JP2013039577A - Sewage treatment method - Google Patents

Sewage treatment method Download PDF

Info

Publication number
JP2013039577A
JP2013039577A JP2012261839A JP2012261839A JP2013039577A JP 2013039577 A JP2013039577 A JP 2013039577A JP 2012261839 A JP2012261839 A JP 2012261839A JP 2012261839 A JP2012261839 A JP 2012261839A JP 2013039577 A JP2013039577 A JP 2013039577A
Authority
JP
Japan
Prior art keywords
exhaust gas
concentration
nitrogen
control valve
sewage treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012261839A
Other languages
Japanese (ja)
Inventor
Takeshi Takemoto
剛 武本
Ichiro Yamanoi
一郎 山野井
Misaki Sumikura
みさき 隅倉
Naoki Hara
直樹 原
Hideyuki Tadokoro
秀之 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012261839A priority Critical patent/JP2013039577A/en
Publication of JP2013039577A publication Critical patent/JP2013039577A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treating Waste Gases (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sewage treatment method increasing NO treatment efficiency by selectively recovering exhaust gas with high NO concentration, since lowering of treatment efficiency may occur due to treatment of the whole gas volume even in a case of low concentration of NO.SOLUTION: In the sewage treatment method, a dissolved oxygen meter 8 set in a biological reaction chamber 1 treating waste water with activated sludge, an exhaust gas recovering means 5 recovering aerated gas into the biological reaction chamber 1, and a control means 7 controlling opening/closing of a control valve 6 set in the exhaust gas recovering means 5 are provided. The control means 7 recovers the aerated gas by controlling opening/closing of the control valve 6, when a current measurement of the dissolved oxygen meter 8 exceeds an average of measurements of the dissolved oxygen meter 8 for at least 6 hours. The NO generation amount is predicted from the dissolved oxygen in the biological reaction chamber, and the exhaust gas is treated when the NO concentration in the exhaust gas is high.

Description

本発明は、下水処理の過程で発生する温室効果ガス、特に生物反応槽の曝気槽から発生するN2Oを削減するための下水処理方法に関する。 The present invention relates to a sewage treatment method for reducing greenhouse gases generated in the process of sewage treatment, particularly N 2 O generated from an aeration tank of a biological reaction tank.

下水処理方法には、活性汚泥と呼ばれる微生物により生物学的に処理する活性汚泥法がある。活性汚泥法では、廃水中の窒素は、アンモニア体窒素を硝酸体窒素に酸化する硝化工程と、硝酸体窒素を窒素ガスに還元する脱窒工程により除去される。硝化工程,脱窒工程の副生成物としてN2Oが生成することが知られている。〔非特許文献1〕には、排ガス中のN2Oは硝化反応が進行するほど増加することが記載されている。N2OはCO2に比べ310倍の温室効果を有しており、地球温暖化防止のための排出削減対象物質になっている。 The sewage treatment method includes an activated sludge method in which biological treatment is performed with microorganisms called activated sludge. In the activated sludge method, nitrogen in the wastewater is removed by a nitrification process that oxidizes ammonia nitrogen to nitrate nitrogen and a denitrification process that reduces nitrate nitrogen to nitrogen gas. It is known that N 2 O is generated as a byproduct of the nitrification process and the denitrification process. [Non-Patent Document 1] describes that N 2 O in exhaust gas increases as the nitrification reaction proceeds. N 2 O has a greenhouse effect 310 times that of CO 2 and is an emission reduction target substance for preventing global warming.

〔非特許文献2〕に記載のように、脱窒反応でN2OはN2に還元される。このため、脱窒反応を有する反応槽にN2Oを溶解させると除去できる。〔特許文献1〕には、N2Oを含有する排気ガスを反応槽に導入して、N2Oを溶解させ除去する方法が記載されている。 As described in [Non-Patent Document 2], N 2 O in denitrification is reduced to N 2. For this reason, it can be removed by dissolving N 2 O in a reaction tank having a denitrification reaction. [Patent Document 1] describes a method in which exhaust gas containing N 2 O is introduced into a reaction vessel to dissolve and remove N 2 O.

特開2007−075821号公報JP 2007-075821 A

松原誠,水落元之:下水処理場からの亜酸化窒素放出量調査、環境衛生工学研究、Vol.8,No.3(1994)Matsubara Makoto, Mizuochi Motoyuki: Nitrous oxide emissions from sewage treatment plants, Environmental hygiene engineering research, Vol.8, No.3 (1994) 下水道の長期的技術開発に関する基礎調査、(財)下水道新技術推進機構(1996)http://www.jiwet.jp/result/annual/plan/1996a1-1-2m.htmBasic research on long-term sewerage technology development, New Sewerage Technology Promotion Organization (1996) http://www.jiwet.jp/result/annual/plan/1996a1-1-2m.htm

下水処理場では流入条件が変動するため、排ガス中のN2O濃度が変化する。〔特許文献1〕に記載の従来の技術では、常に排気ガスの全量が反応槽に導入される。N2Oが低濃度の場合でもガスを全量処理するため、処理効率が低下する恐れがある。 Since the inflow conditions fluctuate at the sewage treatment plant, the N 2 O concentration in the exhaust gas changes. In the conventional technique described in [Patent Document 1], the entire amount of exhaust gas is always introduced into the reaction vessel. Even when N 2 O is in a low concentration, the gas is processed in its entirety, which may reduce the processing efficiency.

本発明の目的は、N2O濃度の高い排ガスを選択的に回収することで、N2O処理効率を向上できる下水処理方法を提供することにある。 An object of the present invention is to provide a sewage treatment method capable of improving N 2 O treatment efficiency by selectively recovering exhaust gas having a high N 2 O concentration.

上記課題を達成するために本発明は生物反応槽に流入する流量と濃度の情報を有する流入条件管理手段と、プラントの仕様と運転条件の現状値の情報を有するプラント条件管理手段と、流入条件管理手段とプラント条件管理手段の情報を元にエアレーションの排気ガスに含有するN2O濃度を算出するN2O濃度算出手段と、生物反応槽にエアレーションされたガスを回収するための排ガス回収手段と、排ガス回収手段に設けられた制御弁を開閉制御する制御手段を備え、制御手段はN2O濃度算出手段の算出値が、設定値以上の場合に制御弁を開閉制御する、又は、算出値で排ガス回収手段からの排ガス回収流量を制御するものである。 In order to achieve the above object, the present invention provides inflow condition management means having flow rate and concentration information flowing into a biological reaction tank, plant condition management means having information on plant specifications and current values of operating conditions, and inflow conditions. exhaust gas recovery means for recovering the N 2 O concentration calculation means for calculating the N 2 O concentration contained in the original information management means and plant condition management means aeration exhaust gas, the aeration gas to the bioreactor And a control means for controlling the opening and closing of the control valve provided in the exhaust gas recovery means. The control means controls the opening and closing of the control valve when the calculated value of the N 2 O concentration calculating means is equal to or greater than a set value. The exhaust gas recovery flow rate from the exhaust gas recovery means is controlled by the value.

又、生物反応槽の反応液の硝酸体窒素濃度,亜硝酸体窒素,アンモニア体窒素のうちの一つ以上を計測するための窒素計測手段と、生物反応槽にエアレーションされたガスを回収するための排ガス回収手段と、排ガス回収手段に設けられた制御弁を開閉制御する制御手段を備え、制御手段は窒素計測手段の計測値によって制御弁を開閉制御する、又は、計測値で排ガス回収手段からの排ガス回収流量を制御するものである。   Also, a nitrogen measuring means for measuring one or more of nitrate nitrogen concentration, nitrite nitrogen, and ammonia nitrogen in the reaction liquid of the biological reaction tank, and for recovering the gas aerated in the biological reaction tank Exhaust gas recovery means and a control means for controlling the opening and closing of a control valve provided in the exhaust gas recovery means. The control means controls the opening and closing of the control valve according to the measurement value of the nitrogen measurement means, or from the exhaust gas recovery means with the measurement value The exhaust gas recovery flow rate is controlled.

本発明によれば、生物反応槽の溶存酸素、又は窒素濃度からN2O発生量を予測し、排ガス中のN2O濃度が高い場合に、排ガスを処理できるので、N2O処理効率を向上できる。 According to the present invention, to predict the N 2 O emissions from the dissolved oxygen, or nitrogen concentration in the bioreactor, when the N 2 O concentration in the exhaust gas high, it is possible to process the exhaust gas, the N 2 O performance It can be improved.

本発明の実施例1を示す廃水処理装置の構成図である。It is a block diagram of the waste water treatment apparatus which shows Example 1 of this invention. 本発明の実施例2を示す廃水処理装置の構成図である。It is a block diagram of the waste water treatment apparatus which shows Example 2 of this invention. 本発明の実施例3を示す廃水処理装置の構成図である。It is a block diagram of the waste water treatment apparatus which shows Example 3 of this invention. 本発明の実施例4を示す廃水処理装置の構成図である。It is a block diagram of the waste water treatment apparatus which shows Example 4 of this invention. 本発明の実施例5を示す廃水処理装置の構成図である。It is a block diagram of the waste water treatment apparatus which shows Example 5 of this invention. 本発明の実施例6を示す廃水処理装置の構成図である。It is a block diagram of the waste water treatment apparatus which shows Example 6 of this invention. 本発明の実施例7を示す廃水処理装置の構成図である。It is a block diagram of the waste water treatment apparatus which shows Example 7 of this invention.

本発明の各実施例について図面を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

本発明の実施例1を図1により説明する。図1に示すように、本実施例の反応槽は、生物反応槽1と沈殿池2で構成されている。   A first embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the reaction tank of this embodiment is composed of a biological reaction tank 1 and a sedimentation tank 2.

生物反応槽1には、流入水が流入し、沈殿池2から処理水が流出する。生物反応槽1には複数の微生物群が生息する活性汚泥が混入されている。ブロワ3に接続された散気手段4により、生物反応槽1にエアレーションされ、エアレーションにより空気中の溶存酸素が活性汚泥に供給される。図1では、生物反応槽1は1つの槽として示しているが、生物反応槽1を複数に分割し、エアレーションする好気槽とエアレーションしない嫌気槽を設けてもよい。   Inflow water flows into the biological reaction tank 1, and treated water flows out from the sedimentation basin 2. The biological reaction tank 1 is mixed with activated sludge inhabited by a plurality of microorganism groups. The aeration means 4 connected to the blower 3 aerates the biological reaction tank 1 and supplies dissolved oxygen in the air to the activated sludge by aeration. In FIG. 1, the biological reaction tank 1 is shown as one tank, but the biological reaction tank 1 may be divided into a plurality of aerobic tanks that are aerated and anaerobic tanks that are not aerated.

生物反応槽1の上部には、エアレーションされた排気ガスを回収するための排ガス回収手段5が設置されている。排ガス回収手段5には制御弁6が設けられ、制御手段7の信号により排ガスの回収するために、on−off信号により制御弁6が開閉制御され、排ガス回収量が制御される。制御弁6は、排ガス処理装置に接続されている。生物反応槽1には反応液の溶存酸素を計測するための溶存酸素計8が設置され、その計測信号が制御手段7に入力される。なお、生物反応槽1の廃水処理性能は、排ガス回収手段5による排ガスの回収有無で影響されない。   An exhaust gas recovery means 5 for recovering the aerated exhaust gas is installed in the upper part of the biological reaction tank 1. The exhaust gas recovery means 5 is provided with a control valve 6. In order to recover the exhaust gas by the signal of the control means 7, the control valve 6 is controlled to be opened and closed by an on-off signal, and the exhaust gas recovery amount is controlled. The control valve 6 is connected to the exhaust gas treatment device. The biological reaction tank 1 is provided with a dissolved oxygen meter 8 for measuring dissolved oxygen in the reaction solution, and the measurement signal is input to the control means 7. Note that the wastewater treatment performance of the biological reaction tank 1 is not affected by the presence or absence of exhaust gas recovery by the exhaust gas recovery means 5.

生物反応槽1の下流には、反応液と活性汚泥とを固液分離する沈殿池2が設置されている。沈殿池2に沈降した活性汚泥の一部は生物反応槽1に返送汚泥として循環し、一部が余剰汚泥として排出される。   A sedimentation basin 2 for solid-liquid separation of the reaction solution and activated sludge is installed downstream of the biological reaction tank 1. Part of the activated sludge that has settled in the sedimentation basin 2 circulates in the biological reaction tank 1 as return sludge, and a part is discharged as excess sludge.

生物反応槽1に流入した廃水は、活性汚泥により処理される。流入水中の有機物は酸化分解され、最終的にCO2として除去される。流入水中の窒素成分の大部分は、アンモニア体窒素と有機体窒素であるが、活性汚泥により有機体窒素はアンモニア体窒素となり、アンモニア体窒素は亜硝酸体窒素,硝酸体窒素に酸化される。 The wastewater that has flowed into the biological reaction tank 1 is treated with activated sludge. The organics in the influent water are oxidized and decomposed, it is finally removed as CO 2. Most of the nitrogen components in the inflow water are ammonia nitrogen and organic nitrogen, but the organic nitrogen becomes ammonia nitrogen by the activated sludge, and the ammonia nitrogen is oxidized to nitrite nitrogen and nitrate nitrogen.

有機物や窒素が酸化する際に、反応液中の溶存酸素が消費される。酸素供給速度が等しい場合は、反応液中のこれら被処理物質の濃度が低下すると、すなわち処理が終了すると溶存酸素濃度が増加する。一般に、下水は流入水量や流入水濃度が変化するため、溶存酸素濃度は増減する場合が多い。すなわち、溶存酸素濃度が上昇した場合は、酸化が終了しており、硝酸体窒素濃度が増加していることが分かる。   When organic matter and nitrogen are oxidized, dissolved oxygen in the reaction solution is consumed. When the oxygen supply rates are equal, the dissolved oxygen concentration increases when the concentration of these substances to be treated in the reaction solution decreases, that is, when the treatment is completed. In general, since the amount of inflow water and the concentration of inflow water change in sewage, the dissolved oxygen concentration often increases and decreases. That is, when the dissolved oxygen concentration rises, it can be seen that the oxidation is finished and the nitrate nitrogen concentration is increased.

排ガス中のN2O濃度は、アンモニア体窒素の減少と、硝酸体窒素の増加に比例して増加する。制御手段7は、溶存酸素計8の計測信号を元に制御弁6を制御することで高濃度にN2Oを含有する排ガスを選択的に処理することができる。 The N 2 O concentration in the exhaust gas increases in proportion to a decrease in ammonia nitrogen and an increase in nitrate nitrogen. The control means 7 can selectively process the exhaust gas containing N 2 O at a high concentration by controlling the control valve 6 based on the measurement signal of the dissolved oxygen meter 8.

制御手段7の制御方法について説明する。制御手段7は、溶存酸素計8の計測値を設定された期間保存する。制御手段7は、例えば6時間前までの溶存酸素計8の計測値の平均値を算出する。平均値と現状の溶存酸素計8の計測値とを比較し、計測値が、平均値以上の場合には、制御弁6を制御して排ガスを処理装置に導入する。平均値以上の代わりに、上限値を設け、溶存酸素計8の計測値が、上限値以上で制御弁6を制御するようにしてもよい。この場合、上限値は1mg/L程度にするとよい。また、制御手段7は溶存酸素計8の計測値を元に制御弁6を制御し、計測値に比例して排気ガスの回収量を増加させてもよい。   A control method of the control means 7 will be described. The control means 7 stores the measured value of the dissolved oxygen meter 8 for a set period. For example, the control means 7 calculates the average value of the measured values of the dissolved oxygen meter 8 up to 6 hours ago. The average value and the current measured value of the dissolved oxygen meter 8 are compared. If the measured value is equal to or greater than the average value, the control valve 6 is controlled to introduce the exhaust gas into the processing apparatus. An upper limit value may be provided instead of the average value or higher, and the control valve 6 may be controlled when the measured value of the dissolved oxygen meter 8 is equal to or higher than the upper limit value. In this case, the upper limit value is preferably about 1 mg / L. Moreover, the control means 7 may control the control valve 6 based on the measured value of the dissolved oxygen meter 8, and may increase the collection amount of exhaust gas in proportion to the measured value.

制御手段7に、ブロワ3から供給される空気量の情報を入力してもよく、空気量が増加すると溶存酸素計8の計測値も増加するため、空気量も考慮して溶存酸素濃度により制御弁6を制御することで、N2O濃度の予測精度を向上できるので、N2Oの回収効率が向上できる。 Information on the amount of air supplied from the blower 3 may be input to the control means 7, and as the amount of air increases, the measured value of the dissolved oxygen meter 8 also increases. By controlling the valve 6, the prediction accuracy of the N 2 O concentration can be improved, so that the N 2 O recovery efficiency can be improved.

このように、本実施例によれば、溶存酸素濃度を計測することでN2O濃度の高い排ガスを選択的に回収でき、N2O処理効率を向上できる。 Thus, according to the present embodiment, by measuring the dissolved oxygen concentration, the exhaust gas having a high N 2 O concentration can be selectively recovered, and the N 2 O treatment efficiency can be improved.

本発明の実施例2を図2により説明する。図1に示す実施例1との違いは、実施例2では、生物反応槽1を分割して、上流側溶存酸素濃度計8−1と下流側溶存酸素濃度計8−2の2つの溶存酸素濃度計を設置したことにある。生物反応槽1は、仕切り壁がなくてもよく、本実施例では排ガス回収手段5を下流側溶存酸素濃度計8−2が設置された反応槽に設置したが、両槽に設置してもよい。制御手段7には、上流側溶存酸素濃度計8−1と下流側溶存酸素濃度計8−2の両方の信号が入力されている。散気手段4の散気量が均一の場合は、上流側の生物反応槽の方が下流側の生物反応槽に比べ、アンモニア対窒素や有機物が多く、溶存酸素濃度計の値も低い場合が多い。   A second embodiment of the present invention will be described with reference to FIG. The difference from the first embodiment shown in FIG. 1 is that in the second embodiment, the biological reaction tank 1 is divided into two dissolved oxygen concentration meters 8-1 and 8-2. A densitometer is installed. The biological reaction tank 1 may not have a partition wall. In this embodiment, the exhaust gas recovery means 5 is installed in the reaction tank in which the downstream dissolved oxygen concentration meter 8-2 is installed. Good. Signals from both the upstream dissolved oxygen concentration meter 8-1 and the downstream dissolved oxygen concentration meter 8-2 are input to the control means 7. When the amount of air diffused by the air diffuser 4 is uniform, the upstream biological reaction tank has more ammonia versus nitrogen and organic matter than the downstream biological reaction tank, and the dissolved oxygen concentration meter may have a lower value. Many.

制御手段7による制御方法について説明する。制御手段7は、下流側溶存酸素濃度計8−2と上流側溶存酸素濃度計8−1の計測値の差分を求める。制御手段7は、6時間前までの差分の平均値を算出する。算出された平均値と、計測値の差分とを比較し、計測値の差分が平均値以上の場合には、制御弁6を制御して排ガスを処理装置に導入する。また、制御手段7は、計測値の差分が設定値を超えた場合に、制御弁6を制御して排ガスを処理装置に導入してもよい。この場合、設定値は0.5mg/L以上にするとよい。   A control method by the control means 7 will be described. The control means 7 calculates | requires the difference of the measured value of the downstream dissolved oxygen concentration meter 8-2 and the upstream dissolved oxygen concentration meter 8-1. The control means 7 calculates the average value of differences up to 6 hours ago. The calculated average value is compared with the difference between the measurement values. If the difference between the measurement values is equal to or greater than the average value, the control valve 6 is controlled to introduce the exhaust gas into the processing apparatus. Moreover, the control means 7 may control the control valve 6 and introduce exhaust gas into a processing apparatus, when the difference of a measured value exceeds a setting value. In this case, the set value is preferably 0.5 mg / L or more.

制御手段7は、制御弁6を制御し、計測値の差分の大きさに比例して排気ガスの回収量を増加させてもよい。なお、設定値は、散気手段4から各々生物反応槽1へ供給される空気量のデータを基に変更すると良く、空気量が少ない場合は設定値を小さくし、空気量が多い場合は設定値を大きくする。設定値以上となった下流側溶存酸素濃度計8−2の設置された生物反応槽では硝化反応が進行し、硝酸体窒素濃度が増加して排ガス中のN2O含有率が高い。 The control means 7 may control the control valve 6 to increase the exhaust gas recovery amount in proportion to the magnitude of the difference between the measured values. The set value may be changed based on the data on the amount of air supplied from the air diffuser 4 to the biological reaction tank 1, and the set value is decreased when the amount of air is small and set when the amount of air is large. Increase the value. The nitrification reaction proceeds in the biological reaction tank in which the downstream dissolved oxygen concentration meter 8-2 that is equal to or higher than the set value is installed, the nitrate nitrogen concentration increases, and the N 2 O content in the exhaust gas is high.

このように、実施例2によれば、溶存酸素濃度を計測することでN2O濃度の高い排ガスを選択的に回収でき、N2O処理効率を向上できる。 Thus, according to Example 2, exhaust gas with a high N 2 O concentration can be selectively recovered by measuring the dissolved oxygen concentration, and the N 2 O treatment efficiency can be improved.

本発明の実施例3を図3により説明する。実施例3と実施例1との違いは溶存酸素計8と窒素濃度計9との違いである。窒素濃度計9は、アンモニア体窒素,亜硝酸体窒素,硝酸体窒素の内少なくとも1つ以上を計測できる。窒素濃度計9の計測値は制御手段7に入力され、制御手段7は計測値に応じて制御弁6を制御する。   A third embodiment of the present invention will be described with reference to FIG. The difference between Example 3 and Example 1 is the difference between the dissolved oxygen meter 8 and the nitrogen concentration meter 9. The nitrogen concentration meter 9 can measure at least one of ammonia body nitrogen, nitrite nitrogen, and nitrate body nitrogen. The measured value of the nitrogen concentration meter 9 is input to the control means 7, and the control means 7 controls the control valve 6 according to the measured value.

制御手段7による制御方法について説明する。制御手段7は、計測項目がアンモニア体窒素の場合は、計測値が予め設定した設定値以下の場合に、計測項目が亜硝酸体窒素,硝酸体窒素の場合は、計測値が設定値以上の場合に、制御弁6を制御して排ガスを処理装置に導入する。設定値は、アンモニア体窒素の場合が10mg/L、亜硝酸体窒素の場合が0.5mg/L、硝酸体窒素の場合が5mg/Lにするとよい。   A control method by the control means 7 will be described. When the measurement item is ammonia nitrogen, when the measurement value is less than or equal to a preset setting value, the control means 7 determines that the measurement value is greater than or equal to the preset value when the measurement item is nitrite nitrogen or nitrate nitrogen. In this case, the control valve 6 is controlled to introduce the exhaust gas into the processing apparatus. The set values are preferably 10 mg / L for ammonia nitrogen, 0.5 mg / L for nitrite nitrogen, and 5 mg / L for nitrate nitrogen.

また、制御手段7は、24時間前までの窒素濃度計9の計測値の平均値を算出する。平均値と現状値とを比較し、計測項目がアンモニア体窒素の場合は、計測値が平均値以下、計測項目が亜硝酸体窒素と硝酸体窒素の場合は、計測値が平均値以上の場合に、制御弁6を制御して排ガスを処理装置に導入するとよい。   Moreover, the control means 7 calculates the average value of the measured values of the nitrogen concentration meter 9 up to 24 hours ago. Compare the average value with the current value. If the measurement item is ammonia nitrogen, the measurement value is less than the average value. If the measurement item is nitrite nitrogen and nitrate nitrogen, the measurement value is greater than the average value. In addition, the control valve 6 may be controlled to introduce the exhaust gas into the processing apparatus.

また、制御手段7は制御弁6を制御して、アンモニア体窒素濃度が少ない程、亜硝酸体窒素と硝酸体窒素が多い程排気ガスの回収流量を増加させるとよい。   Further, the control means 7 may control the control valve 6 to increase the exhaust gas recovery flow rate as the ammonia body nitrogen concentration decreases, and as the nitrite nitrogen and nitrate nitrogen increase.

このように、実施例3によれば、窒素濃度を直接計測することで硝化反応の進行が分かり、硝化反応が進行したN2O濃度の高い排ガスを選択的に回収でき、N2O処理効率を向上できる。 As described above, according to Example 3, the progress of the nitrification reaction can be understood by directly measuring the nitrogen concentration, and the exhaust gas having a high N 2 O concentration in which the nitrification reaction has progressed can be selectively recovered, and the N 2 O treatment efficiency can be recovered. Can be improved.

本発明の実施例4を図4により説明する。実施例4と実施例3との違いは、実施例3の窒素濃度計9の代わりに、実施例4では、N2O濃度演算手段10、流入条件管理手段11及びプラント条件管理手段12が設けられている点である。制御手段7は、N2O濃度演算手段10の演算結果を元にして、演算結果が設定値を超えた場合に制御弁6を制御する。 A fourth embodiment of the present invention will be described with reference to FIG. The difference between the fourth embodiment and the third embodiment is that, instead of the nitrogen concentration meter 9 of the third embodiment, in the fourth embodiment, an N 2 O concentration calculation means 10, an inflow condition management means 11 and a plant condition management means 12 are provided. This is the point. The control means 7 controls the control valve 6 based on the calculation result of the N 2 O concentration calculation means 10 when the calculation result exceeds the set value.

2O濃度演算手段10の演算方法について説明する。N2O濃度演算手段10には、流入条件管理手段11から流入水量及び流入水質の情報と、プラント条件管理手段12からプラントの仕様や現在の運転情報が入力される。図示していないが、流入条件管理手段11には、流入水量,流入水質のデータベースや流入水量計測器,流入水質計測器からの計測値が蓄積されている。図示していないが、プラント条件管理手段12には、生物反応槽1の水温や散気手段4からの送風量,活性汚泥の濃度などの情報のデータベースがあり、それらの情報は逐次更新されている。 A calculation method of the N 2 O concentration calculation means 10 will be described. The N 2 O concentration calculation means 10 receives inflow water amount and inflow water quality information from the inflow condition management means 11 and plant specifications and current operation information from the plant condition management means 12. Although not shown, the inflow condition management means 11 stores inflow water amount, inflow water quality database, inflow water amount measuring device, and measured values from the inflow water quality measuring device. Although not shown, the plant condition management means 12 has a database of information such as the water temperature of the biological reaction tank 1, the amount of air blown from the aeration means 4, the concentration of activated sludge, and the information is updated sequentially. Yes.

2O濃度演算手段10には、活性汚泥の反応をモデル化した活性汚泥モデル、例えば、IWA(International Water Association、国際水学会)モデルが記録されている。
活性汚泥モデルは、硝化反応がモデル化されており、流入条件やプラント運転条件によって生物反応槽1のアンモニア体窒素濃度や硝酸体窒素濃度を算出できるようになっている。流入条件管理手段11の流入水の濃度と反応槽の濃度の差分から硝化量を求め、硝化量からN2O濃度を推定する。この推定されたN2O濃度から生物反応槽にエアレーションされた排気ガスに含有されるN2O濃度を算出する。制御手段7は、N2O濃度が設定値以上の場合に制御弁6を制御する。制御手段7は、N2O濃度の算出値に応じて、排ガス処理装置の排ガス回収流量を制御してもよい。
In the N 2 O concentration calculation means 10, an activated sludge model that models the reaction of activated sludge, for example, an IWA (International Water Association) model is recorded.
In the activated sludge model, the nitrification reaction is modeled, and the ammonia body nitrogen concentration and nitrate body nitrogen concentration in the biological reaction tank 1 can be calculated according to the inflow conditions and the plant operating conditions. The amount of nitrification is obtained from the difference between the concentration of the influent water in the inflow condition management means 11 and the concentration in the reaction tank, and the N 2 O concentration is estimated from the amount of nitrification. The N 2 O concentration contained in the exhaust gas aerated in the biological reaction tank is calculated from the estimated N 2 O concentration. The control means 7 controls the control valve 6 when the N 2 O concentration is equal to or higher than a set value. The control means 7 may control the exhaust gas recovery flow rate of the exhaust gas treatment device according to the calculated value of the N 2 O concentration.

このように、実施例4によれば、モデルによりN2Oガス濃度を予測でき、N2O濃度の高い排ガスを選択的に回収できるので、N2O処理効率を向上できる。 Thus, according to the fourth embodiment, the N 2 O gas concentration can be predicted by the model, and the exhaust gas having a high N 2 O concentration can be selectively recovered, so that the N 2 O treatment efficiency can be improved.

本発明の実施例5を図5により説明する。実施例5は、実施例3と同様に構成されているが、実施例5では、窒素濃度計9が設置されていなく、生物反応槽1が前段の嫌気槽と後段の好気槽に分割され、生物反応槽1の上流側に排ガス処理装置13−1が設置され制御弁6と接続されている。   A fifth embodiment of the present invention will be described with reference to FIG. Example 5 is configured in the same manner as Example 3. However, in Example 5, the nitrogen concentration meter 9 is not installed, and the biological reaction tank 1 is divided into a preceding anaerobic tank and a subsequent aerobic tank. The exhaust gas treatment device 13-1 is installed on the upstream side of the biological reaction tank 1 and connected to the control valve 6.

流入水は、排ガス処理装置13−1を経て生物反応槽1に流入する。排気ガスは、排ガス処理装置13−1に導入され、N2Oガスは流入水中に溶解する。流入水に溶解したN2Oは、生物反応槽1に流入する。生物反応槽1の流入水は、嫌気槽(無酸素槽ともいう)に流入する。嫌気槽は、溶存酸素が実質的にない槽であり、N2Oは嫌気槽で活性汚泥により脱窒反応でN2ガスに還元処理される。排ガス処理装置13−1では、排ガスを流入水に溶解させる際に、ポンプなどの動力が必要だが、本実施例では、N2O濃度の高い排ガスを選択的に回収でき、処理する排ガス量が削減できるためN2O処理効率を向上できる。 The inflow water flows into the biological reaction tank 1 through the exhaust gas treatment device 13-1. The exhaust gas is introduced into the exhaust gas treatment device 13-1, and the N 2 O gas is dissolved in the inflowing water. N 2 O dissolved in the inflow water flows into the biological reaction tank 1. The inflow water of the biological reaction tank 1 flows into an anaerobic tank (also called an oxygen-free tank). The anaerobic tank is a tank substantially free of dissolved oxygen, and N 2 O is reduced to N 2 gas by a denitrification reaction with activated sludge in the anaerobic tank. The exhaust gas treatment device 13-1 requires power such as a pump to dissolve the exhaust gas into the influent water. However, in this embodiment, the exhaust gas with a high N 2 O concentration can be selectively recovered, and the amount of exhaust gas to be processed is small. Therefore, N 2 O treatment efficiency can be improved.

本発明の実施例6を図6により説明する。実施例6は、実施例1と同様に構成されているが、実施例6では、溶存酸素計8が設置されていなく、沈殿池2の下流側に排ガス処理装置13−2が設置され制御弁6と接続されている。   A sixth embodiment of the present invention will be described with reference to FIG. The sixth embodiment is configured in the same manner as the first embodiment, but in the sixth embodiment, the dissolved oxygen meter 8 is not installed, and the exhaust gas treatment device 13-2 is installed on the downstream side of the settling basin 2, and the control valve is used. 6 is connected.

排ガス処理装置13−2は、処理水が滞留している。排気ガスは、排ガス処理装置13−2に導入され、N2Oガスは処理水中に溶解する。排ガス処理装置13−2では、排ガスを流入水に溶解させる際に、ポンプなどの動力が必要だが、本実施例では、N2O濃度の高い排ガスを選択的に回収でき、処理する排ガス量が削減できるためN2O処理効率を向上できる。 In the exhaust gas treatment device 13-2, treated water is retained. The exhaust gas is introduced into the exhaust gas treatment device 13-2, and the N 2 O gas is dissolved in the treated water. In the exhaust gas treatment device 13-2, when the exhaust gas is dissolved in the influent water, power such as a pump is required. However, in this embodiment, the exhaust gas having a high N 2 O concentration can be selectively recovered, and the amount of exhaust gas to be processed is small. Therefore, N 2 O treatment efficiency can be improved.

本発明の実施例7を図7により説明する。実施例7は、実施例6と同様に構成されているが、実施例7では、排ガス中のN2Oを熱分解するための排ガス熱分解装置14が設置されており、制御手段7が排ガス熱分解装置14に接続されている。 A seventh embodiment of the present invention will be described with reference to FIG. Example 7 is configured in the same manner as Example 6, but in Example 7, an exhaust gas pyrolysis device 14 for thermally decomposing N 2 O in the exhaust gas is installed, and the control means 7 is an exhaust gas. It is connected to the thermal decomposition apparatus 14.

適用される排ガス熱分解装置14には、触媒が充填されているもの、発電機,汚泥焼却炉などが挙げられる。N2Oは熱で分解できるので、例えば汚泥焼却炉ではフリーボードの燃焼温度を850℃以上に上げることでN2Oを削減できる。 Examples of the exhaust gas thermal decomposition apparatus 14 to be applied include a catalyst-filled one, a generator, and a sludge incinerator. Since N 2 O can be decomposed by heat, for example, in a sludge incinerator, N 2 O can be reduced by raising the combustion temperature of the free board to 850 ° C. or higher.

排ガスが多いと排ガス熱分解装置14への負荷が増加するが、N2O濃度の高い排ガスを選択的に回収でき、排ガス量を低減しているので消費エネルギーを削減できる。本実施例では、N2O濃度の高い排ガスを選択的に回収でき、処理する排ガス量が削減できるためN2O処理効率を向上できる。 If the amount of exhaust gas is large, the load on the exhaust gas pyrolysis device 14 increases. However, exhaust gas with a high N 2 O concentration can be selectively recovered, and the amount of exhaust gas is reduced, so that energy consumption can be reduced. In this embodiment, exhaust gas having a high N 2 O concentration can be selectively recovered, and the amount of exhaust gas to be processed can be reduced, so that N 2 O treatment efficiency can be improved.

1 生物反応槽
2 沈殿池
3 ブロワ
4 散気手段
5 排ガス回収手段
6 制御弁
7 制御手段
8 溶存酸素計
9 窒素濃度計
10 N2O濃度演算手段
11 流入条件管理手段
12 プラント条件管理手段
13−1,13−2 排ガス処理装置
14 排ガス熱分解装置
1 bioreactor 2 sedimentation tank 3 blower 4 diffuser means 5 gas collecting means 6 control valve 7 controlling unit 8 the dissolved oxygen meter 9 nitrogen concentration meter 10 N 2 O concentration calculating means 11 flows condition management unit 12 plant condition management means 13 1, 13-2 Exhaust gas treatment device 14 Exhaust gas pyrolysis device

Claims (7)

廃水を活性汚泥により処理する下水処理方法であって、生物反応槽に流入する流量と濃度の情報を記憶する流入条件管理手段と、プラントの仕様と運転条件の現状値の情報を記憶するプラント条件管理手段と、前記流入条件管理手段と前記プラント条件管理手段の情報を元にエアレーションの排気ガスに含有するN2O濃度を算出するN2O濃度算出手段と、前記生物反応槽にエアレーションされたガスを回収するための排ガス回収手段と、前記排ガス回収手段に設けられた制御弁を開閉制御する制御手段を備え、前記制御手段は前記N2O濃度算出手段の算出値が、設定値以上の場合に前記制御弁を開閉制御してエアレーションされたガスを回収することを特徴とする下水処理方法。 A sewage treatment method for treating wastewater with activated sludge, inflow condition management means for storing flow rate and concentration information flowing into a biological reaction tank, and plant conditions for storing information on the current values of plant specifications and operating conditions a management unit, and N 2 O concentration calculation means for calculating the N 2 O concentration contained in the exhaust gas information based on the aeration of the inflow condition management unit and the plant condition management unit, which is aerated in the bioreactor An exhaust gas recovery means for recovering gas and a control means for controlling opening and closing of a control valve provided in the exhaust gas recovery means, wherein the control means has a calculated value of the N 2 O concentration calculating means equal to or greater than a set value In this case, the control valve is controlled to open and close to recover the aerated gas. 廃水を活性汚泥により処理する下水処理方法であって、生物反応槽に流入する流量と濃度の情報を記憶する流入条件管理手段と、プラントの仕様と運転条件の現状値の情報を記憶するプラント条件管理手段と、前記流入条件管理手段と前記プラント条件管理手段の情報を元にエアレーションの排気ガスに含有するN2O濃度を算出するN2O濃度算出手段と、前記生物反応槽にエアレーションされたガスを回収するための排ガス回収手段と、前記排ガス回収手段に設けられた制御弁を開閉制御する制御手段を備え、前記制御手段は前記N2O濃度算出手段の算出値で前記制御弁を制御して排ガス回収流量を制御することを特徴とする下水処理方法。 A sewage treatment method for treating wastewater with activated sludge, inflow condition management means for storing flow rate and concentration information flowing into a biological reaction tank, and plant conditions for storing information on the current values of plant specifications and operating conditions a management unit, and N 2 O concentration calculation means for calculating the N 2 O concentration contained in the exhaust gas information based on the aeration of the inflow condition management unit and the plant condition management unit, which is aerated in the bioreactor An exhaust gas recovery means for recovering gas and a control means for controlling opening and closing of a control valve provided in the exhaust gas recovery means, the control means controlling the control valve with a value calculated by the N 2 O concentration calculation means And controlling the exhaust gas recovery flow rate. 廃水を活性汚泥により処理する下水処理方法であって、生物反応槽の反応液の硝酸体窒素濃度,亜硝酸体窒素,アンモニア体窒素のうちの一つ以上を計測するための窒素計測手段と、前記生物反応槽にエアレーションされたガスを回収するための排ガス回収手段と、前記排ガス回収手段に設けられた制御弁を開閉制御する制御手段を備え、前記制御手段は前記窒素計測手段の計測値によって前記制御弁を開閉制御してエアレーションされたガスを回収することを特徴とする下水処理方法。   A sewage treatment method for treating wastewater with activated sludge, a nitrogen measuring means for measuring one or more of nitrate nitrogen concentration, nitrite nitrogen, and ammonia nitrogen in a reaction solution of a biological reaction tank; An exhaust gas recovery means for recovering the gas aerated in the biological reaction tank, and a control means for controlling opening and closing of a control valve provided in the exhaust gas recovery means, the control means depending on the measured value of the nitrogen measurement means A sewage treatment method characterized in that the aerated gas is recovered by opening and closing the control valve. 廃水を活性汚泥により処理する下水処理方法であって、生物反応槽の反応液の硝酸体窒素濃度,亜硝酸体窒素,アンモニア体窒素のうちの一つ以上を計測するための窒素計測手段と、前記生物反応槽にエアレーションされたガスを回収するための排ガス回収手段と、前記排ガス回収手段に設けられた制御弁を開閉制御する制御手段を備え、前記制御手段は前記窒素計測手段の計測値で前記制御弁を制御して排ガス回収流量を制御することを特徴とする下水処理方法。   A sewage treatment method for treating wastewater with activated sludge, a nitrogen measuring means for measuring one or more of nitrate nitrogen concentration, nitrite nitrogen, and ammonia nitrogen in a reaction solution of a biological reaction tank; An exhaust gas recovery means for recovering the gas aerated in the biological reaction tank, and a control means for controlling opening and closing of a control valve provided in the exhaust gas recovery means, the control means is a measurement value of the nitrogen measurement means A sewage treatment method, wherein the exhaust gas recovery flow rate is controlled by controlling the control valve. 前記排ガス回収手段から回収された排気ガスを流入下水に注入して処理することを特徴とする請求項1から4のいずれかに記載の下水処理方法。   The sewage treatment method according to any one of claims 1 to 4, wherein the exhaust gas collected from the exhaust gas collecting means is injected into the inflowing sewage for treatment. 前記排ガス回収手段から回収された排ガスを処理水に注入して処理することを特徴とする請求項1から4のいずれかに記載の下水処理方法。   The sewage treatment method according to any one of claims 1 to 4, wherein the exhaust gas recovered from the exhaust gas recovery means is injected into the treated water for processing. 前記排ガス回収手段から回収された排ガスを熱分解して処理することを特徴とする請求項1から4のいずれかに記載の下水処理方法。   The sewage treatment method according to any one of claims 1 to 4, wherein the exhaust gas recovered from the exhaust gas recovery means is thermally decomposed and processed.
JP2012261839A 2012-11-30 2012-11-30 Sewage treatment method Pending JP2013039577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012261839A JP2013039577A (en) 2012-11-30 2012-11-30 Sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012261839A JP2013039577A (en) 2012-11-30 2012-11-30 Sewage treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009123682A Division JP5150560B2 (en) 2009-05-22 2009-05-22 Sewage treatment method

Publications (1)

Publication Number Publication Date
JP2013039577A true JP2013039577A (en) 2013-02-28

Family

ID=47888473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012261839A Pending JP2013039577A (en) 2012-11-30 2012-11-30 Sewage treatment method

Country Status (1)

Country Link
JP (1) JP2013039577A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103977701A (en) * 2014-04-22 2014-08-13 环境保护部华南环境科学研究所 Sludge flue gas denitration agent and preparation method and application thereof
CN108821435A (en) * 2018-07-11 2018-11-16 石家庄市桥西污水处理厂 A kind of dissolved oxygen control method in sewage treatment
CN109704456A (en) * 2019-02-27 2019-05-03 同济大学 A kind of method of nitrous oxide gas burst size in reduction Short-Cut Nitrification Process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143196A (en) * 1978-04-28 1979-11-08 Hitachi Ltd Dissolved oxygen concentration determination
JPH0365297A (en) * 1989-08-04 1991-03-20 Toshiba Corp Control apparatus of aeration tank
JPH1043787A (en) * 1996-07-31 1998-02-17 Meidensha Corp Device for simulating amount of nitrous oxide of activated sludge method
JPH10128389A (en) * 1996-11-01 1998-05-19 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for waste water treatment
JP2002219481A (en) * 1996-07-23 2002-08-06 Mitsubishi Chemicals Corp Equipment for controlling concentration of dissolved oxygen in aerating tank
JP2004105817A (en) * 2002-09-17 2004-04-08 Mitsubishi Materials Natural Resources Development Corp Treatment method and treatment system for polluted water and organic exhaust gas
JP2004275826A (en) * 2003-03-13 2004-10-07 Toshiba Corp Sewage treatment plant water quality monitoring and controlling device
JP2005013957A (en) * 2003-06-30 2005-01-20 Hitachi Ltd Operation supporting apparatus for biological water treatment facility

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143196A (en) * 1978-04-28 1979-11-08 Hitachi Ltd Dissolved oxygen concentration determination
JPH0365297A (en) * 1989-08-04 1991-03-20 Toshiba Corp Control apparatus of aeration tank
JP2002219481A (en) * 1996-07-23 2002-08-06 Mitsubishi Chemicals Corp Equipment for controlling concentration of dissolved oxygen in aerating tank
JPH1043787A (en) * 1996-07-31 1998-02-17 Meidensha Corp Device for simulating amount of nitrous oxide of activated sludge method
JPH10128389A (en) * 1996-11-01 1998-05-19 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for waste water treatment
JP2004105817A (en) * 2002-09-17 2004-04-08 Mitsubishi Materials Natural Resources Development Corp Treatment method and treatment system for polluted water and organic exhaust gas
JP2004275826A (en) * 2003-03-13 2004-10-07 Toshiba Corp Sewage treatment plant water quality monitoring and controlling device
JP2005013957A (en) * 2003-06-30 2005-01-20 Hitachi Ltd Operation supporting apparatus for biological water treatment facility

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103977701A (en) * 2014-04-22 2014-08-13 环境保护部华南环境科学研究所 Sludge flue gas denitration agent and preparation method and application thereof
CN103977701B (en) * 2014-04-22 2016-09-07 环境保护部华南环境科学研究所 A kind of mud smoke denitrifier and preparation method and application
CN108821435A (en) * 2018-07-11 2018-11-16 石家庄市桥西污水处理厂 A kind of dissolved oxygen control method in sewage treatment
CN108821435B (en) * 2018-07-11 2021-04-02 石家庄市桥西污水处理厂 Dissolved oxygen control method in sewage treatment
CN109704456A (en) * 2019-02-27 2019-05-03 同济大学 A kind of method of nitrous oxide gas burst size in reduction Short-Cut Nitrification Process

Similar Documents

Publication Publication Date Title
JP5150560B2 (en) Sewage treatment method
Mannina et al. A plant-wide wastewater treatment plant model for carbon and energy footprint: model application and scenario analysis
Desloover et al. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions
Zaborowska et al. Strategies for mitigating nitrous oxide production and decreasing the carbon footprint of a full-scale combined nitrogen and phosphorus removal activated sludge system
KR101325659B1 (en) Apparatus for controlling aeration system by nitrification reaction in Sequencing Batch Reactor
JP4334317B2 (en) Sewage treatment system
JP3961835B2 (en) Sewage treatment plant water quality controller
JP5075926B2 (en) Sewage treatment apparatus and sewage treatment method
Lu et al. Automatic control and optimal operation for greenhouse gas mitigation in sustainable wastewater treatment plants: A review
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
JP2013039577A (en) Sewage treatment method
JP4327770B2 (en) Biological nitrification treatment method and nitrification treatment apparatus for wastewater containing ammonia nitrogen
KR20180104413A (en) Oxygen control system for activated sludge process using harmony search algorithm
JP3772882B2 (en) Methane fermentation treatment method
KR102203751B1 (en) Sludge reduction and its sewage treatment system
JP6158691B2 (en) Organic wastewater treatment apparatus, organic wastewater treatment method, and organic wastewater treatment apparatus control program
JP5592162B2 (en) Sewage treatment equipment
JP6049544B2 (en) Wastewater treatment equipment
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
JP2005218939A (en) Method for treating nitrogen-containing waste liquid
Flores-Alsina et al. Modelling the impacts of operational conditions on the performance of a full-scale membrane aerated biofilm reactor
JP6396238B2 (en) Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program
JPH0938682A (en) Biological water treatment
JP4904738B2 (en) Nitrogen-containing waste liquid treatment method
CN205472940U (en) Sewage treatment plant through monitoring N2O automatic control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140408