JP2002219481A - Equipment for controlling concentration of dissolved oxygen in aerating tank - Google Patents

Equipment for controlling concentration of dissolved oxygen in aerating tank

Info

Publication number
JP2002219481A
JP2002219481A JP19358196A JP19358196A JP2002219481A JP 2002219481 A JP2002219481 A JP 2002219481A JP 19358196 A JP19358196 A JP 19358196A JP 19358196 A JP19358196 A JP 19358196A JP 2002219481 A JP2002219481 A JP 2002219481A
Authority
JP
Japan
Prior art keywords
dissolved oxygen
oxygen
concentration
aeration tank
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19358196A
Other languages
Japanese (ja)
Inventor
Marvin Miller Randy
ランディ・マービン・ミラー
Akihito Uda
明史 宇田
Kazutoshi Itoyama
和年 糸山
Yoshiaki Yamamoto
義章 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP19358196A priority Critical patent/JP2002219481A/en
Priority to AU34630/97A priority patent/AU3463097A/en
Priority to PCT/JP1997/002514 priority patent/WO1998003434A1/en
Publication of JP2002219481A publication Critical patent/JP2002219481A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide equipment for controlling an aerating tank which can stabilize the concentration of dissolved oxygen in the aerating tank to provide stable treatment performance even if the quality of inflowing water changes, and a method for controlling the dissolved oxygen in the aerating tank using this equipment. SOLUTION: This equipment for controlling the concentration of dissolved oxygen in the aerating tank for treating wastewater includes a flowmeter and control valve for the raw water fed to the aerating tank, a return sludge flowmeter, a dissolved oxygen analyzer, a pressure sensor for the pressure in the aerating tank, a pressure control valve and pressure controller, an oxygen feed rate control valve and measuring instrument, a neural net optimizer for predicting the concentration of dissolved oxygen over the long term based on input process data and calculating the target value, a short term predictive PID controller for the concentration of the dissolved oxygen, and an oxygen feed rate controller.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化学工場等の総合
排水処理場及び下水処理場等で用いられている活性汚泥
法の曝気槽における溶存酸素濃度の制御装置及び制御方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control apparatus and a control method of a dissolved oxygen concentration in an activated sludge aeration tank used in a general wastewater treatment plant and a sewage treatment plant such as a chemical factory.

【0002】[0002]

【従来の技術】活性汚泥法による排水処理プロセスにお
いては、曝気槽中で有機物を酸化・分解し、必要に応じ
汚泥を凝集した後、沈殿池にて沈降分離し、処理水を得
る方法が一般的である。特に、化学工場等の高負荷排水
の処理には密閉型の曝気槽を用いる例が多い。
2. Description of the Related Art In a wastewater treatment process by the activated sludge method, a method of oxidizing and decomposing organic matter in an aeration tank, coagulating sludge as necessary, and then separating and separating the same in a sedimentation tank to obtain treated water is generally used. It is a target. In particular, in many cases, a closed aeration tank is used for treating high-load wastewater in a chemical factory or the like.

【0003】この処理において、曝気槽への酸素供給
は、通常、原水中和槽や第一沈殿槽等からの前処理設備
から供給される原水の流量を測定し、これに基づいて曝
気槽内の圧力が一定となるように酸素供給量を調節し、
槽内で攪拌することによって水中に酸素を溶解させて行
われている。また、曝気槽内の酸素量の適正範囲内への
調整は、曝気槽内の気相部の酸素濃度に応じて、排気配
管の排出弁を調節して排ガスを系外へ排出することによ
り行われている。
In this treatment, the supply of oxygen to the aeration tank is usually performed by measuring the flow rate of raw water supplied from a pretreatment facility from a raw water neutralization tank or a first settling tank, and based on the measured flow rate. Adjust the oxygen supply so that the pressure of
It is performed by dissolving oxygen in water by stirring in a tank. Adjustment of the amount of oxygen in the aeration tank to an appropriate range is performed by adjusting the discharge valve of the exhaust pipe to discharge exhaust gas out of the system according to the oxygen concentration of the gas phase in the aeration tank. Have been done.

【0004】しかし、このような酸素供給を曝気槽の内
圧と酸素濃度とに基づいて調節すると、「曝気槽気相部
酸素濃度低下→曝気槽圧力調節弁開→槽内圧力低下→酸
素供給量調節弁開→酸素供給→槽内酸素濃度上昇→曝気
槽圧力調節弁閉→槽内圧力上昇→酸素供給量調節弁閉→
酸素濃度低下」のサイクルを繰り返すことになり、制御
が安定せず、従って曝気槽内の溶存酸素濃度は安定しな
い。また、供給される原水の水質を無視しているため、
処理成績も不安定であった。
However, if such oxygen supply is adjusted based on the internal pressure of the aeration tank and the oxygen concentration, the following can be obtained: "lower oxygen concentration in the gas phase of the aeration tank → opening of the pressure control valve in the aeration tank → lower pressure in the tank → oxygen supply amount. Control valve open → Oxygen supply → Oxygen concentration rise in tank → Aeration tank pressure control valve closed → Tank pressure rise → Oxygen supply amount control valve closed →
The cycle of "lower oxygen concentration" is repeated, the control is not stabilized, and the dissolved oxygen concentration in the aeration tank is not stable. Also, since we ignore the quality of the raw water supplied,
Processing results were also unstable.

【0005】[0005]

【発明が解決しようとする課題】曝気槽内の溶存酸素濃
度を安定化でき、従って流入水質が変化しても安定した
処理成績を与えることができるような曝気槽の制御装置
及びこれを用いた曝気槽の溶存酸素濃度の制御方法の提
供。
SUMMARY OF THE INVENTION A control device for an aeration tank which can stabilize the concentration of dissolved oxygen in the aeration tank and therefore can provide a stable treatment result even when the quality of the inflowing water changes, and an apparatus using the same. Provided is a method for controlling the concentration of dissolved oxygen in an aeration tank.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、酸素供
給配管、原水供給配管、返送汚泥受入配管、排気配管、
及び処理水・汚泥の沈殿槽への排出配管を備えた排水処
理用の曝気槽(4)の溶存酸素濃度の制御装置であっ
て、以下の計装機器を備えてなる制御装置、に存する。
The gist of the present invention is to provide an oxygen supply pipe, a raw water supply pipe, a return sludge receiving pipe, an exhaust pipe,
And a control device for a dissolved oxygen concentration of an aeration tank (4) for wastewater treatment provided with a discharge pipe to a settling tank for treated water / sludge, the control device including the following instrumentation equipment.

【0007】a)曝気槽に供給される原水の流量を計測
する原水流量計(1)及び原水流量調節弁(2) b)沈殿槽から返送される汚泥流量を計測する返送汚泥
流量計(3) c)曝気槽内の溶存酸素濃度を測定する溶存酸素濃度計
(5) d)曝気槽の内圧を計測する圧力検出器(6) e)曝気槽の内圧を調節するために曝気槽の排気配管に
設けられた圧力調節弁(7)及び圧力制御調節計(1
2) f)曝気槽に供給する酸素量を調節する酸素供給量調節
弁(9) g)酸素供給配管の酸素供給量調節弁(9)の直近に設
置された酸素供給量測定器(8) h)予め定めたプロセスデータを入力することにより、
溶存酸素濃度の長期予測を行い、溶存酸素濃度の目標値
を算出するニューラル・ネット・オプティマイザー(1
3) i)溶存酸素濃度計の計測結果及びニューラル・ネット
・オプティマイザーが算出した溶存酸素濃度の目標値に
基づいて供給すべき酸素量を算出する短期予測機能付P
ID制御装置(11) j)酸素供給量測定器(8)の計測結果と、短期予測機
能付PID制御装置(11)の指示した供給すべき酸素
量とに基づいて酸素供給量調節弁(9)を調節する酸素
供給量調節計(10)
A) Raw water flow meter (1) for measuring the flow rate of raw water supplied to the aeration tank and a raw water flow control valve (2) b) Return sludge flow meter (3) for measuring the flow rate of sludge returned from the sedimentation tank C) a dissolved oxygen concentration meter for measuring the dissolved oxygen concentration in the aeration tank (5) d) a pressure detector for measuring the internal pressure of the aeration tank (6) e) evacuation of the aeration tank to adjust the internal pressure of the aeration tank A pressure control valve (7) and a pressure control controller (1
2) f) Oxygen supply amount control valve (9) for adjusting the amount of oxygen supplied to the aeration tank g) Oxygen supply amount measurement device (8) installed immediately near the oxygen supply amount control valve (9) of the oxygen supply pipe h) By inputting predetermined process data,
Neural net optimizer (1) that performs long-term prediction of dissolved oxygen concentration and calculates the target value of dissolved oxygen concentration
3) i) P with short-term prediction function for calculating the amount of oxygen to be supplied based on the measurement result of the dissolved oxygen concentration meter and the target value of the dissolved oxygen concentration calculated by the neural net optimizer
ID control device (11) j) Based on the measurement result of the oxygen supply amount measuring device (8) and the oxygen amount to be supplied indicated by the PID control device with short-term prediction function (11), the oxygen supply amount adjusting valve (9) Oxygen supply controller (10)

【0008】また、本発明の要旨は、短期予測機能付P
ID制御装置の予測モデルとして、酸素供給量に対する
溶存酸素濃度の動特性とノイズを考慮に入れた離散線形
モデルを用いる上記の曝気槽の溶存酸素濃度の制御装置
にも存し、プロセスデータとして、原水の温度、流量、
水素イオン濃度(pH)、化学的酸素要求量(CO
D)、生物化学的酸素要求量(BOD5)、懸濁物質
(SS)、曝気槽の温度、圧力、溶存酸素濃度、槽内混
合液懸濁物質(MLSS)、槽内混合液揮発性懸濁物質
(MLVSS)からなる群から選ばれる少なくとも1種
以上のデータを使用する前記の曝気槽の溶存酸素濃度の
制御装置にも存している。
[0008] The gist of the present invention is to provide a short-term prediction function P
As a predictive model of the ID control device, there is also a control device of the dissolved oxygen concentration of the aeration tank using a discrete linear model that takes into account the dynamic characteristics of the dissolved oxygen concentration with respect to the oxygen supply amount and noise, and as process data, Raw water temperature, flow rate,
Hydrogen ion concentration (pH), chemical oxygen demand (CO
D), Biochemical oxygen demand (BOD5), suspended solids (SS), aeration tank temperature, pressure, dissolved oxygen concentration, mixed liquid suspension in tank (MLSS), mixed liquid volatile suspension in tank The present invention also provides a control device for the dissolved oxygen concentration in the aeration tank, which uses at least one kind of data selected from the group consisting of substances (MLVSS).

【0009】本発明のもう一つの要旨は上に記した溶存
酸素濃度制御装置を用いる曝気槽の溶存酸素濃度の制御
方法、及び供給する酸素として純度50%以上の酸素を
用いる前記の曝気槽の溶存酸素濃度の制御方法、にも存
する。
Another aspect of the present invention is a method for controlling the concentration of dissolved oxygen in an aeration tank using the above-described dissolved oxygen concentration control apparatus, and the method for controlling the concentration of dissolved oxygen in an aeration tank using oxygen having a purity of 50% or more as oxygen to be supplied. There is also a method for controlling the dissolved oxygen concentration.

【0010】[0010]

【発明の実施の形態】以下、本発明について更に詳細に
説明する。本発明の制御装置は、長期的な、多変数・非
線形の予測最適化計算により求めた曝気槽の目標溶存酸
素濃度を、短期的な線形予測制御の目標値として用いて
曝気槽内の必要酸素量を算出し、これに基づいて酸素の
供給量を調節するものであり、これを用いることにより
酸素の過剰な供給を予防しつつ、非定常的な変動要因や
プロセス外乱からくる時間的な変動が生じても安定した
水処理を行うものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The control device of the present invention uses the target dissolved oxygen concentration of the aeration tank determined by the long-term, multivariable and non-linear prediction optimization calculation as the target value of the short-term linear prediction control, and determines the required oxygen in the aeration tank. Calculates the amount of oxygen and adjusts the supply of oxygen based on this.This is used to prevent excessive supply of oxygen and to prevent temporal fluctuations caused by unsteady fluctuation factors and process disturbances. Even if water is generated, stable water treatment is performed.

【0011】本発明の制御装置に用いるニューラル・ネ
ット・オプティマイザーは、過去の運転時のプロセスデ
ータと溶存酸素濃度との関係を予め学習させておき、こ
れに基づいて運転中のプロセスデータから酸素消費量、
排水処理量、排水水質等に関連するコスト関数を最適化
できるような溶存酸素濃度の目標値を算出し、これを短
期予測機能付きPID制御装置(Predictive PID Contro
ller)へ出力するものである。ここで本発明の装置のニ
ューラル・ネット・オプティマイザーにおいて入力すべ
き変数であるプロセスデータとしては、原水の温度、流
量、水素イオン濃度(pH)、化学的酸素要求量(CO
D)、生物化学的酸素要求量(BOD5)、懸濁物質
(SS)、曝気槽の温度、圧力、溶存酸素濃度、槽内混
合液懸濁物質(MLSS)、槽内混合液揮発性懸濁物質
(MLVSS)からなる群から選ばれる少なくとも1種
以上のデータを用いるのが好ましい。これらのデータ
は、それぞれの上限・下限の制約値を併せて予め入力し
ておくのが良い。
The neural net optimizer used in the control device of the present invention learns in advance the relationship between the process data during the past operation and the dissolved oxygen concentration and, based on this, learns the oxygen data from the process data during the operation. Consumption,
Calculates the target value of dissolved oxygen concentration that can optimize cost functions related to wastewater treatment volume, wastewater quality, etc., and calculates this target value with a PID controller (Predictive PID Control
ller). Here, process data which are variables to be input in the neural net optimizer of the apparatus of the present invention include raw water temperature, flow rate, hydrogen ion concentration (pH), and chemical oxygen demand (CO
D), Biochemical oxygen demand (BOD5), suspended solids (SS), aeration tank temperature, pressure, dissolved oxygen concentration, mixed liquid suspension in tank (MLSS), mixed liquid volatile suspension in tank It is preferable to use at least one kind of data selected from the group consisting of substances (MLVSS). It is preferable to input these data together with the upper and lower limit values.

【0012】なお、これらのプロセスデータは常法によ
り或いはJIS K 0102等に基づいて測定するこ
とができる。また、例えば化学工場の集中排水処理設備
のように、複数のプラントからの排水を処理する設備に
おいては、それぞれのプラントからの排水を、個別に流
量、pH、COD等を測定するのが好適である。入力す
べきプロセスデータは上記のものに限られるものではな
い。
Incidentally, these process data can be measured by an ordinary method or based on JIS K0102 or the like. Further, in a facility for treating wastewater from a plurality of plants, for example, a centralized wastewater treatment facility of a chemical factory, it is preferable to individually measure the flow rate, pH, COD, etc. of the wastewater from each plant. is there. The process data to be input is not limited to the above.

【0013】本発明の装置に用いるニューラル・ネット
・オプティマイザーは、入力層、中間層、及び出力層を
有する3階層構造のものが好適である。階層が2階層で
は非線形モデルを扱うことができず、一方4階層構造以
上になると、複雑になりすぎてモデルの「トレーニン
グ」に時間がかかりすぎて実用性が低下する傾向とな
る。
The neural net optimizer used in the apparatus of the present invention preferably has a three-layer structure having an input layer, a middle layer, and an output layer. If the number of layers is two, the nonlinear model cannot be handled. On the other hand, if the number of layers is four or more, the model becomes too complicated and “training” of the model takes too much time, and the practicality tends to decrease.

【0014】また、本発明の装置においては、ニューラ
ル・ネット・オプティマイザーにより、前記した種々の
プロセスデータから、各変数の上下限の制約及びコスト
関数を考慮して、溶存酸素濃度の、例えば1〜5日先等
の長期的な応答を予測することにより、コストの最適化
が可能な溶存酸素濃度の目標値を短期予測機能付きPI
D制御装置に与えることができる。
Further, in the apparatus of the present invention, the neural network optimizer is used to calculate the dissolved oxygen concentration, for example, 1%, from the various process data described above, taking into account the upper and lower limits of each variable and the cost function. The target value of the dissolved oxygen concentration that enables cost optimization by predicting the long-term response from
D control device.

【0015】本発明に用いる短期予測機能付きPID制
御装置は、通常のPID制御装置に短期的なモデル予測
機能を持たせたものである。具体的には、過去の溶存酸
素濃度とその目標値との関係を示す運転データ及び酸素
供給量の設定値を用いて、制御対象の線形モデルを使っ
て溶存酸素濃度の将来の推移を計算するというものであ
る。制御対象の線形モデルとしては、酸素供給量に対す
る溶存酸素濃度の動特性とノイズを考慮に入れた離散線
形モデル(ARIMAXモデル)を用いるのが好まし
い。なお、ARIMAXモデルとは「Auto Regressive
Integrated Mov-ing Average eXogenous モデル」(自
己回帰積分移動平均外生変数モデル)のことである。
The PID control device with a short-term prediction function used in the present invention is obtained by adding a short-term model prediction function to an ordinary PID control device. Specifically, using the operation data indicating the relationship between the dissolved oxygen concentration in the past and its target value and the set value of the oxygen supply amount, the future transition of the dissolved oxygen concentration is calculated using a linear model of the controlled object. That is. As the linear model to be controlled, it is preferable to use a discrete linear model (ARIMAX model) that takes into account the dynamic characteristics of dissolved oxygen concentration with respect to the oxygen supply amount and noise. The ARIMAX model is called “Auto Regressive
"Integrated Mov-ing Average eXogenous model" (autoregressive integral moving average exogenous variable model).

【0016】本発明の装置においては、このような短期
予測機能付きPID制御装置により、溶存酸素濃度計か
ら取り入れた信号及び上記の線形モデルを用いて予測さ
れた、少なくとも3〜8時間先の溶存酸素濃度の予測値
と前述のニューラル・ネット・オプティマイザーで指示
される溶存酸素濃度の目標値とを比較し、その偏差が小
さくなるように酸素の供給量を調節することにより、溶
存酸素濃度を制御するものである。
In the apparatus of the present invention, the PID controller having such a short-term prediction function is capable of dissolving at least 3 to 8 hours ahead using the signal taken from the dissolved oxygen concentration meter and the above linear model. By comparing the predicted value of the oxygen concentration with the target value of the dissolved oxygen concentration indicated by the aforementioned neural net optimizer, and adjusting the supply amount of oxygen so as to reduce the deviation, the dissolved oxygen concentration can be reduced. To control.

【0017】この短期予測機能付きPID制御装置には
制御対象である溶存酸素濃度の動特性を近似することが
できる統計モデルを内蔵させることができるので、むだ
時間が長くかつ変化するプロセスや、制御対象の時定数
が長いプロセスなどに対しても良好な制御性能を示す。
また、ノイズモデルを考慮することにより、プロセス外
乱に対してもモデルのパラメータ値を調整することなく
良好な制御性能を維持することが可能となる。
Since the PID control device with the short-term prediction function can incorporate a statistical model capable of approximating the dynamic characteristics of the concentration of dissolved oxygen to be controlled, the process in which the dead time is long and changes, and It shows good control performance even for processes with long time constants.
In addition, by considering the noise model, it is possible to maintain good control performance without adjusting the parameter values of the model even for process disturbance.

【0018】なお、この短期予測機能付きPID制御装
置に溶存酸素濃度の信号を発する溶存酸素濃度計は曝気
槽から汚泥及び処理水が流出する出口付近に設置するの
が、実際の処理状況を的確に把握する上で好ましい。本
発明方法は、上述の制御装置を用いて、前述のように、
好ましくは密閉型の曝気槽の溶存酸素濃度を制御すると
いうものである。
It is to be noted that a dissolved oxygen concentration meter that emits a signal of the dissolved oxygen concentration to the PID control device having the short-term prediction function is installed near the outlet from which sludge and treated water flow out of the aeration tank. It is preferable for grasping. The method of the present invention uses the control device described above, and as described above,
Preferably, the dissolved oxygen concentration in the closed aeration tank is controlled.

【0019】酸素の供給量は、上記の短期予測機能付き
PID制御装置の出力により、酸素供給量調節計の流量
設定値を自動的に変更し、その設定値と酸素供給量検出
器との流量を比較して酸素供給量調節弁を制御すること
により行うことができる。なお、本発明の方法において
用いる酸素は純度が高いものが処理効率及び制御の応答
性の点から好ましい。その純度としては、酸素含量50
%以上、好ましくは70%以上、より好ましくは90%
以上、更に好ましくは95%以上のものが好適である。
本発明の制御装置及び制御方法を適用する曝気槽として
は、供給する酸素の効率的活用の点から、密閉型の曝気
槽が好適である。
The supply amount of oxygen is automatically changed by the output of the PID controller having the short-term prediction function, and the flow rate set value of the oxygen supply controller is automatically changed. And controlling the oxygen supply amount control valve. The oxygen used in the method of the present invention preferably has high purity in terms of processing efficiency and control responsiveness. As its purity, the oxygen content is 50
% Or more, preferably 70% or more, more preferably 90%
Above, more preferably 95% or more.
As the aeration tank to which the control device and the control method of the present invention are applied, a closed aeration tank is suitable from the viewpoint of efficient use of supplied oxygen.

【0020】[0020]

【実施例】以下、実施例を用いて本発明の実施の態様を
より詳細に説明するが、本発明はその要旨を越えない限
り、実施例によって限定されるものではない。図1は密
閉型の曝気槽(4)と、これに流入する原水の流量を計
測する原水流量計(1)とその流量調節弁(2)、沈殿
槽から返送される汚泥の流量を計測する返送汚泥流量計
(3)、曝気槽内の溶存酸素濃度を測定する溶存酸素濃
度計(5)、曝気槽の内圧を計測する圧力検出器
(6)、曝気槽の排気配管に設けられた圧力調整弁
(7)及び圧力制御調節計(12)、曝気槽に供給する
酸素の流量を調節する酸素供給量調節弁(9)、酸素供
給量調節弁の直近に設けられた酸素供給量測定器
(8)、原水の温度、流量、水素イオン濃度(pH)及
び化学的酸素要求量(COD)、生物化学的酸素要求量
(BOD5)、懸濁物質(SS)、曝気槽の温度、圧
力、溶存酸素濃度、槽内混合液懸濁物質(MLSS)、
槽内混合液揮発性懸濁物質(MLVSS)のデータに基
づいて溶存酸素濃度の目標値を算出するニューラル・ネ
ット・オプティマイザー(13)、溶存酸素濃度計の計
測結果とニューラル・ネット・オプティマイザーにより
算出された溶存酸素濃度も目標値とに基づいて供給すべ
き酸素量を算出する短期予測機能付きPID制御装置
(11)、及び酸素供給量測定器の計測結果と、前記予
測機能付きPID制御装置の指示した酸素量とに基づい
て酸素供給量調節弁を調節する酸素供給量調節計からな
る曝気槽の溶存酸素濃度制御装置とを示している。
The embodiments of the present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the present invention. FIG. 1 shows a closed aeration tank (4), a raw water flow meter (1) for measuring the flow rate of raw water flowing into the tank, and a flow control valve (2) thereof, and the flow rate of sludge returned from the sedimentation tank. Return sludge flow meter (3), dissolved oxygen concentration meter (5) for measuring the dissolved oxygen concentration in the aeration tank, pressure detector (6) for measuring the internal pressure of the aeration tank, pressure provided on the exhaust pipe of the aeration tank A regulating valve (7), a pressure control controller (12), an oxygen supply amount regulating valve (9) for regulating the flow rate of oxygen supplied to the aeration tank, an oxygen supply amount measuring device provided immediately adjacent to the oxygen supply amount regulating valve (8) Raw water temperature, flow rate, hydrogen ion concentration (pH) and chemical oxygen demand (COD), biochemical oxygen demand (BOD5), suspended solid (SS), aeration tank temperature, pressure, Dissolved oxygen concentration, mixed liquid suspension in the tank (MLSS),
Neural net optimizer (13), which calculates the target value of the dissolved oxygen concentration based on the data of the mixed liquid volatile suspended solid (MLVSS) in the tank, the measurement result of the dissolved oxygen concentration meter and the neural net optimizer PID control device with short-term prediction function (11) for calculating the amount of oxygen to be supplied based on the dissolved oxygen concentration also calculated based on the target value, the measurement result of the oxygen supply amount measuring device, and the PID control with the prediction function 3 shows a dissolved oxygen concentration control device for an aeration tank comprising an oxygen supply amount controller for adjusting an oxygen supply amount control valve based on an oxygen amount indicated by the device.

【0021】この制御装置を用いる曝気槽の溶存酸素濃
度制御方法は、曝気槽内の溶存酸素濃度計(5)の計測
結果を短期予測機能付きPID制御装置(11)に取り
入れ、これと前述のようにしてニューラル・ネット・オ
プティマイザーにより算出された溶存酸素濃度の目標値
との差を比較して目標溶存酸素濃度により近づけられる
ような酸素供給量を計算し、その結果を酸素供給量調節
計(10)に出力し、酸素供給量測定器(8)の計測結
果と比較して酸素供給量調節弁(9)を操作して、酸素
供給量を制御するとともに、引き続いて曝気槽の圧力調
節計(12)により圧力調節弁(7)を操作し、曝気槽
(4)内のガスを所定圧力まで排出する、というもので
ある。
The method for controlling the dissolved oxygen concentration in an aeration tank using this control device incorporates the measurement result of a dissolved oxygen concentration meter (5) in the aeration tank into a PID control device (11) with a short-term prediction function, and In this way, the difference between the dissolved oxygen concentration and the target value calculated by the neural net optimizer is compared to calculate the oxygen supply amount that can be closer to the target dissolved oxygen concentration, and the result is used as the oxygen supply controller. (10) to control the oxygen supply amount by operating the oxygen supply amount control valve (9) in comparison with the measurement result of the oxygen supply amount measuring device (8), and subsequently to regulate the pressure of the aeration tank. The pressure control valve (7) is operated by the meter (12) to discharge the gas in the aeration tank (4) to a predetermined pressure.

【0022】[0022]

【発明の効果】本発明の制御装置を用いることにより、
曝気槽内の溶存酸素濃度を予測制御することが可能とな
り、溶存酸素濃度を安定させることができるので、処理
水の水質も安定する。また、短期予測と長期予測とを組
み合わせることで、上記の動的な制御だけでなく、ニュ
ーラル・ネット・オプティマイザーによるコスト・ミニ
マムとする制御が同時に可能となる。
By using the control device of the present invention,
The dissolved oxygen concentration in the aeration tank can be predicted and controlled, and the dissolved oxygen concentration can be stabilized, so that the quality of the treated water can be stabilized. In addition, by combining the short-term prediction and the long-term prediction, not only the above-described dynamic control but also the cost-minimum control by the neural net optimizer can be simultaneously performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の曝気槽の溶存酸素濃度の制御装置の
構成の一例を示す概要図である。
FIG. 1 is a schematic diagram showing an example of a configuration of a control device for a dissolved oxygen concentration in an aeration tank according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・原水流量計 2・・・原水流量調節弁 3・・・返送汚泥流量計 4・・・曝気槽 5・・・溶存酸素濃度計 6・・・圧力検出器 7・・・圧力調節弁 8・・・酸素供給量測定器 9・・・酸素供給量調節弁 10・・・酸素供給量調節計 11・・・予測機能付きPID制御装置 12・・・圧力制御調節計 13・・・ニューラル・ネット・オプティマイザー DESCRIPTION OF SYMBOLS 1 ... Raw water flow meter 2 ... Raw water flow control valve 3 ... Return sludge flow meter 4 ... Aeration tank 5 ... Dissolved oxygen concentration meter 6 ... Pressure detector 7 ... Pressure regulation Valve 8 ... Oxygen supply amount measuring device 9 ... Oxygen supply amount control valve 10 ... Oxygen supply amount controller 11 ... PID controller with prediction function 12 ... Pressure control controller 13 ... Neural Net Optimizer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 糸山 和年 岡山県倉敷市潮通三丁目10番地 三菱化学 株式会社水島事業所内 (72)発明者 山本 義章 岡山県倉敷市潮通三丁目10番地 三菱化学 株式会社水島事業所内 Fターム(参考) 4D028 AB00 BD07 CA07 CA10 CB01 CC00 CC01 CC05 CC07 CC12 CD01 CD08 CE03 4D029 AA09 AB05 BB10 CC02  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kazutoshi Itoyama 3-10 Utsudori, Kurashiki City, Okayama Prefecture Mitsubishi Chemical Mizushima Office (72) Inventor Yoshiaki Yamamoto 3-10 Utsudori, Kurashiki City, Okayama Prefecture Mitsubishi Chemical F-term in Mizushima Plant (reference) 4D028 AB00 BD07 CA07 CA10 CB01 CC00 CC01 CC05 CC07 CC12 CD01 CD08 CE03 4D029 AA09 AB05 BB10 CC02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸素供給配管、原水供給配管、返送汚泥
受入配管、排気配管、及び処理水・汚泥の沈殿槽への排
出配管を備えた排水処理用の曝気槽(4)の溶存酸素濃
度の制御装置であって、以下の計装機器を備えてなる制
御装置。 a)曝気槽に供給される原水の流量を計測する原水流量
計(1)及び原水流量調節弁(2) b)沈殿槽から返送される汚泥流量を計測する返送汚泥
流量計(3) c)曝気槽内の溶存酸素濃度を測定する溶存酸素濃度計
(5) d)曝気槽の内圧を計測する圧力検出器(6) e)曝気槽の内圧を調節するために曝気槽の排気配管に
設けられた圧力調節弁(7)及び圧力制御調節計(1
2) f)曝気槽に供給する酸素量を調節する酸素供給量調節
弁(9) g)酸素供給配管の酸素供給量調節弁(9)の直近に設
置された酸素供給量測定器(8) h)予め定めたプロセスデータを入力することにより、
溶存酸素濃度の長期予測を行い、溶存酸素濃度の目標値
を算出するニューラル・ネット・オプティマイザー(1
3) i)溶存酸素濃度計の計測結果及びニューラル・ネット
・オプティマイザーが算出した溶存酸素濃度の目標値に
基づいて供給すべき酸素量を算出する短期予測機能付P
ID制御装置(11) j)酸素供給量測定器(8)の計測結果と、短期予測機
能付PID制御装置(11)の指示した供給すべき酸素
量とに基づいて酸素供給量調節弁(9)を調節する酸素
供給量調節計(10)
1. The dissolved oxygen concentration of an aeration tank (4) for wastewater treatment comprising an oxygen supply pipe, a raw water supply pipe, a return sludge receiving pipe, an exhaust pipe, and a discharge pipe to a settling tank for treated water and sludge. A control device comprising the following instrumentation device. a) Raw water flow meter (1) for measuring the flow rate of raw water supplied to the aeration tank and a raw water flow control valve (2) b) Return sludge flow meter (3) for measuring the sludge flow returned from the settling tank c) Dissolved oxygen concentration meter for measuring the dissolved oxygen concentration in the aeration tank (5) d) Pressure detector for measuring the internal pressure of the aeration tank (6) e) Installed in the exhaust pipe of the aeration tank to adjust the internal pressure of the aeration tank Pressure control valve (7) and pressure control controller (1
2) f) Oxygen supply amount control valve (9) for adjusting the amount of oxygen supplied to the aeration tank g) Oxygen supply amount measurement device (8) installed immediately near the oxygen supply amount control valve (9) in the oxygen supply pipe h) By inputting predetermined process data,
Neural net optimizer (1) that performs long-term prediction of dissolved oxygen concentration and calculates the target value of dissolved oxygen concentration
3) i) P with short-term prediction function for calculating the amount of oxygen to be supplied based on the measurement result of the dissolved oxygen concentration meter and the target value of the dissolved oxygen concentration calculated by the neural net optimizer
ID control device (11) j) Based on the measurement result of the oxygen supply amount measuring device (8) and the oxygen amount to be supplied indicated by the PID control device with short-term prediction function (11), the oxygen supply amount adjusting valve (9) Oxygen supply controller (10)
【請求項2】 短期予測機能付PID制御装置の予測モ
デルとして、酸素供給量に対する溶存酸素濃度の動特性
とノイズを考慮に入れた離散線形モデルを用いる請求項
1に記載の曝気槽の溶存酸素濃度の制御装置。
2. The dissolved oxygen in an aeration tank according to claim 1, wherein a discrete linear model taking into account dynamic characteristics of dissolved oxygen concentration with respect to the oxygen supply amount and noise is used as a prediction model of the PID control device with a short-term prediction function. Concentration control device.
【請求項3】 プロセスデータとして、原水の温度、流
量、水素イオン濃度(pH)、化学的酸素要求量(CO
D)、生物化学的酸素要求量(BOD5)、懸濁物質
(SS)、曝気槽の温度、圧力、溶存酸素濃度、槽内混
合液懸濁物質(MLSS)、槽内混合液揮発性懸濁物質
(MLVSS)からなる群から選ばれる少なくとも1種
以上のデータを使用する請求項1〜3のいずれか1項に
記載の曝気槽の溶存酸素濃度の制御装置。
3. Process data includes raw water temperature, flow rate, hydrogen ion concentration (pH), chemical oxygen demand (CO
D), Biochemical oxygen demand (BOD5), suspended solids (SS), aeration tank temperature, pressure, dissolved oxygen concentration, mixed liquid suspension in tank (MLSS), mixed liquid volatile suspension in tank The apparatus for controlling the concentration of dissolved oxygen in an aeration tank according to any one of claims 1 to 3, wherein at least one kind of data selected from the group consisting of substances (MLVSS) is used.
【請求項4】 請求項1〜3のいずれか1項に記載の溶
存酸素濃度制御装置を用いる曝気槽の溶存酸素濃度制御
方法。
4. A method for controlling the concentration of dissolved oxygen in an aeration tank using the dissolved oxygen concentration control apparatus according to claim 1.
【請求項5】 供給する酸素として、純度50%以上の
酸素を用いる請求項3に記載の曝気槽の溶存酸素濃度の
制御方法。
5. The method for controlling the concentration of dissolved oxygen in an aeration tank according to claim 3, wherein oxygen having a purity of 50% or more is used as the supplied oxygen.
JP19358196A 1996-07-19 1996-07-23 Equipment for controlling concentration of dissolved oxygen in aerating tank Pending JP2002219481A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19358196A JP2002219481A (en) 1996-07-23 1996-07-23 Equipment for controlling concentration of dissolved oxygen in aerating tank
AU34630/97A AU3463097A (en) 1996-07-19 1997-07-18 Device for controlling dissolved oxygen concentration of aeration tank, device for controlling temperature of aeration tank, device for controlling flow rate of raw water for homogeneous-flow liquid surface, and wastewater treatment equipment used in activated sludge process
PCT/JP1997/002514 WO1998003434A1 (en) 1996-07-19 1997-07-18 Device for controlling dissolved oxygen concentration of aeration tank, device for controlling temperature of aeration tank, device for controlling flow rate of raw water for homogeneous-flow liquid surface, and wastewater treatment equipment used in activated sludge process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19358196A JP2002219481A (en) 1996-07-23 1996-07-23 Equipment for controlling concentration of dissolved oxygen in aerating tank

Publications (1)

Publication Number Publication Date
JP2002219481A true JP2002219481A (en) 2002-08-06

Family

ID=16310381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19358196A Pending JP2002219481A (en) 1996-07-19 1996-07-23 Equipment for controlling concentration of dissolved oxygen in aerating tank

Country Status (1)

Country Link
JP (1) JP2002219481A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269255A (en) * 2009-05-22 2010-12-02 Hitachi Ltd Sewage treatment method
JP2013039577A (en) * 2012-11-30 2013-02-28 Hitachi Ltd Sewage treatment method
WO2013099306A1 (en) * 2011-12-28 2013-07-04 三菱重工メカトロシステムズ株式会社 Wastewater treatment device
CN111273706A (en) * 2020-03-02 2020-06-12 软通动力信息技术(集团)有限公司 Aeration tank dissolved oxygen control method, device, computer equipment and medium
CN113126490A (en) * 2021-04-02 2021-07-16 中国农业大学 Intelligent frequency conversion oxygenation control method and device
CN117069241A (en) * 2023-10-13 2023-11-17 济安永蓝(北京)工程技术开发有限公司 Control method and control system for dissolved oxygen concentration of aerobic tank
CN117509928A (en) * 2023-11-03 2024-02-06 安徽泛湖生态科技股份有限公司 OTE real-time monitoring-based aeration optimization energy-saving control system and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269255A (en) * 2009-05-22 2010-12-02 Hitachi Ltd Sewage treatment method
WO2013099306A1 (en) * 2011-12-28 2013-07-04 三菱重工メカトロシステムズ株式会社 Wastewater treatment device
JP2013138976A (en) * 2011-12-28 2013-07-18 Mitsubishi Heavy Industries Mechatronics Systems Ltd Waste water treatment device
US9938172B2 (en) 2011-12-28 2018-04-10 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd Wastewater treatment device
JP2013039577A (en) * 2012-11-30 2013-02-28 Hitachi Ltd Sewage treatment method
CN111273706A (en) * 2020-03-02 2020-06-12 软通动力信息技术(集团)有限公司 Aeration tank dissolved oxygen control method, device, computer equipment and medium
CN111273706B (en) * 2020-03-02 2024-02-06 软通动力信息技术(集团)股份有限公司 Dissolved oxygen control method and device for aeration tank, computer equipment and medium
CN113126490A (en) * 2021-04-02 2021-07-16 中国农业大学 Intelligent frequency conversion oxygenation control method and device
CN117069241A (en) * 2023-10-13 2023-11-17 济安永蓝(北京)工程技术开发有限公司 Control method and control system for dissolved oxygen concentration of aerobic tank
CN117069241B (en) * 2023-10-13 2023-12-22 济安永蓝(北京)工程技术开发有限公司 Control method and control system for dissolved oxygen concentration of aerobic tank
CN117509928A (en) * 2023-11-03 2024-02-06 安徽泛湖生态科技股份有限公司 OTE real-time monitoring-based aeration optimization energy-saving control system and method

Similar Documents

Publication Publication Date Title
US7718066B2 (en) Method and apparatus for controlling wastewater treatment processes
CN109879410B (en) Sewage treatment aeration control system
JP4117274B2 (en) Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment
CN112782975A (en) Sewage treatment aeration intelligent control method and system based on deep learning
Chen et al. Smart energy savings for aeration control in wastewater treatment
JP2002219481A (en) Equipment for controlling concentration of dissolved oxygen in aerating tank
Phuc et al. Robust control synthesis for the activated sludge process
KR20060092660A (en) Automatic control device and method for wastewater treatment using fuzzy control
CN111484124A (en) Intelligent control and biochemical process intensive method and system for sewage treatment
CN108678986A (en) The control method and device of sewage treatment plant's air blower automatic adjustment and marshalling operation
JP2002219480A (en) Equipment for controlling concentration of dissolved oxygen in aerating tank
WO1998003434A1 (en) Device for controlling dissolved oxygen concentration of aeration tank, device for controlling temperature of aeration tank, device for controlling flow rate of raw water for homogeneous-flow liquid surface, and wastewater treatment equipment used in activated sludge process
Van Nguyen et al. Combined ILC and PI regulator for wastewater treatment plants
JPH07185583A (en) Waste water disposing method and device using continuous breath measuring device
CN111732187A (en) Intelligent control method for sewage treatment water quality based on sludge reflux ratio
KR960002268B1 (en) Organic matter density controlling apparatus
JP3460211B2 (en) Sewage treatment control device
EP1598712B1 (en) Method and device for controlling the biological process in waste-water treatment plants
JP2950661B2 (en) Control unit for water treatment plant
CN115677020B (en) Method for treating organic wastewater by combining ozone oxidation and biological activated carbon
Sadeghassadi et al. Setpoint control for reacting to wastewater influent in BSM1
JP2012245422A (en) Water treatment process control device
JP2004000986A (en) Method for controlling biological water treatment apparatus
JPH06126293A (en) Method for controlling dissolved oxygen in aeration tank
JPH10235387A (en) Uniform flow liquid level control device for raw water tank

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411