JP2909723B2 - Wastewater treatment control method and apparatus - Google Patents

Wastewater treatment control method and apparatus

Info

Publication number
JP2909723B2
JP2909723B2 JP20535996A JP20535996A JP2909723B2 JP 2909723 B2 JP2909723 B2 JP 2909723B2 JP 20535996 A JP20535996 A JP 20535996A JP 20535996 A JP20535996 A JP 20535996A JP 2909723 B2 JP2909723 B2 JP 2909723B2
Authority
JP
Japan
Prior art keywords
wastewater
bod
dissolved oxygen
aeration
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20535996A
Other languages
Japanese (ja)
Other versions
JPH1028992A (en
Inventor
尊夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OGAWA KANKYO KENKYUSHO JUGEN
Original Assignee
OGAWA KANKYO KENKYUSHO JUGEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OGAWA KANKYO KENKYUSHO JUGEN filed Critical OGAWA KANKYO KENKYUSHO JUGEN
Priority to JP20535996A priority Critical patent/JP2909723B2/en
Publication of JPH1028992A publication Critical patent/JPH1028992A/en
Application granted granted Critical
Publication of JP2909723B2 publication Critical patent/JP2909723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は好気性微生物を利用した
廃水処理法を運転制御する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling the operation of a wastewater treatment method utilizing aerobic microorganisms.

【0002】[0002]

【従来の技術】廃水処理の方法として、好気性微生物を
利用した生物処理法は広く一般的に用いられる廃水処理
法である。その代表的なプロセスとしては活性汚泥処理
法がある。また活性汚泥処理法にも曝気槽の形状、原廃
水の注入法や負荷のかけ方等により、標準活性汚泥法、
オキシデ−ションリッチ、ステップエアレ−ション法、
完全混合等さまざまなバリエ−ションがある。その処理
原理は共通で、好気性微生物が廃水中の汚濁物を捕捉し
酸素の供給を得て分解することにより生物活動するため
のエネルギ−を得たり、廃水中の汚濁物を分解、合成し
て自己の生体を維持、増殖する自然界の生物活動を高度
に濃縮することにより廃水を浄化することである。した
がって廃水を効率良く、また清浄に処理できるかは、好
気性微生物の活動をいかに活発な状態に維持していくか
による。
2. Description of the Related Art As a wastewater treatment method, a biological treatment method using an aerobic microorganism is a widely used wastewater treatment method. A typical process is an activated sludge treatment method. In addition, the activated sludge treatment method depends on the shape of the aeration tank, the method of injecting raw wastewater and the method of applying load, etc.
Oxidation rich, step aeration method,
There are various variations such as complete mixing. The treatment principle is common, and aerobic microorganisms capture the pollutants in wastewater and obtain oxygen for the supply of oxygen to decompose, thereby obtaining energy for biological activities, and decompose and synthesize pollutants in wastewater. Purification of wastewater by highly concentrating the biological activities of the natural world that maintain and proliferate their own organisms. Therefore, whether wastewater can be treated efficiently and cleanly depends on how active the aerobic microorganisms are.

【0003】活性汚泥処理における活性汚泥のBOD分
解速度は次のように表現できる。汚泥の活性度を単位量
の活性汚泥が適正なBOD物質と酸素の供給を受けたと
きに単位時間でBODを分解する能力と定義すると BOD分解速度=f(BOD濃度、溶存酸素濃度、ML
SS×汚泥の活性度) の関数である。ここにBODとは生物化学的酸素要求
量、MLSSは曝気槽混合液の汚泥濃度である。
[0003] The BOD decomposition rate of activated sludge in the activated sludge treatment can be expressed as follows. When the activity of sludge is defined as the ability of a unit amount of activated sludge to decompose BOD in a unit time when supplied with an appropriate amount of BOD substance and oxygen, BOD decomposition rate = f (BOD concentration, dissolved oxygen concentration, ML
SS × sludge activity). Here, BOD is the biochemical oxygen demand, and MLSS is the sludge concentration of the aeration tank mixture.

【0004】このため活性汚泥処理の運転には 1.適量の分解可能な汚濁物(=BOD負荷量)がある
こと 2.汚濁物を分解し、微生物の呼吸に必要な酸素が供給
されていること 3.汚濁物の量と基質にみあった微生物の種類、量を確
保し、それぞれの処理法に適した微生物が専ら繁殖しや
すい環境にすることが必要である。このための管理指標
として 1.原水のBODの代替指標としての化学的酸素要求量
(COD)等 2.曝気槽内の溶存酸素濃度(DO値) 3.MLSS値、pH、温度、塩濃度等 4.汚泥の状態をみる指標として、汚泥容積指標(SV
I)、MLSS、返送汚泥濃度等 5.処理水の状態を管理する指標としてCOD、透視
度、浮遊物濃度(SS)、pH等等がある。
[0004] For this reason, the operation of the activated sludge treatment is as follows. 1. There is an appropriate amount of decomposable pollutants (= BOD load). 2. Decompose pollutants and supply oxygen required for microbial respiration. It is necessary to ensure the amount of pollutants and the type and amount of microorganisms that are suitable for the substrate, and to create an environment in which microorganisms suitable for each treatment method can easily grow exclusively. As a management index for this: 1. Chemical oxygen demand (COD) as an alternative index of BOD of raw water 2. Dissolved oxygen concentration in the aeration tank (DO value) 3. MLSS value, pH, temperature, salt concentration, etc. The sludge volume index (SV
4. I), MLSS, returned sludge concentration, etc. Indices for managing the state of the treated water include COD, transparency, suspended solids concentration (SS), pH, and the like.

【0005】図1に標準活性汚泥処理装置の基本的なフ
ロ−チャ−ト示す。1は原水ポンプ、2は原水流量調節
バルブ、3は曝気槽、4は曝気用ブロア−、5はブロア
−の出力を調整するインバ−タ−、6は散気管、7は最
終沈殿池、8は返送汚泥ポンプ、9は返送汚泥流量調節
バルブである。通常の活性汚泥処理装置の運転は上記管
理指標を参考にして以下の操作をおこなう。 1.原水のBODと処理すべき廃水量、処理水の水質の
状況から原水調節バルブを操作して処理水量とBOD負
荷量(濃度×水量)を調節する。 2.BOD負荷量とDO値からインバ−タ−により曝気
ブロア−の風量を調節して曝気空気量を調節する。 3.SVIや返送汚泥濃度から返送汚泥調節バルブを操
作してMLSSを調節する。 管理指標を自動の分析計器や管理計器で管理し、その信
号をコンピュ−タで演算して上記操作量を制御すれば活
性汚泥処理装置の自動運転は理屈のうえでは可能である
が、実際の操業において実用化されている例はほとんど
ない。その原因は以下の2点に集約できる。 1.直接BODを運転操作に反映できるような短時間で
信頼に足る測定ができる自動計器がない。BODの代替
指標であるCOD等は迅速に測定可能な自動計器が実用
になっているが、実際の操業においては原水のBODは
多様な成分から成り且つ組成や濃度の変動が大きく、C
OD等の値から必ずしもBODの値を推定できない。 2.実際の操業においては汚泥の活性度は様々な因子か
ら影響を受けて変動しているが、その活性度を判断する
実操業に役立つ簡便な手段がない。(理屈では曝気槽で
分解除去されるBODとDO値等の運転条件から判断す
ることができるが、信頼に足るBODは短時間では得ら
れないため実際には不可能) このため、上記のような自動運転法は、廃水の基質変動
がほとんどないごく特殊な廃水の場合に限られている。
FIG. 1 shows a basic flowchart of a standard activated sludge treatment apparatus. 1 is a raw water pump, 2 is a raw water flow control valve, 3 is an aeration tank, 4 is an aeration blower, 5 is an inverter for adjusting the output of the blower, 6 is a diffuser pipe, 7 is a final sedimentation tank, 8 Is a return sludge pump, and 9 is a return sludge flow control valve. The normal operation of the activated sludge treatment apparatus performs the following operations with reference to the above management index. 1. The raw water control valve is operated to adjust the treated water amount and the BOD load (concentration × water amount) based on the BOD of the raw water, the amount of wastewater to be treated, and the quality of the treated water. 2. The air volume of the aeration blower is adjusted by the inverter based on the BOD load and the DO value to adjust the aeration air volume. 3. The MLSS is adjusted by operating the return sludge control valve based on the SVI and the return sludge concentration. Automatic management of the activated sludge treatment device is theoretically possible if the management index is managed by an automatic analysis instrument or management instrument, and the signal is calculated by a computer to control the above operation amount. Few examples have been put to practical use in operations. The causes can be summarized in the following two points. 1. There is no automatic instrument that can perform reliable measurement in a short time so that the BOD can be directly reflected in driving operation. Automatic instruments that can quickly measure COD, which is an alternative index of BOD, are practically used. However, in actual operation, the BOD of raw water is composed of various components, and the composition and concentration vary greatly.
The value of BOD cannot always be estimated from the value of OD or the like. 2. In an actual operation, the activity of sludge fluctuates under the influence of various factors, but there is no simple means for judging the activity useful for the actual operation. (In theory, it is possible to judge from the operating conditions such as the BOD and DO value that are decomposed and removed in the aeration tank, but it is not possible to obtain a reliable BOD in a short time.) Autonomous driving methods are limited to very specific wastewaters where there is little substrate variation in the wastewater.

【0006】このように自動運転のニ−ズは高いもの
の、変動の激しい実操業では管理指標から操作量への判
断はオペレ−タの技量に頼っているのが一般的である。
そして常時BOD等の処理水質を一定値以下に維持しよ
うとすれば、運転条件は廃水変動や汚泥の活性度の変動
を予測することが難しいため安全側に設定せざるを得な
い。このことは処理装置の本来の能力を十分生かしてい
ないことであり、また曝気ブロア−の動力を無駄に消費
していることになる。
As described above, although the need for automatic driving is high, in an actual operation in which fluctuations are severe, it is general that the judgment of the operation amount from the management index depends on the skill of the operator.
If the quality of the treated water such as BOD is constantly maintained at a certain value or less, it is difficult to predict the fluctuation of the wastewater and the fluctuation of the activity of the sludge. This means that the original capacity of the processing apparatus is not sufficiently utilized, and that the power of the aeration blower is wasted.

【0007】[0007]

【発明が解決しようとする課題】好気性微生物を利用す
る廃水処理において、処理中または処理後の廃水をサン
プリングして測定解析することにより、運転条件を制御
する自動運転制御方法及び装置を開発することにより、
装置運転の省力化、処理の安定、省エネルギ−を可能に
しようとするものである。
SUMMARY OF THE INVENTION In wastewater treatment utilizing aerobic microorganisms, an automatic operation control method and apparatus for controlling operating conditions by sampling and measuring and analyzing wastewater during or after treatment is developed. By doing
An object of the present invention is to enable labor saving of apparatus operation, stable processing, and energy saving.

【0008】[0008]

【課題を解決するための手段】好気性微生物を利用する
廃水処理において、曝気処理中の廃水をサンプリング
し、該廃水中の溶存酸素(DO1)を測定し、その後新
たなサンプリング廃水の流入を停止し酸素の供給をたっ
た状態で溶存酸素の減少する変化(DO2変化曲線)を
測定し、その後該廃水に空気を曝気して溶存酸素の増加
する変化(DO3変化曲線)を測定し、またはこのDO
3変化曲線に代る該廃水に既知量のBOD物質を含む液
を添加して空気を曝気して溶存酸素の増加する変化(D
O3′変化曲線)を測定し、DO1とDO2変化曲線と
DO3変化曲線またはDO3′変化曲線の形状から少な
くとも汚泥の活性度、未処理のBOD濃度、曝気空気量
の過不足の情報を特定し、目標とする汚泥の活性度、未
処理のBOD濃度及び目標とする検査DO曲線パターン
と比較して、曝気空気量や処理量等の運転条件の制御信
号や警報信号を出力する。
SUMMARY OF THE INVENTION In wastewater treatment using aerobic microorganisms, wastewater during aeration treatment is sampled, dissolved oxygen (DO1) in the wastewater is measured, and then the inflow of new sampled wastewater is stopped. The change of decreasing dissolved oxygen (DO2 change curve) is measured with oxygen supplied , and then the wastewater is aerated with air to measure the increasing change of dissolved oxygen (DO3 change curve). Or this DO
A liquid containing a known amount of a BOD substance is added to the wastewater instead of the three-change curve, and air is aerated to increase the dissolved oxygen (D)
O3 'change curve), and at least information on sludge activity, untreated BOD concentration, and excess or deficiency of aeration air is specified from the shapes of the DO1 and DO2 change curves and the DO3 change curve or the DO3' change curve. The target sludge activity, the untreated BOD concentration, and the target inspection DO curve pattern are compared with each other, and a control signal and an alarm signal for operating conditions such as an aeration air amount and a processing amount are output.

【0009】[0009]

【実施例】図2は標準活性汚泥処理装置の曝気槽内のB
OD濃度、混合液の溶存酸素濃度、曝気空気量の分布状
態を示す模式図である。曝気槽入口付近はBOD濃度が
高く活性汚泥のBOD分解のための酸素消費速度が大き
いため曝気空気量を多くしても通常混合液の溶存酸素濃
度は低い。曝気槽の出口付近になり処理がすすんで分解
できるBOD濃度が小さくなると活性汚泥のBOD分解
のための酸素消費速度が小さくなるため混合液中の溶存
酸素濃度は上昇する。この変化はBOD濃度が小さくな
ると顕著に変化するため、曝気槽の出口付近の混合液の
溶存酸素濃度の変化で処理の状況をある程度判断でき
る。
FIG. 2 shows B in an aeration tank of a standard activated sludge treatment apparatus.
It is a schematic diagram which shows the distribution state of OD density | concentration, the dissolved oxygen density | concentration of a liquid mixture, and the amount of aeration air. Since the BOD concentration is high near the inlet of the aeration tank and the oxygen consumption rate for the BOD decomposition of the activated sludge is high, the dissolved oxygen concentration of the mixed solution is usually low even if the amount of aerated air is increased. When the concentration of the BOD that can be decomposed is reduced near the outlet of the aeration tank due to the progress of the treatment, the oxygen consumption rate for the BOD decomposition of the activated sludge decreases, and the dissolved oxygen concentration in the mixed solution increases. Since this change remarkably changes as the BOD concentration decreases, the state of the treatment can be determined to some extent from the change in the dissolved oxygen concentration of the mixed solution near the outlet of the aeration tank.

【0010】本発明による処理の状況を把握する検出法
について述べる。図3は本検出法を示す模式図である。
検出法の1サイクルは次の3つの段階から構成される。
第1ステップはサンプリングした曝気槽内の活性汚泥廃
液中の溶存酸素を測定する段階、第2ステップは同廃液
を酸素の供給を断って溶存酸素濃度が減少していく過程
を測定する段階、第3ステップは同廃液を再曝気して溶
存酸素濃度が上昇していく過程を測定する段階である。
この段階では既知量のBOD物質を添加して再曝気して
溶存酸素の上昇過程を測定する第3´ステップを第3ス
テップのかわりにする場合もある。
A detection method for grasping the status of processing according to the present invention will be described. FIG. 3 is a schematic diagram illustrating the present detection method.
One cycle of the detection method includes the following three stages.
The first step is a step of measuring dissolved oxygen in the activated sludge waste liquid in the sampled aeration tank. The second step is a step of measuring the process of decreasing the dissolved oxygen concentration by cutting off the supply of oxygen to the waste liquid. The third step is a step of measuring the process of increasing the dissolved oxygen concentration by re-aeration of the waste liquid.
At this stage, the 3 ′ step of adding a known amount of BOD substance and measuring the process of increasing dissolved oxygen by re-aeration may be used instead of the third step.

【0011】図3中の実線のカ−ブは典型的な例につい
ての溶存酸素の変化を示すものである。第1ステップは
測定容器中に入っている前サイクル第3ステップの廃液
を新たなサンプリング廃液により押出し、完全に置換し
て溶存酸素濃度を安定してから測定する。測定値DOS1は
曝気槽中の溶存酸素濃度を表わす。DOS1の値は汚泥の活
性度との関連において未処理BODとの相対的な曝気空
気量の過不足の程度を表わす複合情報を提供する。サン
プリング容器の形状、サンプリング液流量等にもよるが
通常第1ステップに要する時間t1は3〜5分程度であ
る。
The curve in solid line in FIG. 3 shows the change in dissolved oxygen for a typical example. In the first step, the waste liquid in the third step of the previous cycle contained in the measuring vessel is extruded with new sampling waste liquid, and is completely replaced to measure the dissolved oxygen concentration. The measured value DOS1 represents the dissolved oxygen concentration in the aeration tank. The value of DOS1 provides complex information indicating the degree of excess or deficiency of aerated air relative to untreated BOD in relation to sludge activity. The time t1 required for the first step is usually about 3 to 5 minutes, depending on the shape of the sampling container, the flow rate of the sampling liquid, and the like.

【0012】第2ステップでは新たなサンプリング液の
流入を停止する。混合液中の活性汚泥の呼吸やBODの
分解により溶存酸素が消費されていくので溶存酸素濃度
が減少する。汚泥の活性度が良好でBOD物質が十分あ
れば、速やかに溶存酸素が消費されていく。逆に汚泥の
活性度が悪い場合やBOD物質が少ない場合は溶存酸素
の消費が緩やかになりなかなか0ppmにならない。す
なわち第2ステップの測定カ−ブは汚泥の活性度と未処
理のBODの複合情報になる。図4は第2ステップでの
典型カ−ブの2例を模式的に表わしたものである。aの
カ−ブは前者の典型パタ−ン、bのカ−ブは後者の典型
パタ−ンである。第2ステップの測定時間t2は上記の
差を検知するのに必要十分な時間に設定し、通常は7分
〜15分が適当である。但し第1ステップでの溶存酸素
濃度が既に低い場合には有効なデ−タとはならないた
め、測定サイクル時間の短縮を目的に第2ステップの測
定時間を極端に短くすることができる。
In the second step, the flow of new sampling liquid is stopped. Since the dissolved oxygen is consumed by the respiration of the activated sludge in the mixed solution and the decomposition of the BOD, the dissolved oxygen concentration decreases. If the activity of the sludge is good and the BOD substance is sufficient, the dissolved oxygen is rapidly consumed. Conversely, when the sludge activity is low or when the amount of BOD substance is small, the consumption of dissolved oxygen becomes slow and it is difficult to reach 0 ppm. That is, the measurement curve in the second step is composite information of the sludge activity and the untreated BOD. FIG. 4 schematically shows two examples of typical curves in the second step. The curve a is a typical pattern of the former, and the curve b is a typical pattern of the latter. The measurement time t2 of the second step is set to a time necessary and sufficient for detecting the above difference, and usually 7 to 15 minutes is appropriate. However, if the dissolved oxygen concentration in the first step is already low, it will not be effective data, so that the measurement time in the second step can be extremely shortened for the purpose of shortening the measurement cycle time.

【0013】第3ステップでは第2ステップの終了液を
再曝気する。図7は第3ステップでの現象を説明する模
式図である。図のgの曲線はBOD濃度の経時変化を示
す。hの曲線は溶存酸素DOL の経時変化を示す。汚泥
の活性度が良でBOD物質が十分ある場合にはBODの
分解速度は酸素の供給速度が分解反応の律速となる。こ
のときのDOの値(DOL )は下記の式で表わされる。 γ=KL a (DOS −DOL ) …(1)式 γ:分解速度 KL a :総括酸素移動係数 DOS :飽和溶存酸素濃度 DOL :溶存酸素濃度 (1)式のDOL はbの曲線の酸素供給律速領域の一定
値の直線部分で表わされる。BODの変化はgの曲線の
同領域で示すように直線的に減少する。BOD物質が少
なくなり、図7のCP 以下になるとBODの分解速度は
BOD濃度に影響され、下記の式で表わされる。 Z:汚泥の活性度 (2)式は下記の式となる。 -z(t-t p ) C=Cp ・e …(3)式 一方DO値の上昇する速度は汚泥がBODを分解するた
めに消費する酸素と汚泥の呼吸で消費する酸素の合計の
速度と曝気により混合液中に供給される酸素の速度の差
であるから下記の式で表わされる。 β1 、β2 :係数 MLSS:曝気槽内汚泥濃度 V:
混合液量 (4)式のDOL の値は図7のhの曲線のBOD濃度律
速領域のカ−ブに示すようにtp からしばらくの間はな
だらかな暫増カ−ブとなり、BOD濃度が小さくなると
(DOS −β2 ・MLSS/KL a )に向かって急激に上昇
するカ−ブになる。
In the third step, the end liquid of the second step is re-aerated. FIG. 7 is a schematic diagram for explaining the phenomenon in the third step. The curve g in the figure shows the change over time in the BOD concentration. curve of h represents the temporal change of the dissolved oxygen DO L. If the activity of the sludge is good and the BOD substance is sufficient, the rate of decomposition of the BOD is determined by the rate of supply of oxygen. The value of DO of this time (DO L) is expressed by the following equation. γ = K L a (DO S -DO L) ... (1) Equation gamma: the decomposition rate K L a: overall oxygen transfer coefficient DO S: saturated dissolved oxygen concentration DO L: DO L of dissolved oxygen concentration (1) is It is represented by a straight line portion of a constant value in the oxygen supply rate-limiting region of the curve b. The change in BOD decreases linearly as shown in the same region of the g curve. BOD substances is reduced, the degradation rate of BOD and becomes equal to or less than the C P in FIG. 7 is affected by BOD concentration, represented by the following formula. Z: Sludge activity The formula (2) is as follows. -z (tt p ) C = Cp · e (3) On the other hand, the rate at which the DO value rises depends on the total rate of oxygen consumed by the sludge to decompose the BOD and oxygen consumed by the respiration of the sludge, and by aeration. Since it is the difference in the rate of oxygen supplied into the mixture, it is expressed by the following equation. β 1 , β 2 : Coefficient MLSS: Sludge concentration in aeration tank V:
The value of DO L of the mixture amount (4) is mosquito BOD concentration-determining region of the curve h in FIG. 7 - while after t p as shown in blanking the gentle暫増mosquito - becomes blanking, BOD concentration becomes Bed - mosquitoes which rapidly increases toward the smaller (DO S -β 2 · MLSS / K L a).

【0014】図3中の変化カ−ブは汚泥の活性度が良で
未処理BODが十分ある廃液の場合の典型例であり、変
化の過程は3つに大別される。初めは t3aで表わされる
区間でありこの区間は第2ステップで溶存酸素を消費し
つくし酸欠状態にある汚泥が曝気により新たな酸素の供
給を受け正常に復帰するまでの区間であり通常ごく短時
間である。次は t3bで表わされる区間でありこの区間は
汚泥が廃液中のBOD物質を分解しており、溶存酸素濃
度はBOD物質の分解で消費する速度と曝気による酸素
の溶解速度のバランスする値で分解するBOD物質が十
分あるうちは緩い暫増カ−ブとなる。最終は t3cで表わ
される区間でありこの区間はBOD物質が少なくなって
酸素の消費速度が低下することにより溶存酸素濃度が急
上昇していく区間である。図5は第3ステップでの典型
カ−ブの3例を模式的に表わしたものである。c のカ−
ブは明確に t3bの区間があるカ−ブであり、活発にBO
D物質を分解しており、未処理のBODがあり汚泥の活
性度も良であることを示している。e のカ−ブは t3bの
区間がなく初めから急上昇していくカ−ブであり、分解
すべきBOD物質がないかまたは汚泥の活性度が極端に
悪く酸素の消費が極めて少ないことを示している。dの
カ−ブはcとeの中間であり、 t3bの区間はあるものの
cのように明確でない。dのカ−ブは測定点が曝気槽出
口付近で正常に処理されて未処理BODが少ない場合に
よく出現するカ−ブであるが、可能性としては汚泥の活
性度がやや低下している場合も同様のカ−ブとなるため
状況の特定には第1ステップ、第2ステップでのデ−タ
や経時変化のデ−タとの総合判断になる。
The change curve in FIG. 3 is a typical example of a waste liquid having a good sludge activity and a sufficient amount of untreated BOD. The change process is roughly classified into three. Initially, this section is represented by t3a. This section is the section from the consumption of dissolved oxygen in the second step until sludge in an oxygen-deficient state is supplied with new oxygen by aeration and returned to normal, and is usually very short. Time. The following is the section represented by t3b. In this section, sludge decomposes BOD material in the waste liquid, and the dissolved oxygen concentration is decomposed by a value that balances the rate consumed in decomposing BOD substance and the rate of dissolution of oxygen by aeration. As long as there is sufficient BOD material available, the curve will be loose. The last is a section represented by t3c, and this section is a section where the dissolved oxygen concentration rises sharply due to a decrease in the consumption rate of oxygen due to a decrease in the BOD substance. FIG. 5 schematically shows three examples of typical curves in the third step. The car of c
Curve is a curve with a section of t3b clearly,
The substance D was decomposed, indicating that there was untreated BOD and sludge activity was good. The curve of e is a curve which rises rapidly from the beginning without the section of t3b, indicating that there is no BOD substance to be decomposed or the sludge has extremely low activity and consumes very little oxygen. I have. The curve of d is halfway between c and e, and the interval of t3b is not as clear as c. The curve d is a curve which often appears when the measurement point is normally treated near the outlet of the aeration tank and the amount of untreated BOD is small, but the activity of the sludge may be slightly lowered. In such a case, the same curve is obtained, so that the situation is specified by comprehensive judgment with the data in the first step and the second step and the data of the change with time.

【0015】図5のdやeのカ−ブは酸素の消費速度が
遅い場合であるから第1ステップでのDOS1の値は当然高
いはずである。またDOS1が高い場合はcのカ−ブは出現
しない。図6はdやeのカ−ブが出現すると予測される
ときに第3ステップの替わりに使用する第3´ステップ
での典型カ−ブを示す。第3´ステップでは既知量のB
OD物質を添加して再曝気するため、もしdやeに相当
する状況の廃液で汚泥の活性度が正常であれば既知量の
BOD物質に相当する t3b区間がfのように明確に出現
する。もし t3b区間が出現しなかったり、短かったりす
れば汚泥の活性度が悪いと特定できる。このように第3
´ステップは第3ステップの検査では汚泥の活性度の特
定が不明確になる場合に代替使用することにより、明確
な特定が可能になる。第3´ステップで添加使用するB
OD物質は該当の活性汚泥処理装置の微生物相が容易に
分解できる物質を選定するのが最良であるが、例えばぶ
どう糖溶液のような一般的に分解容易な物質でもよい。
Since the curves of d and e in FIG. 5 have a low oxygen consumption rate, the value of DOS1 in the first step must be high. When DOS1 is high, the curve of c does not appear. FIG. 6 shows a typical curve in the third step which is used instead of the third step when the curves d and e are predicted to appear. In the 3 ′ step, a known amount of B
Since the OD substance is added and re-aerated, if the sludge activity is normal in the waste liquid in the situation corresponding to d or e, the t3b section corresponding to the known amount of BOD substance clearly appears as f. . If the t3b section does not appear or is short, it can be specified that the sludge activity is low. Thus the third
The 'step can be used in place of the third step when the identification of the activity of the sludge is unclear in the inspection of the third step, whereby the specific identification becomes possible. B used in the 3 ′ step
As the OD substance, it is best to select a substance capable of easily decomposing the microflora of the activated sludge treatment apparatus, but may be a substance which is generally easily decomposed such as glucose solution.

【0016】第3ステップのかわりに第3´ステップを
使用するか否かは第1ステップ及び第2ステップの検査
デ−タをコンピュ−タで判断することにより予め選択可
能であるが、第3ステップを実施した結果のデ−タをコ
ンピュ−タで解析したうえで汚泥の活性度を特定するに
は不明確な場合に改めて第3´ステップを実施する方法
は、検査1サイクルに要する時間は長くなるが、それだ
け多くのデ−タが得られるので当然可能な手段であり本
発明の方法を逸脱するものではない。
Whether or not to use the third step instead of the third step can be selected in advance by judging the inspection data of the first and second steps by a computer. In order to specify the sludge activity after analyzing the data obtained by performing the step with a computer, the method of performing the third step again when it is not clear is that the time required for one inspection cycle is as follows. Although it is longer, it is a possible means because much data can be obtained, and does not depart from the method of the present invention.

【0017】図8は本発明を具体化する装置例を示すフ
ロ−チャ−トである。10は溶存酸素計である。11は
測定容器であり該容器のサンプリング液に溶存酸素計の
センサ−を浸析する。該容器の形状は液面から酸素が溶
解して測定誤差が生じないよう液の入口出口の配置や空
気溜まりが生じないようにする。12はサンプリングポ
ンプである。13、14はサンプリング流路を選択する
ための電磁弁である。15は気液分離槽でサンプリング
液中の粗大な気泡を分離するためのものである。16は
曝気循環ポンプ、17はエゼクタ−、18は空気流量調
節バルブ、19は空気流量計である。16から19は第
3ステップで再曝気する際使用する系統で16の曝気循
環ポンプによる水流で17のエゼクタ−から空気を吸引
攪拌して酸素を溶解する。なお曝気する手段は他の手段
は用いることができる。20はBOD溶液タンク、21
はBOD添加ポンプである。20から21は第3´ステ
ップで既知量のBOD物質を添加する際使用する。22
はコンピュ−タである。本発明の検査操作の動作、測定
デ−タの解析、運転条件の指令、警報等はすべてこのコ
ンピュ−タが一元管理する。本発明で使用するコンピュ
−タは通常のパ−ソナルコンピュ−タが使用でき、本実
施例においては日本電気(株)製PC−9801RSを
使用し、拡張I/OスロットにA/D、D/A変換ボ−
ドとして(株)コンテック製AD12−16(98)
E、ポンプ等の駆動指令用のデジタル出力ボ−ドとして
(株)コンテック製PO−32B(98)を使用した。
23はリレ−ボックスである。12、16、21、1
3、14の駆動はコンピュ−タからデジタル出力ボ−ド
を経由しての信号でリレ−を作動させ、第1ステップか
ら第3(3´)ステップまで必要なタイミングで機器類
をON−OFFさせる。24は溶存酸素計の変換器であ
る。10の溶存酸素計の信号は24の変換器で4mA〜
20mAのアナログ電流信号に変換され22のコンピュ
−タのA/D変換ボ−ドでデジタルデ−タに変換されて
コンピュ−タに取り込まれる。コンピュ−タは演算の結
果、曝気空気量や原水処理量や返送汚泥量の制御操作信
号、汚泥の活性度異常や処理異常や装置異常等の警報信
号をD/A変換ボ−ドやデジタル出力ボ−ドを経由して
出力する。
FIG. 8 is a flowchart showing an example of an apparatus embodying the present invention. Reference numeral 10 denotes a dissolved oxygen meter. Numeral 11 denotes a measuring vessel, in which a sensor of a dissolved oxygen meter is immersed in a sampling liquid in the vessel. The shape of the container is such that the arrangement of the inlet and outlet of the liquid and the accumulation of air do not occur so that the measurement error does not occur due to the dissolution of oxygen from the liquid surface. Reference numeral 12 denotes a sampling pump. 13 and 14 are solenoid valves for selecting a sampling flow path. Reference numeral 15 denotes a gas-liquid separation tank for separating coarse bubbles in the sampling liquid. 16 is an aeration circulation pump, 17 is an ejector, 18 is an air flow control valve, and 19 is an air flow meter. Numerals 16 to 19 denote systems used for re-aeration in the third step. The water is flowed by the aeration circulation pump 16 to suck and agitate air from the ejector 17 to dissolve oxygen. Other means for aeration can be used. 20 is a BOD solution tank, 21
Is a BOD addition pump. 20 to 21 are used when adding a known amount of the BOD substance in the third step. 22
Is a computer. The operation of the inspection operation, the analysis of the measurement data, the command of the operating condition, the alarm and the like of the present invention are all managed by this computer. An ordinary personal computer can be used as the computer used in the present invention. In this embodiment, PC-9801RS manufactured by NEC Corporation is used, and A / D and D are provided in the extended I / O slot. / A conversion board
AD12-16 (98) manufactured by Contec Co., Ltd.
E, PO-32B (98) manufactured by Contec Co., Ltd. was used as a digital output board for driving commands such as pumps.
23 is a relay box. 12, 16, 21, 1
For driving of 3 and 14, the relay is operated by a signal from the computer via the digital output board, and the devices are turned on and off at the necessary timing from the first step to the third (3 ') step. Let it. 24 is a converter of the dissolved oxygen meter. The signal of the 10 dissolved oxygen meters is 4 mA with 24 transducers.
The signal is converted into an analog current signal of 20 mA, converted into digital data by an A / D conversion board of a computer 22, and taken into the computer. The computer outputs D / A conversion board and digital output of control operation signals of aeration air amount, raw water treatment amount and returned sludge amount, and alarm signals of sludge activity abnormality, treatment abnormality and equipment abnormality as a result of the calculation. Output via the board.

【0018】図9は本発明の動作をコンピュ−タ装置の
動きとしてみた場合のフロ−チャ−トである。表1は標
準活性汚泥処理装置で図2の測定点1でサンプリングし
混合液についての処理状況特定の分類を示す表である。
フロ−チャ−トのデ−タ加工では 1.DO値の測定ばらつきを除去 2.曲線を直線で近似 3.スタ−ト値、t3a,t3b,t3c の長さ、傾き、最終値等
特徴デ−タの採取をおこなう。 フロ−チャ−トの処理状況特定演算では、加工されたデ
−タに基づき表1の検査DO曲線欄に示すようなパタ−
ンを特定し、前述した第1ステップから第3(3´)ス
テップのパタ−ンの持つ意味と測定点1で目標とする汚
泥の活性度の程度や未処理BODの大きさや検査DO曲
線パタ−ン等との比較で、測定時点での汚泥の活性度や
未処理BODの大きさや曝気空気量の適否を表1の処理
状況欄に示すように特定する。フロ−チャ−トの操作信
号、警報信号出力では処理状況特定演算で求めた処理状
況が過去の履歴デ−タと操作によりどう経時変化してい
るかのデ−タを加えて判断をおこない、表1の操作出力
欄の信号をだす。図2の測定点1のサンプルの場合、通
常目標とする検査DO曲線パタ−ンは、表1のケ−スN
o2−2であり、測定点2の場合は1−1であるが、目
標検査DO曲線パタ−ン及び目標とする汚泥の活性度の
程度や未処理BODの大きさは装置の形状、測定点の位
置、廃水の基質やその変動、処理水の要求品質の程度、
過去の処理履歴、未来の負荷予測等で変わるものであ
り、状況にあわせて手動で設定したり、コンピュ−タが
諸デ−タに基づき自動的に設定するものである。表1に
は説明のため第1ステップを3パタ−ン、第2ステップ
を2パタ−ン、第3(3´)ステップを3パタ−ンの組
み合わせで合計14パタ−ンにブロック分けする論理手
法を示したが、実際にはもっと細かく分類したほうがよ
く第1ステップは5パタ−ン、第2ステップは4パタ−
ン、第3(3´)ステップは5パタ−ン程度が好まし
い。また表1の内容は説明のため定性的な表現にしてあ
るがコンピュ−タ内の処理では定量的な数値に置き換え
られる。
FIG. 9 is a flowchart when the operation of the present invention is viewed as the operation of a computer device. Table 1 is a table showing the classification of the treatment state of the mixed liquid sampled at the measurement point 1 in FIG. 2 using a standard activated sludge treatment apparatus.
In the data processing of the flowchart: 1. Eliminate measurement variations in DO value. 2. Approximate the curve with a straight line The characteristic data such as the start value, the length of t3a, t3b, and t3c, the slope, and the final value are collected. In the processing status specifying calculation of the flowchart, based on the processed data, the pattern as shown in the inspection DO curve column of Table 1 is used.
And the meaning of the patterns of the first to third (3 ') steps, the degree of sludge activity targeted at the measurement point 1, the size of the untreated BOD, and the inspection DO curve pattern. The activity of the sludge at the time of measurement, the size of the untreated BOD, and the suitability of the amount of aerated air at the time of measurement are specified as shown in the treatment status column of Table 1 by comparing with the values shown in FIG. In the operation signal and alarm signal output of the flowchart, a judgment is made by adding the past history data and the data of how the processing status has been changed with time by the operation by the processing status specifying calculation, and a table is displayed. The signal of the operation output column 1 is issued. In the case of the sample at the measurement point 1 in FIG. 2, the inspection target DO curve pattern is usually represented by the case N in Table 1.
o2-2 and 1-1 in the case of the measurement point 2. However, the target inspection DO curve pattern, the degree of activity of the target sludge and the size of the untreated BOD are determined by the shape of the apparatus and the measurement point. Location, wastewater substrate and its fluctuation, required quality of treated water,
It changes depending on the past processing history, future load prediction, etc., and is set manually according to the situation or automatically set by the computer based on various data. For the sake of explanation, Table 1 shows a logic for dividing the first step into three patterns, the second step into two patterns, and the third (3 ') step into three patterns in a total of 14 patterns. Although the method has been shown, in practice it is better to classify more finely, the first step is 5 patterns, and the second step is 4 patterns.
The third and third (3 ') steps are preferably about 5 patterns. Although the contents of Table 1 are qualitatively described for the sake of explanation, they are replaced with quantitative numerical values in the processing in the computer.

【0019】[0019]

【表1】[Table 1]

【0020】図2で説明したように、曝気槽の出口付近
の混合液の溶存酸素濃度を測定することで汚泥の活性度
が良で変化がない場合において、未処理BODと曝気空
気量の過不足の相対情報が得られる。そして溶存酸素濃
度を通常1ppm〜3ppmに維持することは、処理水
質を保証するため十分ではないが必要条件となり、過曝
気による動力の無駄を防止できる。このため省エネルギ
−を目的として従来から活性汚泥処理法で時々行われて
いる曝気槽内の溶存酸素濃度を測定し、その値が設定値
になるよう曝気空気量を制御する方法(以後溶存酸素濃
度設定法と称す)について、本発明のシステムとの違い
を明確にしながら説明する。図10は溶存酸素濃度設定
法のフロ−図である。25は溶存酸素濃度計、26は変
換器、27はコントロ−ラを示す。一般に標準活性汚泥
法における曝気槽内の曝気空気量、BOD濃度、溶存酸
素濃度の分布は図2に示すようなものである。すなわち
曝気槽入口付近では活性汚泥混合液中のBOD濃度は高
いため、分解に要する酸素の消費速度は大きく、曝気空
気量を多くしても酸素の溶解速度と消費速度がバランス
する値は1ppm以下程度である。曝気槽内のBOD濃
度がある程度高い間、酸素の溶解速度と消費速度がバラ
ンスする値はすこしづつは上昇するものの低レベルの状
態が続く。BOD物質の分解が進む曝気槽の出口に近く
なると、BOD濃度が低くなるためBOD物質の分解速
度が低下するために酸素の消費速度が小さくなり、酸素
の溶解速度とバランスする値は顕著に上昇していく。溶
存酸素濃度設定法は図2の測定点1の位置に示すような
溶存酸素濃度の変化が大きい曝気槽出口付近の溶存酸素
濃度を25の溶存酸素濃度計で測定し、26の変換器経
由の信号を27のコントロ−ラで制御信号にして5のイ
ンバ−タで溶存酸素濃度が設定値になるよう4のブロア
−を制御して省エネルギ−をおこなうものである。たと
えば図2に示すようにBOD濃度が△BOD増加するこ
とにより、測定点で未処理BODが大きくなれば溶存酸
素濃度は図2の DO1の値から DO2の値に変化し、この信
号をうけて曝気空気量を△air分増量して酸素の供給
量をアップしてBOD分解速度をアップする。このよう
にもし曝気槽で処理すべきBOD負荷量が一定もしくは
変化が十分ゆっくりであり、汚泥の活性度が一定もしく
は変化が十分ゆっくりであれば、BODの処理の状況は
曝気空気量と対応し、溶存酸素濃度設定法は処理水質を
確保する自動制御装置としての機能も合わせもち、本発
明品と競合する。
As described with reference to FIG. 2, by measuring the dissolved oxygen concentration of the mixed solution near the outlet of the aeration tank, when the sludge activity is good and there is no change, the excess of the untreated BOD and the amount of aerated air is obtained. Insufficient relative information is obtained. Maintaining the dissolved oxygen concentration in the range of 1 ppm to 3 ppm is not sufficient to guarantee the quality of the treated water, but is a necessary condition, and waste of power due to overaeration can be prevented. Therefore, for the purpose of energy saving, a method of measuring the dissolved oxygen concentration in an aeration tank, which has been sometimes performed by the activated sludge treatment method, and controlling the amount of aerated air so that the value becomes a set value (hereinafter referred to as dissolved oxygen) The method will be described while clarifying the difference from the system of the present invention. FIG. 10 is a flowchart of the dissolved oxygen concentration setting method. 25 is a dissolved oxygen concentration meter, 26 is a converter, and 27 is a controller. Generally, the distribution of the aerated air amount, BOD concentration, and dissolved oxygen concentration in the aeration tank in the standard activated sludge method is as shown in FIG. That is, since the BOD concentration in the activated sludge mixture is high near the inlet of the aeration tank, the consumption rate of oxygen required for decomposition is large, and the value at which the dissolution rate and the consumption rate of oxygen are balanced even when the amount of aerated air is increased is 1 ppm or less. It is about. While the BOD concentration in the aeration tank is high to some extent, the value at which the dissolution rate and the consumption rate of oxygen are balanced gradually increases, but remains at a low level. As the BOD substance decomposes near the outlet of the aeration tank, the BOD concentration decreases and the decomposition rate of the BOD substance decreases, so the consumption rate of oxygen decreases, and the value that balances with the oxygen dissolution rate increases significantly. I will do it. In the dissolved oxygen concentration setting method, the dissolved oxygen concentration near the outlet of the aeration tank where the dissolved oxygen concentration changes greatly as shown at the position of measurement point 1 in FIG. The signal is used as a control signal by the controller 27, and the blower 4 is controlled by the inverter 5 so that the dissolved oxygen concentration becomes the set value, thereby saving energy. For example, as shown in FIG. 2, if the untreated BOD increases at the measurement point due to an increase in the BOD concentration by ΔBOD, the dissolved oxygen concentration changes from the value of DO1 in FIG. 2 to the value of DO2. The BOD decomposition rate is increased by increasing the amount of oxygen by increasing the amount of aerated air by Δair. In this way, if the BOD load to be treated in the aeration tank is constant or the change is sufficiently slow, and if the sludge activity is constant or the change is sufficiently slow, the situation of the BOD treatment corresponds to the aeration air amount. The dissolved oxygen concentration setting method also has a function as an automatic control device for ensuring the quality of the treated water, and competes with the product of the present invention.

【0021】ところが実際の操業において、BOD負荷
量が一定もしくは変化が十分ゆっくりであり、汚泥の活
性度が一定もしくは変化が十分ゆっくりである条件を満
たすケ−スはまれであり、特に産業廃水においては原水
貯留槽で均一化を図ってもなお廃水の負荷量、基質、汚
泥の活性度の変動は激しい。図11は簡単のため廃水の
負荷量は一定とし、汚泥の活性度のみ変動した場合の溶
存酸素設定法の挙動を実線のカ−ブで示すものである。
図11のゾ−ン1は汚泥の活性度が良で一定の場合であ
る。この場合は前述のようにDO濃度を一定の制御する
ことにより処理水質も目標値に制御している。ゾ−ン2
になり汚泥の活性度が低下していくと、BODの分解量
が低下するため酸素の消費速度が低下し、処理水質が低
下していくがDO値は通常とは逆に上昇していく。この
ため制御信号は曝気空気量を低下する方向になり、曝気
空気量を低下させてDO値を設定値に戻そうとする。ゾ
−ン3になり汚泥の活性度が回復していくと、酸素の消
費速度が回復していきDO値は低下していき、曝気空気
量を増加させていくがゾ−ン2でかなり低いレベルまで
曝気空気量をしぼっているため、容易に空気量不足の状
態が解消されず、処理水質は活性度が回復過程でも、空
気量不足でなお悪化が継続する。ゾ−ン4になり汚泥の
活性度が良となっても、未処理のBODの負荷が通常の
負荷に上乗せされるため、曝気空気量を標準値以上にし
ても容易に元の正常値のレベルに戻らない。実操業にお
いては上記汚泥の活性度の変動に加え、負荷量の変動も
加わるため、一層ハンチングが大きくなる。このように
変動がある場合、溶存酸素設定法は処理水質を確保する
自動制御法にはならない。
However, in actual operations, there are rare cases where the BOD load is constant or the change is sufficiently slow, and the sludge activity is constant or the change is sufficiently slow. Even in the raw water storage tank, fluctuations in the load of wastewater, the activity of the substrate and the sludge are still severe even if the water is made uniform. FIG. 11 shows the behavior of the dissolved oxygen setting method in the case where only the sludge activity is varied and the load of the wastewater is constant for simplicity, as indicated by the solid curve.
Zone 1 in FIG. 11 shows a case where the sludge activity is good and constant. In this case, the treated water quality is also controlled to the target value by controlling the DO concentration at a constant value as described above. Zone 2
When the activity of the sludge decreases, the amount of BOD decomposed decreases, the oxygen consumption rate decreases, and the quality of the treated water decreases, but the DO value increases contrary to normal. For this reason, the control signal tends to decrease the amount of aerated air, and tries to return the DO value to the set value by reducing the amount of aerated air. When the activity of the sludge recovers as the zone 3 recovers, the oxygen consumption rate recovers, the DO value decreases, and the amount of aerated air increases. Since the amount of aerated air has been reduced to the level, the state of insufficient air volume is not easily eliminated, and the quality of the treated water continues to deteriorate due to the lack of air volume even in the process of recovering the activity. Even when the zone 4 becomes sludge and the activity of the sludge becomes good, the load of the untreated BOD is added to the normal load. Do not return to level. In actual operation, hunting is further increased because a variation in load is added in addition to the variation in sludge activity. When there is such a fluctuation, the dissolved oxygen setting method does not become an automatic control method for securing the treated water quality.

【0022】これに対し本発明の場合の動きを述べる。
本発明では処理の情報として、上記のように汚泥の活性
度、未処理BOD、曝気空気量の相対的な過不足のデ−
タが得られる。第1ゾ−ンの汚泥の活性度が良の場合、
測定される溶存酸素濃度カ−ブは図12のpのごとくな
る。このときコンピュ−タからはDO濃度を設定値にな
るよう制御する指令となるため結果として溶存酸素設定
法と同じ動きとなる。第2ゾ−ンに入ると測定される溶
存酸素濃度カ−ブは図12のqのごとくになる。このカ
−ブから汚泥の活性度が悪化している情報がはいるため
DO値が設定値を上にはずれても、即曝気空気量を減少
させる指令はださず、原水処理量を下げる方向または返
送汚泥量を下げて滞留時間を延ばす方向の信号をだす。
活性度の低下が大きく図11のjの点線のようにDO値
が大きくなりすぎる場合には図11のmの点線で示すよ
うに曝気空気量を減少させDO値が大きくなりすぎるの
を防止する。図11の例ではDOの通常設定値は2pp
m程度が適当であり、第2ゾ−ンでは4ppm程度まで
は許容範囲である。したがって第2ゾ−ン終了時点では
jの点線で示すように溶存酸素設定法の場合のiの実線
よりDO値は高く、曝気空気量は溶存酸素設定法ではか
なり絞った状態が長く続くのに対し、本発明では絞り方
が小さく正常な部分の微生物の活動によりBODの処理
速度は一般に大きくなり、処理水質の悪化の程度はoの
点線で示すように溶存酸素設定法の場合のnの実線より
小さい。第3ゾ−ンに入り汚泥の活性度が回復してくる
と酸素の消費速度は増加するが、もともと曝気空気量は
あまり絞っていないため、酸素の不足はおこらず処理は
汚泥の活性度の回復にしたがって進行する。第4ゾ−ン
に入ると汚泥の活性度は良なのでDO値は設定値になる
ように制御する。本発明では第2、第3ゾ−ンであまり
空気量を絞っていないため、積算での空気量不足による
残存BODの蓄積が小さいため汚泥の活性度が回復すれ
ば本発明の制御によるoの点線で示すように溶存酸素法
のnの実線より処理水質の回復は早い。
The operation of the present invention will be described.
In the present invention, as information on the treatment, as described above, the sludge activity, the untreated BOD, and the relative excess / deficiency data of the aeration air amount are described.
Data is obtained. When the activity of the sludge in the first zone is good,
The measured dissolved oxygen concentration curve is as shown by p in FIG. At this time, since a command is issued from the computer to control the DO concentration to a set value, the operation is the same as that of the dissolved oxygen setting method. The dissolved oxygen concentration curve measured when entering the second zone is as shown by q in FIG. Since information indicating that the sludge activity is degraded is included in this curve, even if the DO value deviates from the set value, a command to immediately reduce the amount of aerated air is not issued, and the raw water treatment amount is reduced. Alternatively, a signal is sent to reduce the amount of returned sludge and extend the residence time.
In the case where the decrease in the activity is so large that the DO value becomes too large as shown by the dotted line of j in FIG. 11, the amount of aerated air is reduced as shown by the dotted line of m in FIG. 11 to prevent the DO value from becoming too large. . In the example of FIG. 11, the normal setting value of DO is 2 pp
About m is appropriate, and about 2 ppm is acceptable in the second zone. Therefore, at the end of the second zone, as shown by the dotted line of j, the DO value is higher than the solid line of i in the case of the dissolved oxygen setting method, and the amount of aerated air is considerably reduced in the dissolved oxygen setting method for a long time. On the other hand, in the present invention, the processing speed of BOD is generally increased by the activity of microorganisms in a small area and the normal part, and the degree of deterioration of treated water quality is indicated by the solid line of n in the case of the dissolved oxygen setting method as indicated by the dotted line o. Less than. When the activity of the sludge is restored to the third zone, the consumption rate of oxygen increases. However, since the amount of aerated air is not narrowed down originally, there is no shortage of oxygen, and the treatment is performed with the activity of the sludge. Proceed with recovery. In the fourth zone, since the sludge activity is good, the DO value is controlled to be the set value. In the present invention, since the amount of air is not so narrowed in the second and third zones, the accumulation of residual BOD due to the shortage of air in the integration is small. As shown by the dotted line, the recovery of the treated water quality is earlier than the solid line of n in the dissolved oxygen method.

【0023】上記例はBOD負荷量の変動がない場合に
ついて説明した。活性汚泥処理法のなかでも完全混合法
では曝気槽内の状況は同じであるから、BOD負荷量が
変動しても測定点との時間遅れが生じないため上記の例
で十分制御可能である。しかし標準活性汚泥法やステッ
プエアレ−ション法では原水が曝気槽に入ってから出る
まで長い時間を要し且つ流れ方向の混合があまりないた
め、上記例のように曝気槽出口付近のサンプルだけで曝
気槽内全体を判断するのは、原水のBOD濃度や基質の
変動が大きい場合は危険である。
In the above example, the case where the BOD load does not change has been described. Among the activated sludge treatment methods, in the complete mixing method, the situation in the aeration tank is the same, so that even if the BOD load fluctuates, there is no time delay from the measurement point, so that the above example can be sufficiently controlled. However, in the standard activated sludge method or the step aeration method, it takes a long time for raw water to enter and exit from the aeration tank, and there is not much mixing in the flow direction. Judging the entire inside of the aeration tank is dangerous when the BOD concentration of the raw water and the substrate vary greatly.

【0024】次にBOD負荷量の変動が大きい場合の動
きを説明する。簡単にするため汚泥の活性度は変化しな
いものとする。DOの測定点が図2の測定点1の場合、
標準活性汚泥法の場合曝気槽入口付近とは滞留時間差は
通常5時間から15時間程度である。変動が激しくしか
も予測しがたい不規則な変動する廃水の場合、測定点1
での測定デ−タは曝気槽に入ってから測定点1までの過
去から現在までの処理状況の履歴の結果を反映するもの
であって、そのデ−タを使って現在から未来の曝気槽全
体の運転条件を決めることは無理がある。極端な場合、
負荷の変動が曝気空気量の操作信号と逆になった場合に
は、処理水質は大きくハンチングすることになる。本発
明ではDOの測定点を通常の曝気槽出口付近と曝気槽入
口付近の2点で行なうことで解決できる。図2の測定点
1と測定点2の2点で測定する場合について説明する。
測定点1でのデ−タについては前述のとおりである。測
定点2での典型例は表1のケ−スNo1−1に示すもの
である。第1ステップのDOS1の値は曝気槽入口付近はB
ODが多いため酸素の消費速度が大きく正常な処理状態
の場合DOS1は通常1ppm以下である。したがって第2
ステップでは有効なデ−タが得られないためt2は1分
程度で第3ステップに移行する。第3ステップでは正常
な処理の場合図5のcのカ−ブになる。第1ステップ及
び第3ステップの情報から、測定点2での処理の状況が
特定できる。測定点2の状況は滞留時間経過後測定点1
のデ−タに影響する。したがってコンピュ−タからの運
転操作の出力は測定点1からの情報を測定点2からの情
報で補正することでより適切なデ−タとなる。もちろん
第1ステップで異常なデ−タが得られれば第2ステッ
プ、第3´ステップの適用などおこなう。これらの判断
はコンピュ−タのソフトで自動的に行う。
Next, the operation when the fluctuation of the BOD load amount is large will be described. For the sake of simplicity, the sludge activity shall not change. When the DO measurement point is measurement point 1 in FIG.
In the case of the standard activated sludge method, the residence time difference from the vicinity of the aeration tank entrance is usually about 5 to 15 hours. In the case of highly fluctuating and unpredictable irregular fluctuating wastewater, measurement point 1
The measurement data in the above reflect the results of the history of the processing status from the past to the present until the measurement point 1 after entering the aeration tank. It is impossible to determine the overall operating conditions. In extreme cases,
If the change in the load is opposite to the operation signal for the amount of aerated air, the quality of the treated water largely hunts. In the present invention, the problem can be solved by performing the DO measurement at two points near the normal aeration tank outlet and near the aeration tank entrance. A case in which measurement is performed at two points, measurement point 1 and measurement point 2 in FIG. 2, will be described.
The data at the measurement point 1 is as described above. A typical example at the measurement point 2 is shown in Case No. 1-1 in Table 1. The value of DOS1 in the first step is B near the aeration tank entrance.
DOS1 is usually 1 ppm or less in the case of a normal processing state where the consumption rate of oxygen is large due to the large amount of OD. Therefore the second
Since valid data cannot be obtained in the step, the process shifts to the third step in about one minute at t2. In the third step, the curve of FIG. From the information of the first step and the third step, the processing status at the measurement point 2 can be specified. The situation at measurement point 2 is measurement point 1 after the elapse of the residence time.
Data. Therefore, the output of the driving operation from the computer becomes more appropriate data by correcting the information from the measuring point 1 with the information from the measuring point 2. Of course, if abnormal data is obtained in the first step, the second step, the third step and the like are applied. These decisions are made automatically by computer software.

【0025】2ヶ所の測定をおこなうことは装置的には
図8で示したフロ−チャ−トで対応可能であり、図8の
電磁弁13を開けば測定点1の液、電磁弁14を開けば
測定点2の液がサンプリングできるように配管しておけ
ばよい。また1回の測定時間は第1ステップから第3ス
テップまで20分〜30分なので測定点1と測定点2を
交互に検査しても1時間に1回以上の測定デ−タがえら
れるので滞留時間の長さと比較して実用上支障ない。こ
の手法は溶存酸素設定法では採用できない。なぜなら溶
存酸素設定法では曝気槽内の測定点2でのDO値は未処
理BODが大きいためDO値の変化量が小さくDO値の
変化によって未処理BODの程度を判断することはでき
ないためである。
The measurement at two locations can be performed by using the flowchart shown in FIG. 8 in terms of the apparatus. When the solenoid valve 13 shown in FIG. 8 is opened, the liquid at the measurement point 1 and the solenoid valve 14 are opened. The pipe may be opened so that the liquid at the measurement point 2 can be sampled when opened. Also, one measurement time is from 20 minutes to 30 minutes from the first step to the third step, so that even if the measurement points 1 and 2 are alternately inspected, more than one measurement data can be obtained per hour. There is no practical problem compared to the length of the residence time. This method cannot be used in the dissolved oxygen setting method. This is because, in the dissolved oxygen setting method, the DO value at the measurement point 2 in the aeration tank is large in the untreated BOD, so that the amount of change in the DO value is small and the degree of the untreated BOD cannot be determined based on the change in the DO value. .

【0026】[0026]

【発明の効果】本発明は主として浮遊性の微生物を利用
する各種活性汚泥処理、接触酸化処理、生物脱窒処理等
に特に有効であるが、生物膜処理法や回転円盤式生物処
理法のように主として固着性微生物を利用する処理法で
あっても浮遊性の微生物も含まれるため、本発明は共通
に適用できる。本発明の効果は汚泥の活性度を特定でき
るようになったことにより活性汚泥処理等の運転条件を
適切に設定でき処理水質の良化安定が可能となる。また
各種管理指標のデ−タ採取や運転条件の変更などの操作
を大幅に自動化できるための省力化効果も大きい。また
曝気空気量を常に処理の状況にあわせ自動的に最良の値
に制御するため曝気ブロア−の動力に無駄がない。この
省エネルギ−効果の大きさは原水の変動の大きさ等ケ−
スバイケ−スであるが、一般的にブロア−動力の30%
程度の削減は可能である。活性汚泥処理における設備の
減価償却と人件費を除く運転費の約40%〜60%は曝
気のためのブロア−の動力費であるから、この省エネル
ギ−効果は大きい。
The present invention is particularly effective for various activated sludge treatments, contact oxidation treatments, biological denitrification treatments and the like that mainly use buoyant microorganisms. However, the present invention can be applied in common because even a treatment method mainly using sticky microorganisms includes floating microorganisms. The effect of the present invention is that, since the activity of sludge can be specified, operating conditions such as activated sludge treatment can be appropriately set, and the quality of treated water can be improved and stabilized. In addition, since operations such as data collection of various management indices and changes in operating conditions can be largely automated, the effect of labor saving is great. In addition, the power of the aeration blower is not wasted because the aeration air amount is always automatically controlled to the best value according to the processing situation. The magnitude of this energy saving effect depends on the magnitude of fluctuations in raw water, etc.
Sway case, but generally 30% of blower power
A degree of reduction is possible. Since about 40% to 60% of the operating cost excluding depreciation of equipment and labor cost in activated sludge treatment is the power cost of the blower for aeration, this energy saving effect is large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】標準活性汚泥処理装置の基本構成図である。FIG. 1 is a basic configuration diagram of a standard activated sludge treatment apparatus.

【図2】標準活性汚泥処理装置の曝気槽内のBOD濃
度、溶存酸素濃度等の分布図である。
FIG. 2 is a distribution diagram of a BOD concentration, a dissolved oxygen concentration, and the like in an aeration tank of a standard activated sludge treatment device.

【図3】本発明の検出法の1サイクルを示す模式図であ
る。
FIG. 3 is a schematic diagram showing one cycle of the detection method of the present invention.

【図4】第2ステップでのDO値の動きの典型的なパタ
−ンを示す模式図である。
FIG. 4 is a schematic diagram showing a typical pattern of the movement of the DO value in the second step.

【図5】第3ステップでのDO値の動きの典型的なパタ
−ンを示す模式図である。
FIG. 5 is a schematic diagram showing a typical pattern of a DO value movement in a third step.

【図6】第3´ステップでのDO値の動きの典型的なパ
タ−ンを示す模式図である。
FIG. 6 is a schematic diagram showing a typical pattern of the movement of the DO value in the 3 ′ step.

【図7】第3ステップでの現象を説明する模式図であ
る。
FIG. 7 is a schematic diagram illustrating a phenomenon in a third step.

【図8】装置を示す概略図である。FIG. 8 is a schematic diagram showing an apparatus.

【図9】コンピュ−タで処理するフロ−チャ−トであ
る。
FIG. 9 is a flowchart for processing by a computer.

【図10】溶存酸素濃度設定法の概略図である。FIG. 10 is a schematic diagram of a dissolved oxygen concentration setting method.

【図11】曝気槽内の処理の状況を表わす模式図であ
る。
FIG. 11 is a schematic diagram illustrating a state of processing in an aeration tank.

【図12】サンプル液の溶存酸素濃度の動きを示す模式
図である。
FIG. 12 is a schematic diagram showing the movement of the dissolved oxygen concentration of a sample solution.

【符号の説明】[Explanation of symbols]

3 曝気槽 4 曝気用ブロア−
10 溶存酸素計 11 測定容器 12 サンプリングポンプ
13,14 電磁弁 16 曝気循環ポンプ 17 エゼクタ−
20 BOD溶液 21 添加ポンプ 22 コンピュ−タ
3 Aeration tank 4 Aeration blower
10 Dissolved oxygen meter 11 Measurement container 12 Sampling pump
13, 14 Solenoid valve 16 Aeration circulation pump 17 Ejector
Reference Signs List 20 BOD solution 21 Addition pump 22 Computer

【表1】 [Table 1]

【表1】 [Table 1]

【表1】 [Table 1]

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 好気性微生物を利用する廃水処理におい
て、曝気処理中の廃水をサンプリングし、該廃水中の溶
存酸素(以後DO1と称す)を測定し、その後新たなサ
ンプリング廃水の流入を停止し酸素の供給を断った状態
で溶存酸素の減少する変化(以後DO2変化曲線と称
す)を測定し、その後該廃水に空気を曝気して溶存酸素
の増加する変化(以後DO3変化曲線と称す)を測定
し、DO1とDO2変化曲線とDO3変化曲線の形状か
ら少なくとも汚泥の活性度、未処理のBOD濃度、曝気
空気量の過不足の情報を特定し、目標とする汚泥の活性
度、未処理のBOD濃度及び目標とする検査DO曲線パ
ターンと比較して、少なくとも曝気空気量の増減を指示
または制御する信号を発することを特徴とする廃水処理
制御方法。
In wastewater treatment utilizing aerobic microorganisms, wastewater during aeration treatment is sampled, dissolved oxygen (hereinafter referred to as DO1) in the wastewater is measured, and then the inflow of new sampled wastewater is stopped. With the supply of oxygen cut off, the decrease in dissolved oxygen (hereinafter referred to as DO2 change curve) is measured, and then the wastewater is aerated with air to increase the dissolved oxygen (hereinafter referred to as DO3 change curve). Measure and determine at least the sludge activity, untreated BOD concentration, and excess or deficiency of aeration air amount from the shapes of the DO1, DO2 change curve and DO3 change curve, and target sludge activity, untreated A wastewater treatment control method, comprising: issuing a signal for instructing or controlling at least an increase or decrease in aeration air amount in comparison with a BOD concentration and a target inspection DO curve pattern.
【請求項2】 好気性微生物を利用する廃水処理におい
て、曝気処理中の廃水をサンプリングし、DO1を測定
し、その後DO2変化曲線を測定後、該廃水に既知量の
BOD物質を含む液を添加して空気を曝気して溶存酸素
の増加する変化(以後DO3´変化曲線と称す)を測定
し、DO1とDO2変化曲線とDO3´変化曲線の形状
から少なくとも汚泥の活性度、未処理のBOD濃度、曝
気空気量の過不足の情報を特定し、目標とする汚泥の活
性度、未処理のBOD濃度及び目標とする検査DO曲線
パタ−ンと比較して、少なくとも曝気空気量の増減を指
示または制御する信号を発することを特徴とする廃水処
理制御方法。
2. In wastewater treatment using aerobic microorganisms, wastewater during aeration treatment is sampled, DO1 is measured, and a DO2 change curve is measured. Then, a liquid containing a known amount of BOD substance is added to the wastewater. And then aerating the air to measure the increase in dissolved oxygen (hereinafter referred to as the DO3 'change curve). From the shapes of the DO1, DO2 and DO3' change curves, at least the sludge activity and the untreated BOD concentration Identify the information of excess or deficiency of the aeration air amount, compare it with the target sludge activity, untreated BOD concentration and target inspection DO curve pattern, and instruct at least increase or decrease of the aeration air amount. A wastewater treatment control method, comprising issuing a control signal.
【請求項3】 好気性微生物を利用する廃水処理におい
て、曝気処理中の廃水をサンプリングする手段と、サン
プリング液を収容する測定容器と、サンプリング液の溶
存酸素濃度を測定する溶存酸素計と、該測定容器にサン
プリングした廃水を流入・停止させる手段と、該廃水を
曝気する手段と、該廃水に設定量のBOD物質を含む液
を添加する手段と、該溶存酸素計からのDO1、DO2
変化曲線、DO3変化曲線またはDO3´変化曲線の形
状から少なくとも汚泥の活性度、未処理のBOD濃度、
曝気空気量の過不足の情報を特定し、目標とする汚泥の
活性度、未処理のBOD濃度及び目標とする検査DO曲
線パタ−ンと比較して、少なくとも曝気空気量の増減を
指示または制御するコンピュ−タ装置を備えた廃水処理
制御装置。
3. A wastewater treatment using an aerobic microorganism, means for sampling wastewater during aeration treatment, a measurement container containing a sampling liquid, a dissolved oxygen meter for measuring a dissolved oxygen concentration of the sampling liquid, and Means for flowing and stopping wastewater sampled into the measurement container, means for aerating the wastewater, means for adding a liquid containing a set amount of BOD substance to the wastewater, and DO1, DO2 from the dissolved oxygen meter.
Change curve, DO3 change curve or DO3 'change curve from at least sludge activity, untreated BOD concentration,
Identify information on excess or deficiency of the aeration air amount, compare it with the target sludge activity, untreated BOD concentration and target inspection DO curve pattern, and instruct or control at least the increase or decrease of the aeration air amount. Wastewater treatment control device equipped with a computer device.
JP20535996A 1996-07-16 1996-07-16 Wastewater treatment control method and apparatus Expired - Fee Related JP2909723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20535996A JP2909723B2 (en) 1996-07-16 1996-07-16 Wastewater treatment control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20535996A JP2909723B2 (en) 1996-07-16 1996-07-16 Wastewater treatment control method and apparatus

Publications (2)

Publication Number Publication Date
JPH1028992A JPH1028992A (en) 1998-02-03
JP2909723B2 true JP2909723B2 (en) 1999-06-23

Family

ID=16505563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20535996A Expired - Fee Related JP2909723B2 (en) 1996-07-16 1996-07-16 Wastewater treatment control method and apparatus

Country Status (1)

Country Link
JP (1) JP2909723B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107207301A (en) * 2015-12-17 2017-09-26 株式会社小川环境研究所 Aeration control method in activated sludge

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550547B2 (en) * 2004-10-25 2010-09-22 株式会社 小川環境研究所 Wastewater treatment measurement method and apparatus
JP5023487B2 (en) * 2005-12-19 2012-09-12 パナソニック株式会社 Wastewater treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107207301A (en) * 2015-12-17 2017-09-26 株式会社小川环境研究所 Aeration control method in activated sludge
EP3222590A4 (en) * 2015-12-17 2018-05-16 Ogawa Environmental Research Institute, Inc. Method for controlling amount of aeration in activated sludge
US10329181B2 (en) 2015-12-17 2019-06-25 Ogawa Environmental Research Institute Inc. Method for controlling aeration volume in activated sludge
CN107207301B (en) * 2015-12-17 2020-12-04 株式会社小川环境研究所 Method for controlling aeration amount in activated sludge

Also Published As

Publication number Publication date
JPH1028992A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
CA2531764C (en) Biological water treatment process and plant using activated sludge with regulation of aeration
US7314563B2 (en) Membrane coupled activated sludge method and apparatus operating anoxic/anaerobic process alternately for removal of nitrogen and phosphorous
US4130481A (en) Maintaining optimum settling rate of activated sludge
US7282141B2 (en) Mixer and process controller for use in wastewater treatment processes
US8916046B2 (en) Method for controlling oxygen supply for treating wastewater, and facility for implementing same
EP1992946A1 (en) Automated sampler device to carry out analytical experiments, particularly in waste water treatment plants
US4783750A (en) Determination of oxygen uptake rate in wastewater treatment plants
JP4304453B2 (en) Operation control device for nitrogen removal system
KR100332165B1 (en) Activated-sludge processing apparatus and method for control of sludge to be returned
JP3301428B2 (en) Wastewater treatment test method
EP0414182B1 (en) Apparatus for determining the rate of the biochemical oxygen demand and its utilisation
JP2909723B2 (en) Wastewater treatment control method and apparatus
RU2192474C2 (en) Method of monitoring of microbiological process in flow of liquid (versions)
KR100247321B1 (en) Method and apparatus optimizing the process of sequencing batch reactor for analyzing specific oxygen uptake rate and nitrate nitrogen by real time on-line measurement at the biological wastewater treatment process
JP2007069182A (en) Operational control method of waste water treatment plant
JP2009165958A (en) Treatment state judging method of aeration tank and wastewater treatment control system using it
KR20050034761A (en) Small-scale sewage disposal facility
JP4620391B2 (en) Sewage treatment equipment
JPH07185583A (en) Waste water disposing method and device using continuous breath measuring device
JP2952282B1 (en) Wastewater treatment control method
WO1998003434A1 (en) Device for controlling dissolved oxygen concentration of aeration tank, device for controlling temperature of aeration tank, device for controlling flow rate of raw water for homogeneous-flow liquid surface, and wastewater treatment equipment used in activated sludge process
JP2009165959A (en) Treatment state judging method of aeration tank and wastewater treatment control system using it
US6375845B1 (en) Method for evaluating and controlling the biomass contained in waste water treatment biological tanks
KR960002268B1 (en) Organic matter density controlling apparatus
JPH1133580A (en) Apparatus for assisting process operation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees