JP3214489B2 - Sewage treatment method and sewage treatment device - Google Patents

Sewage treatment method and sewage treatment device

Info

Publication number
JP3214489B2
JP3214489B2 JP14156699A JP14156699A JP3214489B2 JP 3214489 B2 JP3214489 B2 JP 3214489B2 JP 14156699 A JP14156699 A JP 14156699A JP 14156699 A JP14156699 A JP 14156699A JP 3214489 B2 JP3214489 B2 JP 3214489B2
Authority
JP
Japan
Prior art keywords
amount
value
air
target
bod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14156699A
Other languages
Japanese (ja)
Other versions
JP2000325980A (en
Inventor
和也 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP14156699A priority Critical patent/JP3214489B2/en
Publication of JP2000325980A publication Critical patent/JP2000325980A/en
Application granted granted Critical
Publication of JP3214489B2 publication Critical patent/JP3214489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、いわゆる活性汚泥
プロセスにより、下水や工業排水等の汚水を微生物によ
り生物化学的に処理する標準活性汚泥法の汚水処理方法
及び汚水処理装置に関し、詳しくは、その生物処理槽に
送風して曝気に必要な空気を供給する送風機の制御及び
返送汚泥ポンプ,余剰汚泥ポンプの運転制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a standard activated sludge treatment method and a wastewater treatment apparatus for biochemically treating wastewater such as sewage and industrial wastewater with microorganisms by a so-called activated sludge process. The present invention relates to control of a blower for supplying air required for aeration by blowing air to the biological treatment tank, and operation control of a return sludge pump and an excess sludge pump.

【0002】[0002]

【従来の技術】従来、公共の下水処理場や工場の排水処
理場等に設けられる標準活性汚泥法の汚水処理装置は図
3に示すように構成され、下水,排水等の汚水(原水)
は最初沈殿池により1次処理された後、流量計1を介し
て生物処理槽(以下反応タンクという)2に流入する。
2. Description of the Related Art Conventionally, a sewage treatment apparatus of a standard activated sludge method provided in a public sewage treatment plant or a wastewater treatment plant of a factory is configured as shown in FIG. 3, and sewage (raw water) such as sewage and wastewater.
Is firstly treated by a sedimentation basin, and then flows into a biological treatment tank (hereinafter referred to as a reaction tank) 2 through a flow meter 1.

【0003】そして、反応タンク2の活性汚泥により原
水中の有機物が生物化学処理されて分解,除去され、こ
の分解,除去が施された処理水が最終沈殿池3に送ら
れ、この沈殿池3から河川等に放流される。
[0003] The activated sludge in the reaction tank 2 biochemically treats organic matter in the raw water to be decomposed and removed, and the treated water subjected to the decomposition and removal is sent to a final sedimentation basin 3, where the sedimentation basin 3 is treated. From the river.

【0004】ところで、反応タンク2には散気装置4が
設けられ、送風機(ブロア)5から風量計6を介して散
気装置4に曝気に必要な送風が行われ、反応タンク2の
微生物の維持、増殖が図られる。
[0004] A diffuser 4 is provided in the reaction tank 2, and air required for aeration is supplied from a blower (blower) 5 to the diffuser 4 via a flow meter 6 to remove microorganisms in the reaction tank 2. Maintenance and proliferation are achieved.

【0005】そして、送風機5の風量制御はPIDコン
トローラ7を用いたフィードフォワード(FF)又はフ
ィードバック(FB)の制御で行われる。
The air volume of the blower 5 is controlled by feedforward (FF) or feedback (FB) using a PID controller 7.

【0006】この風量制御の代表的なものとして、従
来、反応タンク2の流入水量比率制御又は反応タンク2
の溶存酸素濃度(DO)を一定に維持するDO一定制御
があり、流入水量比率制御は反応タンク2に流入する汚
水量(原水量)を計測してその3〜8倍程度の風量にF
F制御するものであり、DO一定制御は反応タンク2の
出口付近のDO値を計測してこのDO値が一定になるよ
うに風量をFB制御するものである。
As a typical example of the air volume control, conventionally, a control of an inflow water amount ratio of the reaction tank 2 or a reaction tank 2
There is a DO constant control for keeping the dissolved oxygen concentration (DO) constant. The inflow rate control measures the amount of sewage (raw water) flowing into the reaction tank 2 and reduces the flow rate to about 3 to 8 times the air flow.
The F control is performed, and the DO constant control measures the DO value near the outlet of the reaction tank 2 and performs the FB control of the air flow so that the DO value becomes constant.

【0007】そして、図3は前者の流入水量比率制御を
行う場合を示し、流量計1の原水流入量の検出信号を乗
算器8に送り、この乗算器8により原水流入量の検出信
号に送気倍率設定器9の送気倍率(3〜8倍)の定数を
乗算して目標風量(目標値)SV’の信号を形成する。
FIG. 3 shows the former case where the inflow rate control is performed, in which a detection signal of the inflow rate of raw water from the flow meter 1 is sent to a multiplier 8, which sends a detection signal of the inflow rate of raw water. A signal of a target air volume (target value) SV ′ is formed by multiplying a constant of an air supply magnification (3 to 8 times) of the air magnification setter 9.

【0008】さらに、この目標風量SV’の信号をPI
Dコントローラ7に送り、このコントローラ7により、
目標風量SV’の信号と風量計6の計測風量(計測値)
PV’の信号とに基づき、目標風量SV’に対する計測
風量PV’の誤差の送風制御量(操作量)MV’の信号
を形成し、この信号により計測風量PV’が目標風量S
V’に維持されるように送風機5の運転をFF制御す
る。
Further, the signal of the target air volume SV 'is
To the D controller 7, and by this controller 7,
Signal of target air volume SV 'and air volume measured by air volume meter 6 (measured value)
Based on the signal of PV ′, a signal of a ventilation control amount (operation amount) MV ′ of an error of the measured airflow PV ′ with respect to the target airflow SV ′ is formed, and the measured airflow PV ′ is changed to the target airflow S by this signal.
The operation of the blower 5 is FF-controlled so as to be maintained at V '.

【0009】一方、最終沈殿池3には反応タンク2の処
理水が流入する他、活性汚泥の一部も流入する。
On the other hand, the treated water of the reaction tank 2 flows into the final sedimentation tank 3 and a part of the activated sludge also flows.

【0010】そして、この汚泥の一部は返送汚泥ポンプ
10により流量計11を通って反応タンク2に戻され、
残りの汚泥は最終沈殿池3から放流される処理水のBO
D濃度が20ミリグラム(mg)/リットル(L)の基準
量以下になるように、余剰汚泥ポンプ12により引抜か
れ、流量計13を通って汚泥処理系に送られる。
A part of this sludge is returned to the reaction tank 2 through the flow meter 11 by the return sludge pump 10,
The remaining sludge is the BO of treated water discharged from the final sedimentation basin 3.
The excess sludge pump 12 pulls out the solution so that the D concentration is equal to or less than the reference amount of 20 milligrams (mg) / liter (L), and is sent to a sludge treatment system through a flow meter 13.

【0011】なお、図3において、実線は水配管を示
し、破線は空気配管を示し、点線は電気信号線を示す。
In FIG. 3, a solid line indicates a water pipe, a broken line indicates an air pipe, and a dotted line indicates an electric signal line.

【0012】[0012]

【発明が解決しようとする課題】前記図3の汚水処理装
置の場合、送風機5の送風が流量計1の原水流入量の検
出信号に基づき、原水の反応タンク2への流入量にのみ
依存して制御される。
In the case of the sewage treatment apparatus shown in FIG. 3, the blowing of the blower 5 depends only on the amount of raw water flowing into the reaction tank 2 based on the detection signal of the amount of raw water flowing into the flow meter 1. Controlled.

