JP4904738B2 - Nitrogen-containing waste liquid treatment method - Google Patents

Nitrogen-containing waste liquid treatment method Download PDF

Info

Publication number
JP4904738B2
JP4904738B2 JP2005218440A JP2005218440A JP4904738B2 JP 4904738 B2 JP4904738 B2 JP 4904738B2 JP 2005218440 A JP2005218440 A JP 2005218440A JP 2005218440 A JP2005218440 A JP 2005218440A JP 4904738 B2 JP4904738 B2 JP 4904738B2
Authority
JP
Japan
Prior art keywords
waste liquid
nitrogen
aeration
air aeration
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005218440A
Other languages
Japanese (ja)
Other versions
JP2007029882A (en
Inventor
正 小松
豊 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005218440A priority Critical patent/JP4904738B2/en
Publication of JP2007029882A publication Critical patent/JP2007029882A/en
Application granted granted Critical
Publication of JP4904738B2 publication Critical patent/JP4904738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アンモニア性窒素を含有する廃液を生物化学的に処理し、窒素ガスとして除去する窒素含有廃液の処理方法に関する。   The present invention relates to a method for treating a nitrogen-containing waste liquid in which waste liquid containing ammoniacal nitrogen is treated biochemically and removed as nitrogen gas.

生ごみ等や下水の余剰汚泥などの有機性廃棄物をメタン発酵し、メタンガスとしてエネルギーを回収する方法が省資源、循環型社会形成の一環として採用されている。   The method of methane fermentation of organic waste such as garbage and surplus sludge from sewage and recovering energy as methane gas has been adopted as part of resource conservation and recycling society formation.

メタン発酵は有機物をメタンと炭酸ガスに分解するが、100%分解されるわけではなく、発酵廃液中には高濃度の有機成分が残っている。また、発酵廃液中には、発酵残渣もしくはメタン発酵槽で増殖した菌体としての汚泥があり、この汚泥中には高濃度の窒素成分が含まれる。更に、有機物の分解生成物であるアンモニアも高濃度に含まれる。したがって、発酵廃液はそのまま下水道や河川には放流できず、有機物と窒素成分を分解除去する処理が必要である。   Methane fermentation decomposes organic matter into methane and carbon dioxide, but it is not 100% decomposed, and high-concentration organic components remain in the fermentation waste liquid. Further, in the fermentation waste liquid, there is a sludge as a fermentation residue or a microbial cell grown in a methane fermentation tank, and this sludge contains a high concentration of nitrogen components. Furthermore, ammonia, which is a decomposition product of organic matter, is also contained at a high concentration. Therefore, the fermentation waste liquid cannot be discharged into the sewer or river as it is, and a process for decomposing and removing organic substances and nitrogen components is necessary.

上記のメタン発酵廃液の処理方法として、活性汚泥処理法の一つである間欠曝気式活性汚泥処理(以下、「間欠曝気処理」とも記す)が知られている。   As a method for treating the above methane fermentation waste liquid, intermittent aeration activated sludge treatment (hereinafter also referred to as “intermittent aeration treatment”), which is one of the activated sludge treatment methods, is known.

この間欠曝気処理とは、上記メタン発酵廃液のようなアンモニア性窒素を含有する原水(以下、「窒素含有廃液」とも記す)に、空気曝気と曝気停止を交互に繰り返し、窒素含有廃液中のアンモニアと有機物とを、活性汚泥に培養させた微生物の食物として利用して分解除去する処理方法である。すなわち、窒素含有廃液中のアンモニア性窒素をアンモニア酸化細菌により亜硝酸性窒素に酸化させ、更にこの亜硝酸性窒素を亜硝酸酸化細菌により硝酸性窒素に酸化させる硝化工程と、硝化工程で得られた亜硝酸性窒素もしくは硝酸性窒素中の酸素を使い、窒素含有廃液中の有機物を酸化する脱窒菌の作用により、亜硝酸性窒素もしくは硝酸性窒素は還元して、窒素ガスにまで分解する脱窒工程とからなる2段階の生物反応によって、窒素含有廃液中のアンモニアを窒素ガスとして除去する方法である。   This intermittent aeration treatment refers to ammonia in nitrogen-containing waste liquid by alternately repeating air aeration and aeration stop on raw water containing ammonia nitrogen such as the above methane fermentation waste liquid (hereinafter also referred to as “nitrogen-containing waste liquid”). And organic matter are decomposed and removed as food for microorganisms cultured in activated sludge. That is, it is obtained in the nitrification process in which ammonia nitrogen in the nitrogen-containing waste liquid is oxidized to nitrite nitrogen by ammonia oxidizing bacteria, and this nitrite nitrogen is oxidized to nitrate nitrogen by nitrite oxidizing bacteria, and in the nitrification process. Nitrous nitrogen or oxygen in nitrate nitrogen is used to reduce nitrite nitrogen or nitrate nitrogen by the action of denitrifying bacteria that oxidize organic matter in the nitrogen-containing waste liquid and decompose it into nitrogen gas. In this method, ammonia in the nitrogen-containing waste liquid is removed as nitrogen gas by a two-stage biological reaction comprising a nitrogen process.

そして、このような間欠曝気処理を効率よく行うにあたり種々の検討がなされており、例えば、下記の特許文献1には、間欠曝気処理が行われる反応槽内のpH変化を計測してその屈曲点から硝化反応の終了を検知するとともに、得られた硝化時間から窒素含有廃液の窒素濃度を推定し、この廃液窒素濃度から反応槽の窒素負荷を一定にするために窒素含有廃液の流量を制御することが開示されている。   Various studies have been made to efficiently perform such intermittent aeration treatment. For example, in Patent Document 1 below, a change in pH in a reaction tank in which intermittent aeration treatment is performed is measured and the inflection point is measured. From the obtained nitrification time, the nitrogen concentration of the nitrogen-containing waste liquid is estimated, and the flow rate of the nitrogen-containing waste liquid is controlled from this waste liquid nitrogen concentration in order to keep the nitrogen load in the reaction tank constant. It is disclosed.

また、下記の特許文献2には、間欠曝気処理により窒素含有廃液の脱窒処理を行うに当たり、処理水pHを記憶手段に逐次記憶させ、記憶されたpH値の経時的変化より各好気的微生物処理および嫌気的微生物処理におけるpH変化速度並びにpH変化幅を演算手段に演算させて、pH変化速度が標準速度に達したのち事実上0になる時点の出現の有無に基づき、硝化反応および脱窒反応の進行状況を診断することが開示されている。   Further, in the following Patent Document 2, when performing denitrification treatment of nitrogen-containing waste liquid by intermittent aeration treatment, the treated water pH is sequentially stored in the storage means, and each aerobic is determined from the change over time of the stored pH value. The pH change rate and the pH change range in the microbial treatment and the anaerobic microbial treatment are calculated by the calculation means, and the nitrification reaction and desorption are determined based on the presence or absence of the point at which the pH change rate reaches zero after reaching the standard rate. Diagnosing the progress of the nitrogen reaction is disclosed.

