JP2007007494A - Method of operating methane fermentation tank - Google Patents

Method of operating methane fermentation tank Download PDF

Info

Publication number
JP2007007494A
JP2007007494A JP2005188025A JP2005188025A JP2007007494A JP 2007007494 A JP2007007494 A JP 2007007494A JP 2005188025 A JP2005188025 A JP 2005188025A JP 2005188025 A JP2005188025 A JP 2005188025A JP 2007007494 A JP2007007494 A JP 2007007494A
Authority
JP
Japan
Prior art keywords
methane
methane fermentation
acetic acid
load
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005188025A
Other languages
Japanese (ja)
Inventor
Toru Takahashi
徹 高橋
Hiroshi Otsuka
洋 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Toray Industries Inc
Original Assignee
IHI Corp
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Toray Industries Inc filed Critical IHI Corp
Priority to JP2005188025A priority Critical patent/JP2007007494A/en
Publication of JP2007007494A publication Critical patent/JP2007007494A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a methane fermentation tank-operating method which enables an efficient and stable control of a methane fermentation tank when the concentration of acetic acid contained in treated wastewater by methane fermentation is measured to carry out the operation control of the methane fermentation tank. <P>SOLUTION: In the methane fermentation tank-operating method, organic acids-containing organic wastewater is treated by the methane fermentation in the methane fermentation tank to separate methane gas, and then the treated wastewater is taken out. After the treated wastewater undergoes ion exchange treatment beforehand, the concentration of acetic acid in the treated wastewater is quantitatively analyzed by using gas chromatography, and the supply amount of the organic wastewater is controlled by using the obtained acetic acid concentration as an index. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、メタン発酵槽の運転方法に関し、さらに詳しくはメタン発酵槽を効率よく安定的に制御するメタン発酵槽の運転方法に関する。   The present invention relates to a method for operating a methane fermenter, and more particularly to a method for operating a methane fermenter that efficiently and stably controls the methane fermenter.

非特許文献1に記載の通り、メタン発酵処理は、有機性排水中に含まれる自然界に存在する微生物の栄養源となり得る成分を、嫌気性雰囲気で特定の菌体存在下で反応させ、メタンガスとして揮散させて有機性排水から除去する処理であり、河川や海洋などの水質汚濁物質の増加を防止すると共に、有用なメタンガスを燃料などのエネルギー源として活用する技術である。排水中の微生物の栄養源となり得る成分の量は、生物学的酸素要求量 (BOD;Biological Oxygen Demand)として測定することができる。以下、微生物の栄養源となり得る成分を、BOD成分と言うことがある。   As described in Non-Patent Document 1, methane fermentation treatment reacts a component that can be a nutrient source of microorganisms present in nature in organic wastewater in the presence of specific bacterial cells in an anaerobic atmosphere, as methane gas. It is a process that removes it from organic wastewater by volatilization. It is a technology that prevents the increase of water pollutants such as rivers and oceans, and also uses useful methane gas as an energy source such as fuel. The amount of a component that can be a nutrient source for microorganisms in the wastewater can be measured as a biological oxygen demand (BOD). Hereinafter, components that can serve as nutrient sources for microorganisms are sometimes referred to as BOD components.

排水中のBOD成分の処理方法には、従来、活性汚泥処理が用いられてきたが、余剰汚泥が、産業廃棄物として発生する問題があった。一方、メタン発酵処理は、余剰汚泥が削減できると共に、メタンガスのエネルギー代替使用ができるため、プロセス全体としてのコストダウンが可能となり、近年大きく注目されている。   Conventionally, activated sludge treatment has been used as a method for treating BOD components in wastewater, but there has been a problem that excess sludge is generated as industrial waste. On the other hand, in the methane fermentation treatment, surplus sludge can be reduced and methane gas can be used as an alternative to the energy. Therefore, the cost of the entire process can be reduced, and has attracted much attention in recent years.

メタン発酵処理は、グラニュールと呼ばれる直径2mm程度の水よりもやや重比重の菌体群を用いて、BOD成分を加水分解反応させて、次いで酢酸生成反応、最後に酢酸からメタンガスを発生させる反応を経てメタンガスへと分解するものである。これらは全てグラニュールに存在する別々の菌体がそれぞれの役を受け持っており、これら一連の反応が、メタン発酵と呼ばれている。   In the methane fermentation treatment, a BOD component is hydrolyzed using a group of cells with a specific gravity slightly higher than water with a diameter of about 2 mm, which is called granule, followed by an acetic acid production reaction, and finally a reaction that generates methane gas from acetic acid. It decomposes into methane gas via Each of these is played by the different cells present in the granule, and this series of reactions is called methane fermentation.

メタン発酵処理における菌体の活性の良否を見極める指標として、処理排水中の酢酸濃度がある。メタン発酵処理において、酢酸は様々な有機性物質の反応中間体であるが、加水分解反応や酢酸生成反応を司る菌に比べて、酢酸をメタンに変換する菌(メタン菌)の活性の増殖速度が遅いことが知られている。   As an index for determining the quality of bacterial activity in methane fermentation treatment, there is acetic acid concentration in treated wastewater. In methane fermentation, acetic acid is a reaction intermediate for various organic substances, but the growth rate of the activity of bacteria that convert acetic acid into methane (methane bacteria) compared to those responsible for hydrolysis and acetic acid production reactions Is known to be slow.

また、酢酸はグラニュールにとって栄養源であるが、同時に高濃度では被毒物質にもなる。このため、メタン発酵処理が不調になる多くの場合、処理水中に酢酸が蓄積する現象に帰着すると考えられる。酢酸の蓄積に伴い、さらに菌体の活性が低下する悪循環に陥ることになり、これを過負荷という。そのため、酢酸の蓄積が見られた場合は、メタン発酵槽の負荷をすぐに下げて酢酸濃度を低下させることが必要である。   Acetic acid is also a nutrient source for granules, but at the same time it becomes a poisonous substance at high concentrations. For this reason, it is thought that in many cases where the methane fermentation treatment is unsuccessful, the phenomenon results in acetic acid accumulating in the treated water. As acetic acid accumulates, it will fall into a vicious cycle in which the activity of the cells further decreases, which is called overload. Therefore, if acetic acid is accumulated, it is necessary to immediately reduce the load of the methane fermenter to reduce the acetic acid concentration.

メタン発酵槽の過負荷を防止する方法として、メタン発酵処理に使用する菌体に悪影響を与える酢酸が蓄積しないように、有機酸分析(揮発性脂肪酸VFA:Volatile Fatty Acidとも言う)により管理する方法がよく用いられる。   As a method of preventing overload of the methane fermentation tank, a method of managing by organic acid analysis (also referred to as volatile fatty acid VFA: Volatile Fatty Acid) so that acetic acid that adversely affects the cells used in the methane fermentation treatment does not accumulate. Is often used.

有機酸分析は、処理水中の酢酸の簡易的な分析方法として、広く認識されているが、その分析方法は処理水をフラスコで炊きあげて、残存する酸性成分であるCOを追い出し、その後に硫酸などの強酸を添加してpH3.5に調整して、一旦弱酸を遊離させた後、苛性ソーダを添加して、pH4〜7までの間の滴定量により算出するものである。有機酸分析においては、有機酸が存在すれば、ほぼ全てが検出され、さらに有機酸以外の酸性物質も上乗せされる可能性があるが、このような有機酸以外の成分でも定義上、有機酸と称している。 Organic acid analysis is widely recognized as a simple method for analyzing acetic acid in treated water, but the analytical method is to boil the treated water in a flask to drive off the remaining acidic component CO 2 and then A strong acid such as sulfuric acid is added to adjust the pH to 3.5 to release the weak acid once, and then caustic soda is added to calculate by titration between pH 4 and 7. In organic acid analysis, almost all organic acids are detected, and there is a possibility that acidic substances other than organic acids may be added. It is called.

メタン発酵処理はこれまで食品、特にビール工場や焼酎工場、パルプ工場など、植物を加工した後に排出される生分解性物質を多く含む有機性排水を処理する業種に広く用いられてきた。これは、排水中のBOD成分が元々植物由来であり、生分解性が高くかつ被毒性のある物質が少ないため、菌体への悪影響を考慮しなくても良いという利点があったためである。このようなに易分解性物質を多く含むいくつかの特定のプラントからの排水を、メタン発酵処理する場合には、有機酸の量は、ほぼ酢酸の量に等しく、有機酸を測定していればメタン発酵の運転管理には支障が無かった。   Methane fermentation treatment has been widely used in foods, especially beer factories, shochu factories, pulp factories, and other industries that process organic wastewater containing a large amount of biodegradable substances discharged after processing plants. This is because the BOD component in the wastewater is originally derived from plants and has high biodegradability and few toxic substances, so that there is an advantage that it is not necessary to consider adverse effects on the cells. When wastewater from some specific plants that contain a lot of easily decomposable substances is treated by methane fermentation, the amount of organic acid is almost equal to the amount of acetic acid. In other words, there was no hindrance to the operation management of methane fermentation.

しかし、多種多様な排水を処理する場合、処理すべき排水中に酢酸以外の有機酸が含まれる可能性が高くなり、有機酸分析の結果が、酢酸以外の成分を検出することが考えられる。   However, when treating a wide variety of wastewater, there is a high possibility that an organic acid other than acetic acid is contained in the wastewater to be treated, and the result of the organic acid analysis may detect components other than acetic acid.

例えばテレフタル酸、パラトルイル酸、安息香酸などのカルボン酸は、メタン発酵処理にとっては難分解性成分の類に属し、1000mg/L以下の低濃度では、悪影響は与えないものの分解しづらいため、処理排水中にそのまま排出される可能性が高い。そうすると、これら酢酸以外の難分解性のカルボン酸成分は有機酸分析値を押し上げ、本来、酢酸濃度として判断すべき有機酸分析値が高くなり、見かけ上処理がうまく進んでいないかのような誤解を生じ、負荷(処理量)アップの判断を誤らせることとなる。   For example, carboxylic acids such as terephthalic acid, p-toluic acid, and benzoic acid belong to a class of hardly decomposable components for methane fermentation treatment, and at a low concentration of 1000 mg / L or less, it does not have an adverse effect but is difficult to decompose. There is a high possibility of being discharged as it is. If this is the case, these difficult-to-decompose carboxylic acid components other than acetic acid will increase the organic acid analysis value, and the organic acid analysis value that should be judged as the concentration of acetic acid will increase. Will cause the load (processing amount) to be misjudged.

一方、酢酸のみを効果的に測定する方法としてガスクロマトグラフィーが考えられる。ガスクロマトグラフィーはあらゆる物質の成分分析で広く用いられ、水素またはヘリウムやアルゴンなどの不活性ガスをキャリアガスとし、被検出物質をガス化させてキャリアガスに流した後、カラム中でクロマト分離し、検出器で熱伝導率や燃焼による温度検出の変化を検出する装置である。   On the other hand, gas chromatography can be considered as a method for effectively measuring only acetic acid. Gas chromatography is widely used for component analysis of all substances. Hydrogen or an inert gas such as helium or argon is used as a carrier gas, and the substance to be detected is gasified and flowed through the carrier gas, followed by chromatographic separation in a column. This is a device that detects changes in temperature detection due to thermal conductivity or combustion with a detector.

ところが、ガスクロマトグラフィーにより、処理排水中の酢酸分析を行おうとすると、処理排水は、メタン発酵槽の前処理を行う調製槽において、中和されているため酢酸や有機酸は、塩として存在し検出できないものがあるという課題がある。有機酸分析では、強酸による弱酸遊離という手法により有機酸を遊離させたが、ガスクロマトグラフィー分析においてこの手法で有機酸を遊離することは、強酸による装置への腐食懸念があり採用できない。   However, if an analysis of acetic acid in the treated effluent is performed by gas chromatography, the treated effluent is neutralized in the preparation tank for pretreatment of the methane fermentation tank, so acetic acid and organic acids exist as salts. There is a problem that there is something that cannot be detected. In the organic acid analysis, the organic acid was liberated by a technique of weak acid liberation by a strong acid. However, liberation of the organic acid by this technique in the gas chromatography analysis cannot be adopted due to fear of corrosion of the apparatus by the strong acid.

したがって、メタン発酵処理に用いられる有機酸分析は、酢酸のみを定量的に分析することができず、有機性排水が、難分解性カルボン酸等の有機酸を含んでいると、メタン発酵槽を、効率的、かつ安定的に運転することが困難であった。
R.E.Speece原著、産業廃水処理のための嫌気性バイオテクノロジー、技報堂出版、1999
Therefore, the organic acid analysis used for the methane fermentation treatment cannot quantitatively analyze only acetic acid, and if the organic wastewater contains organic acids such as persistent carboxylic acids, It was difficult to operate efficiently and stably.
RESpeece original, anaerobic biotechnology for industrial wastewater treatment, Gihodo Publishing, 1999

本発明の目的は、ガスクロマトグラフィー分析によりメタン発酵処理の処理排水に含まれる酢酸濃度を測定して、メタン発酵槽の運転制御を行うに際し、メタン発酵槽を、効率的、かつ安定的に制御することを可能にするメタン発酵槽の運転方法を提供することにある。   The object of the present invention is to control the methane fermentation tank efficiently and stably when measuring the acetic acid concentration contained in the treated wastewater of the methane fermentation process by gas chromatography analysis and controlling the operation of the methane fermentation tank. An object of the present invention is to provide a method of operating a methane fermenter that makes it possible to do this.

上記目的を達成する本発明のメタン発酵槽の運転方法は、有機酸を含む有機性排水をメタン発酵槽でメタン発酵処理によりメタンガスを分離して、処理排水として取り出すメタン発酵槽の運転方法であって、処理排水を予めイオン交換処理した後、処理排水中の酢酸濃度を、ガスクロマトグラフィーを用いて定量分析し、得られた酢酸濃度を指標として有機性排水の供給量を制御するメタン発酵槽の運転方法である。   The operation method of the methane fermenter of the present invention that achieves the above object is an operation method of a methane fermenter that separates methane gas from an organic wastewater containing an organic acid by methane fermentation treatment in the methane fermenter and takes it out as treated wastewater. Then, after treating the treated wastewater with ion exchange treatment in advance, the acetic acid concentration in the treated wastewater is quantitatively analyzed using gas chromatography, and the supply amount of organic wastewater is controlled using the obtained acetic acid concentration as an index. This is the driving method.

本発明のメタン発酵槽の運転方法は、処理排水中の酢酸の中和塩における相手イオンを、イオン交換処理して除去することにより、酢酸濃度を、ガスクロマトグラフィーを使用して、定量分析することができる。得られた酢酸濃度を指標として、メタン発酵槽の負荷状況を正確に把握することができ、運転管理上、負荷増加の可否を見誤らなくなり、メタン発酵槽を、効率的、かつ安定的に運転することができる。   In the operation method of the methane fermenter of the present invention, the acetic acid concentration is quantitatively analyzed using gas chromatography by removing the partner ion in the neutralized salt of acetic acid in the treated wastewater by ion exchange treatment. be able to. Using the obtained acetic acid concentration as an index, it is possible to accurately grasp the load status of the methane fermenter, so that it is possible to operate the methane fermenter efficiently and stably without mistaking whether or not the load can be increased. can do.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

本発明のメタン発酵槽の運転方法は、有機酸を含む有機性排水をメタン発酵槽へ供給し、メタン発酵処理してBOD成分をメタンガスとして分離して、処理排水として取り出すメタン発酵槽の運転方法であって、処理排水中の酢酸濃度を、処理排水をイオン交換処理した後、ガスクロマトグラフィーを用いて、定量分析して、酢酸濃度を指標として有機性排水の供給量を制御するメタン発酵槽の運転方法である。   The operation method of the methane fermentation tank of this invention supplies the organic waste water containing an organic acid to a methane fermentation tank, isolate | separates BOD component as methane gas by carrying out methane fermentation process, and takes out as a treated waste water operation method of the methane fermentation tank A methane fermenter that performs quantitative analysis of acetic acid concentration in the treated wastewater after ion exchange treatment of the treated wastewater, and controls the supply amount of organic wastewater using the acetic acid concentration as an index. This is the driving method.

図1は、本発明のメタン発酵処理の代表的なプロセスフローの説明図である。BOD成分を含む1種以上の有機性排水1をバッファタンク2に受け、これを調整槽5に一定量供給する。調整槽5では温度とpHが調整された後、メタン発酵槽7に供給される。メタン発酵槽7からはバイオガスが発生し、ガス流量計10を通した後、燃焼炉などのガスとして有効利用される。メタン発酵槽7において処理された排水は、グラニュールへのCOD(Cr)曝露濃度を調整するため一部が、調整槽5に戻されるが、供給量相当が、処理排水11として系外に排出される。   FIG. 1 is an explanatory diagram of a typical process flow of the methane fermentation treatment of the present invention. One or more kinds of organic waste water 1 containing the BOD component is received in the buffer tank 2 and supplied to the adjustment tank 5 in a certain amount. In the adjustment tank 5, the temperature and pH are adjusted, and then supplied to the methane fermentation tank 7. Biogas is generated from the methane fermentation tank 7, and after passing through the gas flow meter 10, is effectively used as a gas for a combustion furnace or the like. A part of the wastewater treated in the methane fermentation tank 7 is returned to the adjustment tank 5 to adjust the COD (Cr) exposure concentration to the granules, but the supply amount is discharged as treated wastewater 11 to the outside of the system. Is done.

一方、処理排水は、有機性排水1に含まれていた酢酸および/またはメタン発酵処理槽7において生成された酢酸の中和塩が、含まれている。本発明は、これを定量分析するため、分析用の処理排水を、イオン交換処理12を行った後、ガスクロマトグラフィー14により、定量分析する工程を有するものである。   On the other hand, the treated wastewater contains acetic acid contained in the organic wastewater 1 and / or a neutralized salt of acetic acid produced in the methane fermentation treatment tank 7. In order to quantitatively analyze this, the present invention includes a step of quantitatively analyzing the treated waste water for analysis by the gas chromatography 14 after performing the ion exchange treatment 12.

また、メタン発酵処理槽7の負荷を算出するため、有機性排水1の供給量を定量する流量計3および有機性排水1のCODまたはTOCを測定するCOD (Cr) 計4を配置する。   Further, in order to calculate the load of the methane fermentation treatment tank 7, a flow meter 3 for quantifying the supply amount of the organic waste water 1 and a COD (Cr) meter 4 for measuring the COD or TOC of the organic waste water 1 are arranged.

なお、生物の栄養供給抑制という本来の目的から、BODが指標として有効であるが、分析に5日間という長い期間を要し、管理を行う上でも迅速な対応が困難であるという問題がある。そこで、管理指標や化学的検討を進めるに当たり、短時間でBODにほぼ相似な相関を示す指標である化学的酸素消費量(COD;Chemical Oxyge-n Demand)や総有機炭素量(TOC;Total Organic Carbon)を指標として用いることができる。   Although BOD is effective as an index for the original purpose of suppressing the nutrient supply of living organisms, there is a problem that a long period of 5 days is required for analysis, and it is difficult to quickly respond to management. Therefore, in proceeding with management indicators and chemical studies, chemical oxygen consumption (COD) and total organic carbon (TOC) are indicators that show a similar similarity to BOD in a short time. Carbon) can be used as an indicator.

CODは、基準となる酸化剤の酸素消費量から生物の富栄養化への影響を間接的に測定するものであり、酸化剤としてKMnOやKCrなどが用いられる。これらを用いたCODは、それぞれCOD(Mn)やCOD(Cr)と表される。 COD indirectly measures the influence of the oxidant consumption of a reference oxidant on the eutrophication of organisms, and KMnO 4 , K 2 Cr 2 O 7, or the like is used as the oxidant. CODs using these are expressed as COD (Mn) and COD (Cr), respectively.

本発明のメタン発酵槽の運転方法においては、COD(Cr)、COD(Mn)、TOC、BODを生物の富栄養化の指標とすることが好ましく、COD(Cr)、COD(Mn)、TOCがより好ましく、COD(Cr)がさらに好ましい。   In the operation method of the methane fermenter of the present invention, COD (Cr), COD (Mn), TOC, and BOD are preferably used as indicators of biological eutrophication, and COD (Cr), COD (Mn), TOC Is more preferable, and COD (Cr) is more preferable.

本発明は、有機酸を含む有機性排水をメタン発酵処理するためのメタン発酵槽の運転方法である。有機酸は、酢酸を含むことが好ましく、また本発明の効果を発揮するため、酢酸以外の有機酸を含むことが好ましい。酢酸以外の有機酸は、少なくとも1つのカルボン酸であることが好ましく、カルボン酸として、酢酸を除く脂肪酸、芳香族カルボン酸、脂環式カルボン酸が好ましく挙げられる。   The present invention is a method of operating a methane fermentation tank for subjecting an organic wastewater containing an organic acid to a methane fermentation treatment. The organic acid preferably contains acetic acid, and preferably contains an organic acid other than acetic acid in order to exhibit the effects of the present invention. The organic acid other than acetic acid is preferably at least one carboxylic acid, and preferred examples of the carboxylic acid include fatty acids other than acetic acid, aromatic carboxylic acids, and alicyclic carboxylic acids.

本発明において、カルボン酸は、これらのなかでも、芳香族カルボン酸が、メタン発酵処理にとって難分解性であり、本発明の効果を発揮する上で好ましい。さらに、芳香族カルボン酸がパラトルイル酸、安息香酸、イソフタル酸、テレフタル酸の少なくとも1つであることが、とりわけ好ましい。   In the present invention, among these carboxylic acids, aromatic carboxylic acids are hardly decomposable for the methane fermentation treatment, and are preferable for exhibiting the effects of the present invention. Further, it is particularly preferable that the aromatic carboxylic acid is at least one of p-toluic acid, benzoic acid, isophthalic acid, and terephthalic acid.

本発明において、供給する有機性排水は、非特許文献1に記載されたように、毒性影響のある物質が高濃度でないことが必要であり、例えば、ナトリウム、カリウム、カルシウム、マグネシウムの陽イオンは、1900〜7400mg/L以下であることが好ましい。   In the present invention, as described in Non-Patent Document 1, the organic wastewater to be supplied needs to have a substance having no toxic effect at a high concentration. For example, the cation of sodium, potassium, calcium, or magnesium is 1900-7400 mg / L or less.

また、有機物でもそれぞれ毒性影響が見られない濃度範囲であることが望ましい。例えば、フェノールは1500mg/L以下、安息香酸は4000mg/L以下であることが好ましい。   Moreover, it is desirable that the concentration range is such that no toxic effects are observed even with organic substances. For example, it is preferable that phenol is 1500 mg / L or less and benzoic acid is 4000 mg / L or less.

ただし、同じ有機性排水に長期間曝露されているグラニュールに、再度同じ有機性排水を供給する場合や、毒性影響のある物質を含む有機性排水を長期間曝露したグラニュールを用いる場合には、この範囲を超えることも可能である。   However, when supplying the same organic wastewater again to a granule that has been exposed to the same organic wastewater for a long time, or when using a granule that has been exposed to an organic wastewater containing a toxic substance for a long time. It is also possible to exceed this range.

有機性排水が、供給されるプロセスは特に限定されないが、例えばテレフタル酸反応・濾過後の高沸残渣や、酢酸メチル廃液、ポリエステルチップ重合工程からの排水、パラトルイル酸、パラトルイルアルデヒド製造工程からの反応廃液、等が挙げられる。もちろん、酢酸やメタノールなど、メタン発酵で易分解性を示す物質が多いことがより好ましい。   The process for supplying organic wastewater is not particularly limited. For example, high-boiling residues after terephthalic acid reaction / filtration, methyl acetate waste liquid, wastewater from polyester chip polymerization process, p-toluic acid, p-toluylaldehyde production process Reaction waste liquid, etc. are mentioned. Of course, it is more preferable that there are many substances which are easily decomposable by methane fermentation, such as acetic acid and methanol.

本発明において、メタン発酵槽の供給部、すなわち調整槽5でのCOD(Cr)濃度が、好ましくは5000〜10000mg/Lより好ましくは5000〜8000mg/Lである。調整槽5のCOD(Cr)濃度が、上記範囲を超えると、前述のとおり濃度阻害によるグラニュールの活性低下や過負荷が起こる可能性が高まり、上記範囲未満であると餌の不足による菌体同士の相互捕食(共食い)が懸念されるため好ましくない。   In this invention, the COD (Cr) density | concentration in the supply part of the methane fermenter, ie, the adjustment tank 5, becomes like this. Preferably it is 5000-10000 mg / L, More preferably, it is 5000-8000 mg / L. If the COD (Cr) concentration in the adjustment tank 5 exceeds the above range, there is a high possibility that granule activity will be reduced and overload will occur due to concentration inhibition as described above. Since mutual predation (cannibalism) is concerned, it is not preferable.

すなわち、グラニュールの活性に合わせて有機性排水供給量を調整し、暴露濃度はできるだけ上記適正範囲内で一定となるように運転することが安定運転には好ましい。またメタン発酵槽7から調整槽5へ循環させる排水の量も、調整槽5内のCOD(Cr)濃度が上記範囲内で安定するように調整することが望ましい。   That is, it is preferable for stable operation that the organic waste water supply amount is adjusted in accordance with the activity of the granule, and the exposure concentration is as constant as possible within the appropriate range. It is also desirable to adjust the amount of waste water circulated from the methane fermentation tank 7 to the adjustment tank 5 so that the COD (Cr) concentration in the adjustment tank 5 is stable within the above range.

メタン発酵槽に供給する有機性排水のCOD(Cr)濃度が、上記範囲内であると、グラニュールへのCOD(Cr)曝露濃度が、培養時のCOD(Cr)濃度とほぼ同等であるため、適当であり、グラニュールの活性を効率よく発揮させることができる。このためメタン発酵槽7から調整槽5へ還流する循環量もこのCOD(Cr)濃度を達成するよう調整することが、好ましい。   If the COD (Cr) concentration of the organic wastewater supplied to the methane fermenter is within the above range, the COD (Cr) exposure concentration to the granule is almost the same as the COD (Cr) concentration during culture. It is suitable and the activity of the granule can be efficiently exhibited. For this reason, it is preferable to adjust the circulation amount returned from the methane fermentation tank 7 to the adjustment tank 5 so as to achieve this COD (Cr) concentration.

本発明において、メタン発酵槽7のpHは、pH6〜8の間での運転が好ましく、pH6〜7での運転がより好ましい。このため調整槽5において、有機性排水のpH調整を行う。pH調整では、苛性ソーダが安価であり、よく用いられるが、グラニュールに毒性を与えない濃度範囲で無機アルカリ源を供給することが好ましい。   In the present invention, the methane fermentation tank 7 is preferably operated at a pH of 6 to 8, more preferably at a pH of 6 to 7. Therefore, the pH of the organic waste water is adjusted in the adjustment tank 5. In pH adjustment, caustic soda is inexpensive and often used. However, it is preferable to supply an inorganic alkali source in a concentration range that does not give toxicity to granules.

本発明において、メタン発酵槽7の設定条件は、通常のグラニュールであれば、温度30℃〜40℃、高温耐性菌を用いる場合は50〜55℃での運転が好ましい。温度調整は調整槽5などで直接蒸気を吹き込んでもよいし、熱交換器などにより間接的にヒーターやクーラーを用いてもよい。   In this invention, if the setting conditions of the methane fermenter 7 are a normal granule, the temperature 30 to 40 degreeC and the operation at 50 to 55 degreeC are preferable when using a high temperature tolerance microbe. For temperature adjustment, steam may be directly blown in the adjustment tank 5 or the like, or a heater or a cooler may be used indirectly by a heat exchanger or the like.

本発明で用いるメタン発酵槽7は、どのような形でも良いが、グラニュールと排水がよく混合することが好ましい。ただし、メタン発酵槽内の強い攪拌によりグラニュールが破砕しないよう注意する必要がある。例えば、完全混合槽や回分式、流動床などが好ましい。   The methane fermentation tank 7 used in the present invention may have any shape, but it is preferable that the granule and the waste water are mixed well. However, care must be taken not to crush the granules due to strong agitation in the methane fermenter. For example, a complete mixing tank, a batch type, a fluidized bed, etc. are preferable.

本発明において、メタン発酵槽の形式は、底部より有機性排水を供給し、グラニュールを充填した縦型塔に上昇流で通液してバイオガスを発生させる上向嫌気性スラッジブランケット(UASB)方式が好ましい。より好ましくは発生するガスで内部を攪拌させる石川島播磨重工業社製インターナルサーキュレーション(IC)リアクターが最も好ましい。   In the present invention, the form of the methane fermenter is an upward anaerobic sludge blanket (UASB) in which organic wastewater is supplied from the bottom and passed through a vertical tower filled with granules in an upward flow to generate biogas. The method is preferred. More preferably, an internal circulation (IC) reactor manufactured by Ishikawajima-Harima Heavy Industries Co., Ltd. in which the inside is stirred with the generated gas is most preferable.

本発明において、充填するグラニュールの量は、メタン発酵槽に対して、好ましくは1/100〜1/20[トン-乾燥グラニュール/m-槽容積]程度であり、より好ましくは1/40〜1/60[トン-乾燥グラニュール/m-槽容積]である。なお、グラニュールの充填量の決定は、供給する有機性排水のCOD(Cr)負荷により、適宜決定すれば良い。 In the present invention, the amount of granules to be filled is preferably about 1/100 to 1/20 [ton-dry granule / m 3 -volume of tank], more preferably 1/100 to the methane fermentation tank. 40 to 1/60 [ton-dry granule / m 3 -tank volume]. The granule filling amount may be appropriately determined according to the COD (Cr) load of the organic wastewater to be supplied.

本発明において、メタン発酵槽へ供給する有機性排水のCOD(Cr)負荷は、10〜40kg-COD(Cr)/m-メタン発酵槽・Dayが好ましく、より好ましくは20〜30kg-COD(Cr)/m-メタン発酵槽・Dayである。 In the present invention, the COD (Cr) load of the organic waste water supplied to the methane fermentation tank is preferably 10 to 40 kg-COD (Cr) / m 3 -methane fermentation tank · Day, more preferably 20 to 30 kg-COD ( Cr) / m 3 -methane fermenter · Day.

本発明において、メタン発酵槽において有機物を生物分解処理されて排出される処理排水は、COD(Cr)濃度が、好ましくは10000mg/L以下、より好ましくは8000 mg/L以下である。処理排水のCOD(Cr)濃度が、上記範囲を超えると未処理のCOD(Cr)が多く、COD(Cr)除去が不十分となることが懸念される。処理排水の一部は、調整槽5に状態調整のため還流されるが、大部分は有機物の分解処理が完了した処理排水として、系外に排出される。   In the present invention, the treated wastewater discharged from the methane fermenter after biodegradation of organic matter has a COD (Cr) concentration of preferably 10,000 mg / L or less, more preferably 8000 mg / L or less. If the COD (Cr) concentration of the treated wastewater exceeds the above range, there is a concern that untreated COD (Cr) is large and COD (Cr) removal becomes insufficient. A part of the treated wastewater is returned to the adjustment tank 5 for condition adjustment, but most of the treated wastewater is discharged out of the system as treated wastewater after the organic substance decomposition treatment is completed.

本発明において、処理排水の一部は、酢酸濃度の分析用に使用される。処理排水から分取された分析用の処理排水は、先ずイオン交換処理が行われる。イオン交換処理に使用されるイオン交換樹脂は、好ましくはカチオン交換樹脂であり、より好ましくはH(水素)型カチオン交換樹脂である。このようなカチオン交換樹脂として、レバチット(三井化学社製)、ダイヤイオン(三菱化学社製)、アンバーライト(オルガノ社製)、等が挙げられる。   In the present invention, a part of the treated waste water is used for analysis of acetic acid concentration. The analytical treatment wastewater collected from the treatment wastewater is first subjected to ion exchange treatment. The ion exchange resin used for the ion exchange treatment is preferably a cation exchange resin, and more preferably an H (hydrogen) type cation exchange resin. Examples of such a cation exchange resin include Levacit (manufactured by Mitsui Chemicals), Diaion (manufactured by Mitsubishi Chemical), Amberlite (manufactured by Organo), and the like.

本発明のイオン交換処理の方法は、中和された酢酸塩から酢酸を遊離するものであれば、特に制限はないが、処理排水にイオン交換樹脂を添加して撹拌混合する方法である。例えば、再生済みのH型カチオン交換樹脂を、処理排水100重量部に対して、好ましくは50〜70重量部、より好ましくは55〜65重量部添加して、好ましくは10〜30分間、より好ましくは15〜25分間、撹拌混合するとよい。その後、吸引濾過して、濾液をガスクロマトグラフィーの分析に使用する。   The ion exchange treatment method of the present invention is not particularly limited as long as it releases acetic acid from the neutralized acetate, but is a method in which an ion exchange resin is added to the treated waste water and stirred and mixed. For example, the regenerated H-type cation exchange resin is preferably added in an amount of 50 to 70 parts by weight, more preferably 55 to 65 parts by weight, and more preferably 10 to 30 minutes, relative to 100 parts by weight of the treated wastewater. May be stirred and mixed for 15 to 25 minutes. The solution is then filtered with suction and the filtrate is used for gas chromatography analysis.

本発明に使用するガスクロマトグラフィーは、酢酸が検出可能であればどのような方式でも構わないが、検出器がFID方式であることが好ましい。   The gas chromatography used in the present invention may be any method as long as acetic acid can be detected, but the detector is preferably an FID method.

本発明において処理排水中の酢酸濃度を測定する方法の一例を説明する。まず、処理排水サンプル100容積部に再生済みのカチオン交換樹脂60容積部を添加し、20分間撹拌した後吸引濾過し、ろ液を100mlメスフラスコへ入れイオン交換水で標線に合わせ、分析用液とする。次に、分析用液8ml容量測定+内標液(1,4−ジオキサン 25.4mg/イオン交換水2ml)2mlを試験管に入れ、良く撹拌する。ガスクロマトグラフィーへ1μL注入し、分析を開始して30分程度測定の後、分析結果を読みとる。   An example of a method for measuring the acetic acid concentration in the treated waste water in the present invention will be described. First, 60 parts by volume of the regenerated cation exchange resin is added to 100 parts by volume of the treated wastewater sample, stirred for 20 minutes and then filtered by suction. The filtrate is placed in a 100 ml volumetric flask and aligned with a marked line with ion-exchanged water for analysis. Use liquid. Next, 8 ml of analytical solution volume measurement + internal standard solution (1,4-dioxane 25.4 mg / ion exchange water 2 ml) 2 ml is put in a test tube and stirred well. Inject 1 μL into gas chromatography, start the analysis, measure for about 30 minutes, and then read the analysis result.

ガスクロマトグラフィー測定は、例えば、本体に島津製作所社製GC7A、カラムにPEG−20M chromosorb W AW−DMCS 20% mesh80〜100(島津製作所社製)、カラム長さはφ3.1mm×2.1m、カラム温度60→150℃、Initial time4分、昇温速度8℃/分、検出器温度200℃、検出器種類はFID、キャリアーはHe(40ml/min)により、測定することができる。   Gas chromatographic measurement is, for example, GC7A manufactured by Shimadzu Corporation for the main body, PEG-20M chromosorb WA A-DMCS 20% mesh 80 to 100 (manufactured by Shimadzu Corporation) for the column, and column length of φ3.1 mm × 2.1 m, Column temperature 60 → 150 ° C., Initial time 4 minutes, heating rate 8 ° C./min, detector temperature 200 ° C., detector type FID, carrier can be measured by He (40 ml / min).

本発明は、処理排水中の酢酸濃度が、イオン交換処理を行うことでガスクロマトグラフィーによる分析が可能となり、正しい酢酸濃度を測定することが可能であり、メタン発酵槽における酢酸濃度を正確に把握することができ、運転管理上、負荷上昇の可否を、正確に判断することが可能となる。   In the present invention, the concentration of acetic acid in the treated wastewater can be analyzed by gas chromatography by performing ion exchange treatment, the correct acetic acid concentration can be measured, and the acetic acid concentration in the methane fermentation tank can be accurately grasped. In view of operation management, it is possible to accurately determine whether or not the load can be increased.

本発明の運転方法は、処理排水中の酢酸濃度が、好ましくは300ppm以下、より好ましくは60ppm以下であるとき、メタン発酵槽の負荷を増やすメタン発酵槽の運転方法である。処理排水中の酢酸濃度が、300ppmを超える場合、過負荷で酢酸の被毒によりメタンガスの発生が減少する傾向にあるため、メタン発酵槽の負荷を増やすことは好ましくない。   The operating method of the present invention is an operating method of a methane fermenter that increases the load of the methane fermenter when the concentration of acetic acid in the treated wastewater is preferably 300 ppm or less, more preferably 60 ppm or less. When the concentration of acetic acid in the treated wastewater exceeds 300 ppm, it is not preferable to increase the load on the methane fermentation tank because the generation of methane gas tends to decrease due to acetic acid poisoning due to overload.

なお、メタン発酵槽の負荷は、有機性排水の1日当たりの供給量において、KCrを酸化剤とする化学的酸素消費量[COD(Cr)]の総量を、メタン発酵槽の容積で除した値である。負荷の調整は、メタン発酵槽への有機性排水の供給量および/または有機性排水のCOD(Cr)濃度により、調整することができる。 The load of the methane fermenter is the total amount of chemical oxygen consumption [COD (Cr)] using K 2 Cr 2 O 7 as an oxidant in the daily supply of organic wastewater. The value divided by the volume. The load can be adjusted by adjusting the amount of organic wastewater supplied to the methane fermentation tank and / or the COD (Cr) concentration of the organic wastewater.

本発明のメタン発酵槽の運転方法は、負荷を増加させる1回当たり、(負荷上昇量)/(負荷上昇前の負荷量)の比が、好ましくは1.0未満、より好ましくは0.25未満である。1回当たりの負荷上昇率が、1.0以上であると大きな濃度変化による濃度阻害のため過負荷となり、酢酸が蓄積して活性が低下する傾向があり、好ましくない。   In the operation method of the methane fermenter of the present invention, the ratio of (load increase amount) / (load amount before load increase) is preferably less than 1.0, more preferably 0.25 per one time to increase the load. Is less than. If the rate of increase in load per cycle is 1.0 or more, it is not preferable because the concentration is inhibited by a large concentration change, resulting in overload, acetic acid accumulating and a decrease in activity.

本発明のメタン発酵槽の運転方法は、メタン発酵槽の負荷を一旦上昇させた後、次に負荷上昇させるまでの期間が、好ましくは3日以上、より好ましくは3〜5日である。メタン発酵槽の負荷上昇から次の負荷上昇までの期間が、3日未満であると、濃度変化に慣れていない菌体にさらに高濃度を暴露させることとなるため過負荷の懸念があり、好ましくない。   In the operation method of the methane fermenter of the present invention, the period until the load is increased after the load of the methane fermenter is once increased is preferably 3 days or more, more preferably 3 to 5 days. If the period from the load increase of the methane fermenter to the next load increase is less than 3 days, there is a concern of overloading because the cells that are not accustomed to the change in concentration will be exposed to higher concentrations. Absent.

また、本発明のメタン発酵槽の運転方法は、処理排水中の酢酸濃度が、好ましくは300ppm以上、より好ましくは150ppm以上であるとき、メタン発酵槽の負荷を低減させるメタン発酵槽の運転方法である。処理排水中の酢酸濃度が、500ppm以上であるときは、メタン発酵槽内が過負荷の状態にあり、酢酸濃度が蓄積する悪循環に陥る危険性があり、すぐに負荷を低減させて酢酸濃度を低下させることが好ましい。   Moreover, the operation method of the methane fermentation tank of the present invention is an operation method of the methane fermentation tank that reduces the load of the methane fermentation tank when the concentration of acetic acid in the treated wastewater is preferably 300 ppm or more, more preferably 150 ppm or more. is there. When the concentration of acetic acid in the treated wastewater is 500 ppm or more, the inside of the methane fermentation tank is overloaded, and there is a risk of falling into a vicious circle where acetic acid concentration accumulates. It is preferable to reduce.

本発明は以下の実施例に限定されるものではない。   The present invention is not limited to the following examples.

〔メタン発酵処理設備〕
石川島播磨重工業製リアクター(メタン発酵槽の容量550m)、温度35℃、pH6.5〜6.8、充填グラニュールは10トン(乾燥ベース)、有機性排水のメタン発酵槽への初期の供給量は100m/hとする。
[Methane fermentation treatment equipment]
Reactor made by Ishikawajima-Harima Heavy Industries (capacity of methane fermentation tank: 550 m 3 ), temperature: 35 ° C., pH: 6.5-6.8, packed granule: 10 tons (dry basis) The amount is 100 m 3 / h.

〔イオン交換処理〕
処理排水50gに、カチオン交換樹脂(三井化学社製レバチット)30gを添加し、20分間撹拌した後、吸引濾過し、ろ液を100mlメスフラスコへ入れイオン交換水で標線に合わせ、分析用試料液とする。
[Ion exchange treatment]
30 g of cation exchange resin (Lebatit manufactured by Mitsui Chemicals, Inc.) is added to 50 g of treated waste water, and after stirring for 20 minutes, suction filtration is performed. Use liquid.

〔ガスクロマトグラフィー測定〕
分析用試料液8ml(容量測定)+内標液(1,4−ジオキサン 25.4mg/イオン交換水2ml)2mlを試験管に入れ、良く撹拌する。ガスクロマトグラフィーへ1μL注入し、分析を開始する。
[Gas chromatography measurement]
Place 8 ml of sample solution for analysis (volumetric measurement) + 2 ml of internal standard solution (1,4-dioxane 25.4 mg / ion-exchanged water 2 ml) in a test tube and stir well. Inject 1 μL into gas chromatography and start analysis.

ガスクロマトグラフィー測定は、本体に島津製作所社製GC7A、カラムにPEG−20M chromosorb W AW−DMCS 20% mesh80〜100(島津製作所社製)、カラム長さはφ3.1mm×2.1m、カラム温度60→150℃、Initial time4分、昇温速度8℃/分、検出器温度200℃、検出器種類はFID、キャリアーはHe(40ml/min)で測定した。   The gas chromatographic measurement is GC7A manufactured by Shimadzu Corporation for the main body, PEG-20M chromosorb WA A-DMCS 20% mesh 80-100 (manufactured by Shimadzu Corporation) for the column, the column length is φ3.1 mm × 2.1 m, the column temperature 60 → 150 ° C., Initial time 4 minutes, temperature rising rate 8 ° C./min, detector temperature 200 ° C., detector type FID, carrier was He (40 ml / min).

〔有機酸濃度分析の方法〕
処理排水100部を丸底フラスコに取り、0.1規定の硫酸1部を添加した後、アルコールランプなどで10分間炊きあげた後、0.1規定の苛性ソーダを用いて滴定し、pH4〜7までの間に消費した量から当量を読みとる方法により、有機酸濃度を測定した。なお、有機酸濃度は、当量分が全て酢酸として換算した値を示しているものとして取り扱う。
[Method of organic acid concentration analysis]
Take 100 parts of treated wastewater in a round bottom flask, add 1 part of 0.1 N sulfuric acid, cook for 10 minutes with an alcohol lamp, etc., then titrate with 0.1 N caustic soda, pH 4-7 The organic acid concentration was measured by the method of reading the equivalent amount from the amount consumed during It should be noted that the organic acid concentration is handled assuming that all equivalents show values converted as acetic acid.

比較例1
テレフタル酸製造工程からの高沸廃液および酢酸メチル廃液を主とするパラトルイル酸、安息香酸、テレフタル酸、酢酸を含む有機性排水を、上記のメタン発酵処理設備を用いて、メタン発酵処理した。有機性廃水(供給液)および処理排水における有機酸濃度および酢酸濃度を測定し、その結果を表1に示した。なお、表中のメタン発酵槽の負荷は、1日当たりのメタン発酵槽へのCOD(Cr)供給量を、メタン発酵槽の容積で除したものである。
Comparative Example 1
Organic wastewater containing paratoluic acid, benzoic acid, terephthalic acid, and acetic acid mainly composed of high boiling waste liquid and methyl acetate waste liquid from the terephthalic acid production process was subjected to methane fermentation using the above methane fermentation treatment equipment. The organic acid concentration and the acetic acid concentration in the organic waste water (feed solution) and the treated waste water were measured, and the results are shown in Table 1. In addition, the load of the methane fermentation tank in a table | surface remove | divides the COD (Cr) supply amount to the methane fermentation tank per day by the volume of the methane fermentation tank.

また、処理排水中の酢酸濃度を、事前にイオン交換処理を行わずに、ガスクロマトグラフィーによる前記の方法で分析した。処理排水中の有機酸濃度は、連続的に300〜600mg/Lを指示しており、イオン交換処理なしのガスクロマトグラフィーによる酢酸濃度の分析結果もNDを示した。   Moreover, the acetic acid density | concentration in process waste_water | drain was analyzed by the said method by a gas chromatography, without performing an ion exchange process in advance. The organic acid concentration in the treated waste water continuously indicated 300 to 600 mg / L, and the analysis result of the acetic acid concentration by gas chromatography without ion exchange treatment also showed ND.

また、バイオガスの発生量も安定していたため、供給流量を27m/hから32m/hに上げることで、メタン発酵槽の負荷をアップさせた。 Moreover, since the generation amount of biogas was stable, the load of the methane fermentation tank was increased by increasing the supply flow rate from 27 m 3 / h to 32 m 3 / h.

しかし、その後、バイオガスの発生量が低下したため、すぐに負荷を低下させた。後ほど処理液中の酢酸濃度を、イオン交換処理を実施してガスクロマトグラフィーを用いて測定した。   However, since then the amount of biogas generated decreased, the load was immediately reduced. Later, the acetic acid concentration in the treatment liquid was measured using gas chromatography after ion exchange treatment.

負荷アップ後の有機酸濃度および酢酸濃度、並びにイオン交換処理後のガスクロマトグラフィーによる酢酸濃度の結果を表1に示した。   Table 1 shows the results of the organic acid concentration and the acetic acid concentration after the load increase, and the acetic acid concentration by gas chromatography after the ion exchange treatment.

Figure 2007007494
Figure 2007007494

イオン交換処理後のガスクロマトグラフィーによる酢酸濃度測定の結果、処理水中酢酸濃度は、負荷アップ前に350ppmであり、負荷アップ後には1800ppmまで上昇していた。   As a result of measuring the acetic acid concentration by gas chromatography after the ion exchange treatment, the acetic acid concentration in the treated water was 350 ppm before the load was increased and increased to 1800 ppm after the load was increased.

実施例1
比較例1と同じ成分の有機性排水(供給液)を、比較例1と同様にして、メタン発酵処理した。処理排水中の有機酸濃度・酢酸濃度とその後の負荷アップ結果を、表2に示す。
Example 1
Organic wastewater (feed liquid) having the same components as in Comparative Example 1 was subjected to methane fermentation in the same manner as in Comparative Example 1. Table 2 shows the organic acid concentration / acetic acid concentration in the treated waste water and the subsequent load increase results.

Figure 2007007494
Figure 2007007494

負荷アップ前の有機酸濃度は、400ppmでありと比較例1と同等であったが、事前に上記のとおりイオン交換処理を導入してガスクロマトグラフィーによる酢酸を測定したところ10ppm未満であることが判明した。このため、メタン発酵槽の負荷を22m/hから26m/h[(負荷上昇量)/(負荷上昇前の負荷量)の比が0.18]にアップした。 The organic acid concentration before the load increase was 400 ppm, which was equivalent to Comparative Example 1. However, when acetic acid was measured in advance by introducing ion exchange treatment as described above, it was found to be less than 10 ppm. found. For this reason, the load of the methane fermenter was increased from 22 m 3 / h to 26 m 3 / h [(load increase amount) / (load amount before load increase) ratio of 0.18].

この結果、バイオガスの発生量が上昇し、メタン発酵処理の性能は追従した。このとき3日後の酢酸濃度は10ppm未満であった。   As a result, the amount of biogas generated increased and the performance of the methane fermentation treatment followed. At this time, the acetic acid concentration after 3 days was less than 10 ppm.

実施例1および比較例1の相違点は、前回のメタン発酵層の負荷アップ後、実施例1が4日であったのに対して、比較例1は2日であった。このため、比較例1は、メタン発酵槽内のメタン菌が、十分に安定する前の段階であった。したがって、比較例1の場合において、事前に、本発明の運転方法により、処理排水をイオン交換処理してガスクロマトグラフィーにより酢酸濃度を測定すれば、酢酸濃度が400ppmであることが判明し、負荷アップは不適であると、正確に判断できたものと期待される。   The difference between Example 1 and Comparative Example 1 was that Example 1 was 4 days after the previous load up of the methane fermentation layer, whereas Comparative Example 1 was 2 days. For this reason, the comparative example 1 was the stage before the methane microbe in a methane fermenter fully stabilized. Therefore, in the case of Comparative Example 1, if the acetic acid concentration is measured by gas chromatography by ion-exchange treatment of the treated wastewater in advance by the operation method of the present invention, it is found that the acetic acid concentration is 400 ppm, and the load It is expected that the app could be accurately judged to be inappropriate.

実施例2
比較例1と同じ成分の有機性排水(供給液)を、比較例1と同様にして、メタン発酵処理した。処理排水中の有機酸濃度・酢酸濃度とその後の負荷アップ結果を、表3に示す。
Example 2
Organic wastewater (feed liquid) having the same components as in Comparative Example 1 was subjected to methane fermentation in the same manner as in Comparative Example 1. Table 3 shows the organic acid concentration / acetic acid concentration in the treated waste water and the subsequent load increase results.

Figure 2007007494
Figure 2007007494

負荷アップ前の有機酸濃度は、400ppmと比較例1と同等であったが、事前に上記のとおりイオン交換処理を導入してガスクロマトグラフィーによる酢酸を測定したところ10ppm未満であることが判明した。負荷を15m/hから35m/h[(負荷上昇量)/(負荷上昇前の負荷量)の比が1.3]にアップした。 The organic acid concentration before the load increase was 400 ppm, which was the same as that in Comparative Example 1. However, when ion exchange treatment was introduced in advance as described above and the acetic acid was measured by gas chromatography, it was found to be less than 10 ppm. . The load increased from 15 m 3 / h to 35 m 3 / h [(load increase amount) / (load amount before load increase) ratio 1.3].

この結果、一時的にバイオガス発生量は上昇したが、その後、酢酸の蓄積が見られた。3日後の酢酸濃度は700ppmであったため負荷を低減した。   As a result, the amount of biogas generated temporarily increased, but acetic acid accumulated thereafter. Since the acetic acid concentration after 3 days was 700 ppm, the load was reduced.

本発明で使用するメタン発酵設備のフローの一例を示す説明図である。It is explanatory drawing which shows an example of the flow of the methane fermentation equipment used by this invention.

符号の説明Explanation of symbols

1 有機性排水
2 バッファタンク
3 流量計
4 COD(Cr)計
5 調整槽
6 リアクター供給水
7 メタン発酵槽(リアクター)
8 還流水
9 リアクター排出バイオガス
10 ガス流量計
11 処理排水
12 イオン交換処理
13 分析用処理排水(イオン交換処理後)
14 ガスクロマトグラフィー
DESCRIPTION OF SYMBOLS 1 Organic waste water 2 Buffer tank 3 Flow meter 4 COD (Cr) meter 5 Adjustment tank 6 Reactor supply water 7 Methane fermentation tank (reactor)
8 Reflux water 9 Reactor exhaust biogas 10 Gas flow meter 11 Treatment wastewater 12 Ion exchange treatment 13 Analytical treatment wastewater (after ion exchange treatment)
14 Gas chromatography

Claims (8)

有機酸を含む有機性排水をメタン発酵槽でメタン発酵処理によりメタンガスを分離して、処理排水として取り出すメタン発酵槽の運転方法であって、前記処理排水を予めイオン交換処理した後、該処理排水中の酢酸濃度を、ガスクロマトグラフィーを用いて定量分析し、得られた酢酸濃度を指標として前記有機性排水の供給量を制御するメタン発酵槽の運転方法。   An operation method of a methane fermentation tank that separates methane gas from an organic wastewater containing an organic acid by a methane fermentation treatment in a methane fermentation tank and takes out the treated wastewater as a treated wastewater. A method for operating a methane fermenter that quantitatively analyzes the concentration of acetic acid in a gas chromatograph and controls the amount of organic wastewater supplied using the obtained acetic acid concentration as an index. 前記イオン交換処理に、カチオン交換樹脂を使用する請求項1に記載のメタン発酵槽の運転方法。   The operation method of the methane fermenter of Claim 1 which uses a cation exchange resin for the said ion exchange process. 前記有機性排水の1日当たりの供給量において、KCrを酸化剤とする化学的酸素消費量[COD(Cr)]の総量を、前記メタン発酵槽の容積で除した値をメタン発酵槽の負荷として、前記処理排水中の酢酸濃度が300ppm以下であるとき、前記メタン発酵槽の負荷を増やす請求項1または2に記載のメタン発酵槽の運転方法。 In the daily supply amount of the organic waste water, a value obtained by dividing the total amount of chemical oxygen consumption [COD (Cr)] using K 2 Cr 2 O 7 as an oxidizing agent by the volume of the methane fermenter is methane. The operation method of the methane fermenter of Claim 1 or 2 which increases the load of the said methane fermenter, when the acetic acid density | concentration in the said treated wastewater is 300 ppm or less as a fermenter load. 前記有機酸が、酢酸以外の少なくとも1つのカルボン酸を含む請求項1〜3のいずれかに記載のメタン発酵槽の運転方法。   The operation method of the methane fermenter in any one of Claims 1-3 in which the said organic acid contains at least 1 carboxylic acid other than an acetic acid. 前記カルボン酸が、芳香族カルボン酸である請求項4に記載のメタン発酵槽の運転方法。   The method for operating a methane fermentation tank according to claim 4, wherein the carboxylic acid is an aromatic carboxylic acid. 前記芳香族カルボン酸が、パラトルイル酸、安息香酸、イソフタル酸、テレフタル酸の少なくとも1つである請求項5に記載のメタン発酵槽の運転方法。   The method for operating a methane fermenter according to claim 5, wherein the aromatic carboxylic acid is at least one of p-toluic acid, benzoic acid, isophthalic acid, and terephthalic acid. 前記メタン発酵槽の負荷を増やすときに、(負荷上昇量)/(負荷上昇前の負荷量)の比が1.0未満であるようにする請求項3〜6のいずれかに記載のメタン発酵槽の運転方法。   The methane fermentation according to any one of claims 3 to 6, wherein when the load of the methane fermentation tank is increased, the ratio of (load increase) / (load before the load increase) is less than 1.0. How to operate the tank. 前記メタン発酵槽の負荷を増やすときに、負荷上昇後、次に負荷上昇させるまでの期間が3日以上である請求項3〜7のいずれかに記載のメタン発酵槽の運転方法。   The method for operating a methane fermenter according to any one of claims 3 to 7, wherein when the load of the methane fermenter is increased, a period until the load is increased next after the load increase is 3 days or more.
JP2005188025A 2005-06-28 2005-06-28 Method of operating methane fermentation tank Withdrawn JP2007007494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188025A JP2007007494A (en) 2005-06-28 2005-06-28 Method of operating methane fermentation tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005188025A JP2007007494A (en) 2005-06-28 2005-06-28 Method of operating methane fermentation tank

Publications (1)

Publication Number Publication Date
JP2007007494A true JP2007007494A (en) 2007-01-18

Family

ID=37746655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188025A Withdrawn JP2007007494A (en) 2005-06-28 2005-06-28 Method of operating methane fermentation tank

Country Status (1)

Country Link
JP (1) JP2007007494A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043436A1 (en) * 2010-10-01 2012-04-05 栗田工業株式会社 Method and device for anaerobically treating wastewater containing terephthalic acid
JP2015171677A (en) * 2014-03-11 2015-10-01 住友重機械エンバイロメント株式会社 Water treatment method and water treatment device
US11249006B2 (en) 2016-05-26 2022-02-15 Sikora Ag Device and method for investigating bulk material
WO2024128322A1 (en) * 2022-12-16 2024-06-20 国立研究開発法人産業技術総合研究所 Method for treating refractory wastewater produced in steps for manufacturing pet raw material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043436A1 (en) * 2010-10-01 2012-04-05 栗田工業株式会社 Method and device for anaerobically treating wastewater containing terephthalic acid
JP2012076023A (en) * 2010-10-01 2012-04-19 Kurita Water Ind Ltd Method and device for anaerobically treating wastewater containing terephthalic acid
JP2015171677A (en) * 2014-03-11 2015-10-01 住友重機械エンバイロメント株式会社 Water treatment method and water treatment device
US11249006B2 (en) 2016-05-26 2022-02-15 Sikora Ag Device and method for investigating bulk material
WO2024128322A1 (en) * 2022-12-16 2024-06-20 国立研究開発法人産業技術総合研究所 Method for treating refractory wastewater produced in steps for manufacturing pet raw material

Similar Documents

Publication Publication Date Title
FI97240B (en) Procedures for the control and / or monitoring of biological processes
Cheng et al. Correlation of microbial community structure with pollutants removal, sludge reduction and sludge characteristics in micro-aerobic side-stream reactor coupled membrane bioreactors under different hydraulic retention times
Ge et al. Pre-treatment mechanisms during thermophilic–mesophilic temperature phased anaerobic digestion of primary sludge
US7407580B2 (en) System and method for treating carbon, nitrogen, phosphorous containing wastewater
Miao et al. Advanced nitrogen removal via nitrite using stored polymers in a modified sequencing batch reactor treating landfill leachate
Zhang et al. Research on characteristics of aerobic granules treating petrochemical wastewater by acclimation and co-metabolism methods
EP2323954B1 (en) Methods for processing organic waste
Han et al. Measuring the activity of heterotrophic microorganism in membrane bioreactor for drinking water treatment
Zahmatkesh et al. Effects of the microalgae, sludge and activated carbon on the wastewater treatment with low organics (weak wastewater)
US20230013004A1 (en) Systems, methods, and apparatus for increased wastewater effluent and biosolids quality
Chollom et al. Removal of antibiotics during the anaerobic digestion of slaughterhouse wastewater
JP2007007494A (en) Method of operating methane fermentation tank
Swinarski et al. Comparison of the effects of conventional and alternative external carbon sources on enhancing the denitrification process
AKBARPOUR et al. Wastewater treatment from antibiotics plant
Huang et al. Composite hydrolytic acidification-aerobic MBBR process for treating traditional Chinese medicine wastewater
JP5205316B2 (en) Wastewater treatment method
Gouider et al. Treatment of wastewaters from phosphate fertilizer industry
Li et al. Box-Behnken response surface approach to identify factors affecting membrane fouling in a hybrid membrane bioreactor treating domestic sewage
Le et al. Development of sequencing batch reactor performance for nitrogen wastewater treatment
Hu et al. Novel bio-degradation shortcut for the treatment of acrylonitrile-containing wastewater using column bio-oxidation with Sulfurovum bacteria in activated sludge
Oliveira et al. Winery wastewater treatment: evaluation of the air micro-bubble bioreactor performance
Qachach et al. Biological treatment of fuel wastewater generated from a thermal power plant by continuous and discontinuous aeration
Wang et al. Evaluation of biological removal efficiency in an UCT process treating municipal wastewater during start-up stage
Oliveira et al. Winery wastewater treatment: evaluation of the air micro-bubble bioreactor performance
Sánchez-Balseca et al. Biological treatment of wastewater denitrification using a biofilm reactor with rice husk as an energy source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090623

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100615