from 60 to 400 mg/L (Patents 2 and 3, 8,9 items). The present invention is preferably a treatment containing terephthalic acid containing 5 Å to 2000 m g/L and containing terephthalic acid containing terephthalic acid (Application Nos. 4, 5, 10, 11). [Formation for Carrying Out the Invention] Hereinafter, embodiments of the present invention will be described in detail. In the present invention, a certain amount of sulfate is added to the drainage water during the anaerobic treatment of the terephthalic acid-containing drainage. The sulfuric acid reduction reaction can be promoted by adding an excess amount of sulfate which is necessary for the synthesis of the cells in the drainage. In this way, it is considered to reduce the partial pressure of hydrogen, and as a result, the anaerobic treatment system is in a reduced state, promotes a methane formation reaction, and decomposes and removes the hardly decomposable terephthalic acid. [Drainage containing terephthalic acid] The raw water to be treated in the present invention is a terephthalic acid-containing drainage discharged from various industrial fields such as the chemical industry field or the electronics industry, such as drainage containing terephthalic acid, for example. Manufacture of polyethylene terephthalate 9 - 201231410 Step drainage, etc. The concentration of terephthalic acid in the terephthalic acid-containing wastewater is usually about 50 to 2000 mg/L, preferably about 100 to 1000 mg/L, but is not limited thereto. When the concentration of terephthalic acid in the drainage is less than the lower limit, the intentional difference in the general treatment becomes smaller; when the upper limit is more, the terephthalic acid is likely to be crystallized and the treatment efficiency is lowered. The terephthalic acid-containing drainage may also contain easily decomposable organic substances such as p-toluic acid, benzoic acid, sugars, and organic acids. The addition of sulfate in the anaerobic treatment is also extremely effective in improving the anaerobic treatment efficiency of p-toluic acid, and exhibits a good treatment effect even for the drainage containing terephthalic acid and p-toluic acid. The content of p-toluic acid in the drainage is preferably 500 mg or less, more preferably 50 to 5000 mg/L, and most preferably 100 to 2000 mg/L, but is not limited thereto. [Sulphate] is a chemical agent containing sulfuric acid (S〇42·) in the drainage, and contains s〇42_i acidic solution, ammonium sulfate, such as sulfuric acid, iron (I) sulfate, iron sulfate (π), and polysulfate. One or two or more kinds of soluble sulfates such as aluminum sulfate, sodium sulfate, and potassium sulfate are preferred, but are not limited thereto. Calcium sulphate and magnesium sulphate are poorly soluble in water, but in low-concentration, they are soluble in water. The agent for adding the sulfate is preferably added as an aqueous solution having a concentration of 5 to 30% by mass. -10- 201231410 When the amount of sulfate added to the wastewater is too small, sufficient effect of the present invention cannot be obtained by adding sulfate, and when it is too large, a large amount of hydrogen sulfide gas is generated. The sulfate is preferably added in a manner of a concentration of S〇42_ in the drainage of 30 to 400 mg/L, more preferably 60 to 400 mg/L, and particularly preferably 50 to 200 mg/L. The ratio is 70 ~ 200mg / L. The sulfate is preferably added to the drainage water in an amount of 1 〇 mass% or more, that is, at a ratio of 15 to 30% by mass based on the terephthalic acid in the drainage. For terephthalic acid in the drainage, when the sulfate content is too small, the decomposition efficiency of terephthalic acid cannot be sufficiently improved. When the treatment target drainage contains terephthalic acid and p-toluic acid, the sulfate is 1% by mass or more, particularly 15 to 30% by mass based on the total amount of terephthalic acid and p-toluic acid in the drainage. It is preferred to add the ratio to the drainage. The sulfate is added to the drainage in a manner that the sulfate ion concentration in the treated water obtained by the anaerobic treatment is 5 to 200 mg/L (preferably 10 to 20 mg/L). The addition amount of the sulfate having a sulfate ion concentration of anaerobic treatment water of less than 5 mg/L does not sufficiently obtain the effect of adding the sulfate of the present invention. When the concentration of sulfuric acid ions in the anaerobic treatment water is too high, the amount of hydrogen sulfide gas generated increases, and the water quality of the anaerobic treatment water itself deteriorates, and the load of the subsequent processing steps increases. [Anti-gas treatment] The anaerobic treatment method can be carried out in one phase by the acid generation step of the acid-11·201231410 and the methane fermentation step by the methane-producing bacteria in the same tank. These steps are performed in a two-phase format in the tank. The reaction tank for anaerobic treatment can be a fixed bed type, a fluidized bed type, a UASB (Upflow Anaerobic Sludge Blanket) method for treating methane-producing bacteria with high load of small particles. Any one of the (EX p an d ed Granule Slugde Bed; expanded granular sludge bed) method is preferably a UASB method or an EGSB method which can be handled at a high load. In the one-phase anaerobic treatment device, sulfate can be added to any of the anaerobic treatment tank and the raw water flowing into the anaerobic treatment tank. When sulfuric acid is added as the sulfate, the pH is lowered by adding sulfuric acid, and when the pH is adjusted, it is preferably added in the preceding stage. In the two-phase anaerobic treatment apparatus, the addition of sulfate is selected depending on the amount of the substance to be treated in the drainage water. It is easy to decompose in the drainage. When the amount of the substance is large, it is preferable to add the sulfate to the position close to the methane fermentation tank. When the amount of the easily decomposable substance in the drainage is small, it is preferred to add the sulfate to the front side, for example, in the acid formation tank. This is because the easily decomposable substance depletes sulfate at the time of decomposition, and the decomposition promoting effect of terephthalic acid or p-toluic acid is lowered. In the case of the two-phase treatment apparatus, when sulfuric acid is added as the sulfate, in order to lower the pH, and to set the pH 値 adjustment tank, it is preferred to add sulfuric acid in the preceding stage. The conditions of anaerobic treatment differ depending on the method used, such as pH 値6~8, temperature 2 5~3 9 °C, residence time 4 hours to 3 days, anaerobic-12-201231410 sludge concentration 10,000 ~40,00011^-¥33/1^, load 1~15]^-BOD/m3 . day, CODcr load 2 to 3 0kg-COD cr/m3 · day is preferred. The anaerobic treatment of water, in order to decompose residual organic matter, can be provided to aerobic treatment such as activated sludge treatment, and other post-treatment. In the present invention, the anaerobic treatment can more effectively decompose and remove the hardly decomposable terephthalic acid by the anaerobic treatment. When the drainage is subjected to the anaerobic treatment, even when the aerobic treatment is performed, the load of the anaerobic treatment can be reduced, and the treatment cost can be reduced. [Treatment of Hydrogen Sulfide Gas] In the present invention, since the addition of sulfate to the above-mentioned addition amount does not inhibit methane fermentation and suppresses the generation of hydrogen sulfide gas, it is possible to suppress the generation of hydrogen sulfide gas. The decomposition efficiency of formic acid becomes high. When a small amount of hydrogen sulfide gas is generated, the hydrogen sulfide gas can also be subjected to biological desulfurization treatment. In general, in the case of a biological desulfurization treatment, when the concentration of hydrogen sulfide in the gas to be treated varies, the sulfur-oxidizing bacteria cannot be stably grown, and the treatment becomes unstable. According to the present invention, by adding a certain amount of sulfate to the drainage, since the concentration of hydrogen sulfide in the exhaust gas is stable, the biological desulfurization treatment can be carried out stably. The biological desulfurization treatment of the exhaust gas containing hydrogen sulfide is preferably carried out by the method described in Japanese Patent No. 3 23 5 131. In the method, the exhaust gas containing hydrogen sulfide is contacted with the cleaning liquid (for example, the treatment liquid when the aerobic microorganism of the organic substance is oxidized), the hydrogen sulfide in the gas is absorbed, and the obtained absorption liquid is subjected to aerobic microbial oxidation. Oxidation of sulfur-oxidizing bacteria-13- 201231410 To make the sulfuric acid oxidized to sulfate ion or monomer sulfur to be harmless. According to this method, the content of methane gas is not lowered, and a new waste liquid is produced at a low cost, efficiently and without desulfurization, and the desulfurization treatment is carried out at a high desulfurization rate. However, the treatment of hydrogen sulfide gas is not limited to this method. [Embodiment] Hereinafter, the present invention will be more specifically described by way of Examples and Comparative Examples. The water quality of the anaerobic treated raw water in the examples and comparative examples is as follows. <raw water quality> C OD cr terephthalic acid concentration p-toluic acid concentration S 042-concentration pH値: 4050 mg/L: 400 mg/L: 6 2 0 mg / L : 3 0 to 40 mg/L : 10 [Implementation Examples 1 to 3 and Comparative Examples 1 and 2] Raw water was treated by a 2-phase anaerobic treatment apparatus equipped with an acid generation tank and an EG SB methane fermentation tank. After the raw water is introduced into the acid formation tank and treated, the treatment is carried out in a methane fermentation tank, and the treated water of the methane fermentation tank is circulated in the acid formation tank, and the residual component is taken out as treated water. The form and processing conditions of each tank are as follows, and the raw water flow rate is 5 L/day. 14- 201231410

酸生成槽 槽容量:〇.5L 酸生成槽 pH値:6.5〜7·5Acid generation tank Capacity: 〇.5L Acid generation tank pH値: 6.5~7·5

甲烷發酵槽槽容量:2L 甲烷發酵槽 pH値:7〜8 甲烷發酵槽污泥濃度:67g/L as VSS 甲烷發酵槽溫度:3 5 °C 相對於自甲烷發酵槽至酸生成槽之循環水量:原水流 量 Q( = 5L/day)而言,循環 lQ( = 5L/day)。 在比較例1中沒有在原水中添加硫酸。實施例1〜 3、比較例2中在酸生成槽之前段、以表1表示的3〇42_添 加量,於原水中添加硫酸。硫酸係以20質量%之水溶液 的方式添加。藉由添加硫酸以降低pH値,於添加硫酸 後’添加氫氧化鈉以調整pH値。藉由添加硫酸,亦包含 原水中所含的S042·,提供給厭氣性處理之排水中的S 042_ 含量如表1所示。 以厭氣性處理所得的處理水之水質、與由處理結果求 得的污泥之活性、是否有產生硫化氫氣體,如表1所示。 -15- 201231410 【Ifi 備註 處理良好 1處理良好 K* ^1- 刪π 處理不佳 0i 爸趟 mm _β· 你柳I 胡囪 硫化氣氣 體產生 ί_ 摧 壊 少量 壊 多量 活性 (g-CODcr/g- VSS/day) 0.13 0.13 0.13 0.10 0.09 處理水水質(mg/L) I N啼 U) 〇 r~ CO <〇 <〇 Λ 〇 CM 對甲苯酸 〇 V 〇 〇 〇 Τ— 250 對苯二 甲酸 in OJ V ir> to 04 S § CODcr σϊ 00 <〇 700 740 1380 1550 SO/- 含量 [mg/L] 60-70 80-90 230-240 30-40 530-540 S042- 添加量 [mg/L] s 200 〇 500 實施例1 實施例2 實施例3 比較例1 比較例2 。氍i-n 浒寂1δ^-^«^^^&δ?Ε^ΉΙ-Μ11(«*^ΕΕ-π^Μ·κ)>ΓΝΜ^^«®ϋΓ^δ?^ΙΜ^^χ -16- 201231410 由表1可知’藉由本發明,可有效地使難分解性含有 對苯二甲酸之排水進行厭氣性處理,製得高水質之處理 水。 本發明使用特定的形態,詳細地說明,在沒有脫離本 發明之意圖與範圍內,可作各種變更,係該業者所熟知。 而且,本發明係以2010年10月1日所申請的日本專 利申請(特願201 0-22400 1)爲基準,藉由引用其全體予以 援用。Methane fermentation tank capacity: 2L methane fermentation tank pH値: 7~8 Methane fermentation tank sludge concentration: 67g/L as VSS Methane fermentation tank temperature: 3 5 °C Relative to the amount of circulating water from the methane fermentation tank to the acid generation tank : For raw water flow Q (= 5L/day), cycle lQ (= 5L/day). In Comparative Example 1, sulfuric acid was not added to the raw water. In Examples 1 to 3 and Comparative Example 2, sulfuric acid was added to the raw water in the amount before the acid formation tank and in the amount of 3〇42_ shown in Table 1. The sulfuric acid was added as an aqueous solution of 20% by mass. The pH was lowered by adding sulfuric acid, and sodium hydroxide was added after the addition of sulfuric acid to adjust the pH. By adding sulfuric acid, it also contains S042· contained in the raw water, and the content of S 042_ supplied to the anaerobic treatment is shown in Table 1. The water quality of the treated water obtained by the anaerobic treatment, the activity of the sludge obtained from the treatment results, and whether or not hydrogen sulfide gas is generated are shown in Table 1. -15- 201231410 [Ifi Remarks well handled 1 Well handled K* ^1- Deleted π Poorly handled 0i Dad 趟 mm _β· You Liu I Huxiao vulcanized gas generation ί_ Destroy a small amount of 壊 multi-activity (g-CODcr/g - VSS/day) 0.13 0.13 0.13 0.10 0.09 treated water quality (mg/L) IN啼U) 〇r~ CO <〇<〇Λ 〇CM p-toluic acid 〇V 〇〇〇Τ- 250 terephthalic acid To OJ V ir> to 04 S § CODcr σϊ 00 <〇700 740 1380 1550 SO/- Content [mg/L] 60-70 80-90 230-240 30-40 530-540 S042- Addition amount [mg/ L] s 200 〇500 Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2.氍in 浒寂1δ^-^«^^^&δ?Ε^ΉΙ-Μ11(«*^ΕΕ-π^Μ·κ)>ΓΝΜ^^«®ϋΓ^δ?^ΙΜ^^χ - 16-201231410 It can be seen from Table 1 that, by the present invention, it is possible to effectively treat the wastewater containing terephthalic acid which is difficult to decompose, by anaerobic treatment, and to obtain treated water having high water quality. The present invention has been described in detail with reference to the preferred embodiments of the invention. Further, the present invention is incorporated by reference to all Japanese patent application (Japanese Patent Application No. 201 0-22400 1) filed on Oct. 1, 2010.

Claims (1)

201231410 七、申請專利範圍 1. —種含對苯二甲酸之排水的厭氣性處理方法,其 係使含有對苯二甲酸之排水進行厭氣性處理的方法,其特 徵爲以於厭氣性處理水中之硫酸離子濃度爲5〜200mg/L 的方式,在該排水中添加硫酸根。 2. 如申請專利範圍第1項之含對苯二甲酸之排水的 厭氣性處理方法,其係以於前述排水中之硫酸根的含量爲 60〜400mg/L的方式,在該排水中添加硫酸根。 3. 如申請專利範圍第1或2項之含對苯二甲酸之排 水的厭氣性處理方法,其中在前述排水中,以相對於該排 水中對苯二甲酸而言硫酸根之含量爲10質量%以上的方 式添加硫酸根。 4. 如申請專利範圍第1〜3項中任一項之含對苯二甲 酸之排水的厭氣性處理方法,其中前述排水含有50〜 2000mg/L之對苯二甲酸。 5 .如申請專利範圍第1〜4項中任一項之含對苯二甲 酸之排水的厭氣性處理方法,其中前述排水中另含有對甲 苯酸。 6. 如申請專利範圍第1〜5項中任一項之含對苯二甲 酸之排水的厭氣性處理方法,其中爲了於排水中添加硫酸 根,係在排水中添加選自由硫酸、硫酸鐵(I)、硫酸鐵 (II)、聚硫酸鐵、硫酸銨、硫酸鋁,硫酸鈉及硫酸鉀所成 群之至少1種。 7. 一種含對苯二甲酸之排水的厭氣性處理裝置,其 -18- 201231410 係使含對苯二甲酸之排水進行厭氣性處理的裝置,其特徵 爲具有以於厭氣性處理水中之硫酸離子濃度爲5〜 2〇Omg/L的方式,在該排水中添加硫酸根的手段。 8 ·如申請專利範圍第7項之含對苯二甲酸之排水的 厭氣性處理裝置,其係具有以於前述排水中之硫酸根的含 量爲60〜40〇mg/L的方式,在該排水中添加硫酸根的手 段。 9.如申請專利範圍第7或8項之含對苯二甲酸之排 水的厭氣性處理裝置,其中於前述排水中,以相對於該排 水中之對苯二甲酸而言硫酸根之含量爲10質量%以上的 方式,添加硫酸根。 10·如申請專利範圍第7〜9項中任一項之含對苯二 甲酸之排水的厭氣性處理裝置,其中前述排水中含有50 〜2000mg/L之對苯二甲酸。 11·如申請專利範圍第7〜10項中任一項之含對苯二 甲酸之排水的厭氣性處理裝置,其中前述排水中另含有對 甲苯酸。 -19- 201231410 四 指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明:無 201231410 五 本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無201231410 VII. Patent application scope 1. An anaerobic treatment method for terephthalic acid-containing drainage, which is a method for anaerobic treatment of terephthalic acid-containing drainage, which is characterized by anaerobicity The sulfate ion concentration in the treated water is 5 to 200 mg/L, and sulfate is added to the drainage. 2. The anaerobic treatment method of the terephthalic acid-containing drainage according to the first application of the patent scope is added to the drainage in such a manner that the content of the sulfate in the drainage is 60 to 400 mg/L. Sulfate. 3. An anaerobic treatment method for terephthalic acid-containing drainage according to claim 1 or 2, wherein in the foregoing drainage, the content of sulfate is 10 relative to the terephthalic acid in the drainage. Sulfate is added in a mass % or more. 4. The anaerobic treatment method for terephthalic acid-containing drainage according to any one of claims 1 to 3, wherein the drainage contains 50 to 2000 mg/L of terephthalic acid. An anaerobic treatment method for terephthalic acid-containing drainage according to any one of claims 1 to 4, wherein the wastewater further contains p-toluic acid. 6. The anaerobic treatment method for terephthalic acid-containing drainage according to any one of claims 1 to 5, wherein, in order to add sulfate to the drainage, the drainage is added to be selected from the group consisting of sulfuric acid and iron sulfate. At least one of (I), iron (II) sulfate, polyferric sulfate, ammonium sulfate, aluminum sulfate, sodium sulfate, and potassium sulfate. 7. An anaerobic treatment device containing terephthalic acid-containing drainage, -18-201231410 is a device for anaerobic treatment of terephthalic acid-containing drainage, which is characterized in that it is suitable for treating anaerobic water The method of adding a sulfate to the drainage is a method in which the sulfate ion concentration is 5 to 2 〇Omg/L. 8. The anaerobic treatment device for terephthalic acid-containing drainage according to item 7 of the patent application, wherein the content of the sulfate in the drainage is 60 to 40 〇 mg/L, A means of adding sulfate to the drain. 9. The anaerobic treatment device for terephthalic acid-containing drainage according to claim 7 or 8, wherein in the foregoing drainage, the content of sulfate is relative to terephthalic acid in the drainage Sulfate is added in a manner of 10% by mass or more. 10. The anaerobic treatment apparatus for terephthalic acid-containing drainage according to any one of claims 7 to 9, wherein the wastewater contains 50 to 2000 mg/L of terephthalic acid. The anaerobic treatment apparatus for terephthalic acid-containing drainage according to any one of claims 7 to 10, wherein the drainage further contains p-toluic acid. -19- 201231410 Four designated representatives: (1) The representative representative of the case is: No (2) The symbol of the representative figure is simple: No 201231410 If there is a chemical formula in the case, please disclose the chemical formula that best shows the characteristics of the invention: no
TW100135605A 2010-10-01 2011-09-30 An anaerobic treatment method and treatment device for the drainage of terephthalic acid TWI511937B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010224001A JP5625705B2 (en) 2010-10-01 2010-10-01 Method and apparatus for anaerobic treatment of wastewater containing terephthalic acid

Publications (2)

Publication Number Publication Date
TW201231410A true TW201231410A (en) 2012-08-01
TWI511937B TWI511937B (en) 2015-12-11

Family

ID=45892882

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100135605A TWI511937B (en) 2010-10-01 2011-09-30 An anaerobic treatment method and treatment device for the drainage of terephthalic acid

Country Status (5)

Country Link
JP (1) JP5625705B2 (en)
KR (1) KR101849803B1 (en)
CN (1) CN103124698B (en)
TW (1) TWI511937B (en)
WO (1) WO2012043436A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239929A (en) * 2011-05-16 2012-12-10 Swing Corp Method and apparatus for anaerobic treatment of organic wastewater
JP6593975B2 (en) * 2014-03-11 2019-10-23 住友重機械エンバイロメント株式会社 Water treatment method and water treatment apparatus
WO2024128322A1 (en) * 2022-12-16 2024-06-20 国立研究開発法人産業技術総合研究所 Method for treating refractory wastewater produced in steps for manufacturing pet raw material

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249197A (en) * 1988-03-30 1989-10-04 Akua Runesansu Gijutsu Kenkyu Kumiai Method for inhibiting reduction of sulfate in anaerobic treatment and surfactant hindering growth of sulfate reducing bacteria
CN1011405B (en) * 1988-12-06 1991-01-30 地质矿产部水文地质工程地质研究所 Process of treatment of para-benzene dicarbonic acid in waste water
CN1039784A (en) * 1989-06-20 1990-02-21 北京市环境保护科学研究所 Pure terephthalic acid (PTA) Wastewater Treatment
CA2139863C (en) * 1992-07-16 2000-05-09 Delman R. Hogen Microbial mediated method for soil and water treatment
JP3389628B2 (en) * 1993-03-23 2003-03-24 栗田工業株式会社 Treatment method for wastewater containing terephthalic acid
JPH11138188A (en) * 1997-11-13 1999-05-25 Toray Ind Inc Method for aerobically decomposing organic acid salt-containing waste liquid
JP2000037699A (en) * 1998-07-23 2000-02-08 Toray Ind Inc Wastewater treatment method
CN1331052A (en) * 2000-07-03 2002-01-16 中国科学院生态环境研究中心 Process and equipment for denitrifying N-contained industrial sewage
JP2006026461A (en) * 2004-07-12 2006-02-02 Toray Ind Inc Method and apparatus for controlling anaerobic water treatment plant generating methane gas
JP4428188B2 (en) * 2004-10-13 2010-03-10 荏原エンジニアリングサービス株式会社 Organic wastewater treatment method and treatment apparatus
JP2007007494A (en) * 2005-06-28 2007-01-18 Ishikawajima Harima Heavy Ind Co Ltd Method of operating methane fermentation tank
CN101016532A (en) * 2007-01-26 2007-08-15 清华大学 Method of domesticating and screening benzene series anaerobic degradation flora
JP2008212083A (en) * 2007-03-06 2008-09-18 Kyoto Univ Primer set for detecting or quantifying microorganism in treating terephthalic acid-containing wastewater, and method for monitoring microorganisms quantity and method for rating methane fermentation efficiency each using the primer set
JP2008278823A (en) * 2007-05-11 2008-11-20 Toyota Industries Corp Gene-destructing strain, recombinant plasmid, transformant, and method for producing 3-carboxymuconolactone
CN102358641B (en) * 2007-05-11 2013-07-10 栗田工业株式会社 Anaerobic treatment method

Also Published As

Publication number Publication date
WO2012043436A1 (en) 2012-04-05
CN103124698A (en) 2013-05-29
TWI511937B (en) 2015-12-11
JP5625705B2 (en) 2014-11-19
KR101849803B1 (en) 2018-04-17
JP2012076023A (en) 2012-04-19
CN103124698B (en) 2014-06-18
KR20130116244A (en) 2013-10-23

Similar Documents

Publication Publication Date Title
Zhou et al. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: Challenges and perspective
CN106927628A (en) Light electrolysis-Fenton-EGSB-A/O-BCO-BAF-coagulating treatment pharmacy waste water technique
WO2008055388A1 (en) Method for the treatment of waste water from florfenicol production
CA2279525A1 (en) Hybrid biological and chemical process for decontaminating municipal sewage sludge
CN103663842B (en) A kind of deep treatment method of ethylene waste lye
CN102070237B (en) COD degradation agent for removing sulfamide from industrial wastewater
Montalvo et al. Autotrophic denitrification with sulfide as electron donor: Effect of zeolite, organic matter and temperature in batch and continuous UASB reactors
WO2004096720A1 (en) Method and system for methane fermentation treatment of wastewater containing sulfur compound
CN104531783B (en) The method that copper sulphate joint alkaline pH promotes excess sludge anaerobic fermentation production short chain fatty acids
TW201231410A (en) Method and device for anaerobically treating wastewater containing terephthalic acid
Liu et al. Promoting short-chain fatty acids production from sewage sludge via acidogenic fermentation: Optimized operation factors and iron-based persulfate activation system
CN102153227B (en) Method for treating ultrahigh-concentration organic industrial wastewater
CN105712570A (en) Processing method of high concentration selenium-containing wastewater
CN102126813B (en) System and process for treating oxytetracycline waste water by anaerobic bio-treatment method
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP4972817B2 (en) Anaerobic treatment method for organic wastewater
JP3856218B2 (en) Startup method of activated sludge treatment equipment
CN104529106A (en) Method for promoting anaerobic digestion of excess sludge through copper sulfate to produce methane
JP4838649B2 (en) Anaerobic fermentation method and biodesulfurization method
CN206624744U (en) Light electrolysis Fenton EGSB A/O BCO BAF coagulating treatment pharmacy waste water systems
JP2009039620A (en) Method and system for reducing amount of excess sludge
JP6113611B2 (en) Organic wastewater treatment system
JP2006136788A (en) Method and apparatus for treating salts-containing organic waste water
JP2011050318A (en) Water with purification function and method for utilizing the same
JP5731209B2 (en) Method and apparatus for treating soap production waste liquid