更にまた、下記の特許文献3には、間欠曝気処理により、窒素含有廃液中のアンモニア性窒素を生物学的硝化によって処理する方法において、曝気槽内排水のDO(溶存酸素濃度)値の連続測定を行い、空気曝気開始後のDO(溶存酸素濃度)値曲線上昇時における、上昇曲線の傾きが急激に大きくなる変曲点を検出し、これを硝化完了の指標として空気曝気を停止し、一方、曝気槽内排水のORP(酸化還元電位)値の連続測定を行い、空気曝気停止後のORP(酸化還元電位)値曲線下降時における、下降曲線の傾きが急激に大きくなる変曲点を検出し、これを脱窒完了の指標として空気曝気を再開することが開示されている。   Furthermore, the following Patent Document 3 discloses a continuous measurement of DO (dissolved oxygen concentration) value of waste water in an aeration tank in a method of treating ammonia nitrogen in a nitrogen-containing waste liquid by biological nitrification by intermittent aeration treatment. The inflection point where the slope of the rising curve suddenly increases when the DO (Dissolved Oxygen Concentration) value curve rises after the start of air aeration is detected, and this is used as an indicator of nitrification completion to stop air aeration. , Continuous measurement of ORP (redox potential) value of waste water in the aeration tank and detection of an inflection point where the slope of the descending curve suddenly increases when the ORP (redox potential) value curve descends after air aeration is stopped Then, it is disclosed that air aeration is resumed using this as an index of completion of denitrification.

一方、間欠曝気処理において、硝化反応を進めるためには空気曝気を行う必要があり、脱窒処理には、窒素含有廃液の有機物濃度により別途有機物源としてメチルアルコールなどの添加が必要になる場合がある。そこで、硝化工程で必要な酸素量や、脱窒工程で必要な有機物の所要量を軽減させたコスト効率の良い間欠曝気処理として、硝化工程において、アンモニア性窒素の酸化を亜硝酸で制御して処理する亜硝酸型の間欠曝気処理などが知られている。
特開平11−253990号公報 特開平8−323394号公報 特許3015426号明細書
On the other hand, in the intermittent aeration treatment, it is necessary to perform air aeration in order to advance the nitrification reaction, and the denitrification treatment may require addition of methyl alcohol or the like as an organic matter source depending on the organic matter concentration of the nitrogen-containing waste liquid. is there. Therefore, as a cost-effective intermittent aeration process that reduces the amount of oxygen required in the nitrification process and the amount of organic matter required in the denitrification process, the oxidation of ammonia nitrogen is controlled with nitrous acid in the nitrification process. A nitrite type intermittent aeration treatment to be treated is known.
Japanese Patent Laid-Open No. 11-253990 JP-A-8-323394 Japanese Patent No. 3015426

間欠曝気処理を亜硝酸型で制御するには、アンモニア酸化の終了を正確に把握して曝気時間をコントロールする必要がある。これは、アンモニア酸化菌は、亜硝酸酸化菌より増殖速度が速いため、アンモニア酸化の終了後、空気曝気を停止すると亜硝酸酸化菌が十分増殖できず減少してしまうからである。そのため、アンモニア酸化の終了後、直ちに空気曝気を停止することで、亜硝酸酸化菌がウォッシュアウトしていき、亜硝酸型の運転形態で制御ができる。   In order to control the intermittent aeration process with the nitrite type, it is necessary to accurately grasp the end of ammonia oxidation and control the aeration time. This is because ammonia-oxidizing bacteria have a faster growth rate than nitrite-oxidizing bacteria, and therefore, when air aeration is stopped after the end of ammonia oxidation, nitrite-oxidizing bacteria cannot grow sufficiently and decrease. Therefore, by stopping air aeration immediately after the end of ammonia oxidation, the nitrite oxidizing bacteria are washed out, and control can be performed in a nitrite type operation mode.

ここで、間欠曝気処理におけるアンモニア性窒素の亜硝酸性窒素への酸化反応は、下式(1)に示すようにして行われており、酸素を消費して亜硝酸性窒素を生成すると共に、同時に炭酸ガスが発生する。   Here, the oxidation reaction of ammonia nitrogen to nitrite nitrogen in the intermittent aeration process is performed as shown in the following formula (1), and consumes oxygen to generate nitrite nitrogen, At the same time, carbon dioxide is generated.

NH +2HCO +1.5O→NO +3HO+2CO・・・(1)
また、窒素含有廃液中に含まれている有機物成分、例えば、メタン発酵廃液などは、メタン発酵で生じる酢酸などが含まれているため、例えば下式(2)に示すように、これら有機物成分も、空気曝気によって分解されて炭酸ガスが発生する。
NH 4 + + 2HCO 3 + 1.5O 2 → NO 2 + 3H 2 O + 2CO 2 (1)
In addition, organic components contained in the nitrogen-containing waste liquid, such as methane fermentation waste liquid, contain acetic acid generated by methane fermentation, and therefore these organic components are also represented by, for example, the following formula (2). Carbon dioxide gas is generated by being decomposed by air aeration.

CHCOOH+O→2HO+2CO・・・(2)
更にまた、間欠曝気槽内の活性汚泥の自己消化によっても炭酸ガスが発生する。
CH 3 COOH + O 2 → 2H 2 O + 2CO 2 (2)
Furthermore, carbon dioxide gas is generated by self-digestion of activated sludge in the intermittent aeration tank.

よって、アンモニア性窒素の酸化反応の進行中は、これらの反応が並行して進行している。そして、これらの反応で生成した炭酸ガスは、空気曝気によって脱気されるが、一部は脱気しきれずに溶解してしまう。そのため、硝化工程の進行中は、窒素含有廃液のpHは低下傾向にある。アンモニア性窒素を酸化してしまえば、炭酸ガスの発生がなくなるので、窒素含有廃液から炭酸ガスが脱気され、その結果pHは上昇傾向を示すことになる。また、窒素含有廃液の溶存酸素濃度も、アンモニア性窒素を酸化してしまえば、酸素消費がなくなるので、溶存酸素濃度も上昇傾向を示すこととなる。そのため、好気工程において、窒素含有廃液のpHや溶存酸素濃度をモニタリングし、空気曝気開始からこれらの値が上昇傾向を示すまでに要した時間を基に空気曝気時間を調整することで間欠曝気処理を亜硝酸型で制御することが可能である。   Therefore, during the progress of the oxidation reaction of ammoniacal nitrogen, these reactions proceed in parallel. And the carbon dioxide gas produced | generated by these reaction is deaerated by air aeration, However, A part will melt | dissolve without being able to deaerate completely. Therefore, while the nitrification process is in progress, the pH of the nitrogen-containing waste liquid tends to decrease. If ammoniacal nitrogen is oxidized, carbon dioxide is no longer generated, so carbon dioxide is degassed from the nitrogen-containing waste liquid, and as a result, the pH tends to increase. Further, the dissolved oxygen concentration of the nitrogen-containing waste liquid also shows an increasing tendency because the oxygen consumption is lost if ammoniacal nitrogen is oxidized. Therefore, in the aerobic process, intermittent aeration is performed by monitoring the pH and dissolved oxygen concentration of the nitrogen-containing waste liquid and adjusting the air aeration time based on the time required from the start of air aeration until these values show an upward trend. It is possible to control the treatment with the nitrite type.

しかしながら、例えば、メタノールや酢酸などのような分解しやすい有機物成分を多量に含有する窒素含有廃液の場合、これらの有機物成分は、アンモニアよりも先に分解が完結してしまい、酸化速度の違いにより、アンモニア性窒素の酸化反応が未完結であるにかかわらず、廃液のpHや溶存酸素が上昇してしまうことがあった。   However, for example, in the case of a nitrogen-containing waste liquid containing a large amount of organic components that are easily decomposed, such as methanol and acetic acid, these organic components are completely decomposed prior to ammonia, and due to differences in oxidation rates. Even though the oxidation reaction of ammoniacal nitrogen was not completed, the pH of the waste liquid and dissolved oxygen sometimes increased.

また、従来の間欠曝気処理においては、硝化反応を安定させるため、好気工程における空気曝気量を制御し、処理する窒素含有廃液の溶存酸素が所定量となるように調整するといったことがなされているが、こうした場合、窒素含有廃液の性状によっては、例えば、図9、10に示されているように、pHの屈曲点が明確とならないことがあり、間欠曝気処理を亜硝酸型で制御することができないことがあった。図9は、窒素含有廃液の溶存酸素濃度が2mg/Lとなるように空気曝気量を操作し続けた時の窒素含有廃液の溶存酸素と曝気装置の負荷の経時変化であり、図10にその時の廃液のpHの経時変化である。   In addition, in the conventional intermittent aeration treatment, in order to stabilize the nitrification reaction, the air aeration amount in the aerobic process is controlled, and the dissolved oxygen in the nitrogen-containing waste liquid to be treated is adjusted to a predetermined amount. However, in such a case, depending on the properties of the nitrogen-containing waste liquid, for example, as shown in FIGS. 9 and 10, the inflection point of the pH may not be clear, and the intermittent aeration treatment is controlled by the nitrite type. There was something I couldn't do. FIG. 9 shows changes over time in the dissolved oxygen of the nitrogen-containing waste liquid and the load of the aeration apparatus when the air aeration amount is continuously operated so that the dissolved oxygen concentration of the nitrogen-containing waste liquid becomes 2 mg / L. It is a time-dependent change of pH of the waste liquid.

したがって、上記特許文献1〜3のような運転方法では、窒素含有廃液の性状によっては、亜硝酸型の間欠曝気処理を長期間維持させることは困難であった。   Therefore, in the operation methods as described in Patent Documents 1 to 3, it has been difficult to maintain the nitrous acid type intermittent aeration treatment for a long period of time depending on the properties of the nitrogen-containing waste liquid.

そこで、本発明の目的は、上記の従来技術の問題点に鑑みてなされたものであり、窒素含有廃液の性状によらず、亜硝酸型の間欠曝気処理を長期間安定して維持することのできる窒素含有廃液の処理方法を提供することにある。   Therefore, the object of the present invention has been made in view of the above-mentioned problems of the prior art, and it is possible to stably maintain a nitrite type intermittent aeration treatment for a long period of time regardless of the properties of the nitrogen-containing waste liquid. Another object of the present invention is to provide a method for treating a nitrogen-containing waste liquid.

本発明者らは、上記目的を達成するにあたって種々検討の結果、本発明の窒素含有廃液の処理方法は、アンモニア性窒素を含有する廃液に対して、空気曝気による好気工程と、曝気停止による嫌気工程とを交互に繰り返す間欠曝気処理を行い、前記廃液中のアンモニア性窒素を窒素ガスに転換して除去する窒素含有廃液の処理方法であって、前記好気工程において、空気曝気開始から少なくとも5分間は、前記廃液の溶存酸素濃度が所定量となるように空気曝気量を調整し、その後、空気曝気量を一定量に維持して空気曝気を行い、空気曝気開始からpH、溶存酸素濃度のいずれか一つを連続的に測定し、前記廃液のpHが減少から増加へ転ずる屈曲点までに要した時間又は廃液の溶存酸素濃度が急増する変化点までに要した時間を求め、この時間の1〜1.5倍を空気曝気の時間とすることを特徴とする。 As a result of various studies in order to achieve the above object, the present inventors have conducted a method for treating a nitrogen-containing waste liquid according to the present invention by performing an aerobic process by air aeration and aeration stop on a waste liquid containing ammoniacal nitrogen. An intermittent aeration process that alternately repeats an anaerobic process, a method for treating a nitrogen-containing waste liquid that converts ammonia nitrogen in the waste liquid into nitrogen gas and removes the nitrogen, and in the aerobic process, at least from the start of air aeration For 5 minutes , the air aeration amount is adjusted so that the dissolved oxygen concentration of the waste liquid becomes a predetermined amount, and then the air aeration amount is maintained while maintaining the air aeration amount at a constant amount, and the pH and dissolved oxygen concentration from the start of air aeration. Any one of the above is continuously measured, and the time required until the inflection point where the pH of the waste liquid starts to decrease or increases or the time required until the change point where the dissolved oxygen concentration of the waste liquid rapidly increases is obtained. 1-1.5 times as long, characterized in that the time of air aeration.

好気工程の始動時は、間欠曝気槽内の活性汚泥に保持した菌の活性が安定せず、窒素含有廃液中の溶存酸素濃度が安定しにくく、曝気空気量を一定量に制御しても、溶存酸素濃度が変動してしまう。また、溶存酸素濃度が低すぎると、アンモニア酸化菌の活性が向上しにくい。そのため、硝化工程におけるアンモニア性窒素の酸化を安定させ、アンモニア酸化菌の活性を向上させるため、空気曝気開始から所定の時間は、空気曝気量を適宜調整しながら窒素含有廃液の溶存酸素濃度が所定量となるように制御する。この溶存酸素濃度を所定量に制御する期間はpHの屈曲点や溶存酸素濃度が急増する変化点は検知しないので、アンモニア性窒素の酸化反応が未完結であるにもかかわらず、窒素含有廃液のpHの上昇や溶存酸素濃度が急増するといった事態によるアンモニア酸化終了点の誤検知を解消できる。   At the start of the aerobic process, the activity of the bacteria held in the activated sludge in the intermittent aeration tank is not stable, the dissolved oxygen concentration in the nitrogen-containing waste liquid is difficult to stabilize, and even if the amount of aerated air is controlled to a constant amount The dissolved oxygen concentration will fluctuate. Moreover, if the dissolved oxygen concentration is too low, the activity of ammonia oxidizing bacteria is difficult to improve. Therefore, in order to stabilize the oxidation of ammonia nitrogen in the nitrification process and improve the activity of ammonia oxidizing bacteria, the dissolved oxygen concentration of the nitrogen-containing waste liquid is adjusted while adjusting the air aeration amount for a predetermined time from the start of air aeration. Control to be quantitative. During the period in which the dissolved oxygen concentration is controlled to a predetermined amount, the inflection point of pH and the changing point at which the dissolved oxygen concentration rapidly increases are not detected. It is possible to eliminate erroneous detection of the ammonia oxidation end point due to a situation such as a rise in pH or a rapid increase in dissolved oxygen concentration.

そして、窒素含有廃液の溶存酸素濃度が安定した時点で、曝気空気量を、所定の制御操作値となるように固定して空気曝気を行うことで、アンモニア酸化が終了し、酸素消費と炭酸ガス発生量が減少すると、空気曝気による酸素供給と炭酸ガスの脱気速度は一定であるため、アンモニア酸化の終了に伴い溶存酸素濃度やpHが上昇する。   Then, when the dissolved oxygen concentration of the nitrogen-containing waste liquid is stabilized, the amount of aerated air is fixed so as to become a predetermined control operation value, and air aeration is performed, whereby ammonia oxidation is completed, and oxygen consumption and carbon dioxide gas are consumed. When the generation amount decreases, the oxygen supply by air aeration and the degassing rate of carbon dioxide gas are constant, so that the dissolved oxygen concentration and pH increase with the end of ammonia oxidation.

このように空気曝気を制御することで、窒素含有廃液の性状によらずアンモニア酸化の終了点を知ることが可能である。   By controlling air aeration in this way, it is possible to know the end point of ammonia oxidation regardless of the nature of the nitrogen-containing waste liquid.

そして、空気曝気開始から前記発酵廃液のpHが減少から増加へ転ずる屈曲点までに要した時間、又は溶存酸素濃度が急増する変化点までに要した時間に基づいて空気曝気の時間を調整することで、長期間安定して亜硝酸型の間欠曝気処理を維持することができ、窒素含有廃液の処理コストの低減や処理効率の向上を図ることができる。   And adjusting the time of air aeration based on the time required from the start of air aeration to the inflection point where the pH of the fermentation waste liquor starts to decrease or increases, or the change point where the dissolved oxygen concentration rapidly increases Thus, the nitrous acid type intermittent aeration treatment can be maintained stably for a long period of time, and the treatment cost of the nitrogen-containing waste liquid can be reduced and the treatment efficiency can be improved.

また好気工程において空気曝気開始から少なくとも5分間は廃液の溶存酸素濃度が所定量となるように空気曝気量を調整し、その後、空気曝気量を一定量に維持して空気曝気を行うことで、空気曝気初期において、窒素含有廃液の溶存酸素の不足を解消でき、アンモニア酸化菌の活性を素早く安定させることができ、更には、分解しやすい有機物成分の分解を完結させることができる。 Further , in the aerobic process, the air aeration amount is adjusted so that the dissolved oxygen concentration of the waste liquid becomes a predetermined amount for at least 5 minutes from the start of the air aeration, and then the air aeration is performed while maintaining the air aeration amount at a constant amount. Thus, in the initial stage of air aeration, the shortage of dissolved oxygen in the nitrogen-containing waste liquid can be solved, the activity of the ammonia oxidizing bacteria can be quickly stabilized, and further, the decomposition of organic components that are easily decomposed can be completed.

また、前記空気曝気の時間は、空気曝気開始から前記廃液のpHが減少から増加へ転ずる屈曲点までに要した時間、又は溶存酸素濃度が急増する変化点までに要した時間の1〜1.5倍とすることにより、アンモニア酸化菌と亜硝酸酸化菌の増殖速度の違いで、亜硝酸酸化菌を曝気槽内に蓄積させないことができ、間欠曝気処理を亜硝酸型で制御することができる。 In addition, the time of the air aeration is 1-1. Of the time required from the start of air aeration to the inflection point where the pH of the waste liquid starts to decrease or increases, or the change point where the dissolved oxygen concentration rapidly increases. By making it 5 times, nitrite-oxidizing bacteria can be prevented from accumulating in the aeration tank due to the difference in growth rate between ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, and intermittent aeration treatment can be controlled by the nitrite type. .

本発明によれば、空気曝気の開始初期は、窒素含有廃液の溶存酸素濃度が一定量となるように、空気曝気量を適宜調整することで、窒素含有廃液の溶存酸素量が不足することがなく、アンモニア活性菌の活動を阻害させることなく、活性を向上させることができ、処理効率が高い。また、この溶存酸素濃度を所定量に制御する期間はpHの屈曲点や溶存酸素濃度が急増する変化点は検知しないので、アンモニア性窒素の酸化反応が未完結であるにもかかわらず、廃液のpHの上昇や溶存酸素濃度が急増するといった事態によるアンモニア酸化終了点の誤検知を解消できる。   According to the present invention, at the beginning of air aeration, the amount of dissolved oxygen in the nitrogen-containing waste liquid may be insufficient by appropriately adjusting the air aeration amount so that the dissolved oxygen concentration of the nitrogen-containing waste liquid becomes a constant amount. In addition, the activity can be improved without inhibiting the activity of ammonia-active bacteria, and the treatment efficiency is high. In addition, during the period in which the dissolved oxygen concentration is controlled to a predetermined amount, the inflection point of pH and the changing point at which the dissolved oxygen concentration rapidly increases are not detected. It is possible to eliminate erroneous detection of the ammonia oxidation end point due to a situation such as a rise in pH or a rapid increase in dissolved oxygen concentration.

続いて、廃液の溶存酸素濃度が安定した時点で、曝気空気量を、所定の制御操作値となるように固定して空気曝気を行うことで、アンモニア酸化が終了すると廃液の溶存酸素やpHが上昇することとなり、窒素含有廃液の性状によらずアンモニア酸化の終了点を知ることが可能である。   Subsequently, when the dissolved oxygen concentration of the waste liquid is stabilized, the aeration air amount is fixed to a predetermined control operation value and air aeration is performed. As a result, the end point of ammonia oxidation can be known regardless of the nature of the nitrogen-containing waste liquid.

そして、空気曝気開始から前記発酵廃液のpHが減少から増加へ転ずる屈曲点までに要した時間、又は溶存酸素濃度が急増する変化点までに要した時間に基づいて空気曝気の時間を調整することで、長期間安定して亜硝酸型の間欠曝気処理を維持することができ、メタン発酵廃液などのアンモニア性窒素を含有する廃液の処理コストの低減を図ることができる。   And adjusting the time of air aeration based on the time required from the start of air aeration to the inflection point where the pH of the fermentation waste liquor starts to decrease or increases, or the change point where the dissolved oxygen concentration rapidly increases Thus, the nitrous acid type intermittent aeration treatment can be maintained stably for a long period of time, and the treatment cost of waste liquid containing ammonia nitrogen such as methane fermentation waste liquid can be reduced.

以下、本発明について図面を用いて更に詳細に説明する。図1には、本発明の窒素含有廃液の処理に用いる処理装置の一実施形態の概略構成図が示されている。   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 shows a schematic configuration diagram of an embodiment of a processing apparatus used for processing the nitrogen-containing waste liquid of the present invention.

図1の処理装置は、窒素含有廃液を貯留するための廃液貯留槽1と、窒素含有廃液を処理するための間欠曝気槽3とで主に構成されている。廃液貯留槽1としては、貯留タンクのようなものであってもよく、有機性廃棄物をメタン菌などでメタン発酵処理するためのメタン発酵処理槽などであってもよい。   The processing apparatus of FIG. 1 mainly includes a waste liquid storage tank 1 for storing a nitrogen-containing waste liquid and an intermittent aeration tank 3 for processing the nitrogen-containing waste liquid. The waste liquid storage tank 1 may be a storage tank or a methane fermentation treatment tank for subjecting organic waste to methane fermentation with methane bacteria or the like.

そして、廃液貯留槽1からの配管は、供給ポンプ2を介して間欠曝気槽3に接続されており、間欠曝気槽3には処理水を排出するための配管が接続されている。   A pipe from the waste liquid storage tank 1 is connected to the intermittent aeration tank 3 via the supply pump 2, and a pipe for discharging treated water is connected to the intermittent aeration tank 3.

間欠曝気槽3内の底部には、酸素を含む気体(通常空気)で窒素含有廃液を曝気可能なように曝気装置6が設けられている。曝気装置6としては従来公知のものが使用可能であり特に限定されない。また、間欠曝気槽3内の上部もしくは側面には、攪拌機5が設けられており、攪拌羽根によって発酵廃液を攪拌可能になっている。攪拌機5としても従来公知のものが使用可能であり特に限定されない。   An aeration device 6 is provided at the bottom of the intermittent aeration tank 3 so that the nitrogen-containing waste liquid can be aerated with a gas containing oxygen (normal air). A conventionally known device can be used as the aeration device 6 and is not particularly limited. Moreover, the stirrer 5 is provided in the upper part or side surface in the intermittent aeration tank 3, and a fermentation waste liquid can be stirred with a stirring blade. A conventionally well-known thing can be used also as the stirrer 5, and it is not specifically limited.

また、間欠曝気槽3の上部には溶存酸素計7及びpH計8が接続されており、間欠曝気槽3内の廃液の溶存酸素濃度及びpHが測定できるように構成されており、後述する方法によって、発酵廃液中のpHを監視して曝気時間の決定が行えるようになっている。   Moreover, the dissolved oxygen meter 7 and the pH meter 8 are connected to the upper part of the intermittent aeration tank 3, and it is comprised so that the dissolved oxygen concentration and pH of the waste liquid in the intermittent aeration tank 3 can be measured, The method mentioned later Thus, the pH in the fermentation waste liquid can be monitored to determine the aeration time.

そして、溶存酸素計7及びpH計8の測定値がプログラマブルロジックコントローラ(PLC)4aに入力されるように構成されており、測定値に応じて、曝気装置6及び供給ポンプ2の駆動を制御できるように構成されている。   And it is comprised so that the measured value of the dissolved oxygen meter 7 and the pH meter 8 may be input into the programmable logic controller (PLC) 4a, and the drive of the aeration apparatus 6 and the supply pump 2 can be controlled according to the measured value. It is configured as follows.

PLC4aによる制御は、例えば、図2のフローチャートに示すような演算処理及び制御がなされている。   In the control by the PLC 4a, for example, arithmetic processing and control as shown in the flowchart of FIG. 2 are performed.

まず、空気曝気中であるかどうか、すなわち、曝気装置6が稼動しているかどうかの判断がなされる(ステップS1)。   First, it is determined whether air aeration is being performed, that is, whether the aeration apparatus 6 is operating (step S1).

空気曝気が停止中であれば、空気曝気開始からの経過時間Tと、間欠曝気処理の1サイクルとして設定したサイクル時間Tとを比較し(ステップS2)、T≧Tでなければスタートに戻る。また、T≧Tであれば曝気装置6を稼動させて、間欠曝気槽3内の溶存酸素(DO)が一定となるように空気曝気量の制御を開始してスタートに戻る(ステップS3)。 If the air aeration being stopped, the elapsed time T from the start the air aeration, compared with the cycle time T 0 set as one cycle of the intermittent aeration process (step S2), and to start unless T ≧ T 0 Return. If T ≧ T o , the aeration apparatus 6 is operated, the control of the air aeration amount is started so that the dissolved oxygen (DO) in the intermittent aeration tank 3 becomes constant, and the process returns to the start (step S3). .

一方、ステップS1において、空気曝気中であれば、間欠曝気槽3のDO一定制御操作から所定時間を経過したかどうか判断し(ステップS4)、所定時間経過していなければスタートに戻る。また、所定時間を経過した場合は、間欠曝気槽3への空気曝気量が一定量になるように、曝気装置6を制御させる(ステップS5)。   On the other hand, if air aeration is being performed in step S1, it is determined whether a predetermined time has elapsed from the DO constant control operation of the intermittent aeration tank 3 (step S4), and if the predetermined time has not elapsed, the process returns to the start. In addition, when the predetermined time has elapsed, the aeration apparatus 6 is controlled so that the air aeration amount to the intermittent aeration tank 3 becomes a constant amount (step S5).

そして、後述する検知方法によって求められるpH屈曲点が検知されたかどうかを判断し(ステップS6)、検知されなければ空気曝気量を一定に維持してスタートに戻る。pH屈曲点が検知された場合には、空気曝気開始からこの屈曲点を検出するまでに要した時間を変曲点検出時間Tに所定の係数を乗じた曝気所要時間TpHと、空気曝気開始からの経過時間Tとを比較し(ステップS7)、T>TpHでなければ空気曝気量を一定に維持してスタートに戻る。T>TpHとなった場合には曝気装置6を停止させる(ステップS8)。そして、供給ポンプ2を作動させて、廃液貯留槽1から間欠曝気槽3へ所定量の廃水を供給させた後(ステップS9)、スタートに戻る。
このような制御がPLC4aにおいてなされている。
Then, it is determined whether or not a pH inflection point required by a detection method to be described later is detected (step S6). If not detected, the air aeration amount is kept constant and the process returns to the start. When the pH inflection point is detected, the aeration required time T pH multiplied by a predetermined coefficient a time required for inflection point detection time T a before detecting the bending point from the starting air aeration air aeration The elapsed time T from the start is compared (step S7). If T> T pH, the air aeration amount is kept constant and the process returns to the start. When a T> T pH stops the aeration device 6 (step S8). Then, the supply pump 2 is operated to supply a predetermined amount of waste water from the waste liquid storage tank 1 to the intermittent aeration tank 3 (step S9), and then the process returns to the start.
Such control is performed in the PLC 4a.

次に、この処理装置を用いた、本発明の窒素含有廃液の処理方法について説明する。
廃液貯留槽1から間欠曝気槽3に窒素含有廃液を供給し、間欠曝気槽3内において、活性汚泥法により窒素含有廃液の間欠曝気処理が行われる。すなわち、まず、曝気装置6によって曝気ガスである空気が供給され、好気性条件下で硝化反応が行われる。
Next, the processing method of the nitrogen-containing waste liquid of this invention using this processing apparatus is demonstrated.
The nitrogen-containing waste liquid is supplied from the waste liquid storage tank 1 to the intermittent aeration tank 3, and the intermittent aeration treatment of the nitrogen-containing waste liquid is performed in the intermittent aeration tank 3 by the activated sludge method. That is, first, air as aeration gas is supplied from the aeration apparatus 6 and the nitrification reaction is performed under aerobic conditions.

このとき、本発明においては、空気曝気開始から所定時間を経過するまでは、前記窒素含有廃液の溶存酸素濃度が所定量となるように空気曝気量を調整する。   At this time, in the present invention, the air aeration amount is adjusted so that the dissolved oxygen concentration of the nitrogen-containing waste liquid becomes a predetermined amount until a predetermined time elapses from the start of air aeration.

空気曝気を開始したばかりの好気工程の初期段階においては、アンモニア酸化菌の活性が安定しておらず、窒素含有廃液に一定量の空気量を供給しても溶存酸素濃度が安定しない。したがって、空気曝気の開始初期段階においては、アンモニア酸化菌の活性を向上させ、更には、分解されやすい有機物成分などを分解除去させるため、窒素含有廃液の溶存酸素濃度が一定量となるように、空気曝気量を適宜調整し、好ましくは、5分間以上である。   In the initial stage of the aerobic process just starting air aeration, the activity of ammonia oxidizing bacteria is not stable, and even if a certain amount of air is supplied to the nitrogen-containing waste liquid, the dissolved oxygen concentration is not stable. Therefore, in the initial stage of air aeration, in order to improve the activity of ammonia-oxidizing bacteria and further decompose and remove organic components that are easily decomposed, the dissolved oxygen concentration of the nitrogen-containing waste liquid becomes a constant amount. The amount of air aeration is adjusted as appropriate, and is preferably 5 minutes or longer.

こうすることで、アンモニア酸化菌の活性を素早く向上させることができて処理効率を向上させることができ、また、この溶存酸素濃度を所定量に制御する期間はpHの屈曲点や溶存酸素濃度の上昇点は検知しないので、アンモニア性窒素の酸化反応が未完結であるにもかかわらず、廃液のpH上昇や溶存酸素濃度が急増するといった事態によるアンモニア酸化終了点の誤検知を解消できる。   By doing so, the activity of ammonia oxidizing bacteria can be improved quickly, and the processing efficiency can be improved. In addition, the period during which this dissolved oxygen concentration is controlled to a predetermined amount can be adjusted to the pH inflection point or dissolved oxygen concentration. Since the rising point is not detected, it is possible to eliminate erroneous detection of the end point of ammonia oxidation due to a situation such as an increase in pH of the waste liquid or a rapid increase in the dissolved oxygen concentration even though the oxidation reaction of ammoniacal nitrogen is incomplete.

このとき、窒素含有廃液の溶存酸素濃度は0.5〜3mg/Lとなるように空気曝気量を調整することが好ましく、より好ましくは1.5〜2.5mg/Lである。廃液の溶存酸素濃度が上記範囲内であれば、アンモニア酸化菌を高活性にすることができる。   At this time, it is preferable to adjust the air aeration amount so that the dissolved oxygen concentration of the nitrogen-containing waste liquid is 0.5 to 3 mg / L, and more preferably 1.5 to 2.5 mg / L. If the dissolved oxygen concentration of the waste liquid is within the above range, ammonia oxidizing bacteria can be made highly active.

また、廃液の温度は25〜35℃に制御しながら空気曝気を行うことが好ましい。廃液の温度が25℃未満では、アンモニア酸化菌と亜硝酸酸化菌の増殖速度の差が小さく、亜硝酸酸化菌のみを選択的に減少させて亜硝酸型の間欠曝気処理を長期間安定して運転することが困難となりがちであり、35℃を超えるとアンモニア酸化菌の活性が低下して処理効率が低下することがあるので好ましくない。   Further, it is preferable to perform air aeration while controlling the temperature of the waste liquid at 25 to 35 ° C. When the temperature of the waste liquid is less than 25 ° C, the difference in growth rate between ammonia-oxidizing bacteria and nitrite-oxidizing bacteria is small, and only nitrite-oxidizing bacteria are selectively reduced to stabilize nitrite-type intermittent aeration treatment for a long period of time. It tends to be difficult to operate, and when it exceeds 35 ° C., the activity of ammonia oxidizing bacteria is lowered, and the treatment efficiency may be lowered.

また、窒素含有廃液としては、アンモニア性窒素を含有する廃液であれば特に限定はなく、有機物をメタン発酵処理した際に排出されるメタン発酵処理廃液などが挙げられる。
次いで、所定時間経過後、窒素含有廃液への空気供給量を一定として空気曝気を行う。
In addition, the nitrogen-containing waste liquid is not particularly limited as long as it is a waste liquid containing ammoniacal nitrogen, and examples thereof include a methane fermentation treatment waste liquid that is discharged when an organic substance is subjected to a methane fermentation treatment.
Next, after a predetermined time has elapsed, air aeration is performed with a constant amount of air supplied to the nitrogen-containing waste liquid.

こうすることで、アンモニアの酸化が終了し炭酸ガス発生量が小さくなれば、溶解する炭酸ガス量が減少する一方、曝気による炭酸ガスの脱気速度は変わらないため、図7に示すように窒素含有廃液のpHが下降から上昇に転ずることとなり、窒素含有廃液の性状によらずアンモニア酸化の終了点(屈曲点)を検出することが可能である。
ここで、上記pHの屈曲点は、例えば図3に示すようにして検出することができる。
By so doing, when the oxidation of ammonia is completed and the amount of generated carbon dioxide is reduced, the amount of dissolved carbon dioxide is reduced. On the other hand, the degassing rate of carbon dioxide by aeration does not change. The pH of the contained waste liquid will shift from rising to rising, and the end point (bending point) of ammonia oxidation can be detected regardless of the nature of the nitrogen-containing waste liquid.
Here, the inflection point of the pH can be detected, for example, as shown in FIG.

まず、pH計8からの信号(ステップS6‐1)を一次遅れフィルタによりノイズ除去(ステップS6‐2)し、この値を一旦メモリに格納する(ステップS6‐3)。そして、所定の時間、例えば60〜180秒後の値と比較して差分〔=(現在のpH)−(メモリ格納値)〕を計算する(ステップS6‐4)。そしてこの差分が0よりも大きいかどうかを検知し(ステップS6‐5)、0よりも大きい値となった時点をpH屈曲点とする。   First, the signal from the pH meter 8 (step S6-1) is denoised by a first-order lag filter (step S6-2), and this value is temporarily stored in a memory (step S6-3). Then, a difference [= (current pH) − (memory stored value)] is calculated by comparison with a value after a predetermined time, for example, 60 to 180 seconds (step S6-4). Then, it is detected whether or not the difference is larger than 0 (step S6-5), and the time point when the difference becomes larger than 0 is set as the pH inflection point.

なお、屈曲点は、所定時間におけるpHの変化量が、+0.005以上となった時点に設定にすることが好ましく、こうすることで、屈曲点の検出精度が向上する。   The inflection point is preferably set at a point in time when the amount of change in pH during a predetermined time becomes +0.005 or more, and this improves the detection accuracy of the inflection point.

本発明において空気曝気時間、すなわち好気工程時間は、空気曝気開始から酸化終了点(屈曲点)が検出するまでに要した時間の1.0〜1.5倍とすることが好ましい。   In the present invention, the air aeration time, that is, the aerobic process time, is preferably 1.0 to 1.5 times the time required from the start of air aeration to the detection of the oxidation end point (bending point).

空気曝気時間が上記範囲内であれば、アンモニア酸化菌と亜硝酸酸化菌の増殖速度の違いで、亜硝酸酸化菌を曝気槽内に蓄積させないことができ、間欠曝気処理を亜硝酸型で制御することができる。   If the air aeration time is within the above range, the nitrite oxidation bacteria can be prevented from accumulating in the aeration tank due to the difference in growth rate between ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, and intermittent aeration treatment is controlled by the nitrite type. can do.

そして、空気曝気終了後、攪拌機5を動かし、供給ポンプ2より一定量の廃液を供給する。この状態では、間欠曝気槽3には溶存酸素が無い状態(嫌気条件)となるので、亜硝酸性窒素からの脱窒反応が進行する。このとき、本発明によれば、硝化反応において、硝酸が生成していない、もしくは生成量が極めて少ないので、硝酸からの脱窒反応も進行せず、結果として、アンモニア性窒素の亜硝酸性窒素への硝化反応と、亜硝酸性窒素からの脱窒反応のみが優勢に進行し、亜硝酸型の間欠曝気処理を維持することができる。   Then, after the air aeration is completed, the stirrer 5 is moved, and a certain amount of waste liquid is supplied from the supply pump 2. In this state, the intermittent aeration tank 3 has no dissolved oxygen (anaerobic condition), so that the denitrification reaction from nitrite nitrogen proceeds. At this time, according to the present invention, in the nitrification reaction, nitric acid is not produced or the production amount is extremely small, so that the denitrification reaction from nitric acid does not proceed, and as a result, nitrite nitrogen of ammonia nitrogen is produced. Only the nitrification reaction and the denitrification reaction from nitrite nitrogen proceed predominantly, and the nitrite type intermittent aeration process can be maintained.

なお、好気工程時間と嫌気工程時間の合計は、タイマー等によって1〜4時間にサイクル時間を設定することが好ましい。この結果、この実施形態においては、このサイクル時間と、上記の方法によって求められた空気曝気時間との差が嫌気条件の時間となる。   The total of the aerobic process time and the anaerobic process time is preferably set to 1 to 4 hours by a timer or the like. As a result, in this embodiment, the difference between the cycle time and the air aeration time obtained by the above method is the time for the anaerobic condition.

図4には、本発明の窒素含有廃液の処理に用いる処理装置の他の実施形態の概略構成図が示されている。なお、以下の実施形態の説明においては、前記実施形態と同一部分には同符合を付して、その説明を省略することにする。   FIG. 4 shows a schematic configuration diagram of another embodiment of a processing apparatus used for processing the nitrogen-containing waste liquid of the present invention. In the following description of the embodiment, the same parts as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted.

この実施形態においては、上記の実施形態におけるpH計8を設けず、溶存酸素計7のみを用いている点のみが上記の実施形態と異なっている。   This embodiment is different from the above embodiment only in that the pH meter 8 in the above embodiment is not provided and only the dissolved oxygen meter 7 is used.

この場合、まず、溶存酸素計7による溶存酸素濃度が0.5〜3mg/Lとなるように曝気装置6を制御する。そして、所定時間経過後、空気曝気量を一定にする。間欠曝気槽3内にアンモニアが残存している状態では、アンモニア酸化による酸素の消費が大きいが、アンモニアが無くなると、曝気による酸素供給量は変わらないが酸素消費量が急減して図5に示すように溶存酸素計7の検出値が急増する。したがって、空気曝気中の窒素含有廃液の溶存酸素濃度を溶存酸素計7でモニタリングし、PLC4bにおいて、溶存酸素の増加(変化量)を検知し、空気曝気開始から溶存酸素が増加するまでの時間を検出することによって、アンモニア酸化の終了が判定できる。   In this case, first, the aeration apparatus 6 is controlled so that the dissolved oxygen concentration by the dissolved oxygen meter 7 is 0.5 to 3 mg / L. Then, after a predetermined time has elapsed, the air aeration amount is made constant. In the state where ammonia remains in the intermittent aeration tank 3, the consumption of oxygen due to ammonia oxidation is large. However, when the ammonia is exhausted, the oxygen supply amount due to aeration does not change, but the oxygen consumption amount decreases rapidly and is shown in FIG. Thus, the detected value of the dissolved oxygen meter 7 increases rapidly. Therefore, the dissolved oxygen concentration of the nitrogen-containing waste liquid in the air aeration is monitored by the dissolved oxygen meter 7, and the increase (change amount) of the dissolved oxygen is detected in the PLC 4b, and the time until the dissolved oxygen increases from the start of the air aeration By detecting, the end of ammonia oxidation can be determined.

図1に示すような構成の装置を用い、間欠曝気槽3として容積130Lの処理槽を用い、窒素含有廃液としてメタン発酵処理後の発酵廃液(アンモニア性窒素濃度;2000〜2500mg/L)を用い、窒素含有廃液の供給量を20L/日とし、間欠曝気槽での滞留時間を6.5日として窒素含有廃水の処理を行った。   A device having a configuration as shown in FIG. 1 is used, a treatment tank having a volume of 130 L is used as the intermittent aeration tank 3, and a fermentation waste liquid (ammonia nitrogen concentration; 2000 to 2500 mg / L) after methane fermentation treatment is used as the nitrogen-containing waste liquid. The nitrogen-containing wastewater was treated with the supply amount of the nitrogen-containing waste liquid being 20 L / day and the residence time in the intermittent aeration tank being 6.5 days.

図5は間欠曝気処理中における廃液の溶存酸素濃度の経時変化を求めたグラフであり、図6はその時の曝気装置6の装置負荷の変化を示したグラフであり、図7はその時のpHの変化を示したグラフであり、図8はその時のpHの変化量を示したグラフである。   FIG. 5 is a graph showing the change over time in the dissolved oxygen concentration of the waste liquid during the intermittent aeration treatment, FIG. 6 is a graph showing the change in the apparatus load of the aeration apparatus 6 at that time, and FIG. FIG. 8 is a graph showing the amount of change in pH at that time.

まず、曝気装置6を稼動させ、空気曝気開始から5分間は、窒素含有廃液の溶存酸素が安定するように空気曝気量を変動させ、5分経過後に空気曝気量を一定とした。その結果、図7、8に示すように、好気工程が開始されると硝化反応により間欠曝気槽3内のpHが徐々に減少し、経過時間30分で屈曲点になり上昇に転じた。このpHの屈曲点の検出時間を測定し、その検出時間に基づいて曝気装置6を45分まで運転した後に停止し、その後、攪拌機5を動かしながら、供給ポンプ2で一定量の廃液を間欠曝気槽3に供給した。   First, the aeration apparatus 6 was operated, and for 5 minutes from the start of air aeration, the air aeration amount was varied so that the dissolved oxygen in the nitrogen-containing waste liquid was stabilized, and the air aeration amount was made constant after 5 minutes had elapsed. As a result, as shown in FIGS. 7 and 8, when the aerobic process was started, the pH in the intermittent aeration tank 3 gradually decreased due to the nitrification reaction, and became an inflection point after 30 minutes and started to rise. The detection time of this inflection point of pH is measured, the aeration apparatus 6 is operated for 45 minutes based on the detection time, and then stopped, and then a constant amount of waste liquid is intermittently aerated with the supply pump 2 while moving the agitator 5. It was supplied to the tank 3.

このようにして処理した廃液は、アンモニア性窒素と亜硝酸性窒素の合計が10〜30mg/Lとなり、また、硝酸性窒素の濃度は2mg/L以下であり、約98%以上のアンモニアを除去することができた。   The total amount of ammonia nitrogen and nitrite nitrogen is 10 to 30 mg / L, and the concentration of nitrate nitrogen is 2 mg / L or less, and about 98% or more of ammonia is removed from the waste liquid thus treated. We were able to.

窒素含有廃液の処理方法は、例えば、糞尿、生ゴミ、食品加工残滓等の有機性廃棄物をメタン発酵処理する際に排出される廃水の浄化処理に好適に用いられる。   The treatment method of the nitrogen-containing waste liquid is suitably used for, for example, purification treatment of waste water discharged when methane fermentation treatment is performed on organic waste such as manure, raw garbage, and food processing residue.

本発明の窒素含有廃液の処理に用いる処理装置の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of the processing apparatus used for a process of the nitrogen-containing waste liquid of this invention. PLC4aによる制御を示すフローチャート図である。It is a flowchart figure which shows the control by PLC4a. 間欠曝気処理中におけるpHの屈曲点を検出する制御ブロック図の一例である。It is an example of the control block diagram which detects the inflection point of pH during an intermittent aeration process. 本発明の窒素含有廃液の処理に用いる処理装置の他の実施形態の概略構成図である。It is a schematic block diagram of other embodiment of the processing apparatus used for the process of the nitrogen-containing waste liquid of this invention. 本発明の実施例における間欠曝気処理中における廃液の溶存酸素濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the dissolved oxygen concentration of the waste liquid during the intermittent aeration process in the Example of this invention. 同曝気装置6の装置負荷の変化を示すグラフである。It is a graph which shows the change of the apparatus load of the aeration apparatus. 同廃液のpHの変化を示すグラフである。It is a graph which shows the change of pH of the waste liquid. 同廃液のpHの変化量を示すグラフである。It is a graph which shows the variation | change_quantity of pH of the waste liquid. 廃液の溶存酸素濃度を一定に制御した場合の曝気装置6の装置負荷の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the apparatus load of the aeration apparatus 6 at the time of controlling the dissolved oxygen concentration of a waste liquid uniformly. 同廃液のpHの経時変化を示すグラフである。It is a graph which shows the time-dependent change of pH of the waste liquid.

符号の説明Explanation of symbols

1:廃液貯留槽
2:供給ポンプ
3:間欠曝気槽
4a、4b:PLC
5:攪拌機
6:曝気装置
7:溶存酸素計
8:pH計
1: Waste liquid storage tank 2: Supply pump 3: Intermittent aeration tank 4a, 4b: PLC
5: Stirrer 6: Aeration device 7: Dissolved oxygen meter 8: pH meter

Claims (2)

アンモニア性窒素を含有する廃液に対して、空気曝気による好気工程と、曝気停止による嫌気工程とを交互に繰り返す間欠曝気処理を行い、前記廃液中のアンモニア性窒素を窒素ガスに転換して除去する窒素含有廃液の処理方法であって、
前記好気工程において、空気曝気開始から少なくとも5分間は、前記廃液の溶存酸素濃度が所定量となるように空気曝気量を調整し、その後、空気曝気量を一定量に維持して空気曝気を行い、空気曝気開始からpHを連続的に測定し、前記廃液のpHが減少から増加へ転ずる屈曲点までに要した時間を求め、この時間の1〜1.5倍を空気曝気の時間とすることを特徴とする窒素含有廃液の処理方法。
The waste liquid containing ammonia nitrogen is subjected to intermittent aeration treatment that alternately repeats an aerobic process by air aeration and an anaerobic process by aeration stop, and the ammonia nitrogen in the waste liquid is converted to nitrogen gas and removed. A method for treating nitrogen-containing waste liquid,
In the aerobic step, the air aeration amount is adjusted so that the dissolved oxygen concentration of the waste liquid becomes a predetermined amount for at least 5 minutes from the start of air aeration, and then the air aeration amount is maintained at a constant amount to perform air aeration. The pH is continuously measured from the start of air aeration, and the time required for the inflection point where the pH of the waste liquid starts from decreasing to increasing is obtained, and 1 to 1.5 times this time is set as the time for air aeration. A method for treating a nitrogen-containing waste liquid.
アンモニア性窒素を含有する廃液に対して、空気曝気による好気工程と、曝気停止による嫌気工程とを交互に繰り返す間欠曝気処理を行い、前記廃液中のアンモニア性窒素を窒素ガスに転換して除去する窒素含有廃液の処理方法であって、
前記好気工程において、空気曝気開始から少なくとも5分間は、前記廃液の溶存酸素濃度が所定量となるように空気曝気量を調整し、その後、空気曝気量を一定量に維持して空気曝気を行い、空気曝気開始から溶存酸素濃度を連続的に測定し、前記廃液の溶存酸素濃度が急増する変化点までに要した時間を求め、この時間の1〜1.5倍を空気曝気の時間とすることを特徴とする窒素含有廃液の処理方法。
The waste liquid containing ammonia nitrogen is subjected to intermittent aeration treatment that alternately repeats an aerobic process by air aeration and an anaerobic process by aeration stop, and the ammonia nitrogen in the waste liquid is converted to nitrogen gas and removed. A method for treating nitrogen-containing waste liquid,
In the aerobic step, the air aeration amount is adjusted so that the dissolved oxygen concentration of the waste liquid becomes a predetermined amount for at least 5 minutes from the start of air aeration, and then the air aeration amount is maintained at a constant amount to perform air aeration. performed, the dissolved oxygen concentration from the starting air aeration to measure continuously, determine the time required until the change point the dissolved oxygen concentration in the effluent is rapidly increasing, the time and the 1.5-fold of this time air aeration A method for treating a nitrogen-containing waste liquid.
JP2005218440A 2005-07-28 2005-07-28 Nitrogen-containing waste liquid treatment method Active JP4904738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005218440A JP4904738B2 (en) 2005-07-28 2005-07-28 Nitrogen-containing waste liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005218440A JP4904738B2 (en) 2005-07-28 2005-07-28 Nitrogen-containing waste liquid treatment method

Publications (2)

Publication Number Publication Date
JP2007029882A JP2007029882A (en) 2007-02-08
JP4904738B2 true JP4904738B2 (en) 2012-03-28

Family

ID=37789779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005218440A Active JP4904738B2 (en) 2005-07-28 2005-07-28 Nitrogen-containing waste liquid treatment method

Country Status (1)

Country Link
JP (1) JP4904738B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622958B2 (en) * 2006-08-08 2011-02-02 富士電機ホールディングス株式会社 Nitrogen-containing waste liquid treatment method
JP6211547B2 (en) * 2015-01-23 2017-10-11 三井造船環境エンジニアリング株式会社 Batch-type denitrification treatment apparatus, batch tank for denitrification treatment, and batch-type denitrification treatment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3015426B2 (en) * 1990-08-24 2000-03-06 ユニチカ株式会社 Wastewater management and treatment method
JPH06182390A (en) * 1992-12-17 1994-07-05 Meidensha Corp Operation control method for batch type active sludge treatment
JP2912901B1 (en) * 1998-03-13 1999-06-28 日本碍子株式会社 Treatment method for nitrogen-containing wastewater
JP3388405B2 (en) * 2000-06-15 2003-03-24 独立行政法人農業工学研究所 Sewage treatment apparatus and method
JP3772882B2 (en) * 2003-11-14 2006-05-10 富士電機ホールディングス株式会社 Methane fermentation treatment method

Also Published As

Publication number Publication date
JP2007029882A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
KR20120101464A (en) Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor
JP5150560B2 (en) Sewage treatment method
WO2011119982A1 (en) Mainstream wastewater treatment
JP5355314B2 (en) Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
JP3772882B2 (en) Methane fermentation treatment method
JP5075926B2 (en) Sewage treatment apparatus and sewage treatment method
JP4576845B2 (en) Nitrogen-containing waste liquid treatment method
JP4837706B2 (en) Ammonia nitrogen removal equipment
JP4327770B2 (en) Biological nitrification treatment method and nitrification treatment apparatus for wastewater containing ammonia nitrogen
JP4904738B2 (en) Nitrogen-containing waste liquid treatment method
JP4622958B2 (en) Nitrogen-containing waste liquid treatment method
JP4716265B2 (en) Organic waste liquid treatment method and organic waste liquid treatment apparatus
JP4408706B2 (en) Nitrogen removal method and apparatus
JP4867099B2 (en) Biological denitrification method
JP5325124B2 (en) Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water
CN104828937B (en) Real-time control method of sequencing batch type anaerobic ammonium oxidation system
JP4735561B2 (en) Method for treating wastewater containing sulfur-based COD components
WO2014048844A1 (en) A method and an apparatus for simultaneous removal of thiosalt and nitrogen compounds in waste water
JP4765931B2 (en) Nitrogen-containing waste liquid treatment method
JP2013039577A (en) Sewage treatment method
JP4835580B2 (en) Nitrogen-containing waste liquid treatment method
JP4743100B2 (en) Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus
CN107215957A (en) Using liquid phase N2The method that O concentration on-line detectors judge SBR technique nitrosation processes
JP5934083B2 (en) Waste water treatment apparatus and treatment method containing nitric acid and nitrous acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4904738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250