【0013】一方、反応タンク2に供給する最適な曝気
風量は原水の汚れの程度と流入量とによって異なり、例
えば極端に汚れた原水であれば、流入量が少なくても多
量の送風が必要になる。
On the other hand, the optimal amount of aeration air supplied to the reaction tank 2 depends on the degree of contamination of the raw water and the amount of inflow. For example, in the case of extremely dirty raw water, a large amount of air is required even if the amount of inflow is small. Become.

【0014】したがって、送風機5の風量を原水の反応
タンク2への流入量にのみ依存して制御する図3の従来
装置においては、送風機5から反応タンク2に原水に応
じた最適な送風が行えない。
Therefore, in the conventional apparatus shown in FIG. 3 in which the flow rate of the blower 5 is controlled only depending on the flow rate of the raw water into the reaction tank 2, optimal blowing can be performed from the blower 5 to the reaction tank 2 according to the raw water. Absent.

【0015】そして、実際には水質基準を尊守するた
め、最終沈殿池3から放流される処理水のBOD値が基
準値を超えることがないように、従来、送気倍率設定器
9により十分に大きな倍率を設定し、必要以上の風量で
送風することが行われている。
In order to actually respect the water quality standard, the air supply ratio setting device 9 is conventionally sufficient so that the BOD value of the treated water discharged from the final sedimentation tank 3 does not exceed the standard value. A large magnification is set, and air is blown at an air volume larger than necessary.

【0016】この場合、原水の汚れが少ない負荷の低い
時間帯は無駄な送風による過剰曝気が行われ、省エネル
ギ化が図れない問題点がある。
In this case, there is a problem that excessive aeration by useless blowing is performed during a low load period in which the amount of raw water is small and energy cannot be saved.

【0017】ところで、流入水量比率制御でなく、DO
一定制御を行う場合は、前記したように反応タンク2の
出口付近のDO値に基づいて送風機2の風量をFB制御
するが、この場合は、反応タンク2の入口から出口まで
の距離が長いことから、制御の無駄時間が長く、制御の
遅れが生じ易い。
By the way, instead of controlling the inflow water amount ratio, DO
When the constant control is performed, the air volume of the blower 2 is FB-controlled based on the DO value near the outlet of the reaction tank 2 as described above. In this case, the distance from the inlet to the outlet of the reaction tank 2 must be long. Therefore, the dead time of the control is long, and the control is likely to be delayed.

【0018】そして、一旦処理水のDO値が低下する
と、その回復に時間を要し、DO値の基準を低く設定す
ると、汚水が十分に処理されずに河川等に放流されるお
それがあることから、実際には、放流する処理水のDO
値が極端に低下しないように、処理水のDO値の基準を
高く設定する必要がある。
Once the DO value of the treated water drops, it takes time to recover the DO value. If the DO value standard is set low, the sewage may not be sufficiently treated and may be discharged to rivers and the like. Therefore, in practice, DO
It is necessary to set a high standard for the DO value of the treated water so that the value does not drop extremely.

【0019】したがって、この場合も結果的に無駄な送
風による過剰曝気が行われ、省エネルギ化を図ることが
できない。
Therefore, also in this case, excessive aeration due to useless blowing is performed as a result, and energy saving cannot be achieved.

【0020】つぎに、ポンプ10,12の運転は、従
来、流量計11,13の計測値に基づいて、送風機5の
送風量の制御と無関係に行われる。
Next, the operation of the pumps 10 and 12 is conventionally performed on the basis of the measured values of the flow meters 11 and 13 irrespective of the control of the blower volume of the blower 5.

【0021】そして、最終沈殿池3の汚泥量が反応タン
ク2に流入する原水の汚れの状態に基づき、送風機5の
送風量にも依存して変化することから、従来は、ポンプ
10,12による汚泥処理が最適制御されない問題点も
ある。
Since the amount of sludge in the final sedimentation basin 3 changes depending on the state of contamination of the raw water flowing into the reaction tank 2 and also depends on the amount of air blown by the blower 5, conventionally, pumps 10 and 12 are used. There is also a problem that the sludge treatment is not optimally controlled.

【0022】本発明は、生物処理槽(反応タンク)に流
入する汚水の状態に応じた最適な風量で送風機から反応
タンクに送風し、省エネルギ化を図って最適な曝気を行
う汚水処理方法及び汚水処理装置を提供することを課題
とし、さらには、返送汚泥ポンプ及び余剰汚泥ポンプに
よる汚泥量の最適制御が行えるようにすることも課題と
する。
The present invention relates to a sewage treatment method in which an air is blown from a blower to a reaction tank at an optimal flow rate according to the state of sewage flowing into a biological treatment tank (reaction tank) to save energy and perform optimal aeration. It is another object of the present invention to provide a sewage treatment apparatus, and further to make it possible to optimally control the amount of sludge by a return sludge pump and an excess sludge pump.

【0023】[0023]

【課題を解決するための手段】前記の課題を解決するた
めに、請求項1の汚水処理方法は、標準活性汚泥法によ
り排水,下水等の汚水(原水)を処理する反応タンクに
流入する原水の流入量及びBOD量を計測し、このBO
D量の計測値と目標処理水BOD値との差を原水の汚れ
の指標値として算出し、前記指標値と前記流入量の計測
値との積により反応タンクに流入する原水の処理に必要
な送風量を求め、 脱窒及び硝化の係数と前記流入量の計
測値との積により硝化及び反応タンクの溶存酸素量維持
に必要な送風量を求め、 両積を加算して曝気風量の目標
値としての目標風量を算出し、この目標風量にしたがっ
て送風機から反応タンクへの送風量を制御する。
According to a first aspect of the present invention, there is provided a sewage treatment method according to the first aspect, wherein raw effluent flows into a reaction tank for treating sewage (raw water) such as wastewater or sewage by a standard activated sludge method. The inflow amount and BOD amount of
The difference between the measured value and the target treated water BOD value of the amount D is calculated as the index value of the raw water stains, required raw water treatment flowing into the more reactive tank to the product of the measured value of the index value and the flow rate
The air flow rate is calculated, the denitrification and nitrification coefficients and the total
Nitrification and maintenance of dissolved oxygen in the reaction tank based on the product of the measured values
The required air flow and add the two products to the target air flow rate
It calculates a target air amount as a value, to control the air volume into the reaction tank from the blower in accordance with the target air volume.

【0024】したがって、反応タンクに流入する原水の
BOD量の計測値から原水の汚れの程度を示す指標値が
求まり、この指標値と原水の流入量との積に、脱窒及び
硝化の係数と原水の流入量との積を加算することに
り、原水の汚れの程度と流入量とを考慮した反応タンク
の曝気風量目標値としての目標風量が求まる。
Accordingly, an index value indicating the degree of contamination of the raw water is obtained from the measured value of the BOD amount of the raw water flowing into the reaction tank, and the product of the index value and the flow rate of the raw water is denitrification and denitrification.
By adding the product of the nitrification coefficient and the raw water inflow amount, a target air volume as a target value of the aeration air volume of the reaction tank in consideration of the degree of contamination of the raw water and the inflow amount is obtained.

【0025】そして、この目標風量にしたがって、送風
機から反応タンクへの送風量が制御されるため、原水の
流入量だけでなく、その汚れの程度をも考慮した反応タ
ンクの最適な曝気が行われる。
Since the amount of air blown from the blower to the reaction tank is controlled in accordance with the target air flow, optimal aeration of the reaction tank is performed in consideration of not only the inflow of raw water but also the degree of contamination. .

【0026】そのため、原水の流入量のみを考慮した従
来方法の場合のように曝気風量必要以上に多くなら
、無駄な送風による過剰曝気を防止して省エネルギ化
を図ることができる。
[0026] Therefore, if the aeration air quantity is more than necessary to many as in the case of the conventional method that takes into account only the inflow of the raw water
In addition, it is possible to prevent excessive aeration due to useless blowing and thereby save energy.

【0027】また、請求項2の汚水処理装置は、標準活
性汚泥法により排水,下水等の汚水(原水)を処理する
反応タンクと、このタンクの散気装置に送風する送風機
と、反応タンクの汚水流入口付近に設けられ,反応タン
クに流入する原水の流入量を計測する流量計と、前記汚
水流入口付近に設けられ,反応タンクに流入する原水の
BOD量を計測するBODセンサと、流量計及びBOD
センサの計測値を取込み,送風機から散気装置への送風
を制御する制御装置とを備え、この制御装置に、BOD
センサの計測値と目標処理水BOD値との差を原水の汚
れの指標値として算出する手段と、前記指標値と流量計
の計測値との積により反応タンクに流入する原水の処理
に必要な送風量を求め,脱窒及び硝化の係数と流量計の
計測値との積により反応タンクの溶存酸素量維持に必要
な送風量を求め,両積を加算して曝気風量の目標値とし
ての目標風量を算出する手段と、この目標風量にしたが
って送風機の送風量を制御する手段とを設ける。
The sewage treatment apparatus according to the second aspect of the present invention includes a reaction tank for treating wastewater (raw water) such as wastewater and sewage by a standard activated sludge method, a blower for blowing air to a diffuser of the tank, and a reaction tank for the reaction tank. A flow meter provided near the sewage inlet and measuring the amount of raw water flowing into the reaction tank; a BOD sensor provided near the sewage inlet and measuring the BOD amount of raw water flowing into the reaction tank; Total and BOD
A control device that takes in the measured values of the sensor and controls the air blowing from the blower to the air diffuser;
Processing of the raw water flowing into the more reactive tank to the product of the means for calculating the difference between the index value of the raw water stains, and the measured value of the index value and the flowmeter between the measured value and the target treated water BOD value of the sensor
Air flow required for the denitrification and nitrification and the flow meter
Necessary for maintaining the dissolved oxygen level in the reaction tank by multiplying the measured value
Calculate the appropriate air flow and add the two products to obtain the target value of the aeration air volume.
Means for calculating a target air volume of Te, provided with means for controlling the blowing amount of the blower in accordance with the target air volume.

【0028】したがって、反応タンクに流入する原水の
BOD量,流入量がBODセンサ,流量計により計測さ
れ、これらの計測値が制御装置に取込まれる。
Therefore, the BOD amount and the inflow amount of the raw water flowing into the reaction tank are measured by the BOD sensor and the flow meter, and these measured values are taken into the control device.

【0029】そして、この制御装置において、BODセ
ンサの計測値と目標処理水BOD値との差から原水の汚
れの指標値が算出されて求められ、さらに、この指標値
と流量計の計測値との積に、脱窒及び硝化の係数と原水
の流入量との積が加算されて、原水の汚れの程度と流入
量とを考慮した反応タンクの曝気に必要な送風量が目標
値として求められる。
[0029] In this control system, a demand is calculated index value of the raw water in the soil from the difference between the measured value and the target treated water BOD value of BOD sensor further comprises a measurement value of the index value and the flowmeter , The coefficient of denitrification and nitrification and raw water
The product of the flow rate and the flow rate of the raw water is added to obtain a target airflow rate required for aeration of the reaction tank in consideration of the degree of contamination of the raw water and the flow rate.

【0030】さらに、この目標風量にしたがって送風機
から反応タンクの散気装置への送風量が制御される。
Further, the amount of air blown from the blower to the air diffuser of the reaction tank is controlled in accordance with the target air amount.

【0031】そのため、請求項1の汚水処理方法を実現
する具体的な汚水処理装置を提供することができる。
Therefore, it is possible to provide a concrete sewage treatment apparatus for realizing the sewage treatment method of the first aspect.

【0032】つぎに、請求項3の汚水処理装置は、請求
項2の汚水処理装置において、反応タンクから後段の最
終沈殿池に沈殿した汚泥の一部を生物処理槽に戻す返送
汚泥ポンプと、汚泥の余剰量を前記最終沈殿池から引抜
いて排出する余剰汚泥ポンプと、BODセンサの計測値
に基づき反応タンクに流入する原水の汚れの状態に応じ
て両ポンプの制御の目標値を演算し,両ポンプの運転を
送風機から反応タンクへの送風量に連系して制御する手
段とを備える。
Next, a sewage treatment apparatus according to a third aspect of the present invention is the sewage treatment apparatus according to the second aspect, wherein a return sludge pump for returning a part of the sludge settled from the reaction tank to the final sedimentation basin in the subsequent stage to the biological treatment tank; A surplus sludge pump for extracting the surplus amount of sludge from the final sedimentation basin and discharging the same, and a target value for control of both pumps in accordance with the state of contamination of raw water flowing into the reaction tank based on the measurement value of the BOD sensor, Means for controlling the operation of both pumps in connection with the amount of air blown from the blower to the reaction tank.

【0033】したがって、返送汚泥ポンプ,余剰汚泥ポ
ンプの運転が送風機の送風量に連系して制御され、返送
汚泥,余剰汚泥の処理の制御が反応タンクに流入する原
水の汚れの状態(程度)に応じた最適な制御になり、よ
り一層効果的な汚水処理が行える。
Therefore, the operation of the return sludge pump and the excess sludge pump is controlled in connection with the amount of air blown by the blower, and the control of the processing of the return sludge and the excess sludge controls the state (degree) of the contamination of the raw water flowing into the reaction tank. Optimum control according to the conditions, and more effective sewage treatment can be performed.

【0034】そして、反応タンクに流入する原水の汚れ
の状態が時々刻々変化することから、送風機及び返送汚
泥ポンプ,余剰汚泥ポンプの運転を時々刻々のBODセ
ンサの計測値に基づき、リアルタイムに同時にオンライ
ン制御することが好ましい。
Since the state of contamination of the raw water flowing into the reaction tank changes every moment, the operation of the blower, the return sludge pump, and the excess sludge pump is simultaneously online in real time based on the measurement values of the BOD sensor every moment. It is preferable to control.

【0035】[0035]

【発明の実施の形態】本発明の実施の1形態について、
図1及び図2を参照して説明する。図1において、図3
と同一符号は同一もしくは相当するものを示し、最初沈
殿池の原水が流入する反応タンク2の汚水流入口付近に
流量計1及びBODセンサ14が設けられ、流量計1は
反応タンク2に流入する原水の流入量を計測し、BOD
セン14は反応タンク2に流入する原水のBOD値を計
測する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described.
This will be described with reference to FIGS. In FIG. 1, FIG.
The same reference numerals denote the same or corresponding components, and a flow meter 1 and a BOD sensor 14 are provided near the sewage inlet of the reaction tank 2 into which raw water of the sedimentation basin flows, and the flow meter 1 flows into the reaction tank 2. Measure the inflow of raw water and BOD
Sen 14 measures the BOD value of the raw water flowing into reaction tank 2.

【0036】そして、流量計1の流入量及びBODセン
サ14のBOD量の時々刻々の計測値の信号は、例えば
下水処理場の電気室に設けられたコンピュータ構成の制
御装置15の演算部16に取込まれる。
The signals of the momentarily measured values of the inflow amount of the flow meter 1 and the BOD amount of the BOD sensor 14 are sent to an arithmetic unit 16 of a control unit 15 of a computer provided in, for example, an electric room of a sewage treatment plant. Taken in.

【0037】この演算部16は流量計1の流入量,BO
Dセンサ14のBOD量の計測値の信号の他、光学式の
MLSS(Mixed Liquor Suspended Solid)計17によ
り計測された反応タンク2の活性汚泥濃度の計測値の信
号や流入ケルダール性窒素,流入硝酸態窒素,余剰汚泥
濃度,DO値,水温等の反応タンク2の各種のプロセス
量の計測値の信号も必要に応じて取込む。
The operation unit 16 calculates the inflow amount of the flow meter 1,
In addition to the signal of the measured value of the BOD amount of the D sensor 14, the signal of the measured value of the activated sludge concentration of the reaction tank 2 measured by an optical MLSS (Mixed Liquor Suspended Solid) meter 17, the Kjeldahl nitrogen, and nitric acid inflow Signals of measured values of various process amounts of the reaction tank 2 such as nitrogen gas, excess sludge concentration, DO value, and water temperature are also taken in as needed.

【0038】そして、演算部16はソフトウェア処理に
より、つぎの(i),〜(iii) の手段を備える。
The operation unit 16 includes the following means (i) and (iii) by software processing.

【0039】(i)BODセンサ14の計測値と目標処
理水BOD値との差から反応タンク2に流入する原水の
汚れの指標値を算出する手段 (ii)算出した汚れの指標値と流量計の計測値との積
、脱窒及び硝化の係数と流量計1の計測値との積を加
算して反応タンク2の曝気風量の目標値としての目標風
を算出する手段 (iii) BODセンサ14の計測値に基づく補正を加え
て返送汚泥ポンプ10,余剰汚泥ポンプ12それぞれの
運転制御の目標値を算出する手段
(I) Means for calculating an index value of the contamination of raw water flowing into the reaction tank 2 from the difference between the measured value of the BOD sensor 14 and the BOD value of the target treated water (ii) The calculated index value of the contamination and the flow meter the product of the first measured value, the product of the coefficient and the flow meter 1 of the measurement values of denitrification and nitrification pressure
Calculated to target air as the target value of the aeration amount of the reaction tank 2
Means for calculating amount (iii) Means for calculating target values for operation control of return sludge pump 10 and surplus sludge pump 12 by adding correction based on the measurement value of BOD sensor 14

【0040】すなわち、この実施の形態にあっては、送
風機5の送風量を反応タンク2に流入する原水の時々刻
々の汚れの程度及び流入量を考慮してオンライン制御
し、さらに、ポンプ10,12の運転を送風機5の送風
量の制御に連系して制御するため、流量計1,BODセ
ンサ14の計測結果を用いて、送風機5及びポンプ1
0,12の運転制御の目標値をリアルタイムに同時に演
算して決定することをくり返す。
That is, in this embodiment, the amount of air blown by the blower 5 is controlled on-line in consideration of the degree of contamination of the raw water flowing into the reaction tank 2 from time to time and the amount of flow. In order to control the operation of the blower 12 in connection with the control of the blowing amount of the blower 5, the blower 5 and the pump 1 are measured using the measurement results of the flow meter 1, the BOD sensor 14, and the like.
It is repeated to simultaneously calculate and determine the target values of the operation control of 0 and 12 in real time.

【0041】つぎに、演算部16による各目標値の演算
について説明する。まず、送風機5の曝気風量の目標値
としての目標風量の演算について説明する。反応タンク
2内の活性汚泥の最適な曝気風量が反応タンク2に流入
する汚水の汚れの程度と流入量とに依存することから、
送風機5の運転制御の目標値としての目標風量(設定風
量)をGs *〔Nm3 /h〕とすると、この目標風量Gs *
をつぎの数1の式によって算出する。なお、Nはノルマ
ル,hは時間である(以下同じ)。
Next, the calculation of each target value by the calculation unit 16 will be described. First, the target value of the aeration air volume of the blower 5
The calculation of the target air volume as described above will be described. Since the optimal aeration air volume of the activated sludge in the reaction tank 2 depends on the degree of contamination of the sewage flowing into the reaction tank 2 and the inflow amount,
Assuming that a target air flow (set air flow) as a target value for operation control of the blower 5 is G s * [Nm 3 / h], the target air flow G s *
Is calculated by the following equation (1). Note that N is normal and h is time (the same applies hereinafter).

【0042】[0042]

【数1】Gs *=a・(S−S*)・Qi+b・Qi+c[Number 1] G s * = a · (S -S *) · Q i + b · Q i + c

【0043】この数1の式において、SはBODセンサ
14の計測値(計測流入BOD値)〔mgBOD/L〕、
* は予め設定されたBOD量の基準値(目標処理水B
OD値)〔mgBOD/L〕、Qiは流量計1の計測値
(計測流入量)〔m3/h〕である。なお、mgはミリグ
ラム、Lはリットルである(以下同じ)。
In the equation (1), S is a measured value of the BOD sensor 14 (measured inflow BOD value) [mgBOD / L],
S * is a preset BOD amount reference value (target treated water B
OD value) [mgBOD / L], Q i is the flow meter 1 of the measurement value (measurement inflow) [m 3 / h]. Note that mg is milligram and L is liter (the same applies hereinafter).

【0044】また、式中のa,b,cはそれぞれ係数で
あり、具体的には、係数aはa=A・αoのBOD除去
の係数を示し、Aは除去BOD当りに必要な酸素量〔g
2/gBOD〕であり、αo は風量に変換するための
係数(風量変換係数)であり、gはグラムである(以下
同じ)。
[0044] Also, a in the formula, b, c are each coefficient, specifically, coefficient a represents a coefficient of BOD removal of a = A · α o, A that is required per remove BOD oxygen Amount [g
O 2 / gBOD], α o is a coefficient for converting to air volume (air volume conversion coefficient), and g is gram (the same applies hereinafter).

【0045】係数bは脱窒及び硝化の係数であり、b=
βc・(KNin−KNout *)−γc・(DNin−D
out *)+δcであり、βcは硝化の係数、KNinは流入
ケルダール性窒素の計測値〔mgN/L〕、KNout *は流
出ケルダール性窒素の設定値〔mgN/L〕、γc は脱窒
の係数、DNinは流入硝酸態窒素の計測値〔mgN/
L〕、DNout *は流出硝酸態窒素の設定値〔mgN/
L〕、δcはδc=DO*・αoの流出DOの係数であり、
DO*は反応タンク2の流出DOの設定値〔mgO2/L〕
である。
The coefficient b is a coefficient for denitrification and nitrification.
β c · (KN in -KN out * )-γ c · (DN in -D
An N out *) + δ c, the coefficient of beta c nitrification, KN in the measurement value of the inlet Kjeldahl nitrogen [mgN / L], KN out * set value of outflow Kjeldahl nitrogen [mgN / L], gamma c is a denitrification coefficient, and DN in is a measured value of inflowing nitrate nitrogen [mgN /
L], DN out * is the set value of the outflow nitrate nitrogen [mgN /
L], δ c is a coefficient of outflow DO of δ c = DO * · α o ,
DO * is the set value of the outflow DO of the reaction tank 2 [mgO 2 / L]
It is.

【0046】そして、数1の式の第1項は反応タンク2
に流入する原水の汚れの程度と流入量との積であり、流
入する汚水の処理に必要な送風量を示し、第2項は硝化
と反応タンク2の処理水の溶存酸素量維持に必要な送風
量を示し、第3項はMLSS計17の計測値等に基づく
反応タンク2の活性汚泥の内生呼吸に必要な送風量を示
し、数1の式により反応タンク2に流入する汚水の汚れ
の程度及び流入量を考慮した送風機5の最適な送風量の
目標値が求まる。
The first term of the equation (1) is the reaction tank 2
Is the product of the degree of contamination of the raw water flowing into the tank and the amount of flow, and indicates the amount of air required for the treatment of the flowing wastewater. The second term is required for nitrification and for maintaining the dissolved oxygen amount of the treated water in the reaction tank 2. The third term indicates the amount of air required for endogenous respiration of the activated sludge in the reaction tank 2 based on the measurement value of the MLSS meter 17 and the like, and the third term indicates the contamination of the sewage flowing into the reaction tank 2 according to the equation (1). The optimum value of the airflow of the blower 5 is determined in consideration of the degree of the airflow and the inflow amount.

【0047】つぎに、返送汚泥ポンプ10の制御の目標
値の演算について説明する。返送汚泥ポンプ10により
最終沈殿池3から反応タンク2に返送する最適な汚泥量
が、反応タンク2に流入する原水の状態によって変化
し、送風機5の風量と関連を有することから、返送汚泥
ポンプ10の汚泥の目標返送量(設定返送量)をQ
r *〔m3/h〕とすると、この目標返送量Qr * をつぎの
数2の式によって算出する。
Next, the calculation of the target value for the control of the return sludge pump 10 will be described. Since the optimal amount of sludge returned from the final sedimentation tank 3 to the reaction tank 2 by the return sludge pump 10 changes depending on the state of the raw water flowing into the reaction tank 2 and is related to the air volume of the blower 5, the return sludge pump 10 Target sludge return amount (set return amount)
Assuming that r * [m 3 / h], the target return amount Q r * is calculated by the following equation (2).

【0048】[0048]

【数2】Qr *={1/(Xr/XA *−1)}・Qi={1
/(Xr/d・(S−S*)−1)}・Qi
[Number 2] Q r * = {1 / ( X r / X A * -1)} · Q i = {1
/ (X r / d · (S−S * ) − 1)} · Qi

【0049】この数2の式において、Xr は流量計11
の計測値(計測返送汚泥量)に基づくポンプ10の返送
汚泥濃度の計測値〔mgSS/L〕であり、XA *は反応タ
ンク2の活性汚泥濃度の目標値〔mgSS/L〕である。
In the equation (2), Xr is the flow meter 11
A measurement value measured value of the return sludge concentration of the pump 10 based on the (measured return sludge amount) [MGSS / L], X A * is the target value of the concentration of activated sludge in the reaction tank 2 [MGSS / L].

【0050】また、dはd=(1+Ks/S*)/k・θ
の係数であり、Ks は基質摂取の半飽和定数〔mgBOD
/L〕、kは最大基質利用速度〔1/h〕、θはθ=V
/Q i で示される反応タンク2のHRT〔h〕であり、
Vは反応タンク2の容量〔m 3〕 である。
D is d = (1 + Ks/ S*) / K ・ θ
Is the coefficient of KsIs the half-saturation constant of substrate intake [mgBOD
/ L], k is the maximum substrate utilization rate [1 / h], θ is θ = V
/ Q iHRT [h] of the reaction tank 2 indicated by
V is the capacity of the reaction tank 2 [m Three].

【0051】そして、目標値XA *が反応タンク2に流入
する原水の汚れの程度と流入量との積にしたがって変化
し、反応タンク2に流入する原水の汚れの程度に応じて
補正されることから、数2の式により原水の汚れの程度
を考慮し、送風機5から反応タンク2への送風量と連系
した最適な返送汚泥量の目標値が算出される。
The target value X A * changes according to the product of the degree of contamination of the raw water flowing into the reaction tank 2 and the amount of inflow, and is corrected in accordance with the degree of contamination of the raw water flowing into the reaction tank 2. Therefore, the target value of the optimal amount of returned sludge linked to the amount of air blown from the blower 5 to the reaction tank 2 is calculated in consideration of the degree of contamination of the raw water by the equation (2).

【0052】つぎに、余剰汚泥ポンプ12の制御の目標
値の演算について説明する。最終沈殿池3から引抜いて
排出する余剰汚泥量は、返送汚泥量及び最終沈殿池3か
ら放流する処理水のBOD値の制限によって定まること
から、余剰汚泥ポンプ12の制御の目標値としての余剰
汚泥引抜量(目標引抜量)をMw *〔g/h〕とすると、
この目標引抜量Mw *をつぎの数3の式によって算出す
る。
Next, the calculation of the target value for the control of the surplus sludge pump 12 will be described. The amount of surplus sludge withdrawn from the final sedimentation basin 3 is determined by the amount of returned sludge and the BOD value of the treated water discharged from the final sedimentation basin 3, so that the excess sludge as a target value for control of the surplus sludge pump 12 is used. Assuming that the drawing amount (target drawing amount) is M w * [g / h],
This target withdrawal amount M w * is calculated by the following equation (3).

【0053】[0053]

【数3】Mw *=V・Xav/θ*−Qiav・Xε=V・Xav
/〔1/{e・S*/(f+S*)−g}〕−Qiav・X
ε
[ Equation 3] M w * = V · X av / θ * −Q iav · Xε = V · X av
/ [1 / {e · S * / (f + S *) -g} ] - Q iav · X
ε

【0054】この数3の式において、XavはMLSS計
17の計測値の例えば5日間の平均値〔mgSS/L〕、
θ*は汚泥の系内滞留時間SRT〔h〕、Qiavは反応タ
ンク2の原水流入量の例えば5日間の平均値〔m3
h〕、Xεは最終沈殿池3から放流される処理水に含む
ことが許される浮遊物質(SS)の設定量〔mgSS/
L〕である。
[0054] In this equation (3), X av is the average value of for example 5 days of the measurement values of MLSS meter 17 [MGSS / L]
θ * is the sludge residence time SRT [h] in the system, and Q iav is the average value of raw water inflow into the reaction tank 2 for, for example, 5 days [m 3 /
h], Xε is the set amount of suspended solids (SS) [mgSS /
L].

【0055】また、同式中のe,f,gはそれぞれ係数
であり、具体的には、係数eは汚泥収率Y〔mgSS/mg
BOD〕と最大基質利用速度k〔1/h〕との積Y・k
であり、fは基質摂取の半飽和定数Ks 〔mgBOD/
L〕であり、gは自己分解係数kd〔1/h〕である。
Further, e, f, and g in the above equation are coefficients, and specifically, the coefficient e is a sludge yield Y [mgSS / mg
BOD] and the maximum substrate utilization rate k [1 / h] Y · k
And f is the half-saturation constant K s [mgBOD /
L], and g is a self-decomposition coefficient k d [1 / h].

【0056】ところで、前記の各目標値の演算は、流量
計1,BODセンサ14の最新の計測結果に基づき、例
えば1〜30分の設定された制御周期毎にリアルタイム
に同時に実行され、反応タンク2に流入する原水の時々
刻々の変化に応じて更新される。
The calculation of each target value is simultaneously executed in real time at a set control cycle of, for example, 1 to 30 minutes based on the latest measurement results of the flow meter 1 and the BOD sensor 14. 2 is updated in accordance with the moment-to-moment change of the raw water flowing into the tank.

【0057】また、前記数1〜数3の式の係数a〜gに
おいて、反応タンク2に流入する原水の状態等によって
変化しない制御パラメータ,すなわち酸素量A,係数α
o ,βc,γc,δc,kd,定数Ks ,反応速度k,汚泥
収率Y等については、例えばニュートラルネットワーク
等を用いたパラメータ決定演算により、過去の実績等を
考慮して任意の時に人の操作により最適値に決定され
る。
Further, in the coefficients a to g in the equations (1) to (3), control parameters which do not change depending on the state of the raw water flowing into the reaction tank 2 and the like, that is, the oxygen amount A and the coefficient α
With respect to o , β c , γ c , δ c , k d , constant K s , reaction rate k, sludge yield Y, etc., the past results are taken into account by, for example, a parameter determination calculation using a neutral network or the like. The optimum value is determined at any time by human operation.

【0058】そして、目標風量Gs *,目標返送量Qr *
目標引抜量Mw *が制御の目標値SV1,SV2,SV3
として制御装置15のPIDコントローラ18,19,
20に供給される。
Then, the target air volume G s * , the target return volume Q r * ,
The target withdrawal amount M w * is the control target value SV1, SV2, SV3.
The PID controllers 18, 19 of the control device 15
20.

【0059】このとき、PIDコントローラ18は風量
計6の計測値をPV1とし、計測値PV1が目標値SV
1に維持されるように送風機5の送風量制御の操作量M
V1を設定し、送風機5から散気装置4に供給する風量
を目標風量Gs *に制御し、送風機5から反応タンク2へ
の曝気用の送風量を反応タンク2に流入する原水の質と
流入量との積に基づき、原水の流入量だけでなく、その
汚れの程度をも考慮した最適送量に制御する。
At this time, the PID controller 18 sets the measured value of the air flow meter 6 to PV1, and sets the measured value PV1 to the target value SV.
The operation amount M of the blower amount control of the blower 5 so as to be maintained at 1
V1 is set, the air flow supplied from the blower 5 to the diffuser 4 is controlled to the target air flow G s * , and the air flow for aeration from the blower 5 to the reaction tank 2 is determined by the quality of the raw water flowing into the reaction tank 2. Based on the product of the inflow and the amount of inflow, control is made to an optimum amount of delivery in consideration of not only the inflow of raw water but also the degree of contamination.

【0060】したがって、目標風量Gs *を従来制御の目
標値のように必要以上に大きく設定する必要がなく、無
駄な送風による過剰曝気を防止して省エネルギ化を図る
ことができる。
Therefore, it is not necessary to set the target air flow rate G s * to a value larger than necessary like the target value of the conventional control, and it is possible to prevent excessive aeration due to useless blowing and to save energy.

【0061】また、PIDコントローラ19,20は流
量計11,13の計測値をPV2,PV3とし、計測値
PV2,PV3が目標値SV2,SV3に維持されるよ
うにポンプ10,12の運転の操作量MV2,MV3を
設定し、ポンプ10による返送汚泥量,ポンプ12によ
る引抜汚泥量を目標返送量Qr *,目標引抜量Mw *に制御
する。
The PID controllers 19 and 20 use the measured values of the flow meters 11 and 13 as PV2 and PV3, and operate the pumps 10 and 12 so that the measured values PV2 and PV3 are maintained at the target values SV2 and SV3. The amounts MV2 and MV3 are set, and the amount of sludge returned by the pump 10 and the amount of sludge withdrawn by the pump 12 are controlled to the target return amount Qr * and the target withdrawal amount Mw * .

【0062】そして、目標返送量Qr *,目標引抜量Mw *
が反応タンク2に流入する原水の汚れの質を考慮して設
定され、反応タンク2に流入する原水の汚れの質,流入
量により、送風機5の送風量だけでなく、ポンプ10の
返送汚泥量,ポンプ12の引抜汚泥量が定まることか
ら、送風機5の送風量に連系してポンプ10,12が運
転され、返送汚泥量,引抜汚泥量についてもそれぞれ最
適量に制御することができる。
Then, the target return amount Q r * and the target withdrawal amount M w *
Is set in consideration of the quality of the dirt of the raw water flowing into the reaction tank 2. Depending on the quality of the dirt and the amount of the raw water flowing into the reaction tank 2, not only the amount of air blown by the blower 5 but also the amount of sludge returned by the pump 10 Since the amount of the extracted sludge of the pump 12 is determined, the pumps 10 and 12 are operated in connection with the amount of the air blown by the blower 5, and the amount of the returned sludge and the amount of the extracted sludge can be controlled to the optimum amounts.

【0063】そのため、最終沈殿池3から放流される処
理水の水質が反応タンク2に流入する原水の状態によら
ず、極めて安定して目標水質に保たれ、省エネルギ化を
図って水質基準を遵守した効率的で優れた汚水処理を実
現できる。
Therefore, the quality of the treated water discharged from the final sedimentation basin 3 is maintained very stably at the target water quality regardless of the state of the raw water flowing into the reaction tank 2, and the water quality standard is set for energy saving. Efficient and excellent wastewater treatment that complies with the requirements can be realized.

【0064】そして、図1の本発明の汚水処理に基づい
て最終沈殿池3から放流される処理水と、図3の従来の
汚水処理に基づいて最終沈殿池3から放流される処理水
とにつき、BOD量の経時変化を特徴的に示すと、図2
のようになる。
The treated water discharged from the final sedimentation basin 3 based on the sewage treatment of the present invention shown in FIG. 1 and the treated water discharged from the final sedimentation basin 3 based on the conventional sewage treatment shown in FIG. And the change over time of the BOD amount are shown in FIG.
become that way.

【0065】図2において、実線は本発明の処理水の
BOD量の変化(BOD変化)を示し、実線は従来の
処理水のBOD量の変化(BOD変化)を示す。
In FIG. 2, the solid line indicates a change in the BOD amount of the treated water of the present invention (BOD change), and the solid line indicates a change in the BOD amount of the conventional treated water (BOD change).

【0066】また、図中の実線イは本発明の制御の目標
水質を示し、実線ロは従来の制御の目標水質を示す。
The solid line A in the figure indicates the target water quality of the control of the present invention, and the solid line B indicates the target water quality of the conventional control.

【0067】そして、図2からも明らかなように、従来
の汚水処理にあっては、反応タンク2に流入する原水の
汚れの程度を考慮しないため、原水の汚れの程度及び流
入量の変化による処理水の水質変化が大きく、水質基準
に適合するようにその制御の目標水質を実線ロのように
予め高く(BOD量としては低く)設定(結果的に反応
タンク2を過剰曝気状態に)する必要があるが、本発明
の汚水処理にあっては、反応タンク2に流入する原水の
汚れの程度も考慮して制御し、しかも、その制御をリア
ルタイムに行うため、原水の汚れの程度及び流入量の変
化に対する処理水の水質変化が小さく、その制御の目標
水質を実線イのように従来より低く(BOD値としては
高く)設定して反応タンク2の過剰曝気を抑えるように
しても、処理水は水質基準を十分に満足する。
As is apparent from FIG. 2, in the conventional sewage treatment, the degree of contamination of the raw water flowing into the reaction tank 2 is not taken into consideration, so that the degree of contamination of the raw water and the change in the amount of inflow are not considered. The water quality change of the treated water is large, and the target water quality of the control is set to a high value (low as the BOD amount) in advance as shown by a solid line B (consequently, the reaction tank 2 is over-aerated) so as to conform to the water quality standard. Although it is necessary, in the sewage treatment of the present invention, the control is performed in consideration of the degree of contamination of the raw water flowing into the reaction tank 2, and the control is performed in real time. Even if the change in the water quality of the treated water with respect to the change in the amount is small and the target water quality of the control is set lower than the conventional one (higher as the BOD value) as shown by the solid line A, the excess aeration of the reaction tank 2 is suppressed. Water is Enough to satisfy the quality criteria.

【0068】ところで、この種汚水処理にあっては、送
風機5の運転エネルギが極めて大きいことから、省エネ
ルギ化に最も寄与するのは送風機5の運転エネルギの低
減である。
In this type of sewage treatment, since the operating energy of the blower 5 is extremely large, the most contributing to energy saving is a reduction in the operating energy of the blower 5.

【0069】したがって、最も簡単には演算部16によ
り目標風量Gs *のみを算出し、この目標風量Gs *により
送風機5の送風量のみを反応タンク2に流入する原水の
汚れの程度及び流入量を考慮して制御してもよい。
Therefore, in the simplest case, only the target air volume G s * is calculated by the calculation unit 16, and only the air volume of the blower 5 is determined based on the target air volume G s *. The control may be performed in consideration of the amount.

【0070】また、演算部16による目標風量Gs *,目
標返送量Qr *,目標引抜量Mw * の演算手法が前記実施の
形態と異なっていてもよく、例えば数1〜数3の各式の
係数の決定を、ニュートラルネットワーク等を用いたパ
ラメータ決定演算でなく、適当な代数式による数値演算
で行うようにしてもよい。
[0070] Further, the target air volume by the operation unit 16 G s *, the target return amount Q r *, may be the target extraction amount M w * of computation techniques different from the above embodiment, for example, several to several 3 The determination of the coefficients of the above equations may be performed not by a parameter determination operation using a neutral network or the like but by a numerical operation using an appropriate algebraic expression.

【0071】さらに、送風機5,ポンプ10、12は、
それぞれ1台又は複数台であってよいのは勿論である。
そして、標準活性汚泥法の種々の汚水処理に適用するこ
とができる。
Further, the blower 5, the pumps 10, 12 are
Needless to say, one or more units may be used.
And it can be applied to various sewage treatments of the standard activated sludge method.

【0072】[0072]

【発明の効果】本発明は、以下に記載する効果を奏す
る。まず、請求項1の場合は、生物処理槽(反応タンク
2)に流入する汚水(原水)のBOD量の計測値から原
水の汚れの程度を示す指標値が算出され、この指標値と
原水の流入量の計測値との積により反応タンク2に流入
する原水の処理に必要な送風量を求め、脱窒及び硝化の
係数と原水の流入量の計測値との積により硝化及び反応
タンク2の溶存酸素量維持に必要な送風量を求め、両積
を加算して原水の汚れの程度と流入量とを考慮した反応
タンク2の曝気に必要な送風量の目標値を、目標風量と
して求めることができる。
The present invention has the following effects. First, in the case of claim 1, an index value indicating the degree of contamination of the raw water is calculated from the measured value of the BOD amount of the sewage (raw water) flowing into the biological treatment tank (reaction tank 2). Flow into the reaction tank 2 by multiplying the measured flow rate by the flow rate
The amount of air required for the treatment of raw water
Nitrification and reaction by product of coefficient and raw water inflow measurement
Find the amount of air required to maintain the dissolved oxygen level in tank 2 and calculate
The target value of the air volume required for aeration of the reaction tank 2 in consideration of the degree of contamination of the raw water and the inflow amount is calculated as the target air volume.
It is possible to determined.

【0073】そして、この目標風量にしたがって、送風
機5から反応タンク2への送風量が制御されるため、原
水の流入量だけでなく、その汚れの程度をも考慮し
応タンク2の最適な曝気を行うことができる。
[0073] Then, according to the target air volume, since the air volume from the blower 5 to the reaction tank 2 is controlled, not only the inflow of the raw water, anti <br/> response by considering the degree of soiling Optimal aeration of the tank 2 can be performed.

【0074】その、原水の流入量のみを考慮した従来
処理法の場合のように曝気風量必要以上に多くなら
、無駄な送風による過剰曝気を防止し、省エネルギ化
を図って効果的な標準活性汚泥法の汚水処理を行うこと
ができる。
[0074] At this time, if the aeration amount is more than necessary in many such cases the conventional processing method considering only inflow of raw water
In addition , it is possible to prevent excessive aeration due to useless air blowing, save energy, and perform effective wastewater treatment using the standard activated sludge method .

【0075】つぎに、請求項2の場合は、反応タンクに
流入する原水のBOD量,流入量がBODセンサ14,
流量計1により計測され、これらの計測値が制御装置1
5に取込まれる。
Next, in the case of claim 2, the BOD amount and the inflow amount of the raw water flowing into the reaction tank are determined by the BOD sensor 14,
The flow rate is measured by the flow meter 1 and these measured values are
5 is taken.

【0076】そして、この制御装置15において、BO
Dセンサ14の計測値と目標処理水BOD値との差から
原水の汚れの指標値が算出されて求められ、この指標値
と流量計1の計測値との積に、脱窒及び硝化の係数と流
量計1の計測値との積を加算することにより原水の汚れ
の程度と流入量とを考慮した反応タンク2の曝気に必要
な送風量を目標値として求めることができる。
Then, in this control device 15, BO
From the difference between the measurement value of the D sensor 14 and the target treated water BOD value, an index value of the contamination of the raw water is calculated and obtained. The product of this index value and the measurement value of the flow meter 1 is a coefficient of denitrification and nitrification. And flow
By adding the product of the measurement values of the meter 1, it is possible to obtain, as a target value, the amount of air required for aeration of the reaction tank 2 in consideration of the degree of contamination of raw water and the amount of inflow.

【0077】さらに、この目標値にしたがって送風機5
から反応タンク2の散気装置4への送風量を制御するこ
とができる。
Further, according to the target value, the blower 5
Thus, the amount of air blown to the diffuser 4 of the reaction tank 2 can be controlled.

【0078】したがって、請求項1の汚水処理方法に基
づく汚水処理を実施する具体的な汚水処理装置を提供す
ることができる。
Therefore, it is possible to provide a concrete sewage treatment apparatus for performing sewage treatment based on the sewage treatment method of claim 1.

【0079】つぎに、請求項3の場合は、返送汚泥ポン
プ10,余剰汚泥ポンプ12の運転を送風機5の送風量
に連系して制御することができ、返送汚泥,余剰汚泥の
処理の制御を反応タンク2に流入する原水の汚れの状態
(程度)に応じた最適な制御にすることができ、請求項
2の場合より一層効果的な汚水処理を行うことができる
汚水処理装置を提供することができる。
Next, in the case of the third aspect, the operation of the return sludge pump 10 and the excess sludge pump 12 can be controlled in connection with the amount of air blown by the blower 5, and the control of the processing of the return sludge and the excess sludge can be performed. The present invention provides a sewage treatment apparatus capable of performing optimal control according to the state (degree) of contamination of raw water flowing into the reaction tank 2 and performing more effective sewage treatment than the case of claim 2. be able to.

【0080】つぎに、請求項4の場合は、送風機5及び
返送汚泥ポンプ10,余剰汚泥ポンプ12の運転を時々
刻々のBODセンサ14の計測値に基づき、リアルタイ
ムに同時にオンライン制御することにより、反応タンク
2に流入する原水の変化に対して処理水の水質が極めて
安定になり、省エネルギ化を図って効果的かつ安定に汚
水処理を行うことができる実用的な汚水処理装置を提供
することができる。
Next, in the case of claim 4, the operation of the blower 5, the return sludge pump 10, and the excess sludge pump 12 is simultaneously controlled in real time on-line based on the instantaneously measured values of the BOD sensor 14, thereby realizing a reaction. It becomes quality of treated water is extremely stable against changes in raw water flowing into the tank 2, to provide a practical sewage treatment apparatus capable of performing an effective and stable sewage work to energy saving Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態の装置構成を示したブロ
ック図である。
FIG. 1 is a block diagram showing an apparatus configuration according to an embodiment of the present invention.

【図2】処理水のBOD量の変化例を示した特性図であ
る。
FIG. 2 is a characteristic diagram showing an example of a change in the BOD amount of treated water.

【図3】従来例の装置構成を示したブロック図である。FIG. 3 is a block diagram showing a device configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1,11,13 流量計 2 生物処理槽(反応タンク) 3 最終沈殿池 5 送風機 10 返送汚泥ポンプ 12 余剰汚泥ポンプ 14 BODセンサ 15 制御装置 1, 11, 13 Flow meter 2 Biological treatment tank (reaction tank) 3 Final sedimentation tank 5 Blower 10 Return sludge pump 12 Excess sludge pump 14 BOD sensor 15 Control device

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 標準活性汚泥法により排水,下水等の汚
水を処理する生物処理槽に流入する前記汚水の流入量及
びBOD量を計測し、 前記BOD量の計測値と目標処理水BOD値との差を前
記汚水の汚れの指標値として算出し、 前記指標値と前記流入量の計測値との積により前記生物
処理槽に流入する汚水の処理に必要な送風量を求め、 脱窒及び硝化の係数と前記流入量の計測値との積により
硝化及び前記生物処理槽の溶存酸素量維持に必要な送風
量を求め、 前記両積を加算して曝気風量の目標値としての目標風量
を算出し、 前記目標風量にしたがって送風機から前記生物処理槽へ
の送風量を制御することを特徴とする汚水処理方法。
An inflow amount and a BOD amount of the wastewater flowing into a biological treatment tank for treating wastewater such as wastewater and sewage are measured by a standard activated sludge method, and the measured value of the BOD amount and a target treated water BOD value are measured. the calculated difference as an index value of contamination of the wastewater, and more the organism to the product of the measured value of the index value and the flow rate
The amount of air required for the treatment of sewage flowing into the treatment tank is determined, and the product of the coefficient of denitrification and nitrification and the measured value of the amount of inflow is obtained.
Nitrogenation and ventilation required to maintain dissolved oxygen in the biological treatment tank
Determine the amount, the by adding the two products and calculates a target air amount as a target value of the aeration air quantity, sewage treatment method characterized by controlling the air volume from the blower to the biological treatment tank according to the target air volume .
【請求項2】 標準活性汚泥法により排水,下水等の汚
水を処理する生物処理槽と、 前記生物処理槽の散気装置に送風する送風機と、 前記生物処理槽の汚水流入口付近に設けられ,前記生物
処理槽に流入する前記汚水の流入量を計測する流量計
と、 前記汚水流入口付近に設けられ,前記生物処理槽に流入
する前記汚水のBOD量を計測するBODセンサと、 前記流量計及び前記BODセンサの計測値を取込み,送
風機から前記散気装置への送風を制御する制御装置とを
備え、 前記制御装置に、 前記BODセンサの計測値と目標処理水BOD値との差
を前記汚水の汚れの指標値として算出する手段と、 前記指標値と前記流量計の計測値との積により前記生物
処理槽に流入する汚水の処理に必要な送風量を求め,脱
窒及び硝化の係数と前記流量計の計測値との積により前
記生物処理槽の溶存酸素量維持に必要な送風量を求め,
前記両積を加算して曝気風量の目標値としての目標風量
を算出する手段と、 前記目標風量にしたがって前記送風機の送風量を制御す
る手段とを設けたことを特徴とする汚水処理装置。
2. A biological treatment tank that treats wastewater such as wastewater and sewage by a standard activated sludge method, a blower that blows air to a diffuser of the biological treatment tank, and is provided near a sewage inlet of the biological treatment tank. A flow meter for measuring the amount of inflow of the sewage flowing into the biological treatment tank; a BOD sensor provided near the sewage inflow port for measuring a BOD amount of the sewage flowing into the biological treatment tank; And a control device for taking in the measurement values of the BOD sensor and the BOD sensor, and controlling the blowing of air from the blower to the air diffuser. The control device determines the difference between the measurement value of the BOD sensor and the target treated water BOD value. means for calculating as an index value of contamination of the wastewater, and more the organism to the product of the measured value of the index value and the flowmeter
Determine the amount of air required to treat the wastewater flowing into the treatment tank,
The product of the nitrogen and nitrification coefficients and the flow meter readings
The amount of air required to maintain the dissolved oxygen level in the biological treatment tank was determined,
Sewage, characterized in that said means for calculating a target air volume <br/> as the target value of the sum of both products aeration air quantity, and means of controlling the air volume of the blower according the target air volume provided Processing equipment.
【請求項3】 生物処理槽から後段の最終沈殿池に沈殿
した汚泥の一部を前記生物処理槽に戻す返送汚泥ポンプ
と、 前記汚泥の余剰量を前記最終沈殿池から引抜いて排出す
る余剰汚泥ポンプと、 BODセンサの計測値に基づき前記生物処理槽に流入す
る汚水の汚れの状態に応じて前記両ポンプの制御の目標
値を演算し,前記両ポンプの運転を送風機から前記生物
処理槽への送風量に連系して制御する手段とを備えたこ
とを特徴とする請求項2記載の汚水処理装置。
3. A return sludge pump for returning a part of the sludge settled from a biological treatment tank to a final sedimentation basin in a subsequent stage to the biological treatment tank, and excess sludge drawn out of the final sedimentation basin for discharging the surplus amount of the sludge from the final sedimentation pond. A pump and a target value for control of the two pumps are calculated in accordance with the state of contamination of the sewage flowing into the biological treatment tank based on the measurement values of the BOD sensor, and the operation of the two pumps is performed from the blower to the biological treatment tank. 3. A sewage treatment apparatus according to claim 2, further comprising: means for controlling the amount of air to be linked to the amount of air blown.
【請求項4】 送風機及び返送汚泥ポンプ,余剰汚泥ポ
ンプの運転を時々刻々のBODセンサの計測値に基づ
き、リアルタイムに同時にオンライン制御するようにし
たことを特徴とする請求項3記載の汚水処理装置。
4. The sewage treatment apparatus according to claim 3, wherein the operation of the blower, the return sludge pump, and the excess sludge pump is simultaneously controlled online in real time based on the measured value of the BOD sensor every moment. .
JP14156699A 1999-05-21 1999-05-21 Sewage treatment method and sewage treatment device Expired - Fee Related JP3214489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14156699A JP3214489B2 (en) 1999-05-21 1999-05-21 Sewage treatment method and sewage treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14156699A JP3214489B2 (en) 1999-05-21 1999-05-21 Sewage treatment method and sewage treatment device

Publications (2)

Publication Number Publication Date
JP2000325980A JP2000325980A (en) 2000-11-28
JP3214489B2 true JP3214489B2 (en) 2001-10-02

Family

ID=15294963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14156699A Expired - Fee Related JP3214489B2 (en) 1999-05-21 1999-05-21 Sewage treatment method and sewage treatment device

Country Status (1)

Country Link
JP (1) JP3214489B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4489990B2 (en) * 2001-04-25 2010-06-23 三菱電機株式会社 Biological water treatment equipment
JP4620391B2 (en) * 2004-06-28 2011-01-26 日本ヘルス工業株式会社 Sewage treatment equipment
JP5205750B2 (en) * 2006-12-11 2013-06-05 パナソニック株式会社 Aeration tank control method
JP5205760B2 (en) * 2007-01-10 2013-06-05 パナソニック株式会社 Aeration tank control method
CN101885538B (en) * 2009-05-15 2013-02-27 江西金达莱环保股份有限公司 Membrane bioreactor process for removing phosphorus without mud discharge
JP5775296B2 (en) * 2010-12-27 2015-09-09 株式会社ウォーターエージェンシー Operation support apparatus and operation support method for sewage treatment plant
JP5769188B2 (en) * 2011-01-31 2015-08-26 直幸 鈴木 Treatment method of liquid to be treated

Also Published As

Publication number Publication date
JP2000325980A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
JP4334317B2 (en) Sewage treatment system
JP3961835B2 (en) Sewage treatment plant water quality controller
CN104090488B (en) The method that sewage plant controls dissolved oxygen, sludge loading and sludge age in real time automatically
JP5775296B2 (en) Operation support apparatus and operation support method for sewage treatment plant
JP3525006B2 (en) Sewage treatment plant water quality control equipment
JP3214489B2 (en) Sewage treatment method and sewage treatment device
JP4008694B2 (en) Sewage treatment plant water quality controller
KR20220024245A (en) Integrated control system for sewage treatment plant
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP6805002B2 (en) Water treatment control device and water treatment system
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
KR100978706B1 (en) Apparatus for treating waste water
JP3707305B2 (en) Water treatment monitoring control method and apparatus
JP2020110747A (en) Water treatment system
JP2004188268A (en) Water quality monitoring/controlling apparatus and sewage treating system
JP3384951B2 (en) Biological water treatment method and equipment
JPH07136687A (en) Operation control method for modified active sludge circulation process in low water temperature period
JP4620391B2 (en) Sewage treatment equipment
WO1998003434A1 (en) Device for controlling dissolved oxygen concentration of aeration tank, device for controlling temperature of aeration tank, device for controlling flow rate of raw water for homogeneous-flow liquid surface, and wastewater treatment equipment used in activated sludge process
JP2003053375A (en) Device for controlling water quality
KR20030079435A (en) inner flow control system of apparatus for treating water
JP4248043B2 (en) Biological phosphorus removal equipment
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JP3460211B2 (en) Sewage treatment control device
JP2002307094A (en) Sewage treatment system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees