WO1998003434A1 - Device for controlling dissolved oxygen concentration of aeration tank, device for controlling temperature of aeration tank, device for controlling flow rate of raw water for homogeneous-flow liquid surface, and wastewater treatment equipment used in activated sludge process - Google Patents

Device for controlling dissolved oxygen concentration of aeration tank, device for controlling temperature of aeration tank, device for controlling flow rate of raw water for homogeneous-flow liquid surface, and wastewater treatment equipment used in activated sludge process Download PDF

Info

Publication number
WO1998003434A1
WO1998003434A1 PCT/JP1997/002514 JP9702514W WO9803434A1 WO 1998003434 A1 WO1998003434 A1 WO 1998003434A1 JP 9702514 W JP9702514 W JP 9702514W WO 9803434 A1 WO9803434 A1 WO 9803434A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
raw water
wastewater
wastewater treatment
dissolved oxygen
Prior art date
Application number
PCT/JP1997/002514
Other languages
French (fr)
Japanese (ja)
Inventor
Randy M. Miller
Akifumi Uda
Kazutoshi Itoyama
Yoshiaki Yamamoto
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP19061896A external-priority patent/JP2002219480A/en
Priority claimed from JP19358196A external-priority patent/JP2002219481A/en
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to AU34630/97A priority Critical patent/AU3463097A/en
Publication of WO1998003434A1 publication Critical patent/WO1998003434A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the first invention is an activated sludge wastewater treatment facility used in general wastewater treatment plants and sewage treatment plants such as chemical factories (hereinafter, the activated sludge wastewater treatment facility is referred to as an activated sludge wastewater treatment facility). More specifically, the present invention provides an apparatus for controlling the concentration of dissolved oxygen provided in an aeration tank of an activated sludge wastewater treatment facility, a method for controlling the same, and an activated sludge wastewater treatment facility having a controller for controlling the dissolved oxygen window degree. Is what you do.
  • the second invention relates to an activated sludge wastewater treatment facility provided with a temperature control device for aeration.
  • the third invention relates to an activated sludge wastewater treatment facility having a device for controlling the level of a raw water flow supplied to an aeration tank.
  • the fourth invention relates to an activated sludge wastewater treatment facility which provides operators with appropriate tillage guidance in response to changes in the operating conditions and process state quantities of the activated sludge wastewater treatment facility. is there.
  • the fifth invention relates to an operation support device for a process suitably applied to activated sludge wastewater treatment equipment, and more specifically, to receive and treat a treated body from each of a plurality of upstream chemical processes, and to treat the treated body.
  • a process operation support device that predicts at least one of the indicator operating conditions of the target chemical process and the indicator property of the treated object based on the operation data of the upstream chemical process when operating the chemical process that discharges It is a thing.
  • Goze (26th thread) It is a target.
  • closed aeration tanks are used to treat high-load wastewater from chemical factories.
  • the oxygen supply to the air tank is usually performed by measuring the flow rate of the raw water supplied from the pretreatment equipment from the raw water neutralization tank and the first settling tank, and based on this, The oxygen supply amount is adjusted so that the pressure in the tank becomes constant, and oxygen is dissolved in water by stirring in the tank. Adjustment of the amount of oxygen in the gas tank to an appropriate value is performed according to the oxygen content of the gas phase in the gas tank. It does this by discharging it outside and accepting oxygen instead.
  • an object of the first invention is to provide a control device for an aeration tank that can stabilize the concentration of dissolved oxygen in air and thus can provide a stable treatment 81 even if the quality of inflow water changes. And a method for controlling the concentration of dissolved oxygen in an aeration tank using the same.
  • the wastewater is received in a raw water tank, and pH or 1S adjustment and nutrient adjustment are performed with a neutralizer as a pretreatment, and then air or oxygen is supplied into the aeration tank.
  • a neutralizer as a pretreatment
  • air or oxygen is supplied into the aeration tank.
  • organic matter is oxidized and decomposed by aerobic microorganisms, and the sludge is agglomerated as required, followed by sedimentation and separation by sedimentation 3 ⁇ 4 to obtain treated water.
  • an operation method for controlling the temperature of the aeration tower within a specific range has been proposed.
  • hot water or cold water is supplied into the tank to control the temperature of the air tank.
  • the exchange equipment is installed in an aeration tank, there is a problem that the temperature distribution generated at that time affects the activity of the microorganisms and reduces the efficiency of wastewater treatment. Therefore, an object of the second invention is to stabilize the temperature in the tank of the aeration tank to reduce the fluctuation of the dissolved oxygen concentration in the tank, thereby operating the activated sludge wastewater treatment facility and treating the treated water.
  • An object of the present invention is to provide a control device capable of stabilizing water quality, and an activated sludge wastewater treatment facility equipped with such a control device.
  • liquid level constant value control is generally performed to keep the liquid level constant.
  • fluctuations in the wastewater to be received are reflected in fluctuations in the raw water supply flow S from the direct neutralization tank to the aeration tank, and are consequently included in the water in the air tank.
  • the organic matter content which is the nutrient source of the aerobic microorganisms, will fluctuate.
  • the activated sludge treatment which is a microorganism treatment
  • fluctuations in the environment in the aeration tank affect the treatment results (decomposition rate), and thus such a liquid level constant control method is not preferable in terms of process stabilization.
  • the raw water tank may overflow if the amount of incoming wastewater fluctuates, so equipment with excessive capacity is required to cope with it, which is not economical.
  • an object of the third invention is to control the liquid level of the raw water tank to be within a certain allowable range and to control the flow rate of the raw water supplied to the aeration tank not to fluctuate abruptly even if the amount of received wastewater fluctuates. Accordingly, it is an object of the present invention to provide a method for controlling a wastewater treatment facility provided with a control device capable of operating the activated sludge wastewater treatment facility and stabilizing the quality of treated water.
  • Wastewater treatment by the activated sludge method is one of the biological treatment methods for wastewater, in which various organic substances in the wastewater are used as culture media, and a mixed population of microorganisms is continuously cultivated in the presence of dissolved oxygen to oxidize and degrade.
  • This is a treatment method that mainly removes organic matter in wastewater by the actions of coagulation and precipitation.
  • Water Treatment Engineering published by Gihodo, the activated sludge treatment process continually circulates floc-like biopropagating organisms having a purification function in a bioreaction system as needed, and removes substrate (drainage) in the air tank.
  • the BOD component) and the purified microorganisms are artificially manipulated to maintain a constant ratio.
  • the floc composed of microorganisms of different populations and the base S can be sufficiently treated. It is defined as a process that aerobically oxidizes and decomposes it by contacting it.
  • activated sludge wastewater treatment equipment generally includes a raw water tank I4 for storing wastewater, a chemical solution injected into the wastewater to perform pretreatment, and the temperature of the wastewater to be adjusted. 15 5.Aeration tank that oxidizes, decomposes, and coagulates mainly organic matter in the wastewater while purifying the wastewater with oxygen4, and precipitates flocculated sludge floc, and precipitates the supernatant as purified water It is composed of case 41.
  • the pH is adjusted in the neutralization tank 15, and after the nutrients necessary for the growth of microorganisms, for example, a phosphoric acid solution or ammonia gas are given, ⁇ ⁇ ⁇ Enter the air tank 4.
  • the wastewater is aerated with oxygen, and organic matter in the wastewater is oxidatively decomposed and grows as a floc.
  • the sedimentation tank 41 the wastewater is separated into purified water and microbial flocks, that is, activated sludge, and the upper separation water is sent to the outside as treated water, and a part of the concentrated activated sludge is continuously discharged. It is returned to Vessel 4 and mixed again with the new inflow substrate that has flowed in with the wastewater.
  • In order to maintain the rate of decomposition of organic matter in the wastewater by aerobic microorganisms in the air tank above a certain value, ⁇ ⁇ Use oxygen in the wastewater so that the dissolved acid purple in the wastewater in the air tank becomes above a certain value. To ensure that the acid violet supply is not the limiting factor in organic matter removal.
  • Incense (26th thread) It should be more concentrated than the activated sludge concentration in the air tank.
  • the activated sludge wastewater treatment facility was designed to control the injection of chemicals and temperature adjustment to the wastewater in the neutralization tank, the supply of oxygen to the wastewater in the Akebono tank, and the return of sludge from the precipitation tank to the aeration tank.
  • Various control loops !
  • the activated sludge wastewater treatment equipment which has a leveling liquid level control loop to moderate the fluctuation of the flow rate of wastewater from raw water to the aeration tank.
  • the activated sludge process is carried out using microbial activity that is difficult to control.
  • the cultivation conditions and process condition fi change from time to time, and various abnormal situations occur.
  • the operating conditions refer to the flow rate, for example, the flow rate of the wastewater, the flow rate of the chemical solution and oxygen, the flow rate of the returned activated sludge, and the position of the solid-liquid interface in the settling tank.
  • Process yield refers to temperature, pressure, concentration, pH value, turbidity, etc.
  • the quality of the received wastewater is analyzed by analyzing the received wastewater, and the temperature and pH are adjusted for the wastewater to adjust the operating conditions and process volume.
  • measures have been taken to suspend the receiving of wastewater and put in sugar and urea to wait for the natural situation to resolve itself.
  • the operating conditions or process state can be newly set by individual control loops and the wastewater treatment equipment can be locally stabilized.
  • the position of the solid-liquid interface in the settling tank and the turbidity of the treated water which are indicators of the stability of operation, are predicted, and the position of the solid-liquid interface and the turbidity of the treated water are estimated.
  • the object of the fourth invention is to predict operating conditions and process state quantities as indices in response to changes in operating conditions and process standing, and The purpose is to provide activated sludge wastewater treatment facilities that can provide appropriate information.
  • the detection of abnormal signs of the wastewater treatment equipment itself is performed by analyzing various operation data in the wastewater treatment equipment and determining the interface of the sedimentation tank, which is an operation stabilization index of the wastewater treatment equipment, and the degree of treated water. It is possible by pre-emption. Therefore, abnormalities in wastewater treatment facilities are more often caused by fluctuations in the properties of the wastewater received than by the operation of the wastewater treatment facilities themselves.
  • wastewater treatment equipment that collectively treats wastewater discharged from a large number of wastewater sources for example, wastewater discharged from a large number of more than 20 brands. These are changes in the nature and composition of the wastewater discharged from each plant. This tendency is particularly high when the plant discharges ammonia-containing wastewater with a high ammonia concentration.
  • an object of the fifth invention is to provide a process operation support device applicable to the activated sludge wastewater treatment facility, a chemical process that receives and processes each treated body from a plurality of upstream chemical processes, and discharges the treated body.
  • a process cultivation support device that predicts, at the time of operation, at least one of the index operation conditions of the target chemical process and the index characteristic of the treated object based on the operation e data of the upstream chemical process. It is. Disclosure of the invention
  • the apparatus for controlling the dissolved oxygen content of the air coffin according to the present invention includes a raw water tank (1).
  • the aeration tank (4) is connected to an oxygen supply pipe (25), a return sludge receiving pipe (47) from a sedimentation tank (41), and treated water / sludge.
  • the activated sludge wastewater treatment equipment having a discharge pipe to the sedimentation tank (4 1) it is characterized in that it is a control device for the dissolved oxygen concentration of the aeration tank (4) equipped with the following instrumentation equipment: And
  • a closed-type air tank is used, and the pressure detector (a) measures the internal pressure of the aeration tank in the aeration tank.
  • a control device for dissolved oxygen concentration which is equipped with a pressure control valve (7) and a pressure control controller (12) for adjusting the internal pressure of the air tank in the exhaust pipe of the air tank.
  • a total model that approximates the dynamic characteristic of the dissolved oxygen port is used as a prediction model of the PID control device with a prediction function.
  • a PID control device with a short-term puncture function is used as a PID control device with a prediction function
  • the PD controller with short-term prediction function calculates the amount of oxygen to be supplied based on the measurement result of the dissolved oxygen concentration meter and the target value of the dissolved oxygen concentration calculated by the neural net optimizer.
  • the raw water temperature, flow rate, water purple ion concentration (PH), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), At least one selected from the group consisting of substance (SS), temperature of tank, pressure of dissolved tank, dissolved oxygen concentration, mixed liquid in tank (ML SS), and «volatile mixed substance in liquid (MLVS S) Use one or more types of data.
  • oxygen having a purity of 50% or more is used.
  • a method of controlling the dissolved oxygen concentration in the air tank using the control device is also a part of the first invention.
  • the required oxygen S is calculated from the ratio of the target dissolved oxygen concentration in the warm-up tank to the predicted dissolved oxygen concentration in the tank.
  • the pressure control valve of the aeration tank in order to eliminate the pressure fluctuation in the aeration tank caused by the supply of oxygen, it is preferable to set the pressure control valve of the aeration tank to operate with a delay time with respect to the supply of the acid purple.
  • a PID controller with a prediction function is an ordinary PID controller with a model prediction function.
  • a statistical model such as an ARIMAX model that approximates the dynamic characteristic of the dissolved oxygen S degree with respect to the oxygen supply amount is preferable.
  • the ARI MAX model is an Aito Reg-ssive Integrated Moving Average exogenous model (moving average exogenous variable model after self-regression).
  • such a PID control device with a prediction function takes in a signal from a dissolved oxygen concentration meter and uses the past control data and the dynamic characteristic model of the controlled object to determine the behavior of the dissolved oxygen concentration.
  • the concentration of dissolved oxygen is controlled by predicting and narrowing this to a preset target value of dissolved oxygen port and adjusting the supply amount of acid accumulation so as to reduce the deviation.
  • the PID control device with a predictive function used in the first invention can incorporate a statistical model that can approximate the dynamic characteristics of the concentration of dissolved acid ⁇ to be controlled. It shows good control performance even for processes with long time constants. In addition, by considering the noise model, it is possible to maintain good control performance even with respect to process disturbance.
  • the dissolved oxygen concentration meter that sends a signal of the dissolved oxygen concentration to the PID controller with this prediction function is installed near the outlet where sludge and treated water flows out of the aeration tower.
  • the supply amount of oxygen is automatically changed according to the output of the PID controller with the prediction function described above, and the set value of the flow rate of the acid purple supply amount meter is automatically changed.
  • the control can be performed by controlling the oxygen supply amount control valve by reducing the amount.
  • the first invention method is to control the dissolved oxygen concentration of a closed-type aerated cypress using the dissolved oxygen concentration control device S of the air tank as described above.
  • the acid mixture used in the case of the closed aeration tank has a high purity in view of treatment efficiency and control responsiveness.
  • the purity is preferably an oxygen content of 50% or more, preferably 70% or more, more preferably 90% or more, and even more preferably 95% or more.
  • a closed aeration tank is suitable from the viewpoint of efficient use of supplied oxygen.
  • another control device uses a target dissolved oxygen concentration of the aeration tank obtained by a long-term, multivariable and nonlinear predictive optimization calculation as a target value of the short-term linear predictive control. Is used to calculate the amount of oxygen required in the sleep tank and adjust the amount of supplied oxygen based on this. It performs stable water treatment even when there are various fluctuation factors and temporal fluctuations caused by process disturbance.
  • a neural 'net' optimizer used in another control device of the first invention learns in advance the relationship between process data during the past operation and the dissolved oxygen concentration, and processes the process during operation IE based on this. From the data, a target value of dissolved oxygen concentration is calculated to optimize cost functions related to oxygen consumption, wastewater treatment fi, wastewater quality, etc., and this is calculated using a PID controller with a short-term prediction function (Predictive PID Controller).
  • process data which are variables to be input in the neural net optimizer of the apparatus of the present invention include raw water temperature, flow rate, hydrogen ion concentration (PH), chemical oxygen demand (COD), biological Chemical oxygen demand (B0D5), suspended solids (SS), temperature of tank, pressure, dissolved oxygen concentration, mixed liquid in tank, suspended solid in liquid (ML SS), mixed liquid in tank Group consisting of (MLVS S)
  • the wastewater from each plant is individually flowed to fi, pH, C0D, etc. Is preferably measured.
  • the process data to be entered is not limited to the above.
  • the neural network optimizer used in another control device of the first invention has a three-layer structure having an input layer, a middle tier, and an output layer. If the number of layers is two, the nonlinear model cannot be handled. On the other hand, if the number of layers is four or more, the model becomes too complicated and “training” the model takes too much time, and the practicality tends to decrease.
  • the neural net optimizer dissolves the various types of process data from the various process data described above in consideration of the upper and lower limits of each variable and the cost function.
  • the target value of the dissolved acid concentration is given to the PID controller with a short-term prediction function. be able to.
  • the PID controller with short-term prediction function used in the first invention is a normal PID controller.
  • the ID control device has a short-term model prediction function. Specifically, using the operating data indicating the relationship between the past dissolved oxygen concentration and its target value and the set value of the oxygen supply amount, the future change of the dissolved oxygen concentration is determined using a linear model of the controlled object. It is a calculation.
  • the linear model to be controlled it is preferable to use a discrete linear model (ARIMAX model) that takes into account the dynamic characteristics of dissolved oxygen 'concentration with respect to the amount of supplied oxygen and noise.
  • the ARIMAX model is an “Au to Regressive integrated Moving Average exogenous model” (a self-burning integral moving average exogenous variable model).
  • such a PID control device with a short-term prediction function uses a signal taken from a dissolved oxygen concentration meter and the above linear model.
  • This PID controller with a short-term prediction function can incorporate a statistical model that can approximate the dynamic characteristics of the dissolved oxygen concentration, which is the object of control. It shows good control performance even for processes with long time constants. In addition, by considering the noise model, it is possible to maintain good control performance without adjusting the model parameter values even for process disturbances.
  • the dissolved acid purple port meter that sends a signal of dissolved oxygen concentration to the PID controller with this short-term prediction function is placed near the outlet where sludge and treated water flows out of the air tank. It is preferable for accurately grasping.
  • the first invention by providing the above-described control device for the dissolved oxygen concentration in the air tank in the activated sludge wastewater treatment facility, it is possible to predict and control the dissolved oxygen concentration in the aeration tower.
  • the dissolved acid purple can stabilize the agricultural level, so that the quality of the treated water is stable.
  • the short-term prediction and the long-term prediction not only the above-described dynamic control but also the control of cost and minimum by the neural net optimizer can be simultaneously performed. Invention of 2
  • the activated sludge wastewater treatment equipment according to the present invention (second invention) is the same as the activated sludge wastewater treatment equipment described above, except that a heating device is provided in the neutralization tank (15) and a raw water supply pipe (24).
  • a heating device is provided in the neutralization tank (15) and a raw water supply pipe (24).
  • Neutralization tank characterized by having a heat exchanger for cooling (28), and adding a temperature control device for the air tank consisting of the following instrumentation equipment to control them.
  • Raw water temperature detector (16) that measures the temperature of raw water supplied from (15) to the air tank (4)
  • the temperature control device of the aeration tank is configured such that the temperature controller (19) in Hikiki is the master side and the temperature controller (17) in the raw water is the slave side. And a control loop is formed.
  • the activated sludge wastewater treatment equipment has a temperature control device using a split range controller as the raw water temperature separator (17).
  • the activated sludge wastewater treatment equipment that is the object of the second invention is installed in the following order: a raw water tank 14, a neutralization tank 15 with a heating device, and an aeration tank 4.
  • a raw water tank 14 is a tank that receives the wastewater from one or more drainage systems
  • the neutralization tank 15 is a tank that adjusts the pH of the wastewater and Z or nutrients prior to treating this wastewater with activated sludge. A coffin for making adjustments.
  • the raw water and the neutralization tank can be combined into one tank.
  • This neutralization tank is provided with a heating device.
  • a heating device either an indirect heating device such as a jacket or a coil or a direct heating device such as a steam blowing tube may be used, but a steam blowing tube is preferable in terms of thermal efficiency and ease of maintenance and inspection. .
  • the wastewater treatment with activated sludge is performed.
  • the refractory and the neutralization tank are connected by a raw water supply pipe with a heat exchanger for cooling.
  • the type of the heat exchanger is not particularly limited, and may be, for example, a double tube type or a multi tube type.
  • the location of the heat exchanger is not particularly limited as long as it is in the middle of the connection pipe between the neutralization tank and the aeration tank, but it is efficient to avoid the influence of outside temperature on the raw water after temperature control. In order to perform a safe operation, it is preferable to provide it at a position close to the aeration tank.
  • Raw water temperature detector 16 that measures the temperature of raw water supplied from neutralization tank 15 to aeration tank 4
  • Raw water temperature controller 17 that regulates the temperature of raw water supplied to the aeration tank based on the output of raw water temperature detector 16 and the output of air tank temperature controller 19
  • Heating medium supply control valve for the heating device of the neutralization tank which is the heating operation end of the raw water temperature controller 17
  • temperature detectors As these temperature detectors, temperature controllers and control valves, those generally used for instrumentation can be used.
  • cooling water re-cooled water, cold water, or the like
  • the operation terminals can be switched between heating and cooling with one controller, thus reducing the size of the equipment and reducing equipment costs. It becomes possible.
  • the air temperature control method of the second invention is to control the temperature in the air tank of the activated sludge wastewater treatment equipment using the above-described control device.
  • the temperature can be controlled without affecting the activity of the microorganisms in the sleep tank, so that the fluctuation of the dissolved oxygen concentration in the tank can be reduced. it can. This makes it possible to operate the wastewater treatment equipment and stabilize the quality of the treated water.
  • the activated sludge wastewater treatment equipment according to the present invention (third invention) is the same as the activated sludge wastewater treatment equipment described above, except that the following equipment is provided to control the liquid level of the raw water tank. It is characterized by adding an equilibrium liquid level control device for the water tank.
  • a raw water supply pipe that adjusts the flow rate of raw water supplied to the aeration tank based on the output of the raw water tank level controller (30) and the output of the raw water flow S detector (31) Raw water flow controller (32)
  • the uniform liquid level control device of the raw water tank has a cascade in which the raw water level controller (30) is the master and the raw water flow controller (32) is the slave. It is characterized in that a single control loop is formed.
  • the activated sludge wastewater treatment equipment has a uniform liquid level controller using a regulator with a GAP as the raw water tank level controller (30).
  • At least two types of switchable proportional gains can be measured with a controller with a GAP, one of which is a proportional gain for normal flow level control, and the other is a raw water tank.
  • Proportional gains to avoid deviations from the controllable liquid level range, so that when the flow rate of incoming wastewater changes, the liquid level fluctuation in the raw water tank does not exceed the allowable range.
  • a cross-sectional area of the raw water tank, a level gauge gain, and a flow rate level controller which is set based on the flow rate controller gain.
  • the activated sludge wastewater treatment equipment that is the object of the control device of the third invention is provided in the order of a raw water tank 14, a neutralization tank 15 and an aeration tank 4, and the neutralization tank 15 and the air tank are connected.
  • the facilities are connected by raw water supply pipes 24.
  • the raw water tank 14 is a tank that receives the wastewater from one or more drainage systems
  • the neutralization tank 15 is a tank that adjusts the pH of the wastewater and / or adjusts the wastewater prior to activated sludge treatment.
  • Extra ⁇ ⁇ ( ⁇ 26th thread) is a tank for adjusting nutrition.
  • the raw water tank and the neutralization tank may be combined into one tank.
  • a raw water tank liquid level detector 29 and a raw water tank liquid level controller 30 are installed in the raw water tank. It is preferable to use a controller with a GAP as the raw water tank level controller in terms of controllability.
  • the air tank and the neutralization tank that perform wastewater treatment with activated sludge are connected by a raw water supply pipe 24 having a raw water flow detector 31 and a raw water flow controller 32.
  • the flow S-node method of the raw water flow collector is not particularly limited, and a control valve such as a control valve that can adjust the flow rate continuously or sequentially can be used. For precise control, those capable of continuous adjustment are preferable.
  • the installation location is not particularly limited as long as it is in the connection pipe connecting the neutralization tank and the Akebono Tank, but if a pump or the like is installed to transfer raw water, it should be installed. It is usually installed in the middle of the connection pipe on the air »side (outside).
  • the raw water flow S regulator 32 is controlled based on the output of the raw water tank liquid level controller 30 and the output of the raw water flow a detector 31.
  • This raw water coffin liquid level By forming a cascade control loop with the node 30 as the master side and the raw water flow fiig node 32 as the slave side, the raw water tank level controller on the master side becomes While keeping the fluctuation of the liquid level in the raw water tank within the allowable upper and lower limits from the set value, the sudden change in the supply flow from the neutralization tank to the aeration tank is moderated by the raw water flow S controller on the slave side. And more stable control is possible, which is preferable.
  • a regulator with a GAP is used as the raw water tank level controller, the accuracy of the HI node will be further improved.
  • a controller with GAP a PI controller that switches at least two types of proportional gains is preferable.
  • One gain is a proportional gain for normal equalizing liquid level control, and the other is an allowable liquid level in raw water tank management. It is preferable to use a proportional gain to avoid deviation from the range.
  • the fluctuation of the liquid level of the raw water tank due to the assumed fluctuation of drainage S is as follows: 1) Raw water ⁇
  • the proportional gain for normal To adjust the output so that the supplied flow rate of raw water to the air is kept constant.
  • proportional gains are preferably set based on the cross section 3 ⁇ 4 of the raw water tank, the liquid level gauge gain, and the flow rate control juice gain.
  • the third aspect of the present invention provides a method for controlling the level of liquid in a raw water tank, wherein the liquid level of the raw water tank of the activated sludge wastewater treatment equipment and the flow rate of raw water supplied to the Akebono gas tank are controlled by using the above-described control device. That is.
  • the control device of the third aspect of the present invention By using the control device of the third aspect of the present invention, even when the amount of received wastewater fluctuates, the level of the raw water tank and the flow rate of the raw water to the Hikiki tank are controlled at the same time, so that the raw water tank is It can be used to mitigate sudden changes in the raw water supply flow fi to the BS tank. This makes it possible to stabilize the wastewater treatment load on aerobic microorganisms and to improve and stabilize the quality of treated water. Fourth invention
  • the activated sludge wastewater treatment equipment (fourth invention) includes a process computer for equipment control added to the activated sludge wastewater treatment equipment described above, and the temperature and the temperature of an aeration tank in the wastewater treatment equipment are controlled.
  • a data input unit for inputting the operation data or desired set value data of the dissolved oxygen concentration, the flow rate of nutrients supplied to the neutralization tank, and the sludge flow rate returned from the sedimentation tank to the aeration tank to the above process computer
  • a prediction calculation unit for predicting the position of the solid-liquid interface of the sedimentation tank and the turbidity behavior of the treated water in the liquid phase of the input data by a calculation process using a neural network model based on the input data; It is characterized by having a driving support device provided with a driving support unit for setting the operating conditions of the activated sludge facility.
  • a process computer for equipment control is added to the above-mentioned activated sludge wastewater treatment equipment, and the position of the solid-liquid interface of the sedimentation tank in the wastewater treatment equipment and the treated water in the liquid phase portion are added.
  • Calculating unit that calculates the optimum conditions for the flow rate of the sludge flow from the settling tank to the air tank, and the operating conditions based on the results of the optimization calculation. It is characterized by having a driving support device S comprising a driving support unit to be set.
  • the present inventor has determined from the factors governing the operating state, namely, the input variables consisting of the operating conditions and the process state quantity, and the impulse and the solid-liquid interface position indicating the property of the treated water after the activated sludge treatment.
  • the activated sludge wastewater treatment equipment includes a raw water tank for receiving wastewater, a neutralization tank for injecting a chemical solution into the wastewater for pretreatment, and adjusting the temperature of the wastewater, and a wastewater.
  • Aeration tanks for oxidizing, decomposing, and coagulating mainly organic matter in the wastewater while purifying the wastewater with oxygen, and a sedimentation tank for precipitating the condensed sludge are treated by the activated sludge method.
  • the feature is that the output variable is predicted and calculated from the input variable by the neural net model.
  • the neural network means a neural network, and is a collective term for a system in which nerve cells (neurons) are formed by synapses.
  • nerve cells nerve cells
  • Various models have been proposed in addition to perceptron, depending on the mode of connection between nerve cells and the method of learning.
  • the neural network model used in the present invention is a neural network model.
  • the neural network model used in the present invention has a three shield structure of an input layer, an intermediate S, and an output layer.
  • a teacher signal is given to the input S and the output.
  • Can be Signals from the upper layer are weighted and then aggregated in the lower layer, and output to the lower layer via a sigmoid function.
  • the input eyebrows are formed on the upper layer and the middle employment is formed on the first floor of the lower eyebrow, the middle eyebrows are formed on the upper layer and the output employment is formed on the second layer of the lower layer.
  • Weighting between layers is performed by backpropagation learning using the steepest descent method. The weighting coefficient between the input and output learned and adjusted by this input and output data becomes the neural net model.
  • the prediction operation device is a computer having a known configuration, and the neural network model is constructed and built in the computer having the known configuration. Preferably, it is built in a workstation provided as a higher-level device of a process computer that monitors and controls the operation of the wastewater treatment equipment.
  • the number of output variables and input variables is not practically limited, and the output variable is the port of treated water, and the input variable is the operating condition and process condition ffifi that affects the turbidity of the treated water. Turbidity of the treated water is predicted by the model.
  • the output variables are the turbidity of the treated water and the solid-liquid interface position in the sedimentation tank, and the input variables are the operating conditions related to at least one of the turbidity of the treated water and the solid-liquid interface position in the sedimentation tank.
  • the process state quantity the turbidity of the treated water and the position of the solid-liquid interface in the settling tank are predicted using a neural network model.
  • the operating conditions and the process deformation related to at least one of the turbidity of the treated water and the position of the solid-liquid interface in the precipitation tank depend on the flow rate of the chemical solution supplied to the neutralization tank and the temperature of the wastewater in the air tank. It can also be the sludge flow rate to be returned to the Hioki tank based on the purple acidity of the dissolved acid in the wastewater in the air tank and the sedimentation.
  • a model reverse to the above-described neural net model was constructed, in which the input variables were the turbidity of the treated water and the solid-liquid interface position in the precipitation tank, and the output variables were the chemical solution to the neutralization tank. It is also possible to predict and calculate the optimum values for the supply flow rate, the temperature of the wastewater in the aerated plant, the dissolved oxygen concentration in the wastewater in the air tank, and the return sludge flow rate returned from the sedimentation tank to the aeration tank.
  • the operating conditions of the wastewater treatment facility and the process state quantity are variable.
  • the output variables from the input variables can be predicted by the neural net model. Can be calculated.
  • the wastewater treatment equipment according to the present invention by detecting an abnormal sign before the wastewater treatment equipment reaches an abnormal state, objective information necessary for coping with the abnormal state is operated sufficiently prior to the occurrence of the abnormal state. Since it can be given to workers, the wastewater treatment operation is stable, and there is no occurrence of a situation where treated water with high turbidity flows out.
  • the present inventors Upon completing the fifth invention, the present inventors have conducted intensive studies to solve the above problems, and as a result, the cultivation data of the drainage source process was used as an input variable of the upper sub model, and the upper sub model was used. We have learned that using the output of the model as the input of the sub-model on the lower side makes it possible to construct a wide range of accurate prediction models.
  • the operation data of each wastewater source is collected by the process and the computer of the wastewater treatment equipment, and this operation is performed.
  • the data was used to predict the response of the solid-liquid interface position of the sedimentation tank and the turbidity of the treated water, which are indicators of the stability of the activated sludge process, using a hybrid model built on the wastewater treatment equipment side. Predict the signs of rising turbidity.
  • the process operation support device receives and processes each of the treated bodies from a plurality of upstream chemical processes, When operating a chemical process that effluents a process, the process operation that predicts at least one of the index operation conditions of the target chemical process and the index characteristic of the process based on the operation data of the upstream chemical process A support device,
  • the statistical model calculates the input data to the neural network as output data from the input g data of the upstream chemical process as output data, and the neural network model calculates the data input from the total model and the target chemical process.
  • the feature is that the prediction operation is performed for at least one of the index operation conditions of the target chemical process and the property of the treated body from the evening.
  • a neural network model is constructed from the upper neural network model and the lower neural network model.
  • the upper neural network model outputs the input data to the lower neural network model from the input operation data of the upstream chemical process.
  • the lower neural network calculates the target chemical process from the data input from the upper neural network, the data input from the statistical model, and the operation data obtained from the target chemical process. For example, at least one of the index operation conditions and the processing facility may be predicted and calculated.
  • the upstream chemical process is a first-class process in which the ammonia-containing wastewater having a high concentration of ammonia is discharged as an object to be treated, and a wastewater having a lower ammonia concentration than the ammonia-containing wastewater. And a second classification process that discharges
  • the target chemical process is a wastewater treatment facility that treats ammonia-containing wastewater and wastewater discharged from the first class process and the second class process, respectively, by the activated sludge method,
  • the statistical model is a PCA (Principal Component Analysis) model that performs principal component analysis of the driving data of the second class of processes,
  • the upper-level neural net model calculates the ammonia concentration estimation model for estimating the ammonia concentration of the ammonia-containing wastewater from the operation data of the first classification process, and calculates the residence time of the wastewater in the aeration tank and settling tank of the wastewater treatment facility.
  • SA residence time calculation
  • the lower neural net model predicts and calculates the solid-liquid interface position of the sediment bridge of the wastewater treatment facility as the index 3 conversion condition and the turbidity of the treated water as the index property.
  • the prediction arithmetic unit is a computer having a known configuration, and the statistical model and the neural network model are constructed and built in the computer having the known configuration. Preferably, it is built in a workstation provided as a higher-level device of a process computer that monitors and controls the operation of the wastewater treatment facilities.
  • the treatment in the present invention is a broad concept including a chemical reaction in addition to treatment such as wastewater treatment, and there is no limitation on the types of the wave treatment body and the treatment body.
  • a hybrid with a staircase-like structure that combines the operating conditions obtained from the chemical process with the neural network model that predicts and calculates at least one of the index operating conditions of the target chemical process and at least one of the properties of the processing object A process operation support device equipped with a predictive calculation device with a built-in tool model, and predicts at least one of the index operation condition of the target chemical process and the index characteristic of the treated object based on the 3 ⁇ 4G data of the upstream chemical process Has been realized.
  • FIG. 1 is a schematic diagram showing an example of a configuration of a control device for a dissolved oxygen concentration in an aeration tank according to the first invention.
  • FIG. 2 is a graph showing a deviation of a dissolved oxygen concentration in a gas tank from a target value before and after starting control using the dissolved oxygen concentration control device of the first invention.
  • FIG. 3 is a schematic diagram showing an example of the configuration of the control device for the dissolved oxygen concentration in the air tank according to the first invention.
  • FIG. 4 is a schematic diagram showing an example of the air tank temperature control device of the second invention and a wastewater treatment facility using the same.
  • FIG. 5 is a graph showing the temporal fluctuation of the temperature in the tank of the aeration tank before and after starting the temperature control of the aeration tank using the temperature control device of FIG.
  • FIG. 6 is a graph showing the temporal variation of the dissolved oxygen port of the aeration tank before and after starting the temperature control of the aeration tank using the temperature control device of FIG.
  • FIG. 7 is a schematic diagram showing an example of a configuration of a uniform flow level control device for a raw water tower according to the third invention, and an activated sludge wastewater treatment facility using the same.
  • FIG. 8 is a graph showing the temporal fluctuation state of the raw water tank liquid level before and after the control using the uniform water level control device for the raw water tank in FIG. 7 is started.
  • FIG. 9 is a graph showing the temporal fluctuations of the flow rate of raw water supplied from the neutralization tank to the aeration tank before and after the control using the uniform flow level controller of the raw water tank in FIG. 7 is started.
  • Fig. 10 is a graph showing the temporal variation of the turbidity (amount of suspended solids) of the treated water of the wastewater treatment facility before and after the control using the uniform flow level control device for the raw water tank in Fig. 7 is started.
  • FIG. 11 is a schematic diagram showing an example of a nutrient source supply control device for an activated sludge wastewater treatment facility of the present invention, and an activated sludge wastewater treatment facility using the same. (Aeration ⁇ is omitted)
  • Fig. 12 is a graph showing the comparison between the estimated value of the fluctuation of the ammonia concentration in the wastewater of the ammonia discharge equipment over time by the soft sensor used in the control device in Fig. 11 and the actually measured value by the process analysis. .
  • FIG. 13 is a block diagram showing a general configuration of an activated sludge wastewater treatment facility.
  • FIG. 14 is a block diagram showing the configuration of the activated sludge wastewater treatment facility according to the fourth invention.
  • Figure 15 is a flow sheet showing the configuration of the wastewater treatment equipment main body.
  • FIG. 16 is a block diagram showing a configuration of a process driving support device according to the fifth invention.
  • Figure 17 shows the activated sludge wastewater treatment system to which the operation support device of the process of Example 7 was applied.
  • FIG. 18 is a block diagram showing the structure of a hybrid model. BEST MODE FOR CARRYING OUT THE INVENTION
  • Example 1 Example of the first invention
  • FIG. 1 shows an instrument and a control device around an aeration tank.
  • Fig. 1 shows a closed aeration tank (4), a raw water flow S meter (1) for measuring the flow rate of raw water flowing into the tank, and a flow S control valve (2) returned from the sediment ⁇ .
  • sludge flow meter (3) which measures the flow rate of sludge
  • dissolved oxygen concentration meter (5) which measures the dissolved oxygen concentration in the sleepy tank
  • pressure detector (6) which measures the internal pressure of the aeration tank
  • a pressure regulating valve (7) and a pressure control controller (12) provided on the exhaust pipe of the aeration tank, an oxygen supply amount regulating valve (9) that regulates the flow fi of oxygen supplied to the aeration tank, Around lined ft.
  • Acid purple supply S measuring device (8) installed immediately adjacent to the valve, PID control device with a prediction function to calculate the amount of acid purple to be supplied based on the measurement result of the dissolved oxygen concentration meter ( 1 1), and the oxygen supply amount control valve is adjusted based on the measurement result of the oxygen supply amount measurement device and the oxygen amount indicated by the PID control device with the preliminary function.
  • This figure shows Akebono's dissolved oxygen port level control system consisting of an oxygen supply line controller (10).
  • the measurement result of the dissolved acid purple iS meter (5) in the air is stored in a PID control device (11) having a prediction function.
  • the PID controller (11) with the prediction function described above calculates the oxygen supply amount that can be closer to the target dissolved oxygen concentration.
  • the result is output to the oxygen supply maximum controller (10), which is compared with the measurement result of the acid purple supply amount measuring device (8), and the oxygen supply amount control valve (9) is operated to obtain the oxygen supply amount.
  • Control supply S is compared with the measurement result of the acid purple supply amount measuring device (8), and the oxygen supply amount control valve (9) is operated to obtain the oxygen supply amount.
  • the pressure control valve (7) is operated by the pressure controller (12) of the aeration tank, and the gas in the air tank (4) is discharged to a predetermined pressure.
  • FIG. 2 shows an example of a measurement result of the dissolved oxygen concentration in the air tank before and after starting the predictive control by the dissolved oxygen concentration control device of the first embodiment. (Before the control by the apparatus of Example 1 was started, control was performed using the internal pressure of the aeration tank and the oxygen concentration of the gas phase as control factors by the usual method.)
  • FIG. 3 shows a juicer and a control device around an aeration tank.
  • Figure 3 shows a closed aeration tank (4), a raw water flow meter (1) that measures the flow rate of raw water flowing into it, and its flow control valve (2), and the flow rate of sludge returned from the sedimentation tank.
  • dissolved oxygen port meter to measure dissolved oxygen concentration in gas tank (5)
  • pressure detector to measure internal pressure of gas tank (6)
  • Akebono tank The pressure control valve (7) and the pressure control controller (12) provided on the exhaust pipe, the oxygen supply flow control valve (9), which controls the flow fi of oxygen supplied to the pressure tank, and the oxygen supply flow control valve
  • Oxygen supply measuring device (8) raw water temperature, flow rate, hydrogen ion concentration (PH) and chemical oxygen demand (COD), biochemical oxygen demand (BOD5), suspension Substance (SS), temperature and pressure of Akebono Aeration tank, dissolved oxygen concentration, suspension of mixed liquid in tank (ML SS), volatile suspension of mixed liquid in tank (ML VSS)
  • Neural Net Optimizer 13
  • PID control device with short-term prediction function (11) that calculates the amount of oxygen to be supplied based on the target value of the temperature, the measurement results of the oxygen supply amount measurement device, and the instruction of the PID control device with prediction function
  • the figure also shows a dissolved oxygen concentration control device for a gas tank comprising an acid purple supply amount controller that adjusts an oxygen supply amount control valve based on the measured oxygen amount.
  • FIG. 4 shows instruments and control devices around a raw water tank, a neutralization tank and an aeration tank.
  • Fig. 4 shows the temperature control of the Akebono tank with a cascade control loop using the temperature controller 19 in the air tank as the master side controller and the split-range type raw water temperature controller 7 as the slave side controller. The device is shown.
  • steam (hereinafter sometimes abbreviated as “steam”) is used as the heating medium
  • cooling water is used as the cooling medium.
  • the steam supply silk connection valve 20 is used when heating is required in winter, and the cooling water supply control valve 21 is used when cooling is required in summer.
  • the master-side temperature controller in the air tank 19, which is the master-side controller calculates the amount of steam required to approach the target temperature from the deviation between the target temperature in the aeration tank and the actual temperature.
  • a signal is sent to the raw water temperature split range controller 17 as a set value.
  • the raw water temperature split range type controller 5, which is a slave-side controller adjusts the steam supply control valve 20 to follow the set value.
  • the cooling water supply control valve 21 is used to cool the raw water in the same manner.
  • FIG. 5 is a graph showing the time variation of the tank temperature before and after the start of the tank temperature control of the aeration tank using the control device of FIG.
  • the tank temperature of the aeration tank indicated by T T 1 was the target after the start of control, despite the fluctuation range of 6 to 7 ° C before the start of control.
  • Incense (26th thread) It can be seen that the temperature is within ⁇ 0.5 ° C with respect to the temperature of 36 ° C.
  • Fig. 6 shows the time variation of the dissolved oxygen port (D O) in the aeration tank when the operation shown in Fig. 5 was performed. It was observed that the fluctuation range was about 1 ppm before the temperature control of the aeration rate was started, but it was about 0.5 ppm after the start of the control, and it is observed that it tends to decrease further.
  • Example 4 Example of the third invention
  • FIG. 7 shows an instrument and a control device around the raw water tank, the neutralizing coffin and the air tank, that is, the raw water tank liquid level controller 3OA with GAP on the master side.
  • the figure shows a control device for the uniform liquid level in the raw water tank, which consists of a cascade control loop in which the controller and the raw water flow controller 32 are used as slave-side regulators.
  • the controller with GAP can set two types of proportional gain, one of which is when the liquid level in the raw water tank is near the set value, and mainly when the raw water supply flow rate is within the specified range. Output to the raw water flow controller. Another proportional gain is when the liquid level in the raw water tank is out of the set value and is near the permissible limit. Maintain the liquid level in the raw water tank within the allowable range rather than keeping the raw water supply flow rate constant.
  • These two types of proportional gains were determined by an adjustment method that considered the cross-sectional area of the raw water tank, the level gauge gain, and the flow controller gain.
  • FIG. 8 is a graph showing the temporal fluctuation of the liquid level of the raw water tank before and after starting the uniform flow level control of the raw water tank using the control device of FIG.
  • FIG. 9 is a graph showing a temporal change in the flow rate of raw water supplied from the neutralization tank to the aeration tank when the operation shown in FIG. 8 is performed. Despite a large change in the liquid level of the raw water tank after the start of control, there is no rapid change in flow rate, indicating that the degree of change in flow fi has been alleviated.
  • Figure 10 shows the time course of turbidity (the amount of suspended solids K), which is one of the indicators of stabilization of the activated sludge process, measured at the same time.
  • the turbidity also increased when the raw water flow increased immediately after the start of the control, but it has been found that the turbidity has been stabilized at a low value thereafter.
  • This embodiment is an embodiment of the invention comprising the above-described first to third inventions, and is an example of a chemical plant or the like having a facility for discharging wastewater containing ammonia (hereinafter referred to as “ammonia discharge facility”).
  • the present invention relates to a control device and a control method for a nutrient source supply fi of an activated sludge process used in a general wastewater treatment plant.
  • the nutrients used in the activated sludge treatment are generally ammonia (nitrogen source), phosphoric acid (phosphorus source) or methanol (organic material source), and these nutrient sources are used as they are or as aqueous solutions. Therefore, a method of adding a fixed amount continuously or intermittently is usually used.
  • the ammonia S discharged varies depending on the operation of the ammonia discharge facility.
  • ammonia itself is a nutrient source of microorganisms, so in a treatment facility that uses the constant fi addition method, fluctuations in the amount of ammonia will cause an increase in the content of nutrient sources in the wastewater supplied to the air tank.
  • the operation of activated sludge treatment equipment may become unstable, leading to fluctuations in treated water quality and foaming and bulking in air.
  • the activated sludge wastewater treatment equipment that receives the wastewater from the ammonia discharge equipment accurately predicts the amount of ammonia in the received wastewater, and controls the amount of nutrient source supplied to the wastewater.
  • a control device capable of stabilizing the operation of the treatment equipment and the water shortage of the treated water, and a control method of the wastewater treatment equipment using the same are realized.
  • the present inventors have proposed a method of exchanging data between a process of an ammonia discharge facility, a process of a wastewater treatment facility and a computer, and a process of a wastewater treatment facility.
  • good control performance could be obtained by equipping a computer with a soft sensor to predict the ammonia content in wastewater and control the supply of nutrient sources accordingly.
  • the activated sludge method wastewater treatment installation head which is the target of the control device of this embodiment, is a facility that receives and treats wastewater including wastewater from the ammonia discharge facility.
  • the facility is composed of 15 and an aeration tank, and is connected to a neutralization tank 15 with piping 53 supplying nutrient sources.
  • the raw water tank 14 is a tank that receives wastewater from one or more drainage systems including the wastewater from the ammonia discharge facility, and the neutralization tank 15 is a wastewater treatment system that treats this wastewater prior to activated sludge treatment.
  • a nutrient source flow detector 55 and a nutrient supply fi regulator 35 are installed in the nutrient source supply pipe 53 for adding a nutrient to the neutralization tank.
  • the operating status of the ammonia discharge equipment is monitored and controlled by a process computer 31 A for the equipment.
  • the operation data is stored in, for example, a LAN (mouth area, network) or the like.
  • the process ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ computer has a soft sensor 33 that can estimate the ammonia emission fi of the ammonia discharge facility based on the operation data of the ammonia discharge facility.Based on the estimated value of the soft sensor, Calculate the nutrient supply fi described above.
  • the soft sensor performs the prediction calculation using a neural 'network (neural network' optimizer ') because the prediction accuracy becomes high.
  • ammonia As the nutrient used, the above-mentioned ammonia, phosphoric acid, methanol and the like are preferable, and it is particularly preferable to use these as an aqueous solution. Among them, the use of ammonia is preferred in the case of the present invention because the same nutrient as the wastewater is used, and the environment for microorganisms is more stable.
  • the form of the nutrient source supply amount regulator 35 is not particularly limited.
  • a flow rate such as a control valve is controlled continuously or sequentially. It is preferable to be able to adjust to
  • the method for controlling the supply of nutrients according to the present embodiment is to control the amount of supply of nutrients in the activated sludge wastewater treatment facility for wastewater including wastewater from an ammonia discharger by using the control device described above. It is.
  • FIG. 11 shows a control device of the activated sludge wastewater treatment equipment for wastewater including wastewater from the ammonia discharge equipment according to the present embodiment.
  • Process of ammonia discharge equipment '' Computer 31 A and process of wastewater treatment equipment '' Computer 34 is connected to LAN 31 B for data exchange
  • the process data of ammonia discharge equipment is process.
  • the information is transmitted to the process computer 34 of the wastewater treatment facility by communication, and the estimated value of the amount of discharge monum is calculated by the soft sensor 33 using the neural network on this computer.
  • the difference between the estimated amount of ammonia and the required nutrient source S determined from the optimum nutrient source ratio (BOD weight S ratio) given as the operating condition of the activated sludge equipment is used to determine the nutrient source connected to the neutralization tank. It is given as a set value to the nutrient source supply regulator 35 installed in the supply pipe.
  • Fig. 12 shows the change over time between the calculated value (dashed line) of the ammonia concentration in the wastewater of the ammonia discharge facility estimated by the control device including the soft sensor of the present invention (dashed line) and the measured value (solid line) by the process analysis. A comparison is shown. As is clear from this figure, both of them show a good correlation, and it is understood that the control device of the present invention has high accuracy. By using the control device of this embodiment, the operation of the ammonia discharge equipment is improved. Even if the situation changes, the amount of ammonia flowing from the facility can be quickly and accurately estimated and reflected in the nutrient source supply S to the activated sludge facility, thus stabilizing and treating the facility. Improvement of water poverty can be expected.
  • FIG. 14 is a block diagram showing the overall configuration of the wastewater treatment apparatus based on the activated sludge method of this embodiment.
  • Figures and 14 are flow sheets showing the configuration of the wastewater treatment device main body.
  • the wastewater treatment device 36 (hereinafter simply referred to as wastewater treatment device 36) by the activated sludge method of this embodiment includes a wastewater treatment device main body 37 and a wastewater treatment device main body 3. 7, a process computer 34 that monitors and controls the process, a workstation 38 provided as a higher-level computer of the process computer 34, and an operation support device 39 that provides operation guidance to operators if necessary. It is composed of The driving support device 39 can be included in the process computer 14.
  • the main unit 37 receives and discharges wastewater, and is integrally formed with the raw water tank 14 and raw water tank 14 to perform pretreatment such as pH adjustment and supply of nutrients to the wastewater.
  • a neutralization tank 15 for temperature adjustment
  • a pump 40 for feeding pretreated and temperature-controlled wastewater from the neutralization tank 15 to the aerated orange 4, and a main part of the wastewater while aerating the wastewater with oxygen.
  • It has an air tank 4 for oxidizing, decomposing, and coagulating organic matter and a sedimentation tower 41 for sedimenting sludge flocks and discharging supernatant as treated water.
  • the raw water tank 14 receives and accommodates wastewater from one or more drainage systems including the wastewater from the ammonia discharge facility.
  • the wastewater flows from the raw water tank 14 to the neutralization tank 15 at a constant flow rate.
  • a chemical supply pipe 42 is connected to the neutralization tank 15, and an alkaline or acid aqueous solution for pH adjustment and a mixed chemical of ammonia and phosphoric acid provided as a nutrient source for microorganisms (hereinafter, referred to as “ Is simply called a chemical solution).
  • a steam pipe 43 is connected to the neutralization tank 15 and steam is injected into the wastewater when the temperature of the wastewater is low. Raise the wastewater temperature.
  • a water cooler that exchanges heat with the water supplied by the cooling water pipe 44 to cool the wastewater is used. It is provided in the water pipe from the neutralization tank 15 to the aeration tank 4.
  • the gas tank 4 is connected to an oxygen supply pipe 25 for supplying oxygen for aeration.
  • the sedimentation tank 41 is equipped with a water tank and sediments flocculated sludge flocks while searching wastewater.
  • a return sludge pipe 47 is provided from the bottom of the settling tank 41 to the air tank 4.
  • the remaining sludge is discharged out of the system through sludge pipe 49. Further, the supernatant from which the sludge has been settled in the settling tank 41 is sent to the outside of the system via the treated water pipe 51 as purified treated water.
  • the wastewater treatment device 36 operates as described below in order to detect the operating condition and the process state S to recognize the operating condition, and to control the operating condition and the process state quantity to predetermined values. Equipped with various instruments that detect conditions and process state quantities and output them as data, and a number of control loops that perform feedback control of operating conditions and process state S based on the data output from the instruments. .
  • the chemical flow control valve 4 provided in the chemical supply pipe 4 2
  • the valve opening of the chemical solution flow control valve 48 is adjusted.
  • a cooling water pipe 44 is provided to adjust the flow rate of cooling water supplied to the water cooler 45.
  • Aeration tank 4 turns
  • Drainage thermometer for measuring the temperature of wastewater in aeration tank 4 5 6
  • the steam flow control valve 52 or the cooling water flow SI1 section Adjusts the valve opening of the valve 54, and controls the wastewater temperature in a feedback manner.
  • an oxygen flow meter 60 connected to the oxygen supply pipe 25 was used.
  • Oxygen flow control valve 6 provided in oxygen supply pipe 25 to control oxygen flow
  • An oxygen flow controller 6 4 that adjusts the valve opening of the oxygen flow control valve 62 based on the measured value of the oxygen flow meter 60 and controls the flow of supplied oxygen in a feedback manner 6 4
  • Dissolved oxygen concentration detector that detects the dissolved oxygen port and changes the set value of the acid purple flow rate of oxygen flow rate 1® node 6 4 6 6
  • Return sludge flow meter 3 installed in return sludge pipe 4 7 to measure the amount of sludge returned from settling tank 4 1 to aeration tank 4
  • Return sludge flow control valve 7 0 provided in return sludge pipe 47 to adjust sludge flow rate
  • a return sludge flow controller 7 that controls the return sludge flow control valve 70 based on the measurement value of the return sludge flowmeter 3 and controls the return sludge flow S 7 2 Settling tank 4 1 round
  • Sedimentation tank 4 1 An interface meter for measuring the solid-liquid separation interface of the wastewater in 1 4
  • the turbidity meter 15 In order to measure the turbidity of the treated water discharged from the sedimentation tank 41, the turbidity meter 15
  • the effluent treatment device 36 of this embodiment is designed to treat the received wastewater by the activated sludge method and to make the treated water less than a predetermined turbidity and flow out of the system. The most important indicator for the operation of wastewater treatment equipment 36.
  • An important rotation index for reducing the turbidity of the treated water to a predetermined value or less is the position of the solid-liquid interface in the precipitation tank 41.
  • the rise in the solid-liquid interface is due to the sludge settling in the settling tank 41.
  • the measured values of the turbidity meter 76 and the interface meter 74 are the most important target data for operating the wastewater treatment device 36.
  • the main factors affecting the turbidity of the treated water and the position of the solid-liquid interface in the sedimentation tank 3B 4, and the main operating conditions and process conditions immediately affecting the operation are as follows. Antagonism of breaking down, Neutralization ⁇ Flow rate of chemical solution supplied to 15, Temperature of wastewater in air 4, Dissolved oxygen port in wastewater in air 4, and sedimentation tank Return of sludge from 4 1 to Riki 4 This is the sludge flow rate.
  • the measured values of the chemical solution supply flow S meter 46, the thermometer 56, the dissolved oxygen concentration detector 66, and the returned sludge flow meter 3 are used to operate the wastewater treatment device 36. This is the most important input variable data.
  • the chemical supply rate, the temperature in the BI tank, the dissolved oxygen concentration and the amount of returned sludge were used as input variables, and the turbidity of the treated water and the solid-liquid interface position of the precipitation tank were used as output variables (objective data).
  • the chemical supply flow meter 46, thermometer 56, dissolved oxygen ambiguity detector 66, and returned sludge flow S total 3 output chemical solution supply, aeration tank temperature, dissolved oxygen Based on the input variable actual data of the concentration and the return sludge flow rate, and the output variable actual data of the turbidity of the treated water and the solid-liquid interface position of the settling tank output from the turbidity meter 76 and the interface meter 74, respectively.
  • a neural network model that prescribes a causal relationship between input variables and output variables is built in the work station 38 in advance.
  • the operator determines the nature of the wastewater in the raw water tank 14, the amount of chemical solution supplied, the temperature of the wastewater in the aeration tank 4, the concentration of dissolved oxygen in the wastewater in the aeration tank 4, and the return sludge flow. Set the volume and obtain the predicted values of the turbidity of the treated water and the solid-liquid interface position in the sedimentation tank 41.
  • Incense (26th thread) Can be.
  • the predicted height of the solid-liquid interface in the settling tank 41 and the turbidity of the treated water are output from the work station 38 to the operation support device 39 via the process computer 34, and are output from the operation support device 39. Guidance is given to the operator.
  • the set values are inputted to the process computer 34 from each of the above-mentioned instruments regularly or irregularly, and further sent to the workstation 38.
  • the workstation 38 calculates and processes the built-in neural network model based on the measured values, and outputs the height of the solid-liquid interface in the settling tank 4I and the turbidity of the treated water as predicted values.
  • the neural network model can automatically improve the predictive calculation capability of the neural network model by recognizing the difference between the predicted value of the output variable and the actual measured value of the output variable.
  • These set values are sent to the workstation 38 via the process computer 34, where they are processed by a neural network model.
  • the behavior of the sedimentation tank interface height and the turbidity of the treated water is output to the output. It is predicted as a value and is guided to the operator by the driving support device 39.
  • a model inverse to the neural net model constructed as described above was constructed, and the supplied amount of the chemical solution described above, the temperature of the wastewater in the aeration tank 4, the concentration of dissolved oxygen in the wastewater in the aeration tank 4, and the return sludge Contrary to the flow for obtaining the turbidity of treated water and the solid-liquid interface position in the sedimentation tank 41 from the flow rate, the above output variables are given as input variables, and the optimal values of the above input variables are taken as output variables. It is also possible to perform an optimization operation for estimating.
  • the optimal input variable value is calculated using the inverse model of the neural network model used for the prediction operation. Can be calculated.
  • Guidance is provided from the driving support device 39 to the cultivator from the vehicle 38 through the process computer 34.
  • Embodiment 7 (Embodiment of the fifth invention)
  • This embodiment is one of the embodiments of the operation support device for a chemical process according to the fifth invention (hereinafter simply referred to as the operation support device). This is an example applied to a processing device.
  • Fig. 16 is a block diagram showing the configuration of a process operation support device
  • Fig. 17 is a schematic flow sheet showing the configuration of a wastewater treatment device using the activated sludge method.
  • the operation support device 100 of the process of this embodiment (hereinafter simply referred to as the operation support device 100) is discharged from a first-class plant that discharges ammonia-containing wastewater with a high ammonia port.
  • Wastewater treatment equipment that treats wastewater discharged from each of the second category of wastewater containing ammonia containing wastewater and general wastewater with a lower concentration of ammonia than ammonia-containing wastewater by the activated sludge method. It is a device that supports luck.
  • the driving support device 100 has a process computer 34 that controls the operation of the wastewater treatment device 36, and a hybrid having a staircase structure combining a total model and a neural net model. It comprises a workstation 38 which has a built-in thread model and performs arithmetic processing as an upper computer of the process computer 34 for the wastewater treatment device, and a guidance device 106.
  • the guidance device 106 can be included in the process computer 34.
  • the process computer 34 is connected to the process computer of the first class 108 and the second class 110 via a dedicated LAN (local 'area' network). 4 shows the ilfe data of the 1st class brand 108 and the 2nd class plant 110 via dedicated LAN.
  • the wastewater treatment device 36 is a device that treats wastewater by the activated sludge method. As shown in Fig. 17, the wastewater treatment device 36 is formed integrally with the raw water tanks 14 and 14 that receive and store the wastewater. , Neutralization tank 15 for pre-treatment and temperature adjustment of wastewater, such as pH adjustment and supply of nutrients, etc., and sends pretreated and temperature-controlled wastewater from neutralization tank 15 to BS banyan 4 Pump 40, aeration tank 4 for oxidizing, decomposing, and coagulating mainly organic matter in wastewater while aerating wastewater with oxygen Has 4 in 1.
  • the raw water tank 14 receives and receives ammonium wastewater from Class 1 Brand 108 and general wastewater with a lower ammonia concentration than ammonia-containing wastewater from several Class 2 Brands 110. I do.
  • the neutralization tank 15 is connected to a line 53 for supplying a nutrient source, and an ammonia water solution for pH adjustment and a mixed chemical solution of phosphoric acid used as a nutrient source for microorganisms (hereinafter simply referred to as a chemical solution). ) Is provided.
  • means (not shown) for adjusting the temperature of the pretreated wastewater to a predetermined temperature is provided between the neutralization tank 15 or the neutralization furnace 15 and the aeration tank 4.
  • the oxygen tank 4 is connected to the oxygen tank 4 for supplying oxygen for the air.
  • the sedimentation unit 41 is equipped with a stirrer, and collects sludge flocs while searching for wastewater.
  • a return sludge pipe 47 is provided from the bottom of the settling tank 41 to the aeration tank 4. Part of the sludge is discharged out of the system through the sludge pipe 49.
  • the supernatant obtained by sedimenting the sludge with the sediment coffin 41 is sent to the outside of the system via the treated water pipe 51 as purified treated water.
  • the wastewater treatment device 36 of the present embodiment is provided in the treated water pipe 51 because the purpose of the wastewater treatment is to treat the received wastewater by the activated sludge method and to make it into treated water having a predetermined turbidity or less and to flow out of the system.
  • the turbidity of the treated water measured by the turbidity meter 76 is the most important indicator for the operation of the wastewater treatment device 36.
  • An important operation index to keep the turbidity of the treated water below the specified value is the position of the solid-liquid interface in the settling tank 41 measured by the interface meter 74 installed in the settling tank 41. is there. A rise in the solid-liquid interface means that the amount of sludge settled in the sink 3 ⁇ tower 4 1 is increasing.
  • the measured values of the turbidity meter 76 and the interface meter 74 are the most important target data for operating the wastewater treatment device 36.
  • the main factors affecting the turbidity of the treated water and the position of the solid-liquid interface in the sediment ⁇ 41, and the main operating conditions immediately affecting the operation are the results of the operation of the wastewater treatment device 36
  • These operation data are input to the process computer 34 because they are the return sludge flow rate.
  • the hybrid model I 12 built on the workstation 38 has a higher model that outputs necessary data based on tillage data obtained from each process computer, and a higher model.
  • the upper model is an ammonia concentration estimation model 114 that calculates the degree of ammonia port in the wastewater from the operation data of the first classification brand 108 that discharges the wastewater containing ammonia.
  • Principal component analysis model (PCA) model for obtaining the main components from the operation data of the second class plant, and the operation data of the wastewater treatment unit obtained from the process computer. It is composed of a residence time estimation model (SA) 118 that calculates the residence time of wastewater in the air tank and sedimentation tank.
  • SA residence time estimation model
  • the model for estimating ammonia concentration 114 and the model for estimating residence time 118 have been constructed as dual-eurnet models.
  • the lower model is a neural network model built by the neural network.
  • the calculated predicted value of the solid-liquid interface position of the settling tank and the turbidity of the treated water are input to the guidance device 106 via the process computer 34, and are provided to the operator as operation guidance by the guidance device 106. Paged or displayed on monitor screen.
  • the downgraded staff monitors the trend of the wastewater treatment equipment 36 based on the operation guidance and uses it for the operation management of the process stabilization.
  • the fifth invention has been described by taking a wastewater treatment apparatus based on the activated sludge method as an example, but the operation support equipment of the process according to the fifth invention is suitable for industrial use, especially for chemical processes.
  • the target process is not limited and can be applied to various processes.

Abstract

In wastewater treatment equipment utilizing the activated sludge process in a comprehensive wastewater treatment plant and a sewage treatment plant of chemical factories or the like, wastewater is treated in a stabilized manner controlled so as to prevent excessive or insufficient feed of oxygen and to keep the concentration of dissolved oxygen in the tank constant by receiving a signal from a dissolved oxygen analyzer (5) by means of a predictive-PID control unit (11), predicting the behavior of the dissolved oxygen concentration by using the control data in the past and a dynamic behavior model for the controlled system, comparing the predicted value with the target value of the dissolved oxygen concentration, and adjusting the feed rate of oxygen to reduce the deviation.

Description

明細香 曝気槽の溶存酸素濃度の制御装置、 曝気椿の温度制御装置、 原水流量の均流液面 制御装置、 及び活性汚泥法排水処理設備 技術分野  Specific incense Control device for dissolved oxygen concentration in aeration tank, Temperature control device for aeration camellia, Control device for uniform liquid level of raw water flow rate, and activated sludge wastewater treatment equipment
第 1 の発明は、 化学工場等の総合排水処理場及び下水処理場等で用いられてい る活性汚泥法による排水処理設備 (以下、 活性汚泥法による排水処理設備を活性 汚泥法排水処理設備と言う) に関し、 更に詳しく は、 活性汚泥法排水処理設備の 曝気槽に設ける ¾存酸素瀵度の制御装置、 及びその制御方法、 並びに溶存酸素窓 度の制御装置を有する活性汚泥法排水処理設備を提供するものである。  The first invention is an activated sludge wastewater treatment facility used in general wastewater treatment plants and sewage treatment plants such as chemical factories (hereinafter, the activated sludge wastewater treatment facility is referred to as an activated sludge wastewater treatment facility). More specifically, the present invention provides an apparatus for controlling the concentration of dissolved oxygen provided in an aeration tank of an activated sludge wastewater treatment facility, a method for controlling the same, and an activated sludge wastewater treatment facility having a controller for controlling the dissolved oxygen window degree. Is what you do.
第 2の発明は、 曝気挖の温度制御装置を備えた活性汚泥法排水処理 ¾備に関す るものである。  The second invention relates to an activated sludge wastewater treatment facility provided with a temperature control device for aeration.
第 3の発明は、 曝気槽に供給する原水流量の均流液面制御装置を有する活性汚 泥法排水処理設備に関するものである。  The third invention relates to an activated sludge wastewater treatment facility having a device for controlling the level of a raw water flow supplied to an aeration tank.
第 4の発明は、 活性汚泥法排水処理設備の運転条件及びプロセス状態量の変動 に対応して、 運転員に対して適切な運耘ガイダンスを与えるようにした活性汚泥 法排水処理設備に関するものである。  The fourth invention relates to an activated sludge wastewater treatment facility which provides operators with appropriate tillage guidance in response to changes in the operating conditions and process state quantities of the activated sludge wastewater treatment facility. is there.
第 5の発明は、 活性汚泥法排水処理設備に好適に適用するプロセスの運転支援 装置に関し、 更に詳細には、 複数の上流化学プ セスからそれぞれ彼処理体を受 け入れて処理し、 処理体を流出する化学プロセスを運転する際に、 上流化学プロ セスの運転データに基づいて、 対象の化学プロセスの指標運転条件及び処理体の 指標性状の少なく とも一方を予測する、 プロセスの運転支援装置に関するもので ある。 背景技術  The fifth invention relates to an operation support device for a process suitably applied to activated sludge wastewater treatment equipment, and more specifically, to receive and treat a treated body from each of a plurality of upstream chemical processes, and to treat the treated body. A process operation support device that predicts at least one of the indicator operating conditions of the target chemical process and the indicator property of the treated object based on the operation data of the upstream chemical process when operating the chemical process that discharges It is a thing. Background art
第 1 の発明 First invention
活性汚泥法による排水処理プロセスでは、 曙気槽中で有機物を酸化 .分解し、 必要に応じ汚泥を凝集した後、 沈殿池にて沈降分離し、 処理水を得る方法が一般  In the wastewater treatment process based on the activated sludge method, generally, oxidized and decomposed organic matter in an Akebono tank, aggregates sludge as required, and then sediments and separates in a sedimentation tank to obtain treated water.
1 1
瞽换页 (细则第 26糸) 的である。 特に、 化学工場等の高負荷排水の処理には密閉型の曝気槽を用いる例 が多い。 Goze (26th thread) It is a target. In particular, in many cases, closed aeration tanks are used to treat high-load wastewater from chemical factories.
このような処理において、 碟気槽への酸素供給は、 通常、 原水中和槽ゃ第一沈 殿槽等からの前処理設備から供給される原水の流量を測定し、 これに基づいて ¾ 気槽内の圧力が一定となるように酸素供耠量を調節し、 槽内で拢拌することによ つて水中に酸素を溶解させて行われている。 また、 皤気槽内の酸素量の適正 ¾囲 内への調整は、 隳»槽内の気相部の酸素 度に応じて、 排気配管の嗶気 «圧力調 節弁を関いて排ガスを系外へ排出し、 これに代えて酸素を受け入れることにより 行われている。  In such treatment, the oxygen supply to the air tank is usually performed by measuring the flow rate of the raw water supplied from the pretreatment equipment from the raw water neutralization tank and the first settling tank, and based on this, The oxygen supply amount is adjusted so that the pressure in the tank becomes constant, and oxygen is dissolved in water by stirring in the tank. Adjustment of the amount of oxygen in the gas tank to an appropriate value is performed according to the oxygen content of the gas phase in the gas tank. It does this by discharging it outside and accepting oxygen instead.
しかし、 このような酸素供給を曝気槽の内圧と酸素濃度とに基づいて調節する と、 「曝気棺気相部酸素濃度低下一曙気榷圧力 節弁問 内圧力低下—酸素供 給量調節弁関-酸素供袷一槽内酸素馕度上昇一 ¾気槽圧力調節弁閉一槽内圧力上 昇→酸素供給量調節弁閉→酸¾濃度低下」 のサイクルを操り返すことになり、 制 御が安定せず、 従って ¾気槽内の溶存酸素濃度は安定しない。 また、 供給される 原水の水質を無視しているため、 処理成弒も不安定であった。  However, if such an oxygen supply is adjusted based on the internal pressure of the aeration tank and the oxygen concentration, the following will be obtained: Seki-Oxygen supply Oxygen in one tank rises, and the pressure in the tank rises, the pressure in the tank closes, the pressure in the tank rises, the oxygen supply control valve closes, and the oxygen concentration drops. However, the dissolved oxygen concentration in the gas tank is not stable. Also, the treatment growth was unstable because the quality of the raw water supplied was ignored.
そこで、 第 1の発明の目的は、 瞩気榷内の溶存酸素濃度を安定化でき、 従って 流入水質が変化しても安定した処理成 81を与えることができるような曝気槽の制 御装置、 及びこれを用いた曝気槽の溶存酸素濃度の制御方法の提供することであ る。 第 2の発明  Therefore, an object of the first invention is to provide a control device for an aeration tank that can stabilize the concentration of dissolved oxygen in air and thus can provide a stable treatment 81 even if the quality of inflow water changes. And a method for controlling the concentration of dissolved oxygen in an aeration tank using the same. Second invention
また、 活性汚泥法による排水処理プロセスにおいては、 排水を原水槽に受入れ 、 前処理として中和格にて p H 1S整や栄養調整を行った後、 曝気橹内に空気又は 酸素を供給し好気性微生物により有機物を酸化 ·分解させ、 必要に応じて汚泥を 凝集した後、 沈殿 ¾で沈降分離を行い、 処理水を得る方法が一般的である。 このような処理における運転及び排水水質の安定化のためには、 曝気槽内の溶 存酸素- 度を一定にするように制御を行うのが通常であり、 そのために暉気槽内 の溶存酸素濃度に応じて糟内に酸素又は空気を供袷するという方法が用いられる ことが多い。  In the wastewater treatment process using the activated sludge method, the wastewater is received in a raw water tank, and pH or 1S adjustment and nutrient adjustment are performed with a neutralizer as a pretreatment, and then air or oxygen is supplied into the aeration tank. Generally, organic matter is oxidized and decomposed by aerobic microorganisms, and the sludge is agglomerated as required, followed by sedimentation and separation by sedimentation ¾ to obtain treated water. In order to stabilize the quality of the wastewater and the operation in such treatment, it is usual to control the dissolved oxygen concentration in the aeration tank to be constant. A method of supplying oxygen or air into the tank depending on the concentration is often used.
2 香换页 (细则第 26糸) しかしながら、 この制御方法だけでは受け入れる排水の温度の変動や気温の季 節変化並びに曰変化などの影 »により、 鵰気槽内の溶存酸菜濃度が変動してしま い、 設備の運転や処理水の水質を十分に安定化することは困難であった。 2 Incense (细则 yarn 26) However, with this control method alone, the concentration of dissolved acid vegetables in the air tank fluctuates due to fluctuations in the temperature of the wastewater received, seasonal changes in the temperature, and changes in the temperature. It was difficult to sufficiently stabilize water quality.
そこで、 曝気樓の温度を特定の範囲内に制御する運転方法が提案されているが 、 この方法でも、 蹯気槽の温度を制御するため槽内に熱水や冷水を供袷したり、 熱交換設備を曝気槽に設置したりすると、 その際に発生する温度分布によって、 微生物の活性が影響を受け、 排水処理効率が低下する、 という問題があった。 そこで、 第 2の発明の目的は、 曝気槽の槽内温度を安定化して、 槽内の溶存酸 素濃度の変動を少なく し、 これによつて活性汚泥法排水処理設備の運転及び処理 水の水質を安定化することができる制御装置、 及びこのような制御装置を備えた 活性汚泥法排水処理設備提供することである。 第 3の発明  Therefore, an operation method for controlling the temperature of the aeration tower within a specific range has been proposed. However, in this method, too, hot water or cold water is supplied into the tank to control the temperature of the air tank, If the exchange equipment is installed in an aeration tank, there is a problem that the temperature distribution generated at that time affects the activity of the microorganisms and reduces the efficiency of wastewater treatment. Therefore, an object of the second invention is to stabilize the temperature in the tank of the aeration tank to reduce the fluctuation of the dissolved oxygen concentration in the tank, thereby operating the activated sludge wastewater treatment facility and treating the treated water. An object of the present invention is to provide a control device capable of stabilizing water quality, and an activated sludge wastewater treatment facility equipped with such a control device. Third invention
活性汚泥法排水処理設備の原水槽の運転制御は、 一般に、 その液面を一定に保 つような液面定値制御が行われている。 しかしながら、 このような制御を行った 場合、 受け入れる排水 の変動は、 直接中和槽から曝気槽への原水供給流 Sの変 動に反映され、 桔果的に瞜気槽内の水中に含まれている好気性微生物の栄養源で ある有機物含有量が変動することになる。 微生物処理である活性汚泥処理におい ては、 曝気槽内の環境の変動は処理成績 (分解率) に影響を与えるので、 このよ うな液面定値制御法はプロセスの安定化の面では好ましく ない。  In the operation control of the raw water tank of the activated sludge wastewater treatment equipment, liquid level constant value control is generally performed to keep the liquid level constant. However, when such control is performed, fluctuations in the wastewater to be received are reflected in fluctuations in the raw water supply flow S from the direct neutralization tank to the aeration tank, and are consequently included in the water in the air tank. The organic matter content, which is the nutrient source of the aerobic microorganisms, will fluctuate. In the activated sludge treatment, which is a microorganism treatment, fluctuations in the environment in the aeration tank affect the treatment results (decomposition rate), and thus such a liquid level constant control method is not preferable in terms of process stabilization.
一方、 原水供給流量を常に一定に制御する方法では、 受け入れ排水の量が変動 すると原水槽がオーバーフローする恐れがあるため、 対応のため過大な能力をも つ設備が必要になり経済的ではない。  On the other hand, if the raw water supply flow rate is constantly controlled, the raw water tank may overflow if the amount of incoming wastewater fluctuates, so equipment with excessive capacity is required to cope with it, which is not economical.
そこで、 第 3の発明の目的は、 受け入れ排水量が変動しても、 原水槽の液面を 、 ある許容範囲内に抑え、 曝気槽へ供給される原水の流量を急激に変動させない ように制御することにより、 活性汚泥法排水処理設備の運転及び処理水の水質を 安定化することができる制御装置を備えた排水処理設備の制御方法を提供するこ とである。  Therefore, an object of the third invention is to control the liquid level of the raw water tank to be within a certain allowable range and to control the flow rate of the raw water supplied to the aeration tank not to fluctuate abruptly even if the amount of received wastewater fluctuates. Accordingly, it is an object of the present invention to provide a method for controlling a wastewater treatment facility provided with a control device capable of operating the activated sludge wastewater treatment facility and stabilizing the quality of treated water.
香换页 (细则第 26条) 活性汚泥法による排水処理方法は、 排水の生物処理法の一つであって、 排水中 の各種の有機物を培養基として、 溶存酸素の存在下で微生物の混合集団を連統培 養し、 酸化分解、 凝集、 沈澱の各作用により主として排水中の有機物を除去する 処理方法である。 技報堂出版の 「水処理工学」 によれば、 活性汚泥処理プロセス は、 浄化機能を有するフロック状の生物増殖体を必要に応じて生物反応系で絶え ず循環し、 皤気槽内で基質 (排水の B O D成分) と浄化微生物の比率が一定とな るように人為的に操作し、 溶存酸素の存在のもとで、 異種個体群の微生物によつ て構成されるフロックと基 Sとを十分に接触せしめて、 これを好気的に酸化、 分 解する処理プロセスであると定義されている。 Perfume (细则 Article 26) Wastewater treatment by the activated sludge method is one of the biological treatment methods for wastewater, in which various organic substances in the wastewater are used as culture media, and a mixed population of microorganisms is continuously cultivated in the presence of dissolved oxygen to oxidize and degrade. This is a treatment method that mainly removes organic matter in wastewater by the actions of coagulation and precipitation. According to “Water Treatment Engineering” published by Gihodo, the activated sludge treatment process continually circulates floc-like biopropagating organisms having a purification function in a bioreaction system as needed, and removes substrate (drainage) in the air tank. The BOD component) and the purified microorganisms are artificially manipulated to maintain a constant ratio. In the presence of dissolved oxygen, the floc composed of microorganisms of different populations and the base S can be sufficiently treated. It is defined as a process that aerobically oxidizes and decomposes it by contacting it.
活性汚泥法排水処理設備は、 一般には、 図 1 3に示すように、 排水を収容する 原水槽 I 4、 薬液を排水に注入して前処理を行い、 かつ排水の温度を調整する中 和榷 1 5、 排水を酸素により喵気しつつ排水中の主と して有機物を酸化、 分解、 凝集させる皤気糟 4、 及び凝集した汚泥フロックを沈澱させ、 上澄みを净化水と して流出させる沈澱格 4 1から構成されている。  As shown in Fig. 13, activated sludge wastewater treatment equipment generally includes a raw water tank I4 for storing wastewater, a chemical solution injected into the wastewater to perform pretreatment, and the temperature of the wastewater to be adjusted. 15 5.Aeration tank that oxidizes, decomposes, and coagulates mainly organic matter in the wastewater while purifying the wastewater with oxygen4, and precipitates flocculated sludge floc, and precipitates the supernatant as purified water It is composed of case 41.
排水は、 原水槽 1 4に一旦収容された後、 中和槽 1 5で p H調整され、 かつ微 生物の増殖に必要な栄養源、 例えばリ ン酸溶液やアンモニアガスが与えられた後 、 瞜気槽 4 に入る。 曝気槽 4で、 排水は、 酸素により曝気され、 排水中の有機物 が、 酸化分解してフロッ クとなって成長した後、 沈澱槽 4 1 に入る。 沈澱槽 4 1 では、 排水は、 浄化水と、 微生物フロッ ク、 即ち活性汚泥とに分離し、 分離上層 水は処理水として外部に送水され、 濃縮活性汚泥の一部は連梡的に瞟気槽 4 に返 送され、 再度、 排水と共に流入した新しい流入基質と混台される。  After the wastewater is once stored in the raw water tank 14, the pH is adjusted in the neutralization tank 15, and after the nutrients necessary for the growth of microorganisms, for example, a phosphoric acid solution or ammonia gas are given,に 入 る Enter the air tank 4. In the aeration tank 4, the wastewater is aerated with oxygen, and organic matter in the wastewater is oxidatively decomposed and grows as a floc. In the sedimentation tank 41, the wastewater is separated into purified water and microbial flocks, that is, activated sludge, and the upper separation water is sent to the outside as treated water, and a part of the concentrated activated sludge is continuously discharged. It is returned to Vessel 4 and mixed again with the new inflow substrate that has flowed in with the wastewater.
ところで、 活性汚泥法排水処理設備により、 排水を安定して処理するためには 、 少なく と も以下の条件が满足されていることが必要である。  By the way, in order to treat wastewater stably by the activated sludge wastewater treatment equipment, it is necessary that at least the following conditions are satisfied.
1 ) 暍気槽に対する汚泥負荷が一定であること。  1) The sludge load on the air tank must be constant.
2 ) ¾気槽内で好気性微生物による排水中の有機物の分解率を一定値以上に維持 するために、 瞟気槽内の排水中の溶存酸紫が一定値以上になるように排水に酸素 を供給して、 酸紫の供給が有機物除去の律速因子とならないようにすること。 2) 、 In order to maintain the rate of decomposition of organic matter in the wastewater by aerobic microorganisms in the air tank above a certain value, 酸 素 Use oxygen in the wastewater so that the dissolved acid purple in the wastewater in the air tank becomes above a certain value. To ensure that the acid violet supply is not the limiting factor in organic matter removal.
3 ) 沈澱槽内で活性汚泥が完全に分離され、 分離された活性汚泥が少なく とも曝 3) Activated sludge is completely separated in the settling tank, and the separated activated sludge is exposed at least.
4 Four
香换页 (细则第 26糸) 気槽内の活性汚泥濃度より濃縮されていること。 Incense (26th thread) It should be more concentrated than the activated sludge concentration in the air tank.
) 曝気槽内の活性汚泥浪度を一定に維持するために、 沈澱槽内で沈澱した濕縮 活性汚泥の一部が、 連続的に曝気槽に返送されること。  ) Part of the moist activated sludge settled in the sedimentation tank must be continuously returned to the aeration tank in order to maintain a constant level of activated sludge in the aeration tank.
そこで、 活性汚泥法排水処理設備では、 中和槽内の排水に対する薬液注入及び 温度調整、 曙気槽内の排水に対する酸素供铪、 沈澱槽から曝気槽への汚泥の返送 等を制御するために、 種々の制御ループが! 5けられ、 更には、 原水持から曝気槽 への排水の流量変動を緩やかにするために均流液面制御ループが設けられている 活性汚泥法排水処理設備の運転では、 このような種々の制御ループにより、 運 転条件及びプロセス伏態量を制御しているにもかかわらず、 制御の難しい微生物 活性による活性汚泥法を実施しているために、 受け入れる排水の性伏、 排水中の 基質により、 運耘条件及びプロセス伏態 fiが時々に変動し、 様々な異常事態が発 生する。 例えば、 曝気槽 4では、 バルキングや発泡現象といった異常事態が発生 する。 本明細害で、 運転条件とは、 流量、 例えば排水の導入流量、 薬液及び酸素 の供給流量、 返送活性汚泥の流量、 沈澱槽内の固液界面位置等を言う。 プロセス 伏態量とは、 温度、 圧力、 濃度、 p H値、 濁度等を言う。  Therefore, the activated sludge wastewater treatment facility was designed to control the injection of chemicals and temperature adjustment to the wastewater in the neutralization tank, the supply of oxygen to the wastewater in the Akebono tank, and the return of sludge from the precipitation tank to the aeration tank. Various control loops! In addition, in the operation of the activated sludge wastewater treatment equipment, which has a leveling liquid level control loop to moderate the fluctuation of the flow rate of wastewater from raw water to the aeration tank, Despite the fact that the operating conditions and process yield are controlled by the control loop, the activated sludge process is carried out using microbial activity that is difficult to control. The cultivation conditions and process condition fi change from time to time, and various abnormal situations occur. For example, in the aeration tank 4, abnormal situations such as bulking and foaming occur. In the present specification, the operating conditions refer to the flow rate, for example, the flow rate of the wastewater, the flow rate of the chemical solution and oxygen, the flow rate of the returned activated sludge, and the position of the solid-liquid interface in the settling tank. Process yield refers to temperature, pressure, concentration, pH value, turbidity, etc.
従来、 そのような異常事態の際には、 受け入れた排水を分析して排水の性伏、 基質を調べ、 それに応じて、 温度調整及び p H調整を排水に施して運転条件及び プロセス伏態量を調節したり、 最悪の場合には、 排水の受入れを一時停止して米 糖や尿素を投入して異常事態の自然解消を待つ等の対策を講じている。  Conventionally, in the event of such an abnormal situation, the quality of the received wastewater is analyzed by analyzing the received wastewater, and the temperature and pH are adjusted for the wastewater to adjust the operating conditions and process volume. In the worst case, measures have been taken to suspend the receiving of wastewater and put in sugar and urea to wait for the natural situation to resolve itself.
しかし、 それらの対策は、 いずれも、 異常伏態が発生した後の事後的な対策で あって、 運転条件又はプロセス伏態量の変化を検知して運転の異常伏態の発生を 予蒯して、 或いは異常状態の発生の予徴を事前に検知して、 かかる異常伏態の発 生を回避する対策を施すことは、 困難であった。  However, all of these measures are ex post facto measures after the occurrence of abnormal deformation, and the occurrence of abnormal deformation in operation is predicted by detecting changes in operating conditions or process deformation. Or, it was difficult to detect in advance the sign of the occurrence of an abnormal condition and to take measures to avoid the occurrence of such abnormal contraction.
また、 異常事態が生じたとき、 個々の制御ループにより運転条件又はプロセス 伏態量を新たに設定し、 排水処理設備を局所的に安定化させることはできるもの の、 運転条件及びプロセス状態 Sを新たに設定して異常事態に対処する場合、 運 の安定化指標である沈澉槽内の固液界面位置や処理水の濁度を予刺し、 固液界 面位置及び処理水の濁度を望ましい値に維持するように、 運転条件及びプロセス  In addition, when an abnormal situation occurs, the operating conditions or process state can be newly set by individual control loops and the wastewater treatment equipment can be locally stabilized. When dealing with an abnormal situation by newly setting, the position of the solid-liquid interface in the settling tank and the turbidity of the treated water, which are indicators of the stability of operation, are predicted, and the position of the solid-liquid interface and the turbidity of the treated water are estimated. Operating conditions and processes to maintain desired values
5 替换页 (细则第 26条) 伏態 fiを設定することは、 トライ · アンド . エラー手法に頼らざるを得ないのが 現状である。 5 Replacement (细则 Article 26) At present, it is necessary to rely on a try-and-error method to set up a hidden fi.
更に言えば、 運転の異常伏態が現実に ¾生した時には、 運転員は、 それまでの 運 ίδで得た知識、 経験、 永年の勘等の個人的な蓄穣及び能力に依存して対処して おり、 従来の対策は、 明確な定性的或いは定量的な根拠に基づき、 運転員の個人 差に無関係に普遍的に適用できるものではなかった。  Furthermore, when an abnormal driving condition actually occurs, the operator must respond depending on his personal fertility and ability, such as his / her knowledge, experience, and long-term intuition, etc. However, the conventional measures were not universally applicable irrespective of individual differences of operators based on clear qualitative or quantitative grounds.
以上の現状に照らして、 第 4の発明の目的は、 運転条件及びプロセス伏態置の 変勅に対応して、 指標とする運転条件及びプロセス状態量を予測し、 運 G員に客 観的情報を適切に与えることができるような、 活性汚泥法排水処理 ¾備を提供す ることである。 第 5の発明  In view of the current situation described above, the object of the fourth invention is to predict operating conditions and process state quantities as indices in response to changes in operating conditions and process standing, and The purpose is to provide activated sludge wastewater treatment facilities that can provide appropriate information. Fifth invention
ところで、 排水処理設備自体の異常兆候の検知は、 排水処理設備内の様々な運 転データを解析して排水処理設備の運転安定化指標である沈殿槽の界面、 及び、 処理水の «度を予制することにより可能である。 従って、 排水処理設備の異常事 態が、 排水処理設備の運転自体によるものよりも、 寧ろ受け入れる排水の性伏の 変動によって引き起こされることが多い。 事実、 多数の排水源から排出される排 水を、 例えば 2 0を越える多数のブラン トから排出される排水を一括処理してい る排水処理設備で、 運転の異常状態に至る要因の第 I は、 各プラン トから排出さ れる排水の性伏変動、 組成変動である。 特に、 プラ ン トからアンモニア澳度の高 い含アンモニア排水が排出されている場合には、 この傾向が高い。  By the way, the detection of abnormal signs of the wastewater treatment equipment itself is performed by analyzing various operation data in the wastewater treatment equipment and determining the interface of the sedimentation tank, which is an operation stabilization index of the wastewater treatment equipment, and the degree of treated water. It is possible by pre-emption. Therefore, abnormalities in wastewater treatment facilities are more often caused by fluctuations in the properties of the wastewater received than by the operation of the wastewater treatment facilities themselves. In fact, wastewater treatment equipment that collectively treats wastewater discharged from a large number of wastewater sources, for example, wastewater discharged from a large number of more than 20 brands. These are changes in the nature and composition of the wastewater discharged from each plant. This tendency is particularly high when the plant discharges ammonia-containing wastewater with a high ammonia concentration.
しかも、 ブラン トから排出される排水の分析頻度は、 比铰的少なく、 排水の性 状分析は、 2週間に一度位の定期的分析により行われているので、 定期的分析か ら得た性伏に基づいて排水処理設備の運転条件を変更しても、 余り意味のあるこ とにはならない。 即ち、 排水の性状変化時に応じて排水性伏のデータを得ること が実際的には難しく、 従って排水性状の変化に合わせて排水処理設備の運 15条件 を変更することは、 従来の排水処理設備では難しい。  In addition, the frequency of analysis of wastewater discharged from the brand is relatively low, and the analysis of wastewater properties is carried out by regular analysis every two weeks. Changing the operating conditions of the wastewater treatment facility based on the floor will not be very meaningful. In other words, it is practically difficult to obtain data on the drainage properties according to the change in the properties of the wastewater. Therefore, changing the operating conditions of the wastewater treatment equipment according to the change in the properties of the wastewater is difficult with conventional wastewater treatment equipment. Is difficult.
また、 従来の排水処理設備では、 排水異常の原因となる排水源プロセスの運転 条件の変化、 及び排水源プロセスの運転条件の変化が排水処理設備の安定化指標  In addition, in conventional wastewater treatment facilities, changes in the operating conditions of the wastewater source process that cause drainage abnormalities and changes in the operating conditions of the wastewater source process are indicators of the stability of the wastewater treatment facility.
6 替换页 (细则第 26糸) に与える影響等を解折することは、 困難であった。 6 extra 换 页 (细则 thread 26) It was difficult to break down the impact on the environment.
従って、 ブラン 卜から排出される排水の流量や成分変動が排水処理設備の安定 化指標である沈殿槽の固液界面位置及び処理水の濁度に与える影 βについて応答 予測を行い、 それによつて排水異常の兆侯を事前に予測し得る装置が、 望まれて いる。  Therefore, response prediction was performed for the fluctuation β of the flow rate and composition of the wastewater discharged from the brine, which is a stabilization index of the wastewater treatment equipment, and the shadow β on the solid-liquid interface position of the settling tank and the turbidity of the treated water. There is a need for a device that can predict in advance the signs of drainage anomalies.
以上では、 排水処理設備を例に挙げて、 複数の上流化学プロセスからそれぞれ 被処理体を受け入れて処理し、 処理体を流出させる化学プロセスの問題を説明し たが、 他の化学プロセスにあっても同様の問題がある。  In the above, the problem of the chemical process of receiving and treating objects to be treated from multiple upstream chemical processes and effluent of the treated objects has been described using wastewater treatment equipment as an example. Have similar problems.
そこで、 第 5の発明の目的は、 活性汚泥法排水処理設備に適用できるプロセス の運転支援装置、 複数の上流化学プロセスからそれぞれ彼処理体を受け入れて処 理し、 処理体を流出する化学プロセスを運 する際に、 上流化学プロセスの運 e データに基づいて対象の化学プロセスの指標運転条件及び処理体の指標性伏の少 なく と も一方を予測する、 プロセスの運耘支援装置を提供することである。 発明の開示  Therefore, an object of the fifth invention is to provide a process operation support device applicable to the activated sludge wastewater treatment facility, a chemical process that receives and processes each treated body from a plurality of upstream chemical processes, and discharges the treated body. To provide a process cultivation support device that predicts, at the time of operation, at least one of the index operation conditions of the target chemical process and the index characteristic of the treated object based on the operation e data of the upstream chemical process. It is. Disclosure of the invention
第 1の発明 First invention
本発明に係る碟気棺の溶存酸素 度の制御装置 (第 1の発明) は、 原水槽 ( 1 The apparatus for controlling the dissolved oxygen content of the air coffin according to the present invention (the first invention) includes a raw water tank (1).
4 ) 、 中和槽 ( 1 5) 、 曝気槽 ( 4 ) 及び沈殿槽 ( 4 1 ) の順に設けられ、 中扣 槽には栄養源供袷配管が配設され、 かつ中和櫓と曝気檜とが原水供耠配管 (2 4 ) で接続され、 該曝気槽 (4 ) が酸素供給配管 (2 5) 、 沈殿槽 (4 1 ) からの 返送汚泥受入配管 (4 7 ) 及び処理水 ·汚泥の沈殿槽 (4 1 ) への排出配管を有 している活性汚泥法排水処理設備において、 以下の計装機器を備えてなる曝気槽 (4 ) の溶存酸素濃度の制御装置であることを特徴としている。 4), a neutralization tank (15), an aeration tank (4), and a sedimentation tank (41) in this order. Are connected by a raw water supply pipe (24), and the aeration tank (4) is connected to an oxygen supply pipe (25), a return sludge receiving pipe (47) from a sedimentation tank (41), and treated water / sludge. In the activated sludge wastewater treatment equipment having a discharge pipe to the sedimentation tank (4 1), it is characterized in that it is a control device for the dissolved oxygen concentration of the aeration tank (4) equipped with the following instrumentation equipment: And
a ) 曝気槽に供給される原水の流量を計測する原水流量計 ( 1 ) 及び原水流量 調節弁 ( 2 )  a) Raw water flow meter (1) for measuring the flow rate of raw water supplied to the aeration tank and a raw water flow control valve (2)
b) 沈殿槽から返送される汚泥流置を計測する返送汚泥流量計 (3) c ) 皤気槽内の溶存酸素濃度を測定する溶存酸紫濃度計 (5)  b) Return sludge flow meter that measures the sludge flow returned from the settling tank (3) c) Dissolved acid purple concentration meter that measures the dissolved oxygen concentration in the air tank (5)
d) 曝気槽に供铪する酸紫量を調節する酸素供袷 fit罈節弁 (9)  d) Oxygen-supplied lined fit valve that controls the amount of acid purple supplied to the aeration tank (9)
e ) 酸素供給配管の酸素供給 調節弁 (9 ) の直近に設置された酸素供給量測  e) Oxygen supply measurement of the oxygen supply control valve (9) installed in the oxygen supply pipe.
替换页 (细则第 26糸) f ) 溶存酸素濃度計の計測結果に基づいて供袷すべき酸素 fiを算出する予測機 能付 P I D制御装置 ( 1 1 ) Replacement 换 页 (细则 26th thread) f) PID controller with prediction function to calculate oxygen fi to be supplied based on the measurement result of dissolved oxygen concentration meter (11)
g) 酸素供給量測定器 (8) の計測桔果と、 予測機能付 P I D制御装置 ( 1 1 ) の指示した供給すべき酸素 Sとに基づいて酸素供給量調節弁 ( 9) を鬮節する 酸素供給量調節計 ( 1 0)  g) Based on the measurement result of the oxygen supply amount measuring device (8) and the oxygen S to be supplied indicated by the PID control device with prediction function (11), the oxygen supply amount control valve (9) is adjusted. Oxygen supply controller (10)
本発明は、 開放型の空気式の曄気格にも適用できるが、 好適な実施態様では、 密閉式の瞜気槽を使用し、 かつ曝気槽に曝気槽の内圧を計測する圧力検出器 ( 6 ) 、 及び嗶気槽の排気配管に ¾気槽の内圧を調節するための圧力調節弁 ( 7) 並 びに圧力制御調節計 ( 1 2 ) を設けてなる、 溶存酸素濃度の制御装置である。 更に、 第 1の発明の好適な実施態様は、 予釗機能付 P I D制御装置の予測モデ ルと して、 溶存酸素港度の動特性を近似する铳計モデルを用いる。  Although the present invention can be applied to an open-type pneumatic tank, in a preferred embodiment, a closed-type air tank is used, and the pressure detector (a) measures the internal pressure of the aeration tank in the aeration tank. 6) A control device for dissolved oxygen concentration, which is equipped with a pressure control valve (7) and a pressure control controller (12) for adjusting the internal pressure of the air tank in the exhaust pipe of the air tank. . Furthermore, in a preferred embodiment of the first invention, a total model that approximates the dynamic characteristic of the dissolved oxygen port is used as a prediction model of the PID control device with a prediction function.
また、 上述の曛気槽の溶存酸衆港度の制御装置において、 予測機能付きの P I D制御装匮と して、 短期予刺機能付きの P I D制御装置を使用し、 かつ、  Further, in the above-described control device for the dissolved acidity in the air tank, a PID control device with a short-term puncture function is used as a PID control device with a prediction function, and
h) 予め定めたプロセスデータを入力することにより、 溶存酸素濃度の長期予 測を行い、 溶存酸素-濃度の目標値を算出するニューラル, ネッ ト · ォブティマイ ザ一 ( 1 3)  h) By inputting predetermined process data, a long-term prediction of dissolved oxygen concentration is made and a target value of dissolved oxygen-concentration is calculated.
を備え、 With
上記短期予測機能付き P 〖 D制御装置が、 溶存酸素濃度計の計測結果及びニュ 一ラル ' ネッ ト ' ォプティマイザ一が算出した溶存酸素濃度の目標値に基づいて 供給すべき酸素量を算出する。  The PD controller with short-term prediction function calculates the amount of oxygen to be supplied based on the measurement result of the dissolved oxygen concentration meter and the target value of the dissolved oxygen concentration calculated by the neural net optimizer.
更には、 短期予測機能付 P I D制御装 Sの予測モデルと して、 酸素供給量に対 する溶存酸素濃度の動特性とノイズを考慮に入れた離散線形モデルを用いる。 また、 上述の制御装置では、 プロセスデータとして、 原水の温度、 流量、 水紫 イオン饞度 (PH) 、 化学的酸素要求量 (COD) 、 生物化学的酸素要求量 (B OD 5 ) 、 懸灞物質 (S S) 、 嗶気槽の温度、 圧力、 溶存酸衆濃度、 槽内混合液 物質 (ML S S) 、 «内混合液揮発性懸濁物質 (MLVS S) からなる群か ら選ばれる少なく とも 1種以上のデータを使用する。  Furthermore, as a prediction model of the PID control device S with the short-term prediction function, a discrete linear model that takes into account the dynamic characteristics of dissolved oxygen concentration with respect to the oxygen supply amount and noise is used. Further, in the above-described control device, the raw water temperature, flow rate, water purple ion concentration (PH), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), At least one selected from the group consisting of substance (SS), temperature of tank, pressure of dissolved tank, dissolved oxygen concentration, mixed liquid in tank (ML SS), and «volatile mixed substance in liquid (MLVS S) Use one or more types of data.
上述の制御装置を用いて、 密閉式の曝気槽内の溶存酸繁濃度を制御する際には  When controlling the dissolved acid concentration in a closed aeration tank using the above controller,
8 替换页 (细则第 26条) 、 供給する酸素として、 純度 5 0%以上の酸素を用いる。 8 Replacement (换 页 Article 26) As the supplied oxygen, oxygen having a purity of 50% or more is used.
また、 上記制御装置を使用して瞜気槽内の溶存酸素濃度を制御する方法も本第 1の発明の一部である。  Further, a method of controlling the dissolved oxygen concentration in the air tank using the control device is also a part of the first invention.
第 1の発明の制御装置による溶存酸紫 S度制御においては、 暖気槽の目檫溶存 酸素濃度と予測された槽内の溶存酸素濃度との比絞から必要酸素 Sを算出し、 こ れによって供給すべき酸素 Sを調節することにより、 酸素供袷の過不足を防ぐと ともに槽内の溶存酸素濃度を一定に保つように制御を行い安定した水処理を行う ものである。  In the control of the dissolved acid purple S degree by the control device of the first invention, the required oxygen S is calculated from the ratio of the target dissolved oxygen concentration in the warm-up tank to the predicted dissolved oxygen concentration in the tank. By adjusting the amount of oxygen S to be supplied, it is possible to prevent excess and deficiency of the oxygen supply and to control the dissolved oxygen concentration in the tank at a constant level to perform stable water treatment.
また、 酸素の供給により生じる曝気槽内の圧力変動を解消するために曝気槽の 圧力調節弁を酸紫の供給に対して遅れ時間を持って作動するように設定するのが 好ま しい。  Further, in order to eliminate the pressure fluctuation in the aeration tank caused by the supply of oxygen, it is preferable to set the pressure control valve of the aeration tank to operate with a delay time with respect to the supply of the acid purple.
また、 予測機能付き P I D制御装置(Predictive PID Controller) とは、 通常 の P I D制御装置にモデル予測機能を持たせたものである。 ここで用いるモデル としては、 酸素供給量に対する溶存酸素 S度の動特性を近似する A R I MAXモ デルのような統計モデルが好ましい。 なお、 AR I MAXモデルとは [Aiito Reg re-ssive Integrated Moving Average exogenous モテノレ」 (目己回帰後分移動 平均外生変数モデル) のことである。  A PID controller with a prediction function (Predictive PID Controller) is an ordinary PID controller with a model prediction function. As the model used here, a statistical model such as an ARIMAX model that approximates the dynamic characteristic of the dissolved oxygen S degree with respect to the oxygen supply amount is preferable. The ARI MAX model is an Aito Reg-ssive Integrated Moving Average exogenous model (moving average exogenous variable model after self-regression).
第 1の発明の装置においては、 このような予測機能付き P I D制御装置により 溶存酸素濃度計から信号を取り入れ、 過去の制御データと制御対象の動特性モデ ルとを用い、 溶存酸素濃度の挙動を予測し、 これと予め設定された溶存酸素港度 の目標値とを比絞し、 その偏差が小さくなるように酸累の供給量を調節すること により、 溶存酸素濃度を制御するものである。  In the device of the first invention, such a PID control device with a prediction function takes in a signal from a dissolved oxygen concentration meter and uses the past control data and the dynamic characteristic model of the controlled object to determine the behavior of the dissolved oxygen concentration. The concentration of dissolved oxygen is controlled by predicting and narrowing this to a preset target value of dissolved oxygen port and adjusting the supply amount of acid accumulation so as to reduce the deviation.
第 1の発明に用いる予測機能付き P I D制御装置には制御対象である溶存酸 ¾ 濃度の動特性を近似することができる統計モデルを内蔵させることができるので 、 むだ時間が長くかつ変化するプロセスや、 制御対象の時定数が長いプロセスな どに対しても良好な制御性能を示す。 また、 ノイズモデルを考慮することにより 、 プロセス外乱に対しても良好な制御性能を維持することが可能となる。  The PID control device with a predictive function used in the first invention can incorporate a statistical model that can approximate the dynamic characteristics of the concentration of dissolved acid 濃度 to be controlled. It shows good control performance even for processes with long time constants. In addition, by considering the noise model, it is possible to maintain good control performance even with respect to process disturbance.
この予測機能付き P I D制御装置に溶存酸素濃度の信号を発する溶存酸素濃度 計は曝気櫓から汚泥及び処理水が流出する出口付近に設置するのが、 実際の処理  The dissolved oxygen concentration meter that sends a signal of the dissolved oxygen concentration to the PID controller with this prediction function is installed near the outlet where sludge and treated water flows out of the aeration tower.
9 香换页 (细则第 26糸) 1 伏況を的確に把握する上で好ま しい。 9 换 页 (细则 26th thread) 1 It is preferable to accurately grasp the downturn.
酸素の供給量は、 上記の予測機能付き P I D制御装置の出力により、 酸紫供袷 量 ϋ節計の流量設定値を自動的に変更し、 その設定値と酸素供耠量検出器との流 量を比絞して酸素供辁量調節弁を制御することにより行うことができる。  The supply amount of oxygen is automatically changed according to the output of the PID controller with the prediction function described above, and the set value of the flow rate of the acid purple supply amount meter is automatically changed. The control can be performed by controlling the oxygen supply amount control valve by reducing the amount.
第 1の発明方法は、 上述の碟気槽の溶存酸素濃度の制御装 Sを用いて、 前述の ように、 好ま しく は密閉型の曝気檜の溶存酸素虔度を制御するというものである なお、 第 Iの発明方法において、 密閉式の曝気槽の埸合に用いる酸衆は純度が 高いものが処理効率及び制御の応答性の点から好ましい。 その純度としては、 酸 素含量 5 0 %以上、 好ましくは 7 0 %以上、 より好ましく は 9 0 %以上、 更に好 ましく は 9 5 %以上のものが好適である。  As described above, the first invention method is to control the dissolved oxygen concentration of a closed-type aerated cypress using the dissolved oxygen concentration control device S of the air tank as described above. In the method of the first aspect of the present invention, it is preferable that the acid mixture used in the case of the closed aeration tank has a high purity in view of treatment efficiency and control responsiveness. The purity is preferably an oxygen content of 50% or more, preferably 70% or more, more preferably 90% or more, and even more preferably 95% or more.
第 1の発明の制御装置及び制御方法を適用する曝気櫓としては、 供給する酸素 の効率的活用の点から、 密閉型の曝気槽が好適である。  As the aeration tower to which the control device and the control method of the first invention are applied, a closed aeration tank is suitable from the viewpoint of efficient use of supplied oxygen.
また、 第 1の発明の別の制御装置は、 長期的な、 多変数 ·非線形の予刺最適化 計算により求めた曝気槽の目標溶存酸素 ¾度を、 短期的な線形予測制御の目標値 として用いて睡気槽内の必要酸素量を算出し、 これに基づいて酸素の供袷量を調 節するものであり、 これを用いることにより酸素の過剰な供袷を予防しつつ、 非 定常的な変動要因やプロセス外乱からく る時間的な変動が生じても安定した水処 理を行うものである。  Further, another control device according to the first invention uses a target dissolved oxygen concentration of the aeration tank obtained by a long-term, multivariable and nonlinear predictive optimization calculation as a target value of the short-term linear predictive control. Is used to calculate the amount of oxygen required in the sleep tank and adjust the amount of supplied oxygen based on this. It performs stable water treatment even when there are various fluctuation factors and temporal fluctuations caused by process disturbance.
第 1の発明の別の制御装置に用いるニューラル ' ネッ ト ' ォプティマイザ一は 、 過去の運転時のプロセスデータと溶存酸素濃度との関係を予め学習させておき 、 これに基づいて運 IE中のプロセスデータから酸素消費量、 排水処理 fi、 排水水 質等に関連するコス 卜関数を最適化できるような溶存酸素濃度の目標値を算出し 、 これを短期予測機能付き P I D制御装置(Predictive PID Controller) へ出力 するものである。 ここで本発明の装置のニューラル · ネッ ト ' ォプティマイザ一 において入力すべき変数であるプロセスデータとしては、 原水の温度、 流量、 水 素イオン濃度 (PH) 、 化学的酸素要求量 (COD) 、 生物化学的酸素要求量 ( B0D 5 ) 、 懸濁物質 ( S S ) 、 睐気槽の温度、 圧力、 溶存酸素濃度、 槽内混合 液懸凝物質 (ML S S) 、 槽内混合液揮発性懸濁物質 (MLVS S) からなる群  A neural 'net' optimizer used in another control device of the first invention learns in advance the relationship between process data during the past operation and the dissolved oxygen concentration, and processes the process during operation IE based on this. From the data, a target value of dissolved oxygen concentration is calculated to optimize cost functions related to oxygen consumption, wastewater treatment fi, wastewater quality, etc., and this is calculated using a PID controller with a short-term prediction function (Predictive PID Controller). Output to Here, process data which are variables to be input in the neural net optimizer of the apparatus of the present invention include raw water temperature, flow rate, hydrogen ion concentration (PH), chemical oxygen demand (COD), biological Chemical oxygen demand (B0D5), suspended solids (SS), temperature of tank, pressure, dissolved oxygen concentration, mixed liquid in tank, suspended solid in liquid (ML SS), mixed liquid in tank Group consisting of (MLVS S)
1 0 香换页 (细则第 26条) から選ばれる少なく とも 1種以上のデータを用いるのが好ましい。 これらのデー タは、 それぞれの上限 ·下限の制約値を併せて予め入力しておくのが良い。 なお、 これらのプロセスデータは常法により或いは J I S K 0 1 0 2等に 基づいて測定することができる。 1 0 Incense (细则 Article 26) It is preferable to use at least one kind of data selected from the following. It is better to input these data together with the upper and lower limit values. In addition, these process data can be measured by a conventional method or based on JISK0102 or the like.
また、 例えば化学ェ埸の集中排水処理設備のように、 複数のプラントからの排 水を処理する設備においては、 それぞれのプラン 卜からの排水を、 個別に流 fi、 p H、 C 0 D等を測定するのが好適である。 入力すべきプロセスデータは上記の ものに限られるものではない。  In a facility that treats wastewater from multiple plants, for example, a centralized wastewater treatment facility for chemicals, the wastewater from each plant is individually flowed to fi, pH, C0D, etc. Is preferably measured. The process data to be entered is not limited to the above.
第 1の発明の別の制御装置に用いるニューラル, ネッ ト ·ォブティマイザ一は 、 入力層、 中間雇、 及び出力層を有する 3階層構造のものが好適である。 階層が 2階層では非線形モデルを扱うことができず、 一方 4階層構造以上になると、 複 雑になりすぎてモデルの 「 トレーニング』 に時間がかかりすぎて実用性が低下す る傾向となる。  It is preferable that the neural network optimizer used in another control device of the first invention has a three-layer structure having an input layer, a middle tier, and an output layer. If the number of layers is two, the nonlinear model cannot be handled. On the other hand, if the number of layers is four or more, the model becomes too complicated and “training” the model takes too much time, and the practicality tends to decrease.
また、 第 1の発明の别の制御装置においては、 ニューラル · ネッ ト · ォプティ マイザ一により、 前記した種々のプロセスデータから、 各変数の上下限の制約及 びコス ト関数を考慮して、 溶存酸紫濃度の、 例えば 1 ~ 5 曰先等の長期旳な応答 を予測することにより、 コス 卜の最適化が可能な溶存酸繁澳度の目標値を短期予 測機能付き P I D制御装置に与えることができる。  Further, in the control device according to the first aspect of the present invention, the neural net optimizer dissolves the various types of process data from the various process data described above in consideration of the upper and lower limits of each variable and the cost function. By predicting the long-term response of the acid purple concentration, for example, from 1 to 5, the target value of the dissolved acid concentration, which enables cost optimization, is given to the PID controller with a short-term prediction function. be able to.
第 1の発明に用いる短期予測機能付き P I D制御装置は、 通常の!3 I D制御装 置に短期的なモデル予測機能を持たせたものである。 具体的には、 過去の溶存酸 素濃度とその目標値との関係を示す運転データ及び酸素供拾量の設定値を用いて 、 制御対象の線形モデルを使って溶存酸素濃度の将来の推移を計算するというも のである。 制御対象の線形モデルとしては、 酸素供袷量に対する溶存酸素'濃度の 動特性とノイズを考慮に入れた離散線形モデル (A R I M A Xモデル) を用いる のが好ましい。 なお、 A R I M A Xモデルとは 「Au to Regress ive i ntegrated M oving Average exogenous モデル」 (自己回燔積分移動平均外生変数モデル) の ことである。 The PID controller with short-term prediction function used in the first invention is a normal PID controller. 3 The ID control device has a short-term model prediction function. Specifically, using the operating data indicating the relationship between the past dissolved oxygen concentration and its target value and the set value of the oxygen supply amount, the future change of the dissolved oxygen concentration is determined using a linear model of the controlled object. It is a calculation. As the linear model to be controlled, it is preferable to use a discrete linear model (ARIMAX model) that takes into account the dynamic characteristics of dissolved oxygen 'concentration with respect to the amount of supplied oxygen and noise. The ARIMAX model is an “Au to Regressive integrated Moving Average exogenous model” (a self-burning integral moving average exogenous variable model).
第 1の発明の別の制御装置においては、 このような短期予測機能付き P I D制 御装置により、 溶存酸 ¾濃度計から取り入れた信号及び上記の線形モデルを用い  In another control device of the first invention, such a PID control device with a short-term prediction function uses a signal taken from a dissolved oxygen concentration meter and the above linear model.
1 1 替换页 (细则第 26糸) て予測された、 少なく とも 3 ~ 8時間先の溶存酸素濃度の予測値と前述のニュー ラル · ネッ ト · オプティマイザ一で指示される溶存酸素港度の目標値とを比校し 、 その偏差が小さくなるように酸素の供拾量を調節することにより、 溶存酸業濃 度を制御するものである。 1 1 Replacement 换 页 (细则 Thread 26) The predicted value of the dissolved oxygen concentration at least 3 to 8 hours ahead and the target value of the dissolved oxygen port indicated by the neural net optimizer described above are compared, and the deviation is calculated. The concentration of dissolved acid industry is controlled by adjusting the amount of supplied oxygen so that it becomes smaller.
この短期予測機能付き P I D制御装置には制御対象である溶存酸衆濃度の動特 性を近似することができる統計モデルを内蔵させることができるので、 むだ時間 が長くかつ変化するプロセスや、 制御対象の時定数が長いプロセスなどに対して も良好な制御性能を示す。 また、 ノイズモデルを考慮することにより、 プロセス 外乱に対してもモデルのパラメータ値を調整することなく良好な制御性能を維持 することが可能となる。  This PID controller with a short-term prediction function can incorporate a statistical model that can approximate the dynamic characteristics of the dissolved oxygen concentration, which is the object of control. It shows good control performance even for processes with long time constants. In addition, by considering the noise model, it is possible to maintain good control performance without adjusting the model parameter values even for process disturbances.
なお、 この短期予測機能付き P I D制御装置に溶存酸素濃度の信号を発する溶 存酸紫港度計は瞩気槽から汚泥及び処理水が流出する出口付近に ¾置するのが、 実際の処理状況を的確に把握する上で好ましい。  The dissolved acid purple port meter that sends a signal of dissolved oxygen concentration to the PID controller with this short-term prediction function is placed near the outlet where sludge and treated water flows out of the air tank. It is preferable for accurately grasping.
第 1の発明によれば、 上述の瞜気槽内の溶存酸素濃度の制御装置を活性汚泥法 排水処理設備に設けることにより、 曝気櫓内の溶存酸素濃度を予则制御すること が可能になり、 溶存酸紫'農度を安定させることができるので、 処理水の水質が安 定する。 また、 短期予測と長期予測とを組み合わせることで、 上記の動的な制御 だけでなく 、 ニューラル · ネッ ト ·ォプティマイザ一によるコス ト . ミ二マ厶と する制御が同時に可能となる。 2の発明  According to the first invention, by providing the above-described control device for the dissolved oxygen concentration in the air tank in the activated sludge wastewater treatment facility, it is possible to predict and control the dissolved oxygen concentration in the aeration tower. However, the dissolved acid purple can stabilize the agricultural level, so that the quality of the treated water is stable. In addition, by combining the short-term prediction and the long-term prediction, not only the above-described dynamic control but also the control of cost and minimum by the neural net optimizer can be simultaneously performed. Invention of 2
本発明に係る活性汚泥法排水処理設備 (第 2の発明) は、 上述の活性汚泥法排 水処理設備において、 中和槽 ( 1 5) に加熱装置を、 また原水供袷配管 ( 2 4) に冷却用の熱交換器 (28) をそれぞれ有し、 さらにこれらを制御するために、 以下の計装機器からなる瞜気槽の温度制御装置を付加することを特徴としている i ) 中和槽 ( 1 5 ) から ¾気槽 (4 ) へ供給される原水の温度を測定する原水 温度検出器 ( 1 6)  The activated sludge wastewater treatment equipment according to the present invention (second invention) is the same as the activated sludge wastewater treatment equipment described above, except that a heating device is provided in the neutralization tank (15) and a raw water supply pipe (24). I) Neutralization tank, characterized by having a heat exchanger for cooling (28), and adding a temperature control device for the air tank consisting of the following instrumentation equipment to control them. Raw water temperature detector (16) that measures the temperature of raw water supplied from (15) to the air tank (4)
j ) 曝気檣内の温度検出器 ( 1 8) 及び碟気槽内温度調節器 ( 1 9)  j) Temperature detector in aeration top (18) and temperature controller in air tank (19)
1 2 替换页 (细则第 26条) k) 原水温度検出器 ( 1 6 ) の出力と曙気槽内温度調節器 ( 1 9 ) の出力とに 基づいて、 嗶気槽へ供給される原水の温度を調節する原水温度 ¾節器 ( 1 7 )1 2 Replacement (细则 Article 26) k) Based on the output of the raw water temperature detector (16) and the output of the temperature controller in the Akebono Tank (19), the raw water temperature to adjust the temperature of the raw water supplied to the tank. 1 7)
1 ) 原水温度調節器 ( 1 7 ) の加熱用操作端をなす中和槽の加熱装置用の加熱 媒体供袷調節弁 ( 2 0) 1) Control valve (20) for supplying heating medium for the heating device of the neutralization tank, which is the operating end of the raw water temperature controller (17)
m) 原水温度調節器 ( 1 7 ) の冷却用操作端をなす原水冷却用の熱交換器 ( 2 8 ) の冷却媒体供給調節弁 ( 2 1 )  m) Cooling medium supply control valve (2 1) for heat exchanger (28) for raw water cooling, which constitutes the operating end for cooling the raw water temperature controller (17)
また、 上述の活性汚泥法排水処理設備では、 曝気槽の温度制御装置は、 暉気榷 内温度調節器 ( 1 9 ) をマスター側、 原水温度調節器 ( 1 7) をスレーブ側とし たカスケ一ド制御ループが形成されてなることを特徴としている。  Further, in the activated sludge wastewater treatment equipment described above, the temperature control device of the aeration tank is configured such that the temperature controller (19) in Hikiki is the master side and the temperature controller (17) in the raw water is the slave side. And a control loop is formed.
また、 活性汚泥法排水処理設備は、 原水温度^節器 ( 1 7 ) としてスプリ ッ ト レンジ調節器を用いた温度制御装置を有する。  The activated sludge wastewater treatment equipment has a temperature control device using a split range controller as the raw water temperature separator (17).
第 2の発明の対象となる活性汚泥法排水処理設備は、 原水槽 1 4、 加熱装置を 有する中和槽 1 5、 及び曝気槽 4の順に ¾けられ、 中和槽 1 5と曙気栲とが冷却 用の熱交換器 2 8を有する原水供給配管 2 で接铳された構成の設備である。 原水槽 1 4は、 単一又は複数の排水系統からの排水を受け入れる槽であり、 ま た中和槽 1 5は、 この排水を活性汚泥処理するに先立ち、 排水の p H調整及び Z 又は栄養調整を行うための棺である。 処理設備の規模によっては、 この原水 «と 中和槽とを一つの槽にまとめることも可能である。  The activated sludge wastewater treatment equipment that is the object of the second invention is installed in the following order: a raw water tank 14, a neutralization tank 15 with a heating device, and an aeration tank 4. Are facilities connected by a raw water supply pipe 2 having a heat exchanger 28 for cooling. The raw water tank 14 is a tank that receives the wastewater from one or more drainage systems, and the neutralization tank 15 is a tank that adjusts the pH of the wastewater and Z or nutrients prior to treating this wastewater with activated sludge. A coffin for making adjustments. Depending on the scale of the treatment equipment, the raw water and the neutralization tank can be combined into one tank.
この中和槽には加熱装置を設ける。 加熱装置としては、 ジャケッ 卜、 コイル等 の間接加熱装置や蒸気吹込管のような直接加熱装置のどちらを用いても良いが、 蒸気吹込管が、 熱効率及び保守 ·点検の簡便さの点で好ましい。  This neutralization tank is provided with a heating device. As the heating device, either an indirect heating device such as a jacket or a coil or a direct heating device such as a steam blowing tube may be used, but a steam blowing tube is preferable in terms of thermal efficiency and ease of maintenance and inspection. .
活性汚泥による排水処理を行う瞜気格と中和槽とは冷却用の熱交換器を有する 原水供給配管で接続される。 この熱交換器の形式は特に限定されるものではなく 、 例えば二重管式のものでも多管式のものでもよい。 また、 熱交換器の設置箇所 も中和槽と曝気槽との接铳配管の途中であれば特に限定されるものではないが、 温度調節後の原水への外気温の影響を避けて効率的な運転を行うためには、 曝気 槽に近い位置に設けるのが好ましい。  The wastewater treatment with activated sludge is performed. The refractory and the neutralization tank are connected by a raw water supply pipe with a heat exchanger for cooling. The type of the heat exchanger is not particularly limited, and may be, for example, a double tube type or a multi tube type. The location of the heat exchanger is not particularly limited as long as it is in the middle of the connection pipe between the neutralization tank and the aeration tank, but it is efficient to avoid the influence of outside temperature on the raw water after temperature control. In order to perform a safe operation, it is preferable to provide it at a position close to the aeration tank.
このように、 皤気 «の槽内温度を制御するに当たって、 碟気槽に加熱 · 冷却装 置を設置せず、 曝気槽へ供給される原水の温度を調節するという方法を採ること  As described above, in controlling the temperature in the aeration tank, a method of adjusting the temperature of the raw water supplied to the aeration tank without installing a heating / cooling device in the aeration tank should be adopted.
1 3 香换页 (细则第 26条) により、 曝気槽内の温度分布の発生を少なく し、 従って微生物の失活ゃ活性の低 下を引き起こす恐れがなくなる、 という効果が得られる。 1 3 Incense (细则 Article 26) As a result, the effect of reducing the occurrence of temperature distribution in the aeration tank and, therefore, eliminating the risk of inactivating microorganisms and reducing the activity is obtained.
上記の排水処理投備を効果的に制御するために、 以下の計装機器を備えた制御 装置を使用する。  In order to effectively control the above wastewater treatment and disposal, a control device equipped with the following instrumentation equipment will be used.
a ) 中和槽 1 5から曝気槽 4へ供給される原水の温度を測定する原水温度検出 器 1 6  a) Raw water temperature detector 16 that measures the temperature of raw water supplied from neutralization tank 15 to aeration tank 4
b ) 曝気槽内の温度検出器 1 8及び曝気槽内温度調節器 1 9  b) Temperature detector in aeration tank 18 and temperature controller in aeration tank 19
c ) 原水温度検出器 1 6の出力と瞜気槽内温度調節器 1 9の出力とに基づいて 、 曝気槽へ供給される原水の温度を調節する原水温度調節器 1 7  c) Raw water temperature controller 17 that regulates the temperature of raw water supplied to the aeration tank based on the output of raw water temperature detector 16 and the output of air tank temperature controller 19
d ) 原水温度調節器 1 7の加熱用操作端をなす中和槽の加熱装置用の加熱媒体 供給調節弁 2 0  d) Heating medium supply control valve for the heating device of the neutralization tank, which is the heating operation end of the raw water temperature controller 17
e ) 原水温度調節器 1 7の冷却用操作端をなす原水冷却用の熱交換器 2 8の冷 却媒体供給調節弁 2 1  e) Raw water temperature controller 17 Heat exchanger for raw water cooling, which constitutes the cooling operation end of 7 2 Cooling medium supply control valve 2 8
これらの温度検出器、 温度調節器及び調節弁は、 一般に計装用として用いられ るものを使用できる。  As these temperature detectors, temperature controllers and control valves, those generally used for instrumentation can be used.
また、 加熱媒体としては水蒸気が、 また冷却媒体としては冷却水 (再冷水や冷 水等) が、 入手の容易さなどの点で好ましい。  Further, steam is preferable as the heating medium, and cooling water (re-cooled water, cold water, or the like) is preferable as the cooling medium in terms of easy availability.
このような計装機器を、 曝気槽内温度調節器 1 9をマスター側、 原水温度調節 器 1 7をスレーブ側としたカスケ一ド制御ループが形成されるように桔合するこ とにより、 変動の少ない、 安定な制御が可能となる。  By combining such instrumentation devices so that a cascade control loop is formed with the aeration tank temperature controller 19 as the master side and the raw water temperature controller 17 as the slave side, fluctuations can be achieved. And stable control with less noise.
更に、 原水温度調節器 1 Ί としてスプリッ ト レンジ調節器を用いると、 1台の 調節器で加熱時及び冷却時の操作端の切替ができるので、 装置のコンパク 卜化及 び設備費用の削減が可能となる。  Furthermore, if a split range controller is used as the raw water temperature controller 1 操作, the operation terminals can be switched between heating and cooling with one controller, thus reducing the size of the equipment and reducing equipment costs. It becomes possible.
また、 第 2の発明の瞩気榷の温度制御方法は、 上述の制御装置を用いて活性汚 泥法排水処理設備の ¾気槽の槽内温度を制御する、 という ものである。  In addition, the air temperature control method of the second invention is to control the temperature in the air tank of the activated sludge wastewater treatment equipment using the above-described control device.
第 2の発明の制御装置を用いることにより、 睡気槽内の微生物の活性に影響を 与えることなく、 その温度制御が可能となるので、 槽内の溶存酸素 ¾度の変動を 少なくすることができる。 これによつて排水処理設備の運転及び処理水の水質を 安定化することが可能となる。  By using the control device of the second invention, the temperature can be controlled without affecting the activity of the microorganisms in the sleep tank, so that the fluctuation of the dissolved oxygen concentration in the tank can be reduced. it can. This makes it possible to operate the wastewater treatment equipment and stabilize the quality of the treated water.
1 4 14
香换页 (细则第 26糸) また、 曙気槽内の溶存酸素濃度及び温度が一定に保たれるようになると、 理気 槽内の好気性微生物の生息環境も安定化することから、 有機物 (COD、 B OD 成分) の分解率向上も期待できる。 第 3の発明 Incense (26th thread) In addition, if the dissolved oxygen concentration and temperature in the Akebono tank are maintained at a constant level, the habitat of aerobic microorganisms in the aerobic tank will be stabilized, and organic matter (COD and BOD components) will be decomposed. Rate improvement can also be expected. Third invention
本発明に係る活性汚泥法排水処理設備 (第 3の発明) は、 上述の活性汚泥法排 水処理設備において、 原水槽の液面を制御するために、 以下の計装機器を備えて なる原水槽の均流液面制御装 を付加することを特徴としている。  The activated sludge wastewater treatment equipment according to the present invention (third invention) is the same as the activated sludge wastewater treatment equipment described above, except that the following equipment is provided to control the liquid level of the raw water tank. It is characterized by adding an equilibrium liquid level control device for the water tank.
n) 原水槽液面検出器 ( 2 9 ) 及び原水槽液面調節器 ( 3 0 )  n) Raw water tank level detector (29) and raw water tank level controller (30)
o ) 原水供铪配管に設けられた原水流 S検出器 ( 3 1 )  o) Raw water flow S detector installed in the raw water supply pipe (31)
P ) 原水槽液面調節器 ( 3 0 ) の出力と原水流 S検出器 ( 3 1 ) の出力とに基 づいて曝気槽への原水供袷流量を調節する、 原水供給配管に設けられた原水流量 調節器 ( 3 2 )  P) A raw water supply pipe that adjusts the flow rate of raw water supplied to the aeration tank based on the output of the raw water tank level controller (30) and the output of the raw water flow S detector (31) Raw water flow controller (32)
また、 本活性汚泥法排水処理設備では、 原水槽の均流液面制御装置は、 原水 « 液面調節器 ( 3 0 ) をマスター側、 原水流量調節器 ( 3 2 ) をスレーブ则とした カスケ一ド制御ループが形成されてなることを特徴としている。  Also, in the activated sludge wastewater treatment equipment, the uniform liquid level control device of the raw water tank has a cascade in which the raw water level controller (30) is the master and the raw water flow controller (32) is the slave. It is characterized in that a single control loop is formed.
更に、 本活性汚泥法排水処理設備は、 原水槽液面調節器 ( 3 0 ) として GAP 付き調節器を用いた均流液面制御装置を有する。  In addition, the activated sludge wastewater treatment equipment has a uniform liquid level controller using a regulator with a GAP as the raw water tank level controller (30).
G A P付き調節器が少なく とも 2種類の切り替え可能な比例ゲインの ¾定が可 能で、 かつその一つのゲインは通常の均流液面制御のための比例ゲイン、 他の一 つのゲインは原水槽管理上の許容液面範囲からの逸脱を回避するための比例ゲイ ンであって、 それらは受け入れ排水の流量変化が生じたときも、 原水槽の液面変 動が許容範囲を越えないように、 原水槽の断面積、 液面計ゲイン、 及び流量調節 計ゲインに基づいて設定されたものである均流液面制御装置を有する。  At least two types of switchable proportional gains can be measured with a controller with a GAP, one of which is a proportional gain for normal flow level control, and the other is a raw water tank. Proportional gains to avoid deviations from the controllable liquid level range, so that when the flow rate of incoming wastewater changes, the liquid level fluctuation in the raw water tank does not exceed the allowable range. , A cross-sectional area of the raw water tank, a level gauge gain, and a flow rate level controller which is set based on the flow rate controller gain.
第 3の発明の制御装置の対象となる活性汚泥法排水処理設備は、 原水槽 1 4、 中和槽 1 5、 及び曝気槽 4の順に設けられ、 中和槽 1 5と瞜気槽とが原水供耠配 管 2 4で接続された榱成の設備である。  The activated sludge wastewater treatment equipment that is the object of the control device of the third invention is provided in the order of a raw water tank 14, a neutralization tank 15 and an aeration tank 4, and the neutralization tank 15 and the air tank are connected. The facilities are connected by raw water supply pipes 24.
原水槽 1 4は、 単一又は複数の排水系統からの排水を受け入れる槽であり、 ま た中和槽 1 5は、 この排水を活性汚泥処理するに先立ち、 排水の p H調整及び/  The raw water tank 14 is a tank that receives the wastewater from one or more drainage systems, and the neutralization tank 15 is a tank that adjusts the pH of the wastewater and / or adjusts the wastewater prior to activated sludge treatment.
1 5 替换页 (细则第 26糸) 又は栄養調整を行うための槽である。 処理設備の規模によっては、 この原水槽と 中和槽とを一つの槽にまとめてもよい。 1 5 Extra 换 页 (细则 26th thread) Or it is a tank for adjusting nutrition. Depending on the scale of the treatment equipment, the raw water tank and the neutralization tank may be combined into one tank.
原水槽には原水槽液面検出器 2 9及び原水槽液面調節器 3 0が設置される。 こ の原水槽液面調節器としては G A P付き調節器を用いるのが制御性の点で好まし い。  A raw water tank liquid level detector 29 and a raw water tank liquid level controller 30 are installed in the raw water tank. It is preferable to use a controller with a GAP as the raw water tank level controller in terms of controllability.
活性汚泥による排水処理を行う瞜気槽と中和槽とは原水流量検出器 3 1及び原 水流量調節器 3 2を有する原水供辁配管 2 4で接铳される。  The air tank and the neutralization tank that perform wastewater treatment with activated sludge are connected by a raw water supply pipe 24 having a raw water flow detector 31 and a raw water flow controller 32.
この原水流量 節器の流 S绸節方法は特に限定されるものではなく、 コント口 ールバルブのような流量を連铳的に又は逐次的に調節できるものが使用できる。 精密な制御のためには連梡的な調節が可能なものが好ましい。  The flow S-node method of the raw water flow collector is not particularly limited, and a control valve such as a control valve that can adjust the flow rate continuously or sequentially can be used. For precise control, those capable of continuous adjustment are preferable.
また、 その設置箇所も、 中和槽と曙気槽を結ぶ接垸配管の途中であれば特に限 定されるものではないが、 原水を移送するためにポンプ等を設匱する場合は、 そ の皤気 »側 (出側) の接铳配管の途中に設けるのが通常である。  The installation location is not particularly limited as long as it is in the connection pipe connecting the neutralization tank and the Akebono Tank, but if a pump or the like is installed to transfer raw water, it should be installed. It is usually installed in the middle of the connection pipe on the air »side (outside).
原水流 S調節器 3 2は、 前記の原水槽液面調節器 3 0の出力と原水流 a検出器 3 1 の出力とに基づいて制御される。  The raw water flow S regulator 32 is controlled based on the output of the raw water tank liquid level controller 30 and the output of the raw water flow a detector 31.
この原水棺液面! ¾節器 3 0をマスター側、 原水流 fiig節器 3 2をスレーブ側と してカスケ一ド制御ループを形成することにより、 マスター側の原水槽液面調節 器は、 原水槽液面の変動を設定値からの許容上下限の範囲内に押さえつつ、 スレ ーブ側の原水流 S調節器により中和槽から曝気槽への供給流量の急激な変化を緩 和するように調節され、 一層安定な制御が可能となり、 好ましい。  This raw water coffin liquid level! By forming a cascade control loop with the node 30 as the master side and the raw water flow fiig node 32 as the slave side, the raw water tank level controller on the master side becomes While keeping the fluctuation of the liquid level in the raw water tank within the allowable upper and lower limits from the set value, the sudden change in the supply flow from the neutralization tank to the aeration tank is moderated by the raw water flow S controller on the slave side. And more stable control is possible, which is preferable.
特に、 原水槽液面調節器として G A P付き調節器を用いると、 HI節の精度が更 に向上する。 G A P付き調節器としては少なく とも 2種の比例ゲインが切り替わ る P I調節器が好適である。 例えば、 2種類の比例ゲインが切り替わる G A P付 き P I調節器の設定は、 一つのゲインは通常の均流液面制御のための比例ゲイン 、 他の一つのゲインは原水槽管理上の許容液面範囲からの逸脱を回避するための 比例ゲインとするのが好ましい。  In particular, if a regulator with a GAP is used as the raw water tank level controller, the accuracy of the HI node will be further improved. As a controller with GAP, a PI controller that switches at least two types of proportional gains is preferable. For example, the setting of a PI controller with GAP that switches between two types of proportional gains: One gain is a proportional gain for normal equalizing liquid level control, and the other is an allowable liquid level in raw water tank management. It is preferable to use a proportional gain to avoid deviation from the range.
即ち、 想定される排水受け入れ Sの変動による原水槽の液面の変動を、 1 ) 原 水 ¾液面が設定液面付近にある時は、 通常の均流液面制御のための比例ゲインを 用いて、 主に ¾気榷への原水の供袷流量を一定とするような出力を原水流馕調節  That is, the fluctuation of the liquid level of the raw water tank due to the assumed fluctuation of drainage S is as follows: 1) Raw water 時 When the liquid level is near the set level, the proportional gain for normal To adjust the output so that the supplied flow rate of raw water to the air is kept constant.
1 6 替换页 (细则第 26糸) 器に与える一方、 2 ) 原水櫓液面が管理上の許容範囲の限界付近にある時は、 管 理上の許容範囲逸脱回避のための比例ゲインを用いて、 原水流量を一定にするよ りも原水槽液面を許容範囲内に維持するような出力を与える、 というように、 2 種類の切替比例ゲインに応じて調節の対象及びその出力を調整し、 これを用いて 原水槽の液面を許容範囲内に制御しつつ暉気槽への原水供袷量の変動を押さえる ような制御を行うことができる。 1 6 extra 换 页 (细则 thread 26) 2) When the level of the raw water turret is near the limit of the allowable range for control, use a proportional gain to avoid deviation from the allowable range for management, and use a proportional gain to keep the flow rate of the raw water constant. The target of adjustment and its output are adjusted according to the two types of switching proportional gains, such as giving an output that keeps the level of the raw water tank within the allowable range. Can be controlled so as to keep the fluctuation of the amount of raw water supplied to the air tanks within the allowable range.
これらの比例ゲインは、 原水槽の断面 ¾、 液面計ゲイン及び流量調節汁ゲイン に基づいて設定するのが好ましい。  These proportional gains are preferably set based on the cross section ¾ of the raw water tank, the liquid level gauge gain, and the flow rate control juice gain.
また、 第 3の発明の原水槽の均流液面制御方法は、 上述の制御装置を用いて活 性汚泥法排水処理設備の原水槽の液面及び曙気糟への原水供給流量を制御する、 という ものである。  The third aspect of the present invention provides a method for controlling the level of liquid in a raw water tank, wherein the liquid level of the raw water tank of the activated sludge wastewater treatment equipment and the flow rate of raw water supplied to the Akebono gas tank are controlled by using the above-described control device. That is.
第 3の発明の制御装置を用いることにより、 受け入れ排水量が変動した埸合も 、 原水槽の液面と暉気糟への原水流量とを同時に制御することにより、 原水槽を —種のバッファータンクのように用いて、 BS気槽への原水供給流 fiの急激な変化 を緩和させることができる。 これによつて、 好気性微生物への排水処理負荷を安 定させ、 処理水の水質の改良及び安定化を図ることができる。 第 4の発明  By using the control device of the third aspect of the present invention, even when the amount of received wastewater fluctuates, the level of the raw water tank and the flow rate of the raw water to the Hikiki tank are controlled at the same time, so that the raw water tank is It can be used to mitigate sudden changes in the raw water supply flow fi to the BS tank. This makes it possible to stabilize the wastewater treatment load on aerobic microorganisms and to improve and stabilize the quality of treated water. Fourth invention
本発明に係る活性汚泥法排水処理設備 (第 4の発明) は、 上述の活性汚泥法排 水処理設備に、 設備制御用のプロセスコンピュータを付加し、 該排水処理設備中 の曝気槽の温度及び溶存酸素濃度、 中和槽への栄養源供袷流量、 沈殿槽から曝気 槽への返送汚泥流量のそれぞれの運 eデータまたは所望の設定値のデータを上記 プロセスコンピュー夕に入力するデータ入力部、 該入力データをニューラルネッ 卜 · モデルを用いた演算処理によって沈殿槽の固液界面の位置及びその液相部の 処理水の濁度の挙動を予測する予測演算部、 該予蒯結果に基づいて活性汚泥設備 の運転条件を設定する運転支援部を備えてなる運転支援装置を有することを特徴 している。  The activated sludge wastewater treatment equipment (fourth invention) according to the present invention includes a process computer for equipment control added to the activated sludge wastewater treatment equipment described above, and the temperature and the temperature of an aeration tank in the wastewater treatment equipment are controlled. A data input unit for inputting the operation data or desired set value data of the dissolved oxygen concentration, the flow rate of nutrients supplied to the neutralization tank, and the sludge flow rate returned from the sedimentation tank to the aeration tank to the above process computer A prediction calculation unit for predicting the position of the solid-liquid interface of the sedimentation tank and the turbidity behavior of the treated water in the liquid phase of the input data by a calculation process using a neural network model based on the input data; It is characterized by having a driving support device provided with a driving support unit for setting the operating conditions of the activated sludge facility.
また、 上述の活性汚泥法排水処理設備に、 設備制御用のプロセスコンピュータ を付加し、 該排水処理設備中の沈殿槽の固液界面の位置及びその液相部の処理水  In addition, a process computer for equipment control is added to the above-mentioned activated sludge wastewater treatment equipment, and the position of the solid-liquid interface of the sedimentation tank in the wastewater treatment equipment and the treated water in the liquid phase portion are added.
1 7 香换页 (细则第 26条) の港度の運転データまたは所望の設定値のデータを上記プロセスコンピュータに 入力するデータ入力部、 該入力データをニューラルネッ 卜逆モデルを用いた演算 処理によって、 碟気 »内の温度及び溶存酸素澳度、 中和槽への栄養源供袷流蚤、 沈殿槽から隳気槽への変動汚泥流量のそれぞれの最適条件を算出する最適化演算 部、 該最適化演算桔果に基づいて運転条件を設定する運転支援部を備えてなる運 転支援装 Sを有することを特徴としている。 1 7 Incense (Article 26) A data input unit for inputting the operation data of the port degree or the data of the desired set value to the above process computer, and the input data is subjected to arithmetic processing using a neural network inverse model to calculate the temperature in the air » Calculating unit that calculates the optimum conditions for the flow rate of the sludge flow from the settling tank to the air tank, and the operating conditions based on the results of the optimization calculation. It is characterized by having a driving support device S comprising a driving support unit to be set.
更に言えば、 本発明者は、 運転状態を支配する因子、 即ち運転条件及びプロセ ス状態量からなる入力変数と、 活性汚泥処理後の処理水の性伏を示す衝度及び固 液界面位置からなる出力変数との間の因果関係を規定するモデルを、 活性汚泥法 排水処理設備の連転実 データを用いてニューラルネッ トにより構築し、 入力変 数を或る値に設定変更した場合の出力変数の挙動の予測、 並びに望ましい出力変 数をある評価関数の基で実現するために必要な最適運転条件の推算を行い、 その 予刺又は推算結果を運転ガイダンスとしてオペレータに提示することにより、 活 性汚泥処理設備の運転支援が可能となることを見出し、 本発明を完成した。 上記目的を達成するために、 本発明に係る活性汚泥法排水処理設備は、 排水を 受け入れる原水槽、 薬液を排水に注入して前処理を行い、 かつ排水の温度を調整 する中和槽、 排水を酸素により ¾気しつつ排水中の主として有機物を酸化 、 分解、 凝集させる曝気槽、 及び凝集した汚泥を沈澱させる沈澱槽を備え、 活性 汚泥法により排水を処理し、 受け入れた排水より濁度の低い処理水を流出させる 排水処理設備において、  Furthermore, the present inventor has determined from the factors governing the operating state, namely, the input variables consisting of the operating conditions and the process state quantity, and the impulse and the solid-liquid interface position indicating the property of the treated water after the activated sludge treatment. A model that specifies the causal relationship between the output variables and the output variables when the input variables are changed to a certain value by constructing a model that defines the causal relationship between the By predicting the behavior of variables and estimating the optimal operating conditions necessary to realize the desired output variables based on a certain evaluation function, and presenting the estimating or estimated results as operating guidance to the operator, The present inventors have found that it is possible to support the operation of the activated sludge treatment facility, and have completed the present invention. To achieve the above object, the activated sludge wastewater treatment equipment according to the present invention includes a raw water tank for receiving wastewater, a neutralization tank for injecting a chemical solution into the wastewater for pretreatment, and adjusting the temperature of the wastewater, and a wastewater. Aeration tanks for oxidizing, decomposing, and coagulating mainly organic matter in the wastewater while purifying the wastewater with oxygen, and a sedimentation tank for precipitating the condensed sludge are treated by the activated sludge method. In wastewater treatment facilities that discharge low treated water,
排水処理設備の運転条件及びプロセス伏態;!を変数とし、 変数間の因果関係を 規定するように、 変数の実耩値に基づいて構築されたニューラルネッ トモデルを 有する演算処理装置を備え、  Operating condition of wastewater treatment equipment and process downturn; And a processing unit having a neural net model constructed based on the actual values of the variables so as to define the causal relationship between the variables,
ニューラルネッ トモデルにより入力変数から出力変数を予測演算するようにし たことを特徴としている。  The feature is that the output variable is predicted and calculated from the input variable by the neural net model.
ニューラルネッ トワークとは、 神経回路網を意味し、 神経細胞 (ニューロン) がシナプスによって互いに桔合して作られる系を総称していう。 神経細胞間の結 合様式、 学習の方法などによって、 パーセプトロンのほかにさまざまなモデルが 提案されている。 本発明で使用するニューラルネッ 卜モデルは、 ニューラルネッ  The neural network means a neural network, and is a collective term for a system in which nerve cells (neurons) are formed by synapses. Various models have been proposed in addition to perceptron, depending on the mode of connection between nerve cells and the method of learning. The neural network model used in the present invention is a neural network model.
1 8 1 8
»换页 (细则第 26糸) 卜ワークによるモデルであって、 運転条件及びプロセス状態量の実搔データを二 ユーラルネッ 卜に与えて、 訓練することにより構築される。 »换 页 (细则 Thread 26) This is a network-based model, which is constructed by giving actual data on operating conditions and process state quantities to two neural networks and performing training.
本発明で使用するニューラルネッ トモデルは、 入力層、 中間 S及び出力層の 3 盾構造からなるもので、 ニューラルネッ トワークの訓練を行う場合には、 この入 力 S及び出力通に教師信号が与えられる。 上位層からの信号は、 重み付けされた 後に下位層にて集計され、 シグモイ ド関数を経て下位層に出力される。 3雇構造 のニューラルネッ トモデルでは、 入力眉が上位層で中間雇が下位眉の第 1 階ほと 、 中間眉が上位層で出力雇が下位層の第 2階層で楕成される。 各層間の重み付け は、 最急降下法による逆伝播学習により行われる。 この入出力データにより学習 調整された入出力間の重み係数が、 ニューラルネッ 卜モデルとなる。  The neural network model used in the present invention has a three shield structure of an input layer, an intermediate S, and an output layer. When training a neural network, a teacher signal is given to the input S and the output. Can be Signals from the upper layer are weighted and then aggregated in the lower layer, and output to the lower layer via a sigmoid function. In the neural network model with a three-employment structure, the input eyebrows are formed on the upper layer and the middle employment is formed on the first floor of the lower eyebrow, the middle eyebrows are formed on the upper layer and the output employment is formed on the second layer of the lower layer. Weighting between layers is performed by backpropagation learning using the steepest descent method. The weighting coefficient between the input and output learned and adjusted by this input and output data becomes the neural net model.
予測演算装置は、 既知の構成のコンピュータであって、 ニューラルネッ トモデ ルは、 既知の構成のコンピュータ内に構築され、 内蔵される。 好適には、 排水処 理設備本体の運転を監視、 制御するプロセスコンピュー夕の上位装置として設け られたワークステ一ション内に構築する。  The prediction operation device is a computer having a known configuration, and the neural network model is constructed and built in the computer having the known configuration. Preferably, it is built in a workstation provided as a higher-level device of a process computer that monitors and controls the operation of the wastewater treatment equipment.
出力変数及び入力変数の数は、 実用的には制約はなく、 出力変数を処理水の港 度と し、 入力変数を処理水の濁度に影饗する運 条件及びプロセス状 ffifiとして 、 ニューラルネッ トモデルにより処理水の濁度を予測する。 また、 出力変数を処 理水の濁度及び沈澱槽内の固液界面位置とし、 入力変数を処理水の濁度及び沈澱 槽内の固液界面位置の少なく とも一方に閲係する運転条件及びプロセス状態量と して、 ニューラルネッ 卜モデルにより処理水の濁度及び沈澱槽内の固液界面位置 を予測する。 また、 処理水の濁度及び沈澱槽内の固液界面位置の少なくと も一方 に関係する運転条件及びプロセス伏態量が、 中和槽への薬液供給流量、 ¾気槽内 の排水の温度、 嗶気槽内の排水中の溶存酸紫湄度、 及び沈澱格から暉気槽に返送 する返送汚泥流量であるとすることもできる。  The number of output variables and input variables is not practically limited, and the output variable is the port of treated water, and the input variable is the operating condition and process condition ffifi that affects the turbidity of the treated water. Turbidity of the treated water is predicted by the model. The output variables are the turbidity of the treated water and the solid-liquid interface position in the sedimentation tank, and the input variables are the operating conditions related to at least one of the turbidity of the treated water and the solid-liquid interface position in the sedimentation tank. As the process state quantity, the turbidity of the treated water and the position of the solid-liquid interface in the settling tank are predicted using a neural network model. In addition, the operating conditions and the process deformation related to at least one of the turbidity of the treated water and the position of the solid-liquid interface in the precipitation tank depend on the flow rate of the chemical solution supplied to the neutralization tank and the temperature of the wastewater in the air tank. It can also be the sludge flow rate to be returned to the Hioki tank based on the purple acidity of the dissolved acid in the wastewater in the air tank and the sedimentation.
更には、 上述のニューラルネッ 卜モデルとは逆のモデルを構築し、 入力変数が 、 処理水の濁度及び沈澱槽内の固液界面位置であって、 出力変数が、 中和槽への 薬液供給流量、 曝気植内の排水の温度、 皤気槽内の排水中の溶存酸素濃度、 及び 沈澱槽から曝気槽に返送する返送汚泥流量それぞれの最適値を予測演算すること もできる。  Further, a model reverse to the above-described neural net model was constructed, in which the input variables were the turbidity of the treated water and the solid-liquid interface position in the precipitation tank, and the output variables were the chemical solution to the neutralization tank. It is also possible to predict and calculate the optimum values for the supply flow rate, the temperature of the wastewater in the aerated plant, the dissolved oxygen concentration in the wastewater in the air tank, and the return sludge flow rate returned from the sedimentation tank to the aeration tank.
1 9 替换页 (细则第 26糸) 第 4の発明によれば、 活性汚泥法により排水を処理し、 受け入れた排氷より濁 度の低い処理水を流出させる排水処理設備において、 排水処理設備の運 $ 条件及 びプロセス状態量を変数とし、 変数の実接値に基づいて変数間の因果関係を規定 するように構築されたニューラルネッ トモデルを有する演算処理装匱を備えるこ とにより、 入力変数から出力変数をニューラルネッ トモデルにより予測廣算する ことができる。 本発明に係る排水処理設備では、 排水処理設備の異常状想に至る 前の異常兆候の検知により、 異常伏態の発生に十分先立って、 異常伏態の対処に 必要な客観的な情報を運転員に対して与えることができるので、 排水処理運転が 安定し、 濁度の高い処理水が流出するような事態が生じることはない。 第 の発明 1 9 replacement 换 页 (细则 thread 26) According to the fourth invention, in a wastewater treatment facility that treats wastewater by the activated sludge process and discharges treated water having a lower turbidity than the received wastewater, the operating conditions of the wastewater treatment facility and the process state quantity are variable. By providing an arithmetic processing unit having a neural net model constructed to define the causal relationship between variables based on the actual tangent value of the variable, the output variables from the input variables can be predicted by the neural net model. Can be calculated. In the wastewater treatment equipment according to the present invention, by detecting an abnormal sign before the wastewater treatment equipment reaches an abnormal state, objective information necessary for coping with the abnormal state is operated sufficiently prior to the occurrence of the abnormal state. Since it can be given to workers, the wastewater treatment operation is stable, and there is no occurrence of a situation where treated water with high turbidity flows out. The second invention
本発明者等は、 第 5の発明を完成するに当たり、 上記問題点を解決するために 鋭意検討を重ねた結果、 排水源プロセスの運耘データを上位側サブモデルの入力 変数として、 上位側サブモデルの出力を下位側のサブモデル入力と して利用すれ ば、 広範囲で正確な予測モデルの構築が可能になるとの知見を得た。  Upon completing the fifth invention, the present inventors have conducted intensive studies to solve the above problems, and as a result, the cultivation data of the drainage source process was used as an input variable of the upper sub model, and the upper sub model was used. We have learned that using the output of the model as the input of the sub-model on the lower side makes it possible to construct a wide range of accurate prediction models.
そして、 各プラン トに設置されているプロセス · コンビューター間のネ ッ 卜ヮ ーク通信を利用して、 排水処理設備のプロセス · コンビューターに各排水源の運 転データを収集し、 この運転データを排水処理設備側に構築したハイプリ ッ ドモ デルにより活性汚泥プロセスの安定化指標である沈殿槽の固液界面位置及び処理 水の濁度の応答予測を行い、 それにより排水異常、 例えば処理水の濁度上昇の兆 候を事前予測する。  Then, using the network communication between the process and the computer installed in each plant, the operation data of each wastewater source is collected by the process and the computer of the wastewater treatment equipment, and this operation is performed. The data was used to predict the response of the solid-liquid interface position of the sedimentation tank and the turbidity of the treated water, which are indicators of the stability of the activated sludge process, using a hybrid model built on the wastewater treatment equipment side. Predict the signs of rising turbidity.
そして、 異常状態発生の兆候を予測することにより、 その異常発生を未然に防 ぐ対策を講じることができ、 運転の安定化が図れることを見出して、 本発明を完 成した。  Then, by predicting the signs of the occurrence of an abnormal state, it was possible to take measures to prevent the occurrence of the abnormality beforehand, and found that the operation could be stabilized, and completed the present invention.
上記目的を連成するために、 得た知見に基づいて、 本発明に係るプロセスの運 転支援装置 (第 5の発明) は、 複数の上流化学プロセスからそれぞれ彼処理体を 受け入れて処理し、 処理体を流出する化学プロセスを運転する際に、 上流化学ブ 口セスの運転データに基づいて対象の化学プロセスの指標運転条件及び処理体の 指標性伏の少なく とも一方を予測する、 プロセスの運転支援装置であって、  In order to combine the above objects, based on the obtained knowledge, the process operation support device according to the present invention (fifth invention) receives and processes each of the treated bodies from a plurality of upstream chemical processes, When operating a chemical process that effluents a process, the process operation that predicts at least one of the index operation conditions of the target chemical process and the index characteristic of the process based on the operation data of the upstream chemical process A support device,
2 0 香换页 (细则第 26糸) 統計モデルとニューラルネッ トモデルとを組み合わせた階層化構造を有するハ イブリ ツ ドモデルを内蔵した予測演算装置を備え、 2 0 Incense (细则 26th thread) A predictive operation device with a built-in hybrid model having a hierarchical structure combining a statistical model and a neural net model,
統計モデルは、 入力された上流化学プロセスの運 gデータからニューラルネッ トワークへの入力データを出力データとして算出し、 ニューラルネッ トモデルは 、 铳計モデルから入力されたデータと、 及び対象の化学プロセスから得た運耘デ The statistical model calculates the input data to the neural network as output data from the input g data of the upstream chemical process as output data, and the neural network model calculates the data input from the total model and the target chemical process. Obtained tillage
—夕とから対象の化学プロセスの指標運 e条件及び処理体の性伏の少なく とも一 方を予蒯演算することを特徴としている。 —The feature is that the prediction operation is performed for at least one of the index operation conditions of the target chemical process and the property of the treated body from the evening.
また、 上位ニューラルネッ トモデルと下位ニューラルネッ トモデルとからニュ 一ラルネッ トモデルを構成し、 上位ニューラルネッ 卜モデルは、 入力された上流 化学プロセスの運転データから下位ニューラルネッ 卜モデルへの入力データを出 力データと して算出し、 下位ニューラルネッ トワークは、 上位ニューラルネッ ト ワークから入力されたデータと、 統計モデルから入力されたデータと、 及び対象 の化学プロセスから得た運転データとから対象の化学プロセスの指標運転条件及 び処理体の性伏の少なく とも一方を予測演算するようにしても良い。  Also, a neural network model is constructed from the upper neural network model and the lower neural network model.The upper neural network model outputs the input data to the lower neural network model from the input operation data of the upstream chemical process. The lower neural network calculates the target chemical process from the data input from the upper neural network, the data input from the statistical model, and the operation data obtained from the target chemical process. For example, at least one of the index operation conditions and the processing facility may be predicted and calculated.
第 5の発明の好適な実施態様は、 上流化学プロセスが、 アンモニア ¾度の高い 含アンモニア排水を被処理体として排出する第 1の分類のプロセスと、 含アンモ ニァ排水よりアンモニア'濃度の低い排水を被処理体として排出する第 2の分類の プロセスとから構成され、  In a preferred embodiment of the fifth invention, the upstream chemical process is a first-class process in which the ammonia-containing wastewater having a high concentration of ammonia is discharged as an object to be treated, and a wastewater having a lower ammonia concentration than the ammonia-containing wastewater. And a second classification process that discharges
対象の化学プロセスが、 第 1の分類のプロセス及び第 2の分類のプロセスから それぞれ排出された含アンモニア排水及び排水を活性汚泥法により処理する排水 処理設備であり、  The target chemical process is a wastewater treatment facility that treats ammonia-containing wastewater and wastewater discharged from the first class process and the second class process, respectively, by the activated sludge method,
統計モデルが、 第 2の分類のプロセスの運転データを主成分分析する P C A ( 主成分分析) モデルであり、  The statistical model is a PCA (Principal Component Analysis) model that performs principal component analysis of the driving data of the second class of processes,
上位ニューラルネッ トモデルは、 第 1の分類のプロセスの運転データから含ァ ンモニァ排水のァンモニァ'濃度を推算するアンモニア濃度推算モデルと、 排水処 理設備の曝気槽及び沈澱槽の排水の滞留時間を算出する滞留時間算出 (S A ) モ デルとから構成され、  The upper-level neural net model calculates the ammonia concentration estimation model for estimating the ammonia concentration of the ammonia-containing wastewater from the operation data of the first classification process, and calculates the residence time of the wastewater in the aeration tank and settling tank of the wastewater treatment facility. And a residence time calculation (SA) model
下位ニューラルネッ トモデルは、 指標 3転条件として排水処理設備の沈殿檐の 固液界面位置を及び指標性状として処理水の濁度を予測演算する。  The lower neural net model predicts and calculates the solid-liquid interface position of the sediment bridge of the wastewater treatment facility as the index 3 conversion condition and the turbidity of the treated water as the index property.
2 1 替换页 (细则第 26糸) 予測演算装 は、 既知の構成のコンピュータであって、 統計モデル及びニュー ラルネッ トモデルは、 既知の構成のコンピュータ内に構築され、 内蔵される。 好 適には、 排水処理設備本体の運転を監視、 制御するプロセスコンピュータの上位 装置と して設けられたワークステーショ ン内に構築する。 2 1 replacement (换 页 yarn 26) The prediction arithmetic unit is a computer having a known configuration, and the statistical model and the neural network model are constructed and built in the computer having the known configuration. Preferably, it is built in a workstation provided as a higher-level device of a process computer that monitors and controls the operation of the wastewater treatment facilities.
本発明で予測する化学プロセスの指標運転条件及び処理体の指棟性状は、 数に 制約はない。 また、 本発明で処理とは、 排水処理等の処理に加えて、 化学反応も 含む広い概念であり、 波処理体及び処理体の種類に限定はない。  There are no restrictions on the number of the index operation conditions of the chemical process and the finger ridge properties of the treated body predicted in the present invention. Further, the treatment in the present invention is a broad concept including a chemical reaction in addition to treatment such as wastewater treatment, and there is no limitation on the types of the wave treatment body and the treatment body.
第 5の発明の構成によれば、 入力された上流化学プロセスの運転データから二 ユーラルネッ 卜ワークへの入力データを出力データとして算出する統計モデルと 、 铳計モデルから入力されたデータと、 及び対象の化学プロセスから得た運転デ 一夕とから対象の化学プロセスの指標運転条件及び処理体の性伏の少なく とも一 方を予測演算するニューラルネッ 卜モデルとを組み合わせた階眉化構造を有する ハイブリ ツ ドモデルを内蔵した予測演算装置を備えて、 上流化学プロセスの ¾G データに基づいて対象の化学プロセスの指標運転条件及び処理体の指標性伏の少 なく とも一方を予測する、 プロセスの運転支援装置を実現している。  According to the configuration of the fifth invention, a statistical model for calculating input data to the dual-ural network as output data from the input operation data of the upstream chemical process, data input from the total model, and A hybrid with a staircase-like structure that combines the operating conditions obtained from the chemical process with the neural network model that predicts and calculates at least one of the index operating conditions of the target chemical process and at least one of the properties of the processing object A process operation support device equipped with a predictive calculation device with a built-in tool model, and predicts at least one of the index operation condition of the target chemical process and the index characteristic of the treated object based on the ¾G data of the upstream chemical process Has been realized.
本発明に係るプロセスの運転支援装置を、 例えば活性汚泥法排水処理設備に適 用することにより、 排水処理設備内の運転条件の変化が原因となる異常兆候だけ でなく、 排水源の運転条件の変動が排水処理設備の安定化指標に与える影罾も検 知が可能となる。 異常兆候を検知し、 運転員に運転ガイダンスを提示することに より、 事前に対策を施すことが可能となり、 排水処理設備の排水処理異常を未然 に防ぐことができる。 図面の簡単な説明  By applying the operation support device of the process of the present invention to, for example, activated sludge wastewater treatment equipment, not only abnormal signs caused by changes in the operation conditions in the wastewater treatment equipment, but also the operating conditions of the wastewater source can be reduced. The effect of fluctuations on the stability index of wastewater treatment equipment can also be detected. By detecting signs of abnormality and presenting operating guidance to operators, measures can be taken in advance and abnormalities in wastewater treatment of wastewater treatment equipment can be prevented. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 第 1の発明の曝気槽の溶存酸素濃度の制御装置の構成の一例を示す概 要図である。  FIG. 1 is a schematic diagram showing an example of a configuration of a control device for a dissolved oxygen concentration in an aeration tank according to the first invention.
図 2は、 第 1の発明の溶存酸衆濃度の制御装置を用いた制御を開始する前後の 皤気槽内の溶存酸素濃度の目標値からの偏差を示すグラフである。  FIG. 2 is a graph showing a deviation of a dissolved oxygen concentration in a gas tank from a target value before and after starting control using the dissolved oxygen concentration control device of the first invention.
図 3は、 第 1の発明の皤気槽の溶存酸素濃度の制御装置の構成の一例を示す概 要図である。  FIG. 3 is a schematic diagram showing an example of the configuration of the control device for the dissolved oxygen concentration in the air tank according to the first invention.
2 2 香换页 (细则第 26糸) 図 4は、 第 2の発明の瞜気槽の温度制御装置の一例、 及びこれを用いた排水処 理設備を示す概要図である。 2 2 Incense (26th thread) FIG. 4 is a schematic diagram showing an example of the air tank temperature control device of the second invention and a wastewater treatment facility using the same.
図 5は、 図 4の温度制御装置を用いて曝気槽の温度制御を開始する前後の《気 槽の槽内温度の時間的変動伏況を示すグラフである。  FIG. 5 is a graph showing the temporal fluctuation of the temperature in the tank of the aeration tank before and after starting the temperature control of the aeration tank using the temperature control device of FIG.
図 6は、 図 4の温度制御装置を用いて曝気槽の温度制御を開始する前後の嗶気 槽の溶存酸素港度の時間的変動状況を示すグラフである。  FIG. 6 is a graph showing the temporal variation of the dissolved oxygen port of the aeration tank before and after starting the temperature control of the aeration tank using the temperature control device of FIG.
図 7は、 第 3の発明の原水櫓の均流液面制御装置の構成の一例、 及びこれを用 いた活性汚泥法排水処理設備を示す概要図である。  FIG. 7 is a schematic diagram showing an example of a configuration of a uniform flow level control device for a raw water tower according to the third invention, and an activated sludge wastewater treatment facility using the same.
図 8は、 図 7の原水槽の均流液面制御装置を用いた制御を開始する前後の原水 槽液面の時間的変動状況を示すグラフである。  FIG. 8 is a graph showing the temporal fluctuation state of the raw water tank liquid level before and after the control using the uniform water level control device for the raw water tank in FIG. 7 is started.
図 9は、 図 7の原水槽の均流液面制御装置を用いた制御を開始する前後の中和 槽から曝気槽へ供袷される原水流量の時間的変動伏況を示すグラフである。 図 1 0は、 図 7の原水槽の均流液面制御装置を用いた制御を開始する前後の排 水処理設備の処理水の濁度 (懸濁物質量) の時間的変動状況を示すグラフである 図 1 1 は、 本発明の活性汚泥法排水処理設備の栄養源供拾量制御装置の楕成の —例、 及びこれを用いた活性汚泥法排水処理設備を示す概要図である。 (曝気榷 は省略)  FIG. 9 is a graph showing the temporal fluctuations of the flow rate of raw water supplied from the neutralization tank to the aeration tank before and after the control using the uniform flow level controller of the raw water tank in FIG. 7 is started. Fig. 10 is a graph showing the temporal variation of the turbidity (amount of suspended solids) of the treated water of the wastewater treatment facility before and after the control using the uniform flow level control device for the raw water tank in Fig. 7 is started. FIG. 11 is a schematic diagram showing an example of a nutrient source supply control device for an activated sludge wastewater treatment facility of the present invention, and an activated sludge wastewater treatment facility using the same. (Aeration 省略 is omitted)
図 1 2は、 アンモニア排出設備の排水中のアンモニア濃度の経時変動伏況の、 図 1 1の制御装置に用いるソフ 卜センサーによる推算値と、 工程分析による実測 値との対比を示すグラフである。  Fig. 12 is a graph showing the comparison between the estimated value of the fluctuation of the ammonia concentration in the wastewater of the ammonia discharge equipment over time by the soft sensor used in the control device in Fig. 11 and the actually measured value by the process analysis. .
図 1 3は、 活性汚泥法排水処理設備の一般的な構成を示すブロック図である。 図 1 4は、 第 4の発明に係る活性汚泥法排水処理設備の構成を示すブロック図 である。  FIG. 13 is a block diagram showing a general configuration of an activated sludge wastewater treatment facility. FIG. 14 is a block diagram showing the configuration of the activated sludge wastewater treatment facility according to the fourth invention.
図 1 5は、 排水処理設備本体の構成を示すフローシートである。  Figure 15 is a flow sheet showing the configuration of the wastewater treatment equipment main body.
図 1 6は、 第 5の発明に係るプロセスの運転支援装置の構成を示すブロック図 である。  FIG. 16 is a block diagram showing a configuration of a process driving support device according to the fifth invention.
図 1 7は、 実施例 7のプロセスの運転支援装置を適用した、 活性汚泥法排水処  Figure 17 shows the activated sludge wastewater treatment system to which the operation support device of the process of Example 7 was applied.
2 3 twenty three
S换页 (细则第 26糸) 理設備の構成を示すフローシー トである。 S 换 页 (细则 26th thread) This is a flow sheet showing the configuration of the processing equipment.
図 1 8は、 ハイプリ ッ ドモデルの構造を示すプロック図である。 発明を実施するための好適な態様  FIG. 18 is a block diagram showing the structure of a hybrid model. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 実施例を挙げ、 添付図面を参照して、 第 1から第 5の発明を具体的 かつ詳細に説明する。 尚、 第 1から第 5の発明は、 以下の実施例によって限定さ れるものではなく、 その要旨を超えない限り、 以下の実施例の構成を改変、 変更 できる。 実施例 1 (第 1の発明の実施例)  Hereinafter, the first to fifth inventions will be described specifically and in detail by giving examples and referring to the attached drawings. Note that the first to fifth inventions are not limited by the following embodiments, and the configurations of the following embodiments can be modified or changed without departing from the gist of the invention. Example 1 (Example of the first invention)
本実施例は、 第 1の発明の実施例であって、 図 1は曝気槽回りの計器及び制御 装置を示している。 即ち、 図 1は、 密閉型の曝気槽 (4 ) と、 これに流入する原 水の流量を計測する原水流 S計 ( 1 ) 及びその流 S調節弁 (2) 、 沈殿镥から返 送される汚泥の流量を計測する返送汚泥流董計 (3) 、 睡気槽内の溶存酸素 '濃度 を釗定する溶存酸素濃度計 ( 5) 、 曝気槽の内圧を計測する圧力検出器 ( 6) 、 曝気楦の排気配管に設けられた圧力調整弁 (7) 及び圧力制御調節計 ( 1 2) 、 曝気槽に供辁する酸素の流 fiを調節する酸素供給量調節弁 ( 9 ) 、 酸素洪袷 ft頃 節弁の直近に設けられた酸紫供耠 S測定器 (8 ) 、 溶存酸素濃度計の計剮結果に 基づいて供袷すべき酸紫量を算出する予測機能付き P I D制御装置 ( 1 1 ) 、 及 び酸素供給量測定器の計測結果と、 前記予则機能付き P I D制御装置の指示した 酸素量とに基づいて酸素供給量調節弁を調節する酸素供袷量調節計 ( 1 0 ) から なる曙気 «の溶存酸素港度制御装匱とを示している。  This embodiment is an embodiment of the first invention, and FIG. 1 shows an instrument and a control device around an aeration tank. In other words, Fig. 1 shows a closed aeration tank (4), a raw water flow S meter (1) for measuring the flow rate of raw water flowing into the tank, and a flow S control valve (2) returned from the sediment 镥. Return sludge flow meter (3), which measures the flow rate of sludge, dissolved oxygen concentration meter (5), which measures the dissolved oxygen concentration in the sleepy tank, and pressure detector (6), which measures the internal pressure of the aeration tank , A pressure regulating valve (7) and a pressure control controller (12) provided on the exhaust pipe of the aeration tank, an oxygen supply amount regulating valve (9) that regulates the flow fi of oxygen supplied to the aeration tank, Around lined ft. Acid purple supply S measuring device (8) installed immediately adjacent to the valve, PID control device with a prediction function to calculate the amount of acid purple to be supplied based on the measurement result of the dissolved oxygen concentration meter ( 1 1), and the oxygen supply amount control valve is adjusted based on the measurement result of the oxygen supply amount measurement device and the oxygen amount indicated by the PID control device with the preliminary function. This figure shows Akebono's dissolved oxygen port level control system consisting of an oxygen supply line controller (10).
この溶存酸素濃度制御装置を用いた瞟気槽の溶存酸素濃度制御方法においては 、 皤気榷内の溶存酸紫 iS度計 (5) の計測結果を予測機能付き P I D制御装置 ( 1 1 ) に取り入れ、 これと目標とする溶存酸素 S度との差を比較し、 上記の予測 機能付き P I D制御装置 ( 1 1 ) にて目標溶存酸素濃度により近づけられるよう な酸素供給量を叶算し、 その結果を酸素供給最調節計 ( 1 0) に出力し、 これを 酸紫供袷量測定器 (8) の計測結果と比^して酸素供袷量調節弁 ( 9) を操作し て、 酸素供給 Sを制御する。  In the method for controlling the dissolved oxygen concentration in an air tank using the dissolved oxygen concentration control device, the measurement result of the dissolved acid purple iS meter (5) in the air is stored in a PID control device (11) having a prediction function. By comparing the difference between the target dissolved oxygen concentration and the target dissolved oxygen concentration, the PID controller (11) with the prediction function described above calculates the oxygen supply amount that can be closer to the target dissolved oxygen concentration. The result is output to the oxygen supply maximum controller (10), which is compared with the measurement result of the acid purple supply amount measuring device (8), and the oxygen supply amount control valve (9) is operated to obtain the oxygen supply amount. Control supply S.
2 4 twenty four
香换页 (细则第 26糸) 次いで曝気槽の圧力調節計 ( 1 2) により圧力調節弁 (7) を操作し、 曛気槽 (4) 内のガスを所定圧力まで排出する。 Incense (26th thread) Next, the pressure control valve (7) is operated by the pressure controller (12) of the aeration tank, and the gas in the air tank (4) is discharged to a predetermined pressure.
図 2は、 実施例 1の溶存酸素濃度制御装置による予測制御を開始する前後の瞜 気槽内の溶存酸素濃度の測定桔果の一例を示す。 (実施例 1の装置による制御開 始前は、 通常法による曝気槽の内圧と気相の酸素濃度とを制御因子とした制御を 行っていた。 )  FIG. 2 shows an example of a measurement result of the dissolved oxygen concentration in the air tank before and after starting the predictive control by the dissolved oxygen concentration control device of the first embodiment. (Before the control by the apparatus of Example 1 was started, control was performed using the internal pressure of the aeration tank and the oxygen concentration of the gas phase as control factors by the usual method.)
実施例 1による制御開始後は、 変動幅は目標値に対し ± 0. 5 p pmの範囲内 に入っていることが判る。 実施例 2 (第 1の発明の別の実施例)  After the control according to the first embodiment is started, it can be seen that the fluctuation range is within a range of ± 0.5 ppm with respect to the target value. Embodiment 2 (Another embodiment of the first invention)
本実施例は、 第 1の発明の別の実施例であって、 図 3は曝気槽回りの汁器及び 制御装置を示している。 図 3は、 密閉型の曝気槽 ( 4 ) と、 これに流入する原水 の流量を汁測する原水流量計 ( 1 ) とその流量調節弁 (2) 、 沈殿槽から返送さ れる汚泥の流量を計測する返送汚泥流量計 ( 3) 、 碟気槽内の溶存酸素濃度を釗 定する溶存酸素港度計 ( 5) 、 碟気槽の内圧を計測する圧力検出器 (6) 、 曙気 槽の排気配管に設けられた圧力調整弁 (7) 及び圧力制御調節計 ( 1 2) 、 理気 槽に供給する酸素の流 fiを調節する酸素供給量調節弁 (9) 、 酸素供給量調節弁 の直近に設けられた酸素供給 測定器 (8) 、 原水の温度、 流量、 水素イオン濃 度 (P H) 及び化学的酸素要求量 (COD) 、 生物化学的酸素要求量 (B OD 5 ) 、 懸濁物質 (S S) 、 曙気槽の温度、 圧力、 溶存酸素濃度、 槽内混合液懸濁物 質 (ML S S) 、 槽内混合液揮発性懸濁物質 (ML V S S ) のデータに基づいて 溶存酸素濃度の目標値を算出するニューラル · ネッ ト ·オプティマイザ一 ( 1 3 ) 、 溶存酸素滬度計の計測結果とニューラル · ネッ ト · オプティマイザ一により 算出された溶存酸紫浪度の目標値とに基づいて供給すべき酸素量を算出する短期 予測機能付き P I D制御装置 ( 1 1 ) 、 及び酸素供給量測定器の計測拮果と、 前 記予測機能付き P I D制御装置の指示した酸素量とに基づいて酸素供給量調節弁 を調節する酸紫供袷量調節計からなる蹯気槽の溶存酸素濃度制御装置とを示して いる。  This embodiment is another embodiment of the first invention, and FIG. 3 shows a juicer and a control device around an aeration tank. Figure 3 shows a closed aeration tank (4), a raw water flow meter (1) that measures the flow rate of raw water flowing into it, and its flow control valve (2), and the flow rate of sludge returned from the sedimentation tank. Return sludge flow meter to measure (3), dissolved oxygen port meter to measure dissolved oxygen concentration in gas tank (5), pressure detector to measure internal pressure of gas tank (6), Akebono tank The pressure control valve (7) and the pressure control controller (12) provided on the exhaust pipe, the oxygen supply flow control valve (9), which controls the flow fi of oxygen supplied to the pressure tank, and the oxygen supply flow control valve Oxygen supply measuring device (8), raw water temperature, flow rate, hydrogen ion concentration (PH) and chemical oxygen demand (COD), biochemical oxygen demand (BOD5), suspension Substance (SS), temperature and pressure of Akebono Aeration tank, dissolved oxygen concentration, suspension of mixed liquid in tank (ML SS), volatile suspension of mixed liquid in tank (ML VSS) Neural Net Optimizer (13), which calculates the target value of the dissolved oxygen concentration based on the data of the above, and the dissolved acid purple wave calculated by the measurement result of the dissolved oxygen concentration meter and the Neural Net Optimizer. PID control device with short-term prediction function (11) that calculates the amount of oxygen to be supplied based on the target value of the temperature, the measurement results of the oxygen supply amount measurement device, and the instruction of the PID control device with prediction function The figure also shows a dissolved oxygen concentration control device for a gas tank comprising an acid purple supply amount controller that adjusts an oxygen supply amount control valve based on the measured oxygen amount.
この制御装置を用いる瞜気槽の溶存酸素港度制御方法は、 曙気槽内の溶存酸素  The control method of the dissolved oxygen port of the aeration tank using this controller
2 5 香换页 (细则第 26糸) 濃度計 ( 5 ) の計測結果を短期予刺機能付き P I D制御装置 ( i 1 ) に取り入れ 、 これと前述のようにしてニューラル 'ネッ ト 'ォブティマイザ一により算出さ れた溶存酸素濃度の目棟値との差を比較して目標溶存酸素濃度により近づけられ るような酸素供給垦を計算し、 その桔果を酸素供給量 IS節計 ( 1 0 ) に出力し、 酸衆供給量測定器 ( 8 ) の計測結果と比校して酸素供給 Jt調節弁 ( 9 ) を操作し て、 酸素供給量を制御するとともに、 引き続いて曝気槽の圧力調節計 ( 1 2 ) に より圧力調節弁 ( 7 ) を操作し、 曝気槽 (4 ) 内のガスを所定圧力まで排出する 、 という ものである。 実施例 3 (第 2の発明の実施例) 2 5 incense (细则 yarn 26) The measurement result of the densitometer (5) is taken into the PID controller (i1) with a short-term puncture function, and the dissolved oxygen concentration calculated by the neural net optimizer as described above Calculates the oxygen supply よ う な that is closer to the target dissolved oxygen concentration by comparing the difference with the target dissolved oxygen concentration, outputs the result to the oxygen supply amount IS saving meter (10), ), The oxygen supply Jt control valve (9) is operated to control the amount of oxygen supply, and subsequently the pressure control valve (7) is controlled by the pressure controller (12) of the aeration tank. Is operated to exhaust the gas in the aeration tank (4) to a predetermined pressure. Example 3 (Example of the second invention)
本実施例は、 第 2の発明の実施例であって、 図 4 は原水槽、 中和榷及び曝気槽 回りの計器及び制御装置を示している。 図 4は、 躐気槽内温度調節器 1 9をマス ター側調節器、 スブリ ッ トレンジ型原水温度調節器〗 7をスレーブ側調節器とし たカスケ一ド制御ループからなる曙気槽內温度制御装置を示している。  This embodiment is an embodiment of the second invention, and FIG. 4 shows instruments and control devices around a raw water tank, a neutralization tank and an aeration tank. Fig. 4 shows the temperature control of the Akebono tank with a cascade control loop using the temperature controller 19 in the air tank as the master side controller and the split-range type raw water temperature controller 7 as the slave side controller. The device is shown.
ここでは、 加熱媒体として水蒸気 (以下 「蒸気」 と略記することがある) を、 冷却媒体と して冷却水を使用している。  Here, steam (hereinafter sometimes abbreviated as “steam”) is used as the heating medium, and cooling water is used as the cooling medium.
蒸気供耠綢節弁 2 0は冬季において加温が必要な時期に、 冷却水供袷調節弁 2 1 は、 夏季において冷却が必要な時期に、 それぞれ使い分けられる。  The steam supply silk connection valve 20 is used when heating is required in winter, and the cooling water supply control valve 21 is used when cooling is required in summer.
例えば、 冬季においてはマスター側調節器である醺気槽内温度調節器 1 9は、 曝気槽内の目標温度と実際の温度との偏差から、 目標温度に近づけるために必要 な蒸気量を算出し、 原水温度スプリ ッ トレンジ型調節器 1 7に設定値として信号 を送る。 スレーブ側調節器である原水温度スプリ ッ ト レンジ型調節器 5は、 その 設定値に追従させるベく蒸気供袷調節弁 2 0を調節する。 夏季にはこれと同様に して、 冷却水供給調節弁 2 1が使用されて原水が冷却される。  For example, in winter, the master-side temperature controller in the air tank 19, which is the master-side controller, calculates the amount of steam required to approach the target temperature from the deviation between the target temperature in the aeration tank and the actual temperature. A signal is sent to the raw water temperature split range controller 17 as a set value. The raw water temperature split range type controller 5, which is a slave-side controller, adjusts the steam supply control valve 20 to follow the set value. In the summer, the cooling water supply control valve 21 is used to cool the raw water in the same manner.
即ち、 原水温度の変動をスレーブ側調節器にて吸収し、 主目的である曝気槽内 の温度を一定に保つことが可能となる。  In other words, fluctuations in the raw water temperature are absorbed by the slave controller, and the temperature in the aeration tank, which is the main purpose, can be kept constant.
図 5は、 図 4の制御装置を用いて曝気槽の槽内温度制御を開始する前後の、 槽 内温度の時間変動を測定したグラフである。 T T 1で示される曝気槽の槽內温度 は、 制御開始前は 6〜7 °Cの変動幅があったにもかかわらず、 制御開始後は目標  FIG. 5 is a graph showing the time variation of the tank temperature before and after the start of the tank temperature control of the aeration tank using the control device of FIG. The tank temperature of the aeration tank indicated by T T 1 was the target after the start of control, despite the fluctuation range of 6 to 7 ° C before the start of control.
2 6 2 6
香换页 (细则第 26糸) 温度である 3 6 °Cに対して ± 0 . 5 °Cの範囲内に入っていることが判る。 Incense (26th thread) It can be seen that the temperature is within ± 0.5 ° C with respect to the temperature of 36 ° C.
図 6は、 図 5に示される運転を行った際の曝気槽内の溶存酸素港度 (D O ) の 時間変動を示す。 曝気格の温度制御を開始する前は約 1 p p mの変動幅であった のが、 制御開始後は、 0 . 5 p p m程度となり、 更に減少して行く傾向にあるの が観察される。 実施例 4 (第 3の発明の実施例)  Fig. 6 shows the time variation of the dissolved oxygen port (D O) in the aeration tank when the operation shown in Fig. 5 was performed. It was observed that the fluctuation range was about 1 ppm before the temperature control of the aeration rate was started, but it was about 0.5 ppm after the start of the control, and it is observed that it tends to decrease further. Example 4 (Example of the third invention)
本実施例は、 第 3の発明の実施例であって、 図 7は原水槽、 中和棺及び瞩気槽 回りの計器及び制御装置、 即ち原水槽液面 G A P付き調節器 3 O Aをマスター側 調節器、 原水流量調節器 3 2をスレーブ側調節器と したカスケ一ド制御ループか らなる原水槽の均流液面の制御装置を示している。  This embodiment is an embodiment of the third invention, and FIG. 7 shows an instrument and a control device around the raw water tank, the neutralizing coffin and the air tank, that is, the raw water tank liquid level controller 3OA with GAP on the master side. The figure shows a control device for the uniform liquid level in the raw water tank, which consists of a cascade control loop in which the controller and the raw water flow controller 32 are used as slave-side regulators.
G A P付き調節器は 2種の比例ゲイ ンの設定が可能であり、 その一つは原水槽 の液面が設定値の近傍にある時のもので、 主に原水供铪流量を所定範囲内とする ような出力を原水流量調節器に与える。 もう一つの比例ゲインは原水槽の液面が 設定値から外れ、 許容限界付近にある時のもので、 主に原水供給流量を一定にす るよりも原水槽液面を許容範囲内に維持するように作動する。 これらの 2種の比 例ゲインは、 原水槽の断面積、 液面計ゲイン、 流量調節計ゲインを考慮した調節 法により決定した。  The controller with GAP can set two types of proportional gain, one of which is when the liquid level in the raw water tank is near the set value, and mainly when the raw water supply flow rate is within the specified range. Output to the raw water flow controller. Another proportional gain is when the liquid level in the raw water tank is out of the set value and is near the permissible limit. Maintain the liquid level in the raw water tank within the allowable range rather than keeping the raw water supply flow rate constant. Works as follows. These two types of proportional gains were determined by an adjustment method that considered the cross-sectional area of the raw water tank, the level gauge gain, and the flow controller gain.
図 8は、 図 7の制御装置を用いて原水槽の均流液面制御を開始する前後の、 原 水槽の液面の時間的な変動状況を示すグラフである。 単純な液面定値制御から本 発明の制御装置による制御を行うことにより、 原水槽の液面は変動が大き くなつ てはいるが、 その変動は ± 1 0 %以内であり、 許容範囲内である。  FIG. 8 is a graph showing the temporal fluctuation of the liquid level of the raw water tank before and after starting the uniform flow level control of the raw water tank using the control device of FIG. By performing control by the control device of the present invention from simple liquid level control, the liquid level in the raw water tank has a large fluctuation, but the fluctuation is within ± 10%, which is within the allowable range. is there.
図 9は、 図 8に示される運転を行った際に、 中和槽から曝気槽へ供狯される原 水の流量の時間的変化を示すグラフである。 制御開始後に原水槽液面が大きく変 勅したにもかかわらず、 急激な流量変動はなく、 流 fi変化の程度が緩和されてい ることが判る。  FIG. 9 is a graph showing a temporal change in the flow rate of raw water supplied from the neutralization tank to the aeration tank when the operation shown in FIG. 8 is performed. Despite a large change in the liquid level of the raw water tank after the start of control, there is no rapid change in flow rate, indicating that the degree of change in flow fi has been alleviated.
図 1 0は、 同じ時に測定された、 活性汚泥プロセスの安定化の指標の一つであ る濁度 (懸濁物 K量) の時間的変動状況である。 制御開始直後に原水流量が增加 した時に濁度も上昇したが、 その後は低い値で安定してきていることが判る。  Figure 10 shows the time course of turbidity (the amount of suspended solids K), which is one of the indicators of stabilization of the activated sludge process, measured at the same time. The turbidity also increased when the raw water flow increased immediately after the start of the control, but it has been found that the turbidity has been stabilized at a low value thereafter.
2 7 2 7
替换页 (细则第 26糸) 実施例 5 Replacement 换 页 (细则 26th thread) Example 5
本実施例は、 上述の第 1から第 3の発明からなる発明の一つの実施例であって 、 アンモニアを含む排水を排出する設備 (以下 「アンモニア排出設備」 と記す) を有する化学工場等の総合排水処理場で用いられている活性汚泥プロセスの栄養 源供給 fiの制御装 及び制御方法に関するものである。  This embodiment is an embodiment of the invention comprising the above-described first to third inventions, and is an example of a chemical plant or the like having a facility for discharging wastewater containing ammonia (hereinafter referred to as “ammonia discharge facility”). The present invention relates to a control device and a control method for a nutrient source supply fi of an activated sludge process used in a general wastewater treatment plant.
活性汚泥処理において使用される栄養源としては、 アンモニア (窒素源) 、 リ ン酸 (リ ン源) あるいはメ夕ノール (有機物源) が一般的であり、 これらの栄養 源をそのまま又は水溶液と して、 連続的又は間欠的に一定量添加する方法が通常 用いられている。  The nutrients used in the activated sludge treatment are generally ammonia (nitrogen source), phosphoric acid (phosphorus source) or methanol (organic material source), and these nutrient sources are used as they are or as aqueous solutions. Therefore, a method of adding a fixed amount continuously or intermittently is usually used.
ァンモニァ排出設備の排水を受け入れる活性汚泥法排水処理 S備においては、 このアンモニア排出設備の運 15状況によって、 排出されるアンモニア Sが変動す る。 上記の通り、 アンモニア自体が微生物の栄養源であるので、 定 fi添加法を用 いている処理設備では、 アンモニア量の変動は、 蹯気槽に供給される排水中の栄 養源の含有量の変動に直結し、 桔果として活性汚泥処理 ¾備の運 15条件が不安定 になり、 処理水質の変動や、 暍気榷における発泡 · バルキングの原因となること がある。  In the activated sludge wastewater treatment S facility that receives the wastewater from the ammonia discharge facility, the ammonia S discharged varies depending on the operation of the ammonia discharge facility. As described above, ammonia itself is a nutrient source of microorganisms, so in a treatment facility that uses the constant fi addition method, fluctuations in the amount of ammonia will cause an increase in the content of nutrient sources in the wastewater supplied to the air tank. As a result, the operation of activated sludge treatment equipment may become unstable, leading to fluctuations in treated water quality and foaming and bulking in air.
即ち、 本実施例は、 アンモニア排出設備の排水を受け入れる活性汚泥法排水処 理設備において、 受け入れ排水中のアンモニア量を的確に予測して、 供給される 栄養源の量を制御することにより、 排水処理設備の運転及び処理水の水貧を安定 化することができる制御装置、 及びこれを用いた排水処理設備の制御方法を実現 している。  That is, in the present embodiment, the activated sludge wastewater treatment equipment that receives the wastewater from the ammonia discharge equipment accurately predicts the amount of ammonia in the received wastewater, and controls the amount of nutrient source supplied to the wastewater. A control device capable of stabilizing the operation of the treatment equipment and the water shortage of the treated water, and a control method of the wastewater treatment equipment using the same are realized.
本発明者らは、 このような制御方法を実現するために、 アンモニア排出設備の プロセス ' コンビューターと排水処理設備のプロセス · コンピュ一ターとの間で データを授受させ、 かつ排水処理設備のプロセス · コンピュータ一にソフ 卜セン サーを備えて、 排水中のアンモニア含量を予測し、 これに応じて栄養源供給量を 制御することにより、 良好な制御性能が得られることを見出した。  In order to realize such a control method, the present inventors have proposed a method of exchanging data between a process of an ammonia discharge facility, a process of a wastewater treatment facility and a computer, and a process of a wastewater treatment facility. · We found that good control performance could be obtained by equipping a computer with a soft sensor to predict the ammonia content in wastewater and control the supply of nutrient sources accordingly.
本実施例の制御装置の対象となる活性汚泥法排水処理設俯は、 アンモニア排出 設備の排水を含む排水を受け入れて処理する設備であって、 原水槽 1 4、 中和槽  The activated sludge method wastewater treatment installation head, which is the target of the control device of this embodiment, is a facility that receives and treats wastewater including wastewater from the ammonia discharge facility.
2 8 香换页 (细则第 26糸) 1 5、 及び曝気槽からなり、 中和槽 1 5に栄養源供袷配管 5 3が接続された構成 の設備である。 2 8 Incense (细则 26th thread) The facility is composed of 15 and an aeration tank, and is connected to a neutralization tank 15 with piping 53 supplying nutrient sources.
原水槽 1 4は、 アンモニア排出設備の排水を含む単一又は複数の排水系統から の排水を受け入れる槽であり、 また中和槽 1 5は、 この排水を活性汚泥処理する に先立ち、 排水の栄養绸整及び、 必要に応じて p H調整を行うための槽である。 処理設備の規模によっては、 この原水槽と中和槽とを一つの槽にまとめてもよい 。 また中和槽に栄養源を添加するための栄養源供給配管 5 3には、 栄養源流量検 出器 5 5及び栄養源供給 fi調節器 3 5が設置される。  The raw water tank 14 is a tank that receives wastewater from one or more drainage systems including the wastewater from the ammonia discharge facility, and the neutralization tank 15 is a wastewater treatment system that treats this wastewater prior to activated sludge treatment. A tank for adjusting and, if necessary, adjusting pH. Depending on the scale of the treatment equipment, the raw water tank and the neutralization tank may be combined into one tank. In addition, a nutrient source flow detector 55 and a nutrient supply fi regulator 35 are installed in the nutrient source supply pipe 53 for adding a nutrient to the neutralization tank.
本実施例においては、 アンモニア排出 a備の運転伏況は該設備用のプロセス · コンピューター 3 1 Aにより把握♦制御され、 この運転データは、 例えば L A N (口一カル ' エリア · ネッ トワーク) 等のデータ授受可能な回線 3 1 Bにより接 続された排水処理設備用のプロセス · コンピュータに送られる。  In the present embodiment, the operating status of the ammonia discharge equipment is monitored and controlled by a process computer 31 A for the equipment. The operation data is stored in, for example, a LAN (mouth area, network) or the like. Process for wastewater treatment equipment connected by data transfer line 3 1 B · Sent to computer.
このプロセス ' コンピュータ一は、 前記のアンモニア排出設備の運転データに 基づいて該設備のアンモニア排出 fiを推定できるソフ 卜センサー 3 3を有してお り、 このソフ トセンサーの推算値に基づいて、 前述の栄養源供給 fiを算出する。 ここで、 ソフ トセンサーはニューラル ' ネッ トワーク (ニューラル · ネ ッ ト ' オプティマイザ一) を用いて予測計算を行うものであるのが、 予測の精度が高く なるので好ま しい。  The process コ ン ピ ュ ー タ computer has a soft sensor 33 that can estimate the ammonia emission fi of the ammonia discharge facility based on the operation data of the ammonia discharge facility.Based on the estimated value of the soft sensor, Calculate the nutrient supply fi described above. Here, it is preferable that the soft sensor performs the prediction calculation using a neural 'network (neural network' optimizer ') because the prediction accuracy becomes high.
このようにして得たアンモニア排出設備からの流入アンモニア量の推算値と、 活性汚泥設備の運 ϋ条件として与えられている排水の Β◦ D (生物学的酸素消費 量) に対する最適栄養源比率から定められる所要栄養源量とを用いて、 栄養源供 袷量を算出し、 栄養源供铪量調節器 3 5を制御する。  From the estimated value of the amount of ammonia flowing in from the ammonia discharge facility obtained in this way and the optimal nutrient source ratio to Β◦D (biological oxygen consumption) of wastewater given as operating conditions for the activated sludge facility Using the determined required amount of nutrient source, the amount of nutrient source supplied is calculated, and the nutrient source supply regulator 35 is controlled.
用いる栄養源と しては、 前述のアンモニア、 リ ン酸、 メ タノール等が好ましく 、 これらを水溶液として使用するのが特に好適である。 中でも、 アンモニアを用 いるのが、 本発明の場合、 排水中の栄養源と同じ栄養源を用いることとなり、 微 生物にとっての環境がより安定するので好ましい。  As the nutrient used, the above-mentioned ammonia, phosphoric acid, methanol and the like are preferable, and it is particularly preferable to use these as an aqueous solution. Among them, the use of ammonia is preferred in the case of the present invention because the same nutrient as the wastewater is used, and the environment for microorganisms is more stable.
栄養源供袷量調節器 3 5の形式は特に限定されるものではなく、 例えば水溶液 等の液伏の栄養源を供給する埸合は、 コントロールバルブのような流量を連铳的 に又は逐次的に調節できるものが好ましく、 制御を精密に行うためには連铳的な  The form of the nutrient source supply amount regulator 35 is not particularly limited. For example, when a liquid source such as an aqueous solution is supplied, a flow rate such as a control valve is controlled continuously or sequentially. It is preferable to be able to adjust to
2 9 2 9
香换页 (细则第 26糸) 調節が可能なものが好ましい。 Incense (26th thread) Adjustable ones are preferred.
また、 本実施例の栄養源供給 制御方法は、 上述の制御装置を用いてアンモニ ァ排出設傭からの排水を含む排水の活性汚泥法排水処理設備の栄養源供給量を制 御する、 というものである。  Further, the method for controlling the supply of nutrients according to the present embodiment is to control the amount of supply of nutrients in the activated sludge wastewater treatment facility for wastewater including wastewater from an ammonia discharger by using the control device described above. It is.
図 1 1 は、 本実施例の、 アンモニア排出設備からの排水を含む排水の活性汚泥 法排水処理設備の制御装置を示す。  FIG. 11 shows a control device of the activated sludge wastewater treatment equipment for wastewater including wastewater from the ammonia discharge equipment according to the present embodiment.
アンモニア排出設備のプロセス ' コンピュータ 3 1 Aと排水処理設備のプロセ ス ' コンピューター 3 4 とはデータ授受用の L A N 3 1 Bにより接続されている アンモニア排出設備のプロセスデータは、 プロセス . コンピュー夕間の通信に より排水処理設備のプロセス · コ ンピュータ 3 4 に送信され、 このコ ンピュータ —上のニューラル ' ネッ トワークを用いるソフ 卜センサー 3 3により、 その排出 ァンモニァ量の推算値が算出される。 アンモニア量の推算値と活性汚泥設備の運 転条件として与えられている最適栄養源比 (対 B O D重 S比率) から定められる 栄養源所要 Sとの差異を中和槽に接铳された栄養源供袷配管に設置された栄養源 供給量調節器 3 5に設定値と して与える。  Process of ammonia discharge equipment '' Computer 31 A and process of wastewater treatment equipment '' Computer 34 is connected to LAN 31 B for data exchange The process data of ammonia discharge equipment is process. The information is transmitted to the process computer 34 of the wastewater treatment facility by communication, and the estimated value of the amount of discharge monum is calculated by the soft sensor 33 using the neural network on this computer. The difference between the estimated amount of ammonia and the required nutrient source S determined from the optimum nutrient source ratio (BOD weight S ratio) given as the operating condition of the activated sludge equipment is used to determine the nutrient source connected to the neutralization tank. It is given as a set value to the nutrient source supply regulator 35 installed in the supply pipe.
これにより、 アンモニア排出設備の運転状況が変化した場合の流入ァンモニァ 量の変動を予測して、 活性汚泥設備への栄養源供給量を調整できるので、 B1気榷 内の環境を安定に維持することができる。  As a result, it is possible to predict the fluctuation of the inflow ammonia amount when the operation state of the ammonia discharge equipment changes, and adjust the supply amount of the nutrient source to the activated sludge equipment, so that the environment in the B1 gas can be stably maintained. Can be.
図 1 2は、 本発明のソフ トセンサーを含む制御装置が推定したアンモニア排出 設備の排水中のアンモニア濃度の計算値 (破線) と、 工程分析による実測値 (実 線) との経時変動状況の比較を示す。 この図から明らかなとおり、 両者は良好な 相関関係を示しており、 本発明の制御装置が高い精度を有していることが分かる 本実施例の制御装置を用いることにより、 ァンモニァ排出設備の運転状況が変 化した場合でも、 該設備から流入するアンモニア量を迅速かつ高精度に推算して 、 活性汚泥設備への栄養源供給 Sに反映することが可能となるので、 設備の安定 化及び処理水の水貧の改良が期待できる。  Fig. 12 shows the change over time between the calculated value (dashed line) of the ammonia concentration in the wastewater of the ammonia discharge facility estimated by the control device including the soft sensor of the present invention (dashed line) and the measured value (solid line) by the process analysis. A comparison is shown. As is clear from this figure, both of them show a good correlation, and it is understood that the control device of the present invention has high accuracy. By using the control device of this embodiment, the operation of the ammonia discharge equipment is improved. Even if the situation changes, the amount of ammonia flowing from the facility can be quickly and accurately estimated and reflected in the nutrient source supply S to the activated sludge facility, thus stabilizing and treating the facility. Improvement of water poverty can be expected.
3 0 3 0
香换页 (细则第 26糸) W 4 実施例 6 (第 4の発明の実施例) _ Incense (26th thread) W 4 Example 6 (Example of the fourth invention) _
本実施例は、 第 4の発明に係る活性汚泥法による排水処理装置の実施例の一例 であって、 図 1 3は本実施例の活性汚泥法による排水処理装置の全体的構成を示 すブロック図、 図 1 4は排水処理装置本体の構成を示すフローシートである。 本実施例の活性汚泥法による排水処理装置 3 6 (以下、 簡単に排水処理装置 3 6と言う) は、 図 1 4に示すように、 排水処理装置本体 3 7 と、 排水処理装置本 体 3 7を監視し、 プロセス制御するプロセスコンビュータ 3 4 と、 及びプロセス コンピュータ 3 4の上位コンビュータとして設けられたワークステーショ ン 3 8 と、 必要に応じて運 β員に運転ガイダンスを与える運転支援装置 3 9とから構成 されている。 尚、 運転支援装置 3 9は、 プロセスコ ン ピューター 1 4内に包含す ることが可能である。  This embodiment is an example of an embodiment of a wastewater treatment apparatus based on the activated sludge method according to the fourth invention, and FIG. 13 is a block diagram showing the overall configuration of the wastewater treatment apparatus based on the activated sludge method of this embodiment. Figures and 14 are flow sheets showing the configuration of the wastewater treatment device main body. As shown in FIG. 14, the wastewater treatment device 36 (hereinafter simply referred to as wastewater treatment device 36) by the activated sludge method of this embodiment includes a wastewater treatment device main body 37 and a wastewater treatment device main body 3. 7, a process computer 34 that monitors and controls the process, a workstation 38 provided as a higher-level computer of the process computer 34, and an operation support device 39 that provides operation guidance to operators if necessary. It is composed of The driving support device 39 can be included in the process computer 14.
装置本体 3 7は、 図 1 5に示すように、 排水を受け入れて、 収容する原水槽 1 4、 原水槽 1 4 と一体的に形成され、 排水に p H調整及び栄養源供給等の前処理 及び温度調整を施す中和槽 1 5、 前処理され、 かつ温度調整された排水を中和槽 1 5から曝気橙 4に送水するポンプ 4 0、 排水を酸素により曝気しつつ排水中の 主と して有機物を酸化、 分解、 凝集させる暱気槽 4、 及び汚泥フロ ッ クを沈澱さ せ、 上澄みを処理水として流出させる沈澱櫓 4 1を備えている。  As shown in Fig. 15, the main unit 37 receives and discharges wastewater, and is integrally formed with the raw water tank 14 and raw water tank 14 to perform pretreatment such as pH adjustment and supply of nutrients to the wastewater. And a neutralization tank 15 for temperature adjustment, a pump 40 for feeding pretreated and temperature-controlled wastewater from the neutralization tank 15 to the aerated orange 4, and a main part of the wastewater while aerating the wastewater with oxygen. It has an air tank 4 for oxidizing, decomposing, and coagulating organic matter and a sedimentation tower 41 for sedimenting sludge flocks and discharging supernatant as treated water.
原水槽 1 4は、 アンモニア排出設備の排水を含む単一又は複数の排水系統から 、 排水を受け入れて収容する。 排水が、 原水槽 1 4から中和槽 1 5に一定流量で 流入するように流入するようになされている。  The raw water tank 14 receives and accommodates wastewater from one or more drainage systems including the wastewater from the ammonia discharge facility. The wastewater flows from the raw water tank 14 to the neutralization tank 15 at a constant flow rate.
中和槽 1 5には、 薬液供辁管 4 2が接続され、 p H調整用のアルカリ又は酸水 溶液及び微生物の栄養源と して供されるアンモニア及びリ ン酸の混合薬液 (以下 、 簡単に薬液と言う) が供給される。 また、 前処理された排水の温度を所定温度 に温度調節する手段として、 蒸気管 4 3力 <、 中和槽 1 5に接続されていて、 排水 の温度が低い時に排水に蒸気を注入して排水温度を上昇させる。 逆に、 排水の温 度が高いときには、 排水を冷却して排水温度を低下させるために、 冷却水管 4 4 により供給された水と熱交換して排水を冷却する水冷却器 4 5力 <、 中和槽 1 5か ら曝気槽 4への送水管に設けられている。  A chemical supply pipe 42 is connected to the neutralization tank 15, and an alkaline or acid aqueous solution for pH adjustment and a mixed chemical of ammonia and phosphoric acid provided as a nutrient source for microorganisms (hereinafter, referred to as “ Is simply called a chemical solution). As means for adjusting the temperature of the pretreated wastewater to a predetermined temperature, a steam pipe 43 is connected to the neutralization tank 15 and steam is injected into the wastewater when the temperature of the wastewater is low. Raise the wastewater temperature. Conversely, when the temperature of the wastewater is high, in order to cool the wastewater and lower the wastewater temperature, a water cooler that exchanges heat with the water supplied by the cooling water pipe 44 to cool the wastewater is used. It is provided in the water pipe from the neutralization tank 15 to the aeration tank 4.
曝気槽 4の槽内の排水温度を制御するに当たって、 曝気槽 4 に加熱 ·冷却装置  To control the temperature of waste water in the tank of aeration tank 4, heat and cool the aeration tank 4.
3 1 3 1
替换页 (细则第 26条) を設置せずに、 上述のように、 曝気槽 4の上流で曝気槽 4に供給する排水の温度 を調節することにより、 曝気槽 4内の温度分布を均一に維持し、 微生物の失活ゃ 活性低下が生じないようにすることができる。 Replacement (Article 26) As described above, by controlling the temperature of the wastewater supplied to the aeration tank 4 upstream of the aeration tank 4 without installing the water, the temperature distribution in the aeration tank 4 is maintained uniformly, and the microorganisms are deactivated. Activity reduction can be prevented from occurring.
尚、 本実施例のように、 加熱媒体と して水蒸気を、 冷却媒体としては冷却水 ( 再冷水や冷水等) を使用するのが、 入手の容易さなどの点で望ましい。  As in the present embodiment, it is desirable to use steam as the heating medium and cooling water (re-cooled water, cold water, etc.) as the cooling medium from the viewpoint of easy availability.
瞜気槽 4 には、 曝気用の酸素を供給する酸素供袷管 2 5が接続されている。 沈 澱槽 4 1 は、 攒泮機を備え、 排水を搜拌しつつ凝集した汚泥フロックを沈澱させ る。 沈澱槽 4 1で沈澱した汚泥の一部を曝気槽 4に戻すために、 返送汚泥管 4 7 が沈澱槽 4 1 の底部から瞜気槽 4 まで設けられている。 汚泥の残部は汚泥管 4 9 を介して系外に排出される。 また、 沈澱槽 4 1で汚泥を沈-殿させた上澄みは、 浄 化された処理水と して処理水管 5 1を介して系外に送水される。  (4) The gas tank 4 is connected to an oxygen supply pipe 25 for supplying oxygen for aeration. The sedimentation tank 41 is equipped with a water tank and sediments flocculated sludge flocks while searching wastewater. In order to return part of the sludge settled in the settling tank 41 to the aeration tank 4, a return sludge pipe 47 is provided from the bottom of the settling tank 41 to the air tank 4. The remaining sludge is discharged out of the system through sludge pipe 49. Further, the supernatant from which the sludge has been settled in the settling tank 41 is sent to the outside of the system via the treated water pipe 51 as purified treated water.
排水処理装置 3 6は、 運転条件及びプロセス状態 Sを検出して運転状態を認 ¾ し、 かつ運転条件及びプロセス伏態量を ¾定値に制御するために、 以下に列挙す るように、 運転条件及びプロセス状態量を検出して、 データとして出力する各種 の計器と、 計器から出力されたデータに基づいて、 運転条件及びプロセス状態 S をフィ ー ドバック制御する多数の制御ループとを備えている。  The wastewater treatment device 36 operates as described below in order to detect the operating condition and the process state S to recognize the operating condition, and to control the operating condition and the process state quantity to predetermined values. Equipped with various instruments that detect conditions and process state quantities and output them as data, and a number of control loops that perform feedback control of operating conditions and process state S based on the data output from the instruments. .
下に列挙する計器、 流量調節弁及び調節器は、 既知の構成を備え、 計装用とし て一般的に使用されているものである。  The instruments, flow control valves and regulators listed below have a known configuration and are commonly used for instrumentation.
中和槽 1 5回り Neutralization tank 15 around
中和槽 1 5に供袷する薬液の流量を計測するために、 薬液供袷管 4 2に設けら れた薬液流量計 4 6  In order to measure the flow rate of the chemical supplied to the neutralization tank 15, a chemical flow meter provided in the chemical supply pipe 4 2 4 6
薬液の流 Sを調節するために、 薬液供給管 4 2に設けられた薬液流量調節弁 4 To adjust the flow S of the chemical, the chemical flow control valve 4 provided in the chemical supply pipe 4 2
8 8
薬液流量計 4 6の測定値に基づいて、 薬液の流量調節弁 4 8の弁開度を調節し  Based on the measured value of the chemical solution flow meter 46, the valve opening of the chemical solution flow control valve 48 is adjusted.
、 注入する薬液の流 Sをフィ一ドバック制御する薬液流 绸節器 5 0 , Flow of the chemical solution to be injected.
中和槽 1 5に供給する蒸気の流量を調節するために、 蒸気管 4 3に設けられた 蒸気流 ¾節弁 5 2  Steam flow provided in steam pipe 43 to regulate the flow rate of steam supplied to neutralization tank 15
水冷却器 4 5に供給する冷却水の流量を調整するために、 冷却水管 4 4に設け  A cooling water pipe 44 is provided to adjust the flow rate of cooling water supplied to the water cooler 45.
3 2 3 2
眘换页 (细则第 26糸) W られた冷却水流量調節弁 5 4 眘 换 页 (细则 thread 26) Cooling water flow control valve 5 4
曝気槽 4回り  Aeration tank 4 turns
曝気槽 4内の排水の温度を剷定する排水温度計 5 6  Drainage thermometer for measuring the temperature of wastewater in aeration tank 4 5 6
排水温度計 5 6の測定値に基づいて、 蒸気流量調節弁 5 2又は冷却水流 SI1節 弁 5 4の弁開度を調節し、 排水温度をフィードバック制御する排水温度調節器 5 8  Based on the measured value of the wastewater thermometer 56, the steam flow control valve 52 or the cooling water flow SI1 section Adjusts the valve opening of the valve 54, and controls the wastewater temperature in a feedback manner.
曝気槽 4 に供給する酸素の流量を計測するために、 酸素供給管 2 5に ¾けられ た酸素流量計 6 0  In order to measure the flow rate of oxygen supplied to the aeration tank 4, an oxygen flow meter 60 connected to the oxygen supply pipe 25 was used.
酸素の流量を調節するために、 酸素供拾管 2 5に設けられた酸素流量調節弁 6 Oxygen flow control valve 6 provided in oxygen supply pipe 25 to control oxygen flow
2 Two
酸素流量計 6 0の測定値に基づいて、 酸素流量調節弁 6 2の弁開度を調節し、 供給する酸素の流虽をフィ一ドバック制御する酸素流量調節器 6 4  An oxygen flow controller 6 4 that adjusts the valve opening of the oxygen flow control valve 62 based on the measured value of the oxygen flow meter 60 and controls the flow of supplied oxygen in a feedback manner 6 4
溶存酸素港度を検出し、 酸素流量 1®節器 6 4の酸紫流量設定値を変更する溶存 酸素濃度検出計 6 6  Dissolved oxygen concentration detector that detects the dissolved oxygen port and changes the set value of the acid purple flow rate of oxygen flow rate 1® node 6 4 6 6
沈澱槽 4 1から曝気槽 4へ戻す汚泥の流量を計測するために、 返送汚泥管 4 7 に設けられた返送汚泥流量計 3  Return sludge flow meter 3 installed in return sludge pipe 4 7 to measure the amount of sludge returned from settling tank 4 1 to aeration tank 4
汚泥の流量を調節するために、 返送汚泥管 4 7に設けられた返送汚泥流 調節 弁 7 0  Return sludge flow control valve 7 0 provided in return sludge pipe 47 to adjust sludge flow rate
返送汚泥流量計 3の測定値に基づいて、 返送汚泥流量調節弁 7 0の弁閧度を調 節し、 返送汚泥流 Sをフィ一ドバック制御する返送汚泥流量調節器 7 2 沈澱槽 4 1回り  A return sludge flow controller 7 that controls the return sludge flow control valve 70 based on the measurement value of the return sludge flowmeter 3 and controls the return sludge flow S 7 2 Settling tank 4 1 round
沈澱槽 4 1内の排水の固液の分離界面を計測する界面計 7 4  Sedimentation tank 4 1 An interface meter for measuring the solid-liquid separation interface of the wastewater in 1 4
沈澱槽 4 1より排出される処理水の濁度を測定するために、 処理水管 5 I に 15: けられた濁度計 7 6  In order to measure the turbidity of the treated water discharged from the sedimentation tank 41, the turbidity meter 15
本実施例の排水処理装置 3 6は、 受け入れた排水を活性汚泥法により処理し、 所定濁度以下の処理水にして系外に流出させることを目的にしているから、 処理 水の濁度が、 排水処理装置 3 6の運転上、 最も重要な指標である。  The effluent treatment device 36 of this embodiment is designed to treat the received wastewater by the activated sludge method and to make the treated water less than a predetermined turbidity and flow out of the system. The most important indicator for the operation of wastewater treatment equipment 36.
処理水の濁度を所定値以下にするために重要な連転指標は、 沈澱槽 4 1内の固 液界面の位置である。 固液界面が上昇することは沈澱槽 4 1内で沈澱する汚泥の  An important rotation index for reducing the turbidity of the treated water to a predetermined value or less is the position of the solid-liquid interface in the precipitation tank 41. The rise in the solid-liquid interface is due to the sludge settling in the settling tank 41.
3 3 3 3
香换页 (细则第 26条) 量が増加していることを意味し、 排水中の懸濁質及び基質の Sが增加したか、 又 は瞜気槽 4での凝集反応が進行し過ぎることを意味している。 固液界面が上昇す ると、 汚泥が沈澱樓 4 1から処理水と共に流出し、 処理水の濁度が上がるおそれ がある。 一方、 固液界面が低下するということは、 沈激榷 4 】内で沈澱する汚泥 量が弒少していることを意味し、 排水中の懸濁質及び基 Kの Sが滅少したか、 又 は曝気槽 4内の凝集反応が円滑に進行していないので、 汚泥の形成具合が不良で あるを意味している。 汚泥の形成具台が不良であれば、 処理水の濁度が大きくな る。 Perfume (细则 Article 26) This means that the amount has increased, which means that the S and S of the suspended solids and the substrate in the wastewater have been added, or that the flocculation reaction in the air tank 4 has progressed too much. If the solid-liquid interface rises, sludge may flow out of the settling tower 41 together with the treated water, increasing the turbidity of the treated water. On the other hand, a decrease in the solid-liquid interface means that the amount of sludge settled in the sedimentation zone is small, and that the suspended solids in the wastewater and the S in the base K have been reduced or aerated. Since the coagulation reaction in the tank 4 did not proceed smoothly, it means that the sludge formation was poor. If the sludge formation tool stand is bad, the turbidity of the treated water will increase.
よって、 濁度計 7 6及び界面計 7 4の釗定値が、 排水処理装置 3 6を運転する 上で最も重要な目的データである。  Therefore, the measured values of the turbidity meter 76 and the interface meter 74 are the most important target data for operating the wastewater treatment device 36.
—方、 処理水の濁度及び沈 3B槽 4 1内の固液界面位置に影響する主要因子、 即 ち運転に影轡する主要な運転条件及びプロセス状態 は、 排水処理装置 3 6の運 転伏態を解折した拮果、 中和榷 1 5への薬液の供拾流量、 瞜気榷 4内の排水の温 度、 嗶気《 4内の排水中の溶存酸素港度、 及び沈澱槽 4 1 から理気掊 4への返送 汚泥の流量である。  On the other hand, the main factors affecting the turbidity of the treated water and the position of the solid-liquid interface in the sedimentation tank 3B 4, and the main operating conditions and process conditions immediately affecting the operation are as follows. Antagonism of breaking down, Neutralization 薬 Flow rate of chemical solution supplied to 15, Temperature of wastewater in air 4, Dissolved oxygen port in wastewater in air 4, and sedimentation tank Return of sludge from 4 1 to Riki 4 This is the sludge flow rate.
即ち、 本実施例では、 薬液供給流 S計 4 6、 温度計 5 6、 溶存酸素濃度検出計 6 6、 及び返送汚泥流悬計 3の測定値が、 排水処理装置 3 6を運転する上で最も 重要な入力変数データとなる。  That is, in this embodiment, the measured values of the chemical solution supply flow S meter 46, the thermometer 56, the dissolved oxygen concentration detector 66, and the returned sludge flow meter 3 are used to operate the wastewater treatment device 36. This is the most important input variable data.
そこで、 本実施例では、 薬液供給量、 BI気槽内温度、 溶存酸素'濃度及び返送汚 泥量を入力変数とし、 処理水の濁度及び沈澱槽の固液界面位置を出力変数 (目的 データ) と し、 薬液供給流量計 4 6、 温度計 5 6、 溶存酸素漠度検出計 6 6、 及 び返送汚泥流 S計 3からそれぞれ出力された薬液供給量、 曝気槽内温度、 溶存酸 素濃度及び返送汚泥流量の入力変数実镇データ、 及び濁度計 7 6及び界面計 7 4 からそれぞれ出力された処理水の濁度及び沈澱槽の固液界面位置の出力変数実镇 データに基づいて、 入力変数と出力変数との間の因果関係を規定するニューラル ネッ 卜モデルを予めワークステシヨン 3 8内に構築している。  Therefore, in this example, the chemical supply rate, the temperature in the BI tank, the dissolved oxygen concentration and the amount of returned sludge were used as input variables, and the turbidity of the treated water and the solid-liquid interface position of the precipitation tank were used as output variables (objective data). The chemical supply flow meter 46, thermometer 56, dissolved oxygen ambiguity detector 66, and returned sludge flow S total 3 output chemical solution supply, aeration tank temperature, dissolved oxygen Based on the input variable actual data of the concentration and the return sludge flow rate, and the output variable actual data of the turbidity of the treated water and the solid-liquid interface position of the settling tank output from the turbidity meter 76 and the interface meter 74, respectively. A neural network model that prescribes a causal relationship between input variables and output variables is built in the work station 38 in advance.
運転員は、 定期的に或いは所望時に、 原水槽 1 4内の排水の性伏、 薬液の供給 量、 曝気槽 4の排水温度、 曝気槽 4内の排水中の溶存酸素濃度、 及び返送汚泥流 量を設定し、 処理水の濁度及び沈澱槽 4 1内の固液界面位置の予測値を得ること  The operator, on a regular basis or when desired, determines the nature of the wastewater in the raw water tank 14, the amount of chemical solution supplied, the temperature of the wastewater in the aeration tank 4, the concentration of dissolved oxygen in the wastewater in the aeration tank 4, and the return sludge flow. Set the volume and obtain the predicted values of the turbidity of the treated water and the solid-liquid interface position in the sedimentation tank 41.
3 4 3 4
香换页 (细则第 26糸) ができる。 Incense (26th thread) Can be.
予測された沈澱槽 4 1内の固液界面高さ及び処理水の濁度は、 ワークステーシ ヨン 3 8からプロセスコンピュータ 3 4を介して運転支援装置 3 9に出力され、 運転支援装置 3 9により運転員にガイダンスされる。  The predicted height of the solid-liquid interface in the settling tank 41 and the turbidity of the treated water are output from the work station 38 to the operation support device 39 via the process computer 34, and are output from the operation support device 39. Guidance is given to the operator.
また、 入力変数データは、 定期的に或いは不定期的に、 上述した各計器から刺 定値がプロセスコンピュータ 3 4に入力され、 更にワークステーション 3 8に送 られる。 ワークステーシ ョ ン 3 8は、 構築された内蔵のニューラルネッ トモデル により測定値に基づいて演算処理し、 沈 ®槽 4 I内の固液界面高さ及び処理水の 濁度を予測値として出力する。 更に、 ニューラルネッ 卜モデルは、 出力変数の予 測値と、 出力変数の実際の計測値との乖雜を認識して、 ニューラルネッ 卜モデル の予測演算能力を自動的に向上させることもできる。  As for the input variable data, the set values are inputted to the process computer 34 from each of the above-mentioned instruments regularly or irregularly, and further sent to the workstation 38. The workstation 38 calculates and processes the built-in neural network model based on the measured values, and outputs the height of the solid-liquid interface in the settling tank 4I and the turbidity of the treated water as predicted values. . Further, the neural network model can automatically improve the predictive calculation capability of the neural network model by recognizing the difference between the predicted value of the output variable and the actual measured value of the output variable.
実際に則して説明すると、 オペレータ力 <、 プロセスコンピュータ 3 4に表示さ れる運 e監視用の活性汚泥プロセスの監視画面上で、 入力変数として薬液の供給 量、 瞟気槽 4の排水温度、 曝気槽 4内の排水中の溶存酸素港度、 及び返送汚泥流 量の運転条件及びプロセス伏態量を ¾定する。  Explaining this in a practical manner, the operator power <, on the monitoring screen of the activated sludge process for e-operation monitoring displayed on the process computer 34, the input amount of the chemical solution, the drain temperature of the air tank 4, Measure the port of dissolved oxygen in the wastewater in the aeration tank 4, the operating conditions of the returned sludge flow rate, and the process residual quantity.
これら設定値は、 プロセスコンピュータ 3 4を介して、 ワークステーショ ン 3 8に送られて、 ニューラルネッ トモデルにより演算処理され、 沈澱槽の界面高さ 及びその処理水の濁度の挙動が、 その出力値として予測され、 運転支援装置 3 9 により運転員にガイダンスされる。  These set values are sent to the workstation 38 via the process computer 34, where they are processed by a neural network model.The behavior of the sedimentation tank interface height and the turbidity of the treated water is output to the output. It is predicted as a value and is guided to the operator by the driving support device 39.
よって、 運転員は、 実際の事態が招来する前に先立って、 招来する事態を認識 し、 時間的余裕を持って必要な対策を講ずることができる。  Therefore, the operator can recognize the event before the actual event occurs and take necessary measures with sufficient time.
また、 上述のように構築したニューラルネッ トモデルとは逆モデルを構築し、 上述した薬液の供袷量、 曝気槽 4の排水温度、 曝気槽 4内の排水中の溶存酸素濃 度、 及び返送汚泥流量から処理水の濁度及び沈澱槽 4 1内の固液界面位置を求め るフローとは逆に、 上述の出力変数を入力変数として与え、 上还した入力変数の 最適な値を出力変数として推算する最適化演算処理を行うこともできる。  In addition, a model inverse to the neural net model constructed as described above was constructed, and the supplied amount of the chemical solution described above, the temperature of the wastewater in the aeration tank 4, the concentration of dissolved oxygen in the wastewater in the aeration tank 4, and the return sludge Contrary to the flow for obtaining the turbidity of treated water and the solid-liquid interface position in the sedimentation tank 41 from the flow rate, the above output variables are given as input variables, and the optimal values of the above input variables are taken as output variables. It is also possible to perform an optimization operation for estimating.
例えば、 出力変数の所望値、 入力変数値の上下限制約蝠、 更には評価関数を設 定して、 予測演算に使用したニューラルネッ トモデルの逆モデルを使用して、 最 適な入力変数値を演算することができる。 これらの最適値は、 ワークステージョ  For example, by setting the desired value of the output variable, the upper and lower bound constraints of the input variable value, and the evaluation function, the optimal input variable value is calculated using the inverse model of the neural network model used for the prediction operation. Can be calculated. These optimal values are
3 5 3 5
替换页 (细则第 26糸) ン 3 8からプロセスコンピュータ 3 4を介して運転支援装置 3 9から運耘員にガ ィダンスされる。 Replacement 换 页 (细则 26th thread) Guidance is provided from the driving support device 39 to the cultivator from the vehicle 38 through the process computer 34.
運転員は、 得た最適な運転条件及びプロセス伏態量を排水処理装置 3 6 の運転 条件変更のために使用することもできるし、 また、 運転員の経験に照らして、 こ れらガイダンスされた最適値を運転条件の変更に使用するのを保留することもで きる。 実施例 7 (第 5の発明の実施例)  Operators can use the obtained optimal operating conditions and process yields to change the operating conditions of the wastewater treatment equipment 36, and can provide these guidance in light of the operator's experience. It is also possible to suspend the use of the optimized value for changing operating conditions. Embodiment 7 (Embodiment of the fifth invention)
本実施例は、 第 5の発明に係る化学プロセスの運転支援装置 (以下、 簡単に運 転支援装置と言う) の実施例の一つであって、 第 5の発明を活性汚泥法による排 水処理装置に適用した例である。 図 1 6はプロセスの運転支援装置の構成を示す ブロック図であり、 図 1 7は活性汚泥法による排水処理装置の構成を示す概略フ ローシー卜である。  This embodiment is one of the embodiments of the operation support device for a chemical process according to the fifth invention (hereinafter simply referred to as the operation support device). This is an example applied to a processing device. Fig. 16 is a block diagram showing the configuration of a process operation support device, and Fig. 17 is a schematic flow sheet showing the configuration of a wastewater treatment device using the activated sludge method.
本実施例のプロセスの運転支援装置 1 0 0 (以下、 簡単に運転支援装置 1 0 0 と言う) は、 アンモニア港度の高い含アンモニア排水を排出する第 1の分類のプ ラン トから排出された含アンモニア排水、 及び、 含ァンモニァ排水よりアンモニ ァ濃度の低い一般的な排水を排出する復数の第 2の分類のブラン トからそれぞれ 排出される排水を活性汚泥法により処理する排水処理装置の運 を支援する装置 である。  The operation support device 100 of the process of this embodiment (hereinafter simply referred to as the operation support device 100) is discharged from a first-class plant that discharges ammonia-containing wastewater with a high ammonia port. Wastewater treatment equipment that treats wastewater discharged from each of the second category of wastewater containing ammonia containing wastewater and general wastewater with a lower concentration of ammonia than ammonia-containing wastewater by the activated sludge method. It is a device that supports luck.
運転支援装置 1 0 0は、 図 1 6 に示すように、 排水処理装置 3 6の運 を制御 するプロセスコンピュータ 3 4 と、 铳計モデルとニューラルネッ トモデルを組み 合わせた階眉化構造を有するハイブリ ツ ドモデルを内蔵し、 排水処理装置用プロ セスコンピュータ 3 4の上位コンピュー夕として演算処理するワークステーショ ン 3 8と、 ガイダンス装置 1 0 6とから構成されている。 尚、 ガイダンス装置 1 0 6は、 プロセスコンピュータ 3 4内に包含することも可能である。  As shown in Fig. 16, the driving support device 100 has a process computer 34 that controls the operation of the wastewater treatment device 36, and a hybrid having a staircase structure combining a total model and a neural net model. It comprises a workstation 38 which has a built-in thread model and performs arithmetic processing as an upper computer of the process computer 34 for the wastewater treatment device, and a guidance device 106. The guidance device 106 can be included in the process computer 34.
プロセスコ ンピュータ 3 4 は、 専用 L A N (ローカル ' エリア ' ネッ トワーク ) を介して第 1分類のブラン 卜 1 0 8及び第 2分類のブラン 卜 1 1 0のプロセス コンピュー夕に接続され、 プロセスコンピュータ 3 4には、 第 1分類のブラン ト 1 0 8及び第 2分類のプラン 卜 1 1 0の ilfeデータが専用 L A Nを介してそれぞ  The process computer 34 is connected to the process computer of the first class 108 and the second class 110 via a dedicated LAN (local 'area' network). 4 shows the ilfe data of the 1st class brand 108 and the 2nd class plant 110 via dedicated LAN.
3 6 3 6
换页 (细则第 26糸) れのプロセスコンビュータから入力される。 换 页 (细则 thread 26) Input from the process contributor.
排水処理装置 3 6は、 活性汚泥法により排水を処理する装置であって、 図 1 7 に示すように、 排水を受け入れて、 収容する原水槽 1 4、 原水 ¾ 1 4と一体的に 形成され、 排水に p H調整及び栄養源供給等の前処理及び温度調整を施す中和槽 1 5、 前処理され、 かつ温度調整された排水を中和槽 1 5から BS気榕 4に送水す るポンプ 4 0、 排水を酸素により曝気しつつ排水中の主と して有機物を酸化、 分 解、 凝集させる瞜気槽 4、 及び汚泥フロ ッ クを沈澱させ、 上澄みを処理氷として 流出させる沈澱槽 4 1を備えている。  The wastewater treatment device 36 is a device that treats wastewater by the activated sludge method. As shown in Fig. 17, the wastewater treatment device 36 is formed integrally with the raw water tanks 14 and 14 that receive and store the wastewater. , Neutralization tank 15 for pre-treatment and temperature adjustment of wastewater, such as pH adjustment and supply of nutrients, etc., and sends pretreated and temperature-controlled wastewater from neutralization tank 15 to BS banyan 4 Pump 40, aeration tank 4 for oxidizing, decomposing, and coagulating mainly organic matter in wastewater while aerating wastewater with oxygen Has 4 in 1.
原水槽 1 4は、 第 1分類のブラント 1 0 8から含ァンモニァ排水を、 ¾び、 複 数の第 2分類のブラン ト 1 1 0から含アンモニア排水よりアンモニア濃度の低い 一般排水を受け入れて収容する。  The raw water tank 14 receives and receives ammonium wastewater from Class 1 Brand 108 and general wastewater with a lower ammonia concentration than ammonia-containing wastewater from several Class 2 Brands 110. I do.
中和槽 1 5には、 栄養源供袷管 5 3が接続され、 p H調整用のアンモニア 水 溶液及び微生物の栄養源として供されるリ ン酸の混合薬液 (以下、 簡単に薬液と 言う) が供袷される。 また、 前処理された排水の温度を所定温度に温度調節する 手段 (図示せず) が中和槽 1 5又は中和栲 1 5と曝気槽 4 との間に設けられてい る。  The neutralization tank 15 is connected to a line 53 for supplying a nutrient source, and an ammonia water solution for pH adjustment and a mixed chemical solution of phosphoric acid used as a nutrient source for microorganisms (hereinafter simply referred to as a chemical solution). ) Is provided. In addition, means (not shown) for adjusting the temperature of the pretreated wastewater to a predetermined temperature is provided between the neutralization tank 15 or the neutralization furnace 15 and the aeration tank 4.
¾気槽 4 には、 暍気用の酸素を供袷する酸素供拾管 2 5が接続されている。 沈 ¾榷 4 1 は、 攪拌機を備え、 排水を搜拌しつつ凝集した汚泥フロックを it澱させ る。 沈澱槽 4 1で沈澱した汚泥の一部を暍気槽 4に戻すために、 返送汚泥管 4 7 が沈澱槽 4 1の底部から曝気槽 4まで設けられている。 汚泥の ¾部は汚泥管 4 9 を介して系外に排出される。 また、 沈 «棺4 1で汚泥を沈澱させた上澄みは、 浄 化された処理水として処理水管 5 1を介して系外に送水される。  The oxygen tank 4 is connected to the oxygen tank 4 for supplying oxygen for the air. The sedimentation unit 41 is equipped with a stirrer, and collects sludge flocs while searching for wastewater. In order to return a part of the sludge settled in the settling tank 41 to the air tank 4, a return sludge pipe 47 is provided from the bottom of the settling tank 41 to the aeration tank 4. Part of the sludge is discharged out of the system through the sludge pipe 49. The supernatant obtained by sedimenting the sludge with the sediment coffin 41 is sent to the outside of the system via the treated water pipe 51 as purified treated water.
本実施例の排水処理装置 3 6は、 受け入れた排水を活性汚泥法により処理し、 所定濁度以下の処理水にして系外に流出させることを目的にしているから、 処理 水管 5 1 に設けられた濁度計 7 6で測定される処理水の濁度が、 排水処理装置 3 6の運転上、 最も重要な指標である。  The wastewater treatment device 36 of the present embodiment is provided in the treated water pipe 51 because the purpose of the wastewater treatment is to treat the received wastewater by the activated sludge method and to make it into treated water having a predetermined turbidity or less and to flow out of the system. The turbidity of the treated water measured by the turbidity meter 76 is the most important indicator for the operation of the wastewater treatment device 36.
処理水の濁度を所定値以下にするために重要な運転指標は、 沈鱖槽 4 1 内に設 けられた界面計 7 4で測定される沈澱槽 4 1内の固液界面の位置である。 固液界 面が上昇することは沈 3»櫓 4 1内で沈澱する汚泥の躉が増加していることを意味  An important operation index to keep the turbidity of the treated water below the specified value is the position of the solid-liquid interface in the settling tank 41 measured by the interface meter 74 installed in the settling tank 41. is there. A rise in the solid-liquid interface means that the amount of sludge settled in the sink 3 → tower 4 1 is increasing.
3 7 3 7
替换页 (细则第 26糸) し、 排水中の懸溺 K及び基質の Sが增加したか、 又は曝気槽 4での凝集反応が進 行し過ぎることを意味している。 固液界面が上昇すると、 汚泥が沈澱槽 4 〖から 処理水と共に流出し、 処理水の濁度が上がるおそれがある。 一方、 固液界面が低 下するということは、 沈澱槽 4 1内で沈澱する汚泥量が滅少していることを意味 し、 排水中の懸濁 K及び基質の量が減少したか、 又は曝気槽 4内の凝集反応が円 滑に進行していないので、 汚泥の形成具合が不良であるを意味している。 汚泥の 形成具合が不良であれば、 処理水の濁度が大き くなる。 Replacement 换 页 (细则 26th thread) However, it means that the drowning K and the S of the substrate in the wastewater have increased, or that the agglutination reaction in the aeration tank 4 has progressed too much. If the solid-liquid interface rises, the sludge may flow out of the settling tank 4 と 共 に together with the treated water, increasing the turbidity of the treated water. On the other hand, a drop in the solid-liquid interface means that the amount of sludge settled in the settling tank 41 is reduced, and the amount of suspended K and substrate in the wastewater is reduced or aeration is performed. Since the coagulation reaction in the tank 4 did not proceed smoothly, it means that sludge formation was poor. If the sludge formation is poor, the turbidity of the treated water will increase.
よって、 濁度計 7 6及び界面計 7 4の測定値が、 排水処理装置 3 6を運転する 上で最も重要な目的データである。  Therefore, the measured values of the turbidity meter 76 and the interface meter 74 are the most important target data for operating the wastewater treatment device 36.
一方、 処理水の濁度及び沈澱橹 4 1内の固液界面位置に影響する主要因子、 即 ち運転に影饗する主要な運転条件は、 排水処理装置 3 6の運転状態を解忻した結 果、 例えば、 中和榷 1 5への薬液の供辁流量、 ¾気榷 4内の排水の温度、 曝気 « 4内の排水中の溶存酸素濃度、 及び沈澱栲 4 1 から曝気槽 4への返送汚泥の流量 であるので、 これらの運転データは、 プロセスコンピュータ 3 4に入力される。 ワークステーショ ン 3 8に構築されているハイプリ ッ ドモデル I 1 2 は、 図 1 8に示すように、 各プロセスコンピュータから得た運耘データに基づいて、 必要 なデータを出力する上位モデルと、 上位モデルからの出力値に基づいて必要な運 データを予測演算する下位モデルとの 2階層モデルとして構築されている。 上位モデルは、 含アンモニア排水を排出する第 1分類のブラン ト 1 0 8の運転 データから排水中のアンモニア港度を求めるアンモニア濃度推算モデル 1 1 4 と 、 第 2分類のブラン 卜毎に ¾けられ、 第 2分類のプラン 卜の運転データから主成 分を求める主成分分析モデル ( P C A ) モデル 1 1 6 * l〜nと、 プロセスコン ビュータ 3 4から得た排水処理装置 3 6の運転データから皤気槽及び沈澱槽での 排水の滞留時間を算出する滞留時間推算モデル ( S A ) 1 1 8とから搆成されて いる。 On the other hand, the main factors affecting the turbidity of the treated water and the position of the solid-liquid interface in the sediment 橹 41, and the main operating conditions immediately affecting the operation, are the results of the operation of the wastewater treatment device 36 As a result, for example, the supply flow rate of the chemical solution to the neutralization tank 15, the temperature of the wastewater in the air tank 4, the aeration «the concentration of dissolved oxygen in the wastewater in 4, and the concentration of These operation data are input to the process computer 34 because they are the return sludge flow rate. As shown in Fig. 18, the hybrid model I 12 built on the workstation 38 has a higher model that outputs necessary data based on tillage data obtained from each process computer, and a higher model. It is constructed as a two- layer model with a lower model that calculates the required operation data based on the output values from the model. The upper model is an ammonia concentration estimation model 114 that calculates the degree of ammonia port in the wastewater from the operation data of the first classification brand 108 that discharges the wastewater containing ammonia. Principal component analysis model (PCA) model for obtaining the main components from the operation data of the second class plant, and the operation data of the wastewater treatment unit obtained from the process computer. It is composed of a residence time estimation model (SA) 118 that calculates the residence time of wastewater in the air tank and sedimentation tank.
アンモニア濃度推算モデル 1 1 4及び滞留時間推算モデル 1 1 8は、 二ユーラ ルネッ トモデルと して構築されている。  The model for estimating ammonia concentration 114 and the model for estimating residence time 118 have been constructed as dual-eurnet models.
下位モデルは、 ニューラルネッ 卜ワークにより構築されたニューラルネッ トモ  The lower model is a neural network model built by the neural network.
3 8 3 8
换页 (细则第 26条) デル i 2 0であって、 アンモニア濃度推算モデル 1 1 4、 主成分分析モデル (P C A ) モデル 1 1 6 · 1〜 1 1 6 · n及び滞留時間推算モデル (S A ) 1 1 8か ら出力されたデータと、 排水処理装置 3 6用のプロセスコンピュータ 3 4から直 接得た排水処理装置 3 6の運耘データ、 例えば中和槽への薬液供給流量、 嗶気槽 内の排水の温度、 瞜気槽内の排水中の溶存酸素濃度、 及び沈澱槽から IS気槽に返 送する返送汚泥流量とから、 沈澱槽 4 1での固液界面位置及び処理水の濁度の予 測値を予測演算する。 换 页 (细则 Article 26) Dell i20, which is output from the ammonia concentration estimation model 114, the principal component analysis model (PCA) model 1116-111, and the residence time estimation model (SA) 118. Of the wastewater treatment equipment 36 obtained directly from the process computer 34 for the wastewater treatment equipment 36, such as the flow rate of the chemical solution supplied to the neutralization tank, the temperature of the wastewater in the air tank, Predict the predicted value of the solid-liquid interface position in the settling tank 41 and the turbidity of the treated water from the dissolved oxygen concentration in the wastewater in the gas tank and the amount of sludge returned from the settling tank to the IS gas tank. Calculate.
算出された沈澱槽の固液界面位置及び処理水の濁度の予測値は、 プロセスコン ピュータ 3 4を介してガイダンス装置 1 0 6に入力され、 ガイダンス装置 1 0 6 により運転ガイダンスとして運転員にページングされ、 又はモニター画面上に表 示される。 遜転員は、 運転ガイダンスに基づいて排水処理装置 3 6の傾向監視を 行い、 プロセス安定化の運転管理に利用する。  The calculated predicted value of the solid-liquid interface position of the settling tank and the turbidity of the treated water are input to the guidance device 106 via the process computer 34, and are provided to the operator as operation guidance by the guidance device 106. Paged or displayed on monitor screen. The downgraded staff monitors the trend of the wastewater treatment equipment 36 based on the operation guidance and uses it for the operation management of the process stabilization.
本実施例では、 活性汚泥法による排水処理装置を例にして第 5の発明を説明し たが、 第 5の発明に係るプロセスの運転支援装匾は、 工業用、 特に化学プロセス であれば、 特に対象プロセスは制限されるものではなく、 種々のプロセスに適用 可能である。  In the present embodiment, the fifth invention has been described by taking a wastewater treatment apparatus based on the activated sludge method as an example, but the operation support equipment of the process according to the fifth invention is suitable for industrial use, especially for chemical processes. In particular, the target process is not limited and can be applied to various processes.
3 9 3 9
替换页 (细则第 26条) Replacement (Article 26)

Claims

請求の範囲 The scope of the claims
1. 原水槽 ( 1 4 ) 、 中和槽 ( 1 5 ) 、 曝気槽 ( 4 ) 及び沈殿槽 ( 4 1 ) の順 に設けられ、 中和格には栄養源供辁配管が配設され、 かつ中和格と曝気槽とが原 水供袷配管 ( 2 4 ) で接铳され、 該暉気槽 ( 4 ) が酸素供給配管 (25) 、 沈殿 槽 ( 4 1 ) からの返送汚泥受入配管 (4 7) 及び処理水 ·汚泥の沈殿槽 ( 4 1 ) への排出配管を有している活性汚泥法排水処理設備において、 以下の計装機器を 傭えてなることを特徴とする曝気槽の溶存酸素港度の制御装置。 1. A raw water tank (14), a neutralization tank (15), an aeration tank (4) and a sedimentation tank (41) are installed in this order. In addition, the neutralization tank and the aeration tank are connected by raw water supply line (24), which is connected to the oxygen supply line (25) and the return sludge receiving line from the sedimentation tank (41). (47) and activated water sludge wastewater treatment equipment having a discharge pipe to the treated water / sludge sedimentation tank (41), which is equipped with the following instrumentation equipment: Dissolved oxygen port control device.
a ) 曙気槽に供給される原水の流量を計測する原水流量計 ( 1 ) 及び原水流量 調節弁 ( 2 )  a) Raw water flow meter (1) that measures the flow rate of raw water supplied to the Akebono Tank and a raw water flow control valve (2)
b ) 沈殿槽から返送される汚泥流量を計则する返送汚泥流量計 (3 ) c ) 曝気槽内の溶存酸素濃度を剷定する溶存酸素 S度計 (5)  b) Return sludge flow meter that measures the sludge flow returned from the sedimentation tank (3) c) Dissolved oxygen S meter that measures the dissolved oxygen concentration in the aeration tank (5)
d) 曝気棺に供給する酸素量を調節する酸素供袷 ffi調節弁 (9)  d) Oxygen supply line ffi control valve for adjusting the amount of oxygen supplied to the aeration coffin (9)
e ) 酸素供給配管の酸素供給 fi!S節弁 ( 9 ) の直近に設置された酸素供铪量剷 定器 ( 8)  e) Oxygen supply meter of oxygen supply pipe (8) installed near fi! S node valve (9)
f ) 溶存酸¾«度計の計測結果に基づいて供給すべき酸素量を算出する予測機 能付 P I D制御装置 ( 1 1 )  f) PID control device with a predictive function to calculate the amount of oxygen to be supplied based on the measurement result of the dissolved acid meter (11)
g) 酸素供給量測定器 (8 ) の計測結果と、 予測機能付 P 〖 D制御装置 ( 1 1 ) の指示した供給すべき酸素量とに基づいて酸素供袷量調節弁 ( 9 ) を調節する 酸素供給量調節計 ( 1 0 )  g) The oxygen supply amount control valve (9) is adjusted based on the measurement result of the oxygen supply amount measuring device (8) and the oxygen amount to be supplied indicated by the P 〖D control device with prediction function (11). Yes Oxygen supply controller (10)
2. 密閉式の曝気槽を使用し、 かつ曝気槽に曝気槽の内圧を計測する圧力検出 器 (6 ) 、 及び曝気槽の排気配管に曝気糟の内圧を調節するための圧力調節弁 (2. A sealed aeration tank is used, and a pressure detector (6) for measuring the internal pressure of the aeration tank is used for the aeration tank, and a pressure control valve (for controlling the internal pressure of the aeration tank is used for the exhaust pipe of the aeration tank).
7 ) 並びに圧力制御調節計 ( 1 2 ) を設けてなることを特徴とする 求項 1に記 載の曙気槽の溶存酸素濃度の制御装置。 7) The apparatus for controlling the concentration of dissolved oxygen in the Akebono tank according to claim 1, further comprising a pressure control controller (12).
3. 予測機能付 P I D制御装置の予刺モデルとして、 溶存酸素濃度の動特性を 近似する統計モデルを用いることを特徴とする請求項 1又は 2に記載の曝気樓の 溶存酸衆濃度の制御装置。 3. A control device for the concentration of dissolved oxygen in an aeration tower according to claim 1 or 2, wherein a statistical model that approximates the dynamic characteristic of the concentration of dissolved oxygen is used as a prediction model of the PID control device with a prediction function. .
4 0 换页 (细则第 26糸) 4 0 换 页 (细则 26th thread)
4. 予则機能付きの P I D制御装置として、 短期予測機能付きの P I D制御装 置を使用し、 かつ、 4. Use a PID controller with a short-term prediction function as a PID controller with a prediction function, and
h) 予め定めたプロセスデータを入力することにより、 溶存酸素濃度の長期予 測を行い、 溶存酸素濃度の目標値を算出するニューラル · ネッ ト ·ォプティマイ ザ一 ( 1 3 )  h) A neural net optimizer that performs long-term prediction of dissolved oxygen concentration and calculates the target value of dissolved oxygen concentration by inputting predetermined process data (13)
を備え、 上記短期予測機能付き P I D制御装置が、 溶存酸紫浪度計の計 '则結果及 びニューラル ' ネッ ト ' ォプティマイザ一が算出した溶存酸素濯度の目標値に基 づいて供袷すべき酸素量を算出するものであることを特徴とする靖求項 1 又は 2 に記載の曝気槽の溶存酸素濃度の制御装置。 The PID controller with short-term prediction function is provided based on the total value of the dissolved acid turbidity meter and the target value of the dissolved oxygen rinse calculated by the neural net optimizer. 3. The apparatus for controlling the concentration of dissolved oxygen in an aeration tank according to claim 1 or 2, wherein the apparatus calculates the amount of oxygen to be consumed.
5. 短期予刺機能付 P I D制御装置の予则モデルと して、 酸素供給量に対する 溶存酸素濃度の動特性とノィズを考慮に入れた glf散線形モデルを用いることを特 徴とする諝求項 4に記載の曙気槽の溶存酸素瀵度の制御装置。 5. A feature that uses a glf scattered linear model that takes into account the dynamics and noise of the dissolved oxygen concentration with respect to the oxygen supply amount as the prediction model of the PID controller with the short-term prediction function. 4. The control device for dissolved oxygen concentration in the dawn tank according to 4.
6. プロセスデータとして、 原水の温度、 流量、 水素イオン港度 (pH) 、 化 学的酸素要求量 (COD) 、 生物化学的酸素要求量 (BOD 5) 、 懸濁物質 (S S) 、 曝気槽の温度、 圧力、 溶存酸素濃度、 槽内混合液懸濁物質 (ML S S) 、 槽内混合液揮発性. 蔺物質 (MLVS S) からなる群から選ばれる少なく とも 1 種以上のデータを使用することを特徴とする ii求項 4または 5に記載の曝気樗の 溶存酸素濃度の制御装置。 6. Process data include raw water temperature, flow rate, hydrogen ion port (pH), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), suspended solids (SS), aeration tank Temperature, pressure, dissolved oxygen concentration, mixed liquid suspension in the tank (MLSS), mixed liquid volatility in the tank. 使用 Use at least one or more data selected from the group consisting of the substance (MLVS S) (Ii) The apparatus for controlling the dissolved oxygen concentration of aerated aerosol according to (4) or (5).
7. 青求項 1 ~ 6のいずれか 1項に記載の溶存酸素濃度制御装置を用いること を特徴とする曝気槽の溶存酸素濩度の制御方法。 7. A method for controlling dissolved oxygen concentration in an aeration tank, comprising using the dissolved oxygen concentration control device according to any one of Items 1 to 6.
8. 供給する酸素として、 純度 5 0 % 上の酸累を用いることを特徴とする蹐 求項 7に記載の曝気槽の溶存酸 ¾澳度の制御方法。 8. The method for controlling dissolved oxygen in aeration tanks according to claim 7, wherein an acid accumulation having a purity of 50% is used as oxygen to be supplied.
9. 青求項 1 ~ 6のいずれか 1項に記載の溶存酸素濃度の制御装置を有するこ 9. Have the dissolved oxygen concentration control device described in any one of Items 1 to 6
4 1 替换页 (细则第 26条) とを特徴とする活性汚泥法排水処理設備。 4 1 Replacement (细则 Article 26) Activated sludge wastewater treatment equipment characterized by the following.
1 0. 中和槽 ( 1 5) に加熱装置を、 また原水供給配管 (2 4) に冷 ίΠ用の熱 交換器 (2 8 ) をそれぞれ有し、 さらにこれらを制御するために、 以下の計装機 器からなる皤気槽の温度制御装置を付加することを特徴とする蹐求項 9に記載の 活性汚泥法排水処理設備。 10. A heating device is provided in the neutralization tank (15), and a heat exchanger (28) for cooling is provided in the raw water supply pipe (24). 10. The activated sludge process wastewater treatment facility according to claim 9, wherein a temperature control device for an air tank composed of instrumentation equipment is added.
i ) 中和槽 ( 1 5) から曝気槽 (4 ) へ供給される原水の温度を測定する原水 温度検出器 ( 1 6)  i) Raw water temperature detector (16) that measures the temperature of raw water supplied from the neutralization tank (15) to the aeration tank (4)
j ) 瞜気槽内の温度検出器 ( 1 8) 及び曝気槽内温度調節器 ( 1 9) k) 原水温度検出器 ( 1 6 ) の出力と曙気槽内温度調節器 ( 1 9) の出力とに 基づいて、 曝気槽へ供袷される原水の温度を調節する原水温度調節器 ( 1 7) j) 出力 Output of temperature detector in air tank (18) and temperature controller in aeration tank (19) k) Output of raw water temperature detector (16) and temperature controller in Akebono tank (19) Raw water temperature controller (17) that regulates the temperature of raw water supplied to the aeration tank based on the output
1 ) 原水温度調節器 ( 1 7 ) の加熱用操作端をなす中和槽の加熱装置用の加熱 媒体供給調節弁 (2 0) 1) Heating medium supply control valve (20) for the heating device of the neutralization tank, which constitutes the heating operation end of the raw water temperature controller (17)
m) 原水温度綢節器 ( 1 了) の冷却用操作端をなす原水冷却用の熱交換器 (2 8 ) の冷却媒体供給調節弁 ( 2 1 )  m) Cooling medium supply control valve (2 1) of raw water cooling heat exchanger (28), which constitutes a cooling operation end of raw water temperature silk knot (1 end)
1 1. «気槽の温度制御装置には、 隳気槽内温度調節器 ( 1 9 ) をマスター側 、 原水温度調節器 ( 1 7) をスレーブ側としたカスケー ド制御ループが形成され てなることを特徴とする It求項 1 0に記載の活性汚泥法排水処理設備。 1 1. The cascade control loop is formed in the temperature control device of the air tank, in which the temperature controller (19) in the air tank is on the master side and the raw water temperature controller (17) is on the slave side. Activated sludge wastewater treatment equipment according to claim 10, characterized in that:
1 2. 原水温度調節器 ( 1 7 ) としてスプリ ッ ト レンジ調節器を用いた温度制 御装置を有することを特徴とする請求項 1 1に記載の活性汚泥法排水処理 ¾備。 12. The activated sludge wastewater treatment equipment according to claim 11, wherein the raw water temperature controller (17) has a temperature controller using a split range controller.
1 3. 原水槽の液面を制御するために、 以下の計装機器を備えてなる原水槽の 均流液面制御装置を付加することを特徴とする請求項 9または 1 0に記黻の活性 汚泥法排水処理設備。 1 3. In order to control the liquid level in the raw water tank, a uniform liquid level control device for the raw water tank equipped with the following instrumentation is added. Activated sludge wastewater treatment equipment.
n ) 原水槽液面検出器 ( 2 9) 及び原水槽液面調節器 (3 0)  n) Raw water tank level detector (29) and raw water tank level controller (30)
0 ) 原水供給配管に設けられた原水流量検出器 ( 3 1 )  0) Raw water flow detector installed in raw water supply pipe (3 1)
P ) 原水櫓液面調節器 ( 3 0 ) の出力と原水流 fi検出器 ( 3 1 ) の出力とに基  P) Based on the output of the raw water tower liquid level controller (30) and the output of the raw water flow fi detector (31)
4 2 4 2
替换页 (细则第 26条) づいて曝気栲への原水供給流量を調節する、 原水供袷配管に設けられた原水流量 調節器 ( 3 2 ) Replacement (Article 26) A raw water flow controller installed in the raw water supply pipe that regulates the raw water supply flow to the aerator
1 4 . 原水槽の均流液面制御装置には、 原水槽液面調節器 ( 3 0 ) をマスター 側、 原水流量調節器 ( 3 2 ) をスレーブ側としたカスケー ド制御ループが形成さ れてなることを特徴とする請求項 1 3に記載の活性汚泥法排水処理設備。 14. The cascade control loop is formed in the raw water tank uniform flow liquid level controller, with the raw water tank liquid level controller (30) on the master side and the raw water flow rate regulator (32) on the slave side. 14. The activated sludge wastewater treatment facility according to claim 13, wherein:
1 5 . 原水槽液面調節器 ( 3 0 ) として G A P付き調節器を用いた均流液面制 御装置を有することを特徴とする If求項 1 4に記載の活性汚泥法排水処理設備。 15. The activated sludge process wastewater treatment equipment according to claim 14, wherein the raw water tank liquid level controller (30) includes a uniform liquid level controller using a controller with a GAP.
1 6 . G A P付き調節器が少なく とも 2種類の切り替え可能な比例ゲイ ンの設 定が可能で、 かつその一つのゲインは通常の均流液面制御のための比例ゲイン、 他の一つのゲインは原水槽管理上の許容液面範囲からの逸脱を回避するための比 例ゲイ ンであって、 それらは受け入れ排水の流量変化が生じたときも、 原水槽の 液面変動が許容範囲を越えないように、 原水槽の断面積、 液面計ゲイン、 及び流 量調節計ゲインに基づいて設定されたものである均流液面制御装置を有する請求 項 1 5に記載の活性汚泥法排水処理設備。 16. At least two types of switchable proportional gain can be set with the controller with GAP, and one of the gains is a proportional gain for normal flow level control, and the other is a gain. Are proportional gains for avoiding deviation from the allowable liquid level range for raw water tank management.They also cause the liquid level fluctuation of the raw water tank to exceed the allowable range even when the flow rate of the receiving wastewater changes. The activated sludge wastewater treatment according to claim 15, further comprising a uniform flow level control device that is set based on the cross-sectional area of the raw water tank, the liquid level gauge gain, and the flow rate controller gain so as not to cause the wastewater treatment. Facility.
1 7 . 設備制御用のプロセスコンピュータを付加し、 該排水処理設備中の暉気 槽の温度及び溶存酸素濃度、 中和糟への栄養源供袷流 fi、 沈殿栲から曝気檣への 返送汚泥流量のそれぞれの運転データまたは所望の設定値のデータを上己プロセ スコンビュータに入力するデータ入力部、 該入力データをニューラルネッ ト · モ デルを用いた演算処理によって沈殿槽の固液界面の位置及びその液相部の処理水 の濁度の挙動を予測する予測演算部、 該予測結果に基づいて活性汚泥設備の運転 条件を設定する運転支援部を備えてなる運転支援装置を有することを特徴とする 請求項 1 0から 1 6のうちのいずれか 1項に記載の活性汚泥法排水処理設備。 1 7. A process computer for equipment control was added, and the temperature and dissolved oxygen concentration of the aeration tank in the wastewater treatment equipment, the nutrient supply fi to the neutralization tank, and the sludge returned from the settling to the aeration top A data input section for inputting each operation data of flow rate or desired set value data to the self-process editor. The input data is processed by a neural network model to calculate the position of the solid-liquid interface of the sedimentation tank. And a prediction operation unit for predicting the behavior of the turbidity of the treated water in the liquid phase, and a driving support device including a driving support unit for setting the operating conditions of the activated sludge facility based on the prediction result. The activated sludge wastewater treatment equipment according to any one of claims 10 to 16.
1 8 . 設備制御用のプロセスコンピュータを付加し、 該排水処理設備中の沈殿 槽の固液界面の位 S及びその液相部の処理水の濁度の運転データまたは^望の設  1 8. Add a process computer for equipment control, and set the operating data of the position S of the solid-liquid interface of the sedimentation tank in the wastewater treatment equipment and the turbidity of the treated water in the liquid phase or the desired setting.
4 3 替换页 (细则第 26糸) 定値のデータを上記プロセスコンピュー夕に入力するデータ入力部、 該入力デー タをニューラルネッ ト逆モデルを用いた演算処理によって、 曝気槽内の温度及び 溶存酸衆濃度、 中和槽への栄養源供給流量、 沈殿槽から曝気楦への返送汚泥流量 のそれぞれの最適条件を算出する最適化演算部、 該最適化演算結果に基づいて運 $ 条件を設定する運転支援部を備えてなる運転支援装置を有することを特徴とす る請求項 1 0から 1 6のうちのいずれか 1項に記載の活性汚泥法排水処理設備。 4 3 replacement 换 页 (细则 thread 26) A data input unit for inputting constant value data to the above process computer. The input data is subjected to arithmetic processing using a neural network inverse model to calculate the temperature and dissolved oxygen concentration in the aeration tank, and the nutrition to the neutralization tank. An operation support unit that includes an optimization calculation unit that calculates the optimum conditions for the source supply flow rate and the return sludge flow rate from the sedimentation tank to the aeration tank, and an operation support unit that sets operating conditions based on the optimization calculation result The activated sludge wastewater treatment facility according to any one of claims 10 to 16, characterized by having an apparatus.
1 9 . 複数の上流化学プロセスからそれぞれ彼処理体を受け入れて処理し、 処 理体を流出する化学プロセスを運転する際に、 上流化学プ口セスの運転データに 基づいて対象の化学プロセスの指標運転条件及び処理体の指標性状の少なく とも 一方を予则する、 プロセスの運転支援装置であって、 1 9. When operating a chemical process that accepts and treats treated materials from a plurality of upstream chemical processes and discharges the treated material, an index of the target chemical process based on the operation data of the upstream chemical process An operation support device for a process, which predicts at least one of an operation condition and an index property of a processing object,
铳計モデルとニューラルネッ 卜モデルとを組み合わせた階層化構造を有するハ イブリ ツ ドモデルを内蔵した予測演算装 Sを備え、  Equipped with a predictive computing device S with a built-in hybrid model having a hierarchical structure combining a total model and a neural network model,
铳計モデルは、 入力された上流化学プロセスの運耘データからニューラルネッ 卜ワークへの入力データを出力データと して算出し、 ニューラルネッ 卜モデルは 、 統計モデルから入力されたデータと、 及び対象の化学プロセスから得た運転デ 一夕とから対象の化学プロセスの指標運転条件及び処理体の性状の少なく とも一 方を予測演算することを特徴とするプロセスの運転支援装置。  The total model calculates input data to the neural network from the input tillage data of the upstream chemical process as output data, and the neural network model calculates the data input from the statistical model and the target data. A process operation support device characterized by predicting and calculating at least one of an index operation condition and a property of a processing object of a target chemical process from an operation data obtained from the chemical process.
2 0 . ニューラルネッ 卜モデルは、 上位ニューラルネッ 卜モデルと下位ニュー ラルネッ 卜モデルとから構成され、 上位ニューラルネッ 卜モデルは、 入力された 上流化学プロセスの運転データから下位ニューラルネッ トモデルへの入力データ を出力データとして算出し、 下位ニューラルネッ トワークは、 上位ニューラルネ ッ 卜ワークから入力されたデータと、 統計モデルから入力されたデータと、 及び 対象の化学プロセスから得た運転データとから対象の化学プロセスの指摞運転条 件及び処理体の性状の少なく とも一方を予測演算することを特徴とする踌求項 1 9に記載のプロセスの運 ϋ支援装置。 20. The neural network model is composed of an upper neural network model and a lower neural network model. The upper neural network model is the input data from the input upstream chemical process operation data to the lower neural network model. Is calculated as output data, and the lower neural network calculates the target chemistry from the data input from the upper neural network, the data input from the statistical model, and the operation data obtained from the target chemical process. 20. The process operation support device according to claim 19, wherein at least one of a process instruction operation condition and a property of a processing object is predicted and calculated.
2 1 . 上流化学プロセスが、 アンモニア濃度の高い含アンモニア排水を彼処理 2 1. The upstream chemical process treats wastewater containing ammonia with high ammonia concentration.
4 4 香换页 (细则第 26条) 体として排出する第 1の分類のプロセスと、 含アンモニア排水よりアンモニア濃 度の低い排水を被処理体として排出する第 2の分類のプロセスとから構成され、 対象の化学プロセスが、 第 1の分類のプロセス及び第 2の分類のプロセスから それぞれ排出された含アンモニア排水及び排水を活性汚泥法排水処理 S傭であり 統計モデルが、 第 2の分類のプロセスの運転データを主成分分折する P C A ( 主成分分析) モデルであり、 4 4 Incense (细则 Article 26) The first chemical process consists of two processes: the first class of processes that discharges wastewater as a body, and the second class of processes that discharge wastewater with a lower ammonia concentration than ammonia-containing wastewater. The ammonia-containing wastewater and wastewater discharged from the second process and the second process are activated sludge wastewater treatment, respectively.The statistical model is based on the PCA ( Principal component analysis) model
上位ニューラルネッ トモデルは、 第 1の分類のプロセスの運耘データから含ァ ンモニァ排水のァンモニァ濃度を推算するアンモニア濃度推算モデルと、 排水処 理装置の曝気槽及び沈澱槽の排水の滞留時間を算出する滞留時間算出 (S A ) モ デルとから構成され、  The upper neural network model calculates the ammonia concentration estimation model that estimates the ammonia concentration of the ammonia-containing wastewater from the tillage data of the first classification process, and calculates the residence time of the wastewater in the aeration tank and the sedimentation tank of the wastewater treatment equipment. And a residence time calculation (SA) model
下位ニューラルネッ トモデルは、 指標運転条件と して排水処理装置の ¾:殿榷の 固液界面位置を及び指標性伏として処理水の濁度を予測演算することを特徴とす る請求項 2 0に記載のプロセスの運耘支援装置。  20. The lower neural network model is characterized by predicting and calculating the turbidity of the treated water as the index operation condition, the position of the solid-liquid interface of the wastewater treatment apparatus as the index operation condition, and the index property. Cultivation support device for the process described in 1.
4 5 4 5
替换页 (细则第 26糸)  Replacement 换 页 (细则 26th thread)
PCT/JP1997/002514 1996-07-19 1997-07-18 Device for controlling dissolved oxygen concentration of aeration tank, device for controlling temperature of aeration tank, device for controlling flow rate of raw water for homogeneous-flow liquid surface, and wastewater treatment equipment used in activated sludge process WO1998003434A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU34630/97A AU3463097A (en) 1996-07-19 1997-07-18 Device for controlling dissolved oxygen concentration of aeration tank, device for controlling temperature of aeration tank, device for controlling flow rate of raw water for homogeneous-flow liquid surface, and wastewater treatment equipment used in activated sludge process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/190618 1996-07-19
JP19061896A JP2002219480A (en) 1996-07-19 1996-07-19 Equipment for controlling concentration of dissolved oxygen in aerating tank
JP19358196A JP2002219481A (en) 1996-07-23 1996-07-23 Equipment for controlling concentration of dissolved oxygen in aerating tank
JP8/193581 1996-07-23

Publications (1)

Publication Number Publication Date
WO1998003434A1 true WO1998003434A1 (en) 1998-01-29

Family

ID=26506204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002514 WO1998003434A1 (en) 1996-07-19 1997-07-18 Device for controlling dissolved oxygen concentration of aeration tank, device for controlling temperature of aeration tank, device for controlling flow rate of raw water for homogeneous-flow liquid surface, and wastewater treatment equipment used in activated sludge process

Country Status (2)

Country Link
AU (1) AU3463097A (en)
WO (1) WO1998003434A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319875C (en) * 2005-08-12 2007-06-06 上海昊沧系统控制技术有限责任公司 On-line control method for aeration quantity in sewage biological treatment technique
CN105739325A (en) * 2016-04-13 2016-07-06 沈阳大学 Aeration intelligent control system in sewage treatment process
CN106406094A (en) * 2016-10-16 2017-02-15 北京工业大学 Interval type-2 fuzzy neural network based dissolved oxygen concentration tracking method in sewage treatment
CN107402586A (en) * 2017-08-29 2017-11-28 北京易沃特科技有限公司 Dissolved Oxygen concentration Control method and system based on deep neural network
CN113534862A (en) * 2021-07-09 2021-10-22 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) System and method for controlling gas concentration in culture chamber
CN113867233A (en) * 2021-11-03 2021-12-31 龙游县河道疏浚砂资源开发有限公司 Control method and system for granular sludge treatment based on pilot-scale research
CN115434092A (en) * 2021-06-03 2022-12-06 财团法人纺织产业综合研究所 Regulation and control water charging system
CN117069241A (en) * 2023-10-13 2023-11-17 济安永蓝(北京)工程技术开发有限公司 Control method and control system for dissolved oxygen concentration of aerobic tank

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539260A (en) * 1978-09-12 1980-03-19 Kuraray Co Ltd Treating method for waste water with activated sludge
JPS5850462A (en) * 1981-09-21 1983-03-24 Kawasakishi Measurement of dissolved oxygen concentration for oxygen activated sludge method
JPS6182895A (en) * 1984-09-28 1986-04-26 Yaskawa Electric Mfg Co Ltd Controlling device for sewage treatment
JPH034993A (en) * 1989-05-31 1991-01-10 Meidensha Corp Model prediction and control of activated sludge processing
JPH03134706A (en) * 1989-10-20 1991-06-07 Hitachi Ltd Knowledge acquiring method for supporting operation of sewage-treatment plant
JPH0471691A (en) * 1990-07-11 1992-03-06 Toshiba Corp Device for controlling dissolved oxygen concentration
JPH04108595A (en) * 1990-08-27 1992-04-09 Nec Kansai Ltd Waste liquor treating device
JPH0691287A (en) * 1992-09-17 1994-04-05 Meidensha Corp Device for controlling biological treatment apparatus for drainage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539260A (en) * 1978-09-12 1980-03-19 Kuraray Co Ltd Treating method for waste water with activated sludge
JPS5850462A (en) * 1981-09-21 1983-03-24 Kawasakishi Measurement of dissolved oxygen concentration for oxygen activated sludge method
JPS6182895A (en) * 1984-09-28 1986-04-26 Yaskawa Electric Mfg Co Ltd Controlling device for sewage treatment
JPH034993A (en) * 1989-05-31 1991-01-10 Meidensha Corp Model prediction and control of activated sludge processing
JPH03134706A (en) * 1989-10-20 1991-06-07 Hitachi Ltd Knowledge acquiring method for supporting operation of sewage-treatment plant
JPH0471691A (en) * 1990-07-11 1992-03-06 Toshiba Corp Device for controlling dissolved oxygen concentration
JPH04108595A (en) * 1990-08-27 1992-04-09 Nec Kansai Ltd Waste liquor treating device
JPH0691287A (en) * 1992-09-17 1994-04-05 Meidensha Corp Device for controlling biological treatment apparatus for drainage

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319875C (en) * 2005-08-12 2007-06-06 上海昊沧系统控制技术有限责任公司 On-line control method for aeration quantity in sewage biological treatment technique
CN105739325A (en) * 2016-04-13 2016-07-06 沈阳大学 Aeration intelligent control system in sewage treatment process
CN106406094A (en) * 2016-10-16 2017-02-15 北京工业大学 Interval type-2 fuzzy neural network based dissolved oxygen concentration tracking method in sewage treatment
CN106406094B (en) * 2016-10-16 2019-06-14 北京工业大学 A kind of sewage treatment dissolved oxygen concentration tracking and controlling method based on two type fuzzy neural network of section
CN107402586A (en) * 2017-08-29 2017-11-28 北京易沃特科技有限公司 Dissolved Oxygen concentration Control method and system based on deep neural network
CN115434092A (en) * 2021-06-03 2022-12-06 财团法人纺织产业综合研究所 Regulation and control water charging system
CN113534862A (en) * 2021-07-09 2021-10-22 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) System and method for controlling gas concentration in culture chamber
CN113867233A (en) * 2021-11-03 2021-12-31 龙游县河道疏浚砂资源开发有限公司 Control method and system for granular sludge treatment based on pilot-scale research
CN113867233B (en) * 2021-11-03 2022-06-03 龙游县河道疏浚砂资源开发有限公司 Control method and system for granular sludge treatment based on pilot-scale research
CN117069241A (en) * 2023-10-13 2023-11-17 济安永蓝(北京)工程技术开发有限公司 Control method and control system for dissolved oxygen concentration of aerobic tank
CN117069241B (en) * 2023-10-13 2023-12-22 济安永蓝(北京)工程技术开发有限公司 Control method and control system for dissolved oxygen concentration of aerobic tank

Also Published As

Publication number Publication date
AU3463097A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
O’Brien et al. Model predictive control of an activated sludge process: A case study
Pind et al. Monitoring and control of anaerobic reactors
US7718066B2 (en) Method and apparatus for controlling wastewater treatment processes
Baeza et al. Improving the nitrogen removal efficiency of an A2/O based WWTP by using an on-line knowledge based expert system
Traore et al. Fuzzy control of dissolved oxygen in a sequencing batch reactor pilot plant
Ruano et al. An advanced control strategy for biological nutrient removal in continuous systems based on pH and ORP sensors
CN101364083B (en) Sewage treatment control device and method and sewage treatment system using the same
CN209583779U (en) A kind of sewage treatment accurate aeration system
CN104090488B (en) The method that sewage plant controls dissolved oxygen, sludge loading and sludge age in real time automatically
CN109592804B (en) Sewage treatment near-optimal precise aeration method
Robles et al. Advanced control system for optimal filtration in submerged anaerobic MBRs (SAnMBRs)
US20230047297A1 (en) Control method based on adaptive neural network model for dissolved oxygen of aeration system
Chen et al. Smart energy savings for aeration control in wastewater treatment
CN112782975A (en) Sewage treatment aeration intelligent control method and system based on deep learning
CN112978816A (en) Circulating water quality stability control method
Chiavola et al. Optimization of energy consumption in the biological reactor of a wastewater treatment plant by means of Oxy Fuzzy and ORP control
WO1998003434A1 (en) Device for controlling dissolved oxygen concentration of aeration tank, device for controlling temperature of aeration tank, device for controlling flow rate of raw water for homogeneous-flow liquid surface, and wastewater treatment equipment used in activated sludge process
JP4188200B2 (en) Plant-wide optimum process controller
JP2006055683A (en) Activated sludge type wastewater treatment method and activated sludge type wastewater treatment apparatus
Wang et al. Precise control of water and wastewater treatment systems with non-ideal heterogeneous mixing models and high-fidelity sensing
KR100661455B1 (en) Apparatus for treating waste water and method of using
KR20060092660A (en) Automatic control device and method for wastewater treatment using fuzzy control
AU2011207416B2 (en) Method of operating an activated sludge plant and an actuated sludge plant
JP2002219481A (en) Equipment for controlling concentration of dissolved oxygen in aerating tank
JP3214489B2 (en) Sewage treatment method and sewage treatment device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA