JP4743100B2 - Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus - Google Patents

Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus Download PDF

Info

Publication number
JP4743100B2
JP4743100B2 JP2006331120A JP2006331120A JP4743100B2 JP 4743100 B2 JP4743100 B2 JP 4743100B2 JP 2006331120 A JP2006331120 A JP 2006331120A JP 2006331120 A JP2006331120 A JP 2006331120A JP 4743100 B2 JP4743100 B2 JP 4743100B2
Authority
JP
Japan
Prior art keywords
waste liquid
value
activated sludge
sludge tank
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006331120A
Other languages
Japanese (ja)
Other versions
JP2008142605A (en
Inventor
豊 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006331120A priority Critical patent/JP4743100B2/en
Publication of JP2008142605A publication Critical patent/JP2008142605A/en
Application granted granted Critical
Publication of JP4743100B2 publication Critical patent/JP4743100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、窒素含有汚水等の発酵廃液を生物化学的に処理するための醗酵廃液処理方法及び発酵廃液処理装置に関する。   The present invention relates to a fermentation waste liquid treatment method and a fermentation waste liquid treatment apparatus for biochemically treating fermentation waste liquid such as nitrogen-containing wastewater.

近年、生ごみや下水の余剰汚泥などの有機性廃棄物をメタン発酵し、メタンガスとしてエネルギーを回収する方法が省資源、循環型社会形成の一環として採用されている。   In recent years, a method of methane fermentation of organic waste such as garbage and surplus sludge from sewage and recovering energy as methane gas has been adopted as part of the resource-saving and recycling-oriented society formation.

メタン発酵では有機物をメタンと炭酸ガスに分解するが、100%分解されるわけではなく、発酵廃液中には高濃度の有機成分が残っている。また、発酵廃液中には、発酵残渣もしくはメタン発酵槽で増殖した菌体としての汚泥があり、この汚泥中には高濃度の窒素成分が含まれる。また、有機物の分解生成物であるアンモニアも高濃度に含まれる。従って、そのまま下水道や河川に放流することができず、有機物と窒素成分を分解除去する処理が必要である。   In methane fermentation, organic substances are decomposed into methane and carbon dioxide gas, but not 100% decomposed, and high concentration organic components remain in the fermentation waste liquid. Further, in the fermentation waste liquid, there is a sludge as a fermentation residue or a microbial cell grown in a methane fermentation tank, and this sludge contains a high concentration of nitrogen components. Ammonia, which is a decomposition product of organic matter, is also contained at a high concentration. Therefore, it cannot be discharged into sewers or rivers as it is, and a process for decomposing and removing organic substances and nitrogen components is necessary.

図5は、従来のメタン発酵処理システムの要部構成を示す模式図である。このメタン発酵処理システムは、有機性廃棄物100を投入してメタン発酵させるメタン発酵槽110と、メタン発酵槽110から排出される発酵廃液101を活性汚泥を用いて浄化処理する活性汚泥槽120と、活性汚泥を固液分離して処理水を得る最終沈殿池130とから構成される。メタン発酵槽110で発生したメタンガス102はエネルギー資源として使用される。   FIG. 5 is a schematic diagram showing a main configuration of a conventional methane fermentation treatment system. The methane fermentation treatment system includes a methane fermentation tank 110 that inputs organic waste 100 and performs methane fermentation, and an activated sludge tank 120 that purifies the fermentation waste liquid 101 discharged from the methane fermentation tank 110 using activated sludge. And a final sedimentation basin 130 that obtains treated water by solid-liquid separation of activated sludge. Methane gas 102 generated in the methane fermentation tank 110 is used as an energy resource.

発酵廃液101には、有機物に加えてアンモニアを主体とする窒素分が含まれている。活性汚泥槽120では、間欠曝気処理を行うことで好気工程と嫌気工程とを時間的に区分して交互にくり返し、発酵廃液101中の有機物と窒素とを除去している(例えば、特許文献1参照)。
特開平4−104896号公報
The fermentation waste liquid 101 contains a nitrogen content mainly composed of ammonia in addition to the organic matter. In the activated sludge tank 120, an aerobic process and an anaerobic process are temporally divided by performing intermittent aeration treatment, and are repeated alternately to remove organic matter and nitrogen in the fermentation waste liquid 101 (for example, Patent Documents). 1).
Japanese Patent Laid-Open No. 4-104896

ところで、活性汚泥槽120内では、硝化菌や脱窒菌の働きにより、廃液中の窒素除去を行っているが、好気条件又は嫌気条件の不備、水温変化、阻害物質混入などの外乱によって、硝化菌又は脱窒菌の活性が低下する可能性がある。硝化菌又は脱窒菌の活性が低下した場合、流入する窒素を処理しきれずに活性汚泥槽120内の窒素濃度が増加し、間欠曝気による硝化・脱窒反応処理が破綻をきたす可能性がある。   By the way, in the activated sludge tank 120, nitrogen is removed from the waste liquid by the action of nitrifying bacteria and denitrifying bacteria, but nitrification is caused by disturbances such as lack of aerobic conditions or anaerobic conditions, changes in water temperature, mixing of inhibitory substances, etc. The activity of bacteria or denitrifying bacteria may be reduced. When the activity of nitrifying bacteria or denitrifying bacteria decreases, the nitrogen concentration in the activated sludge tank 120 increases without being able to process the inflowing nitrogen, and the nitrification / denitrification reaction process by intermittent aeration may break down.

このような活性低下の問題が生じた場合、活性汚泥槽120への廃液流入量を減少させる対策が必要となるが、水質分析などにより活性汚泥槽内の窒素除去能力をリアルタイムで把握することは難しく、対策が後手に回ってしまう問題がある。   When such a problem of decreased activity occurs, it is necessary to take measures to reduce the amount of waste liquid flowing into the activated sludge tank 120, but it is not possible to grasp the nitrogen removal ability in the activated sludge tank in real time by water quality analysis etc. There is a problem that it is difficult and countermeasures are delayed.

本発明は、かかる点に鑑みてなされたものであり、活性汚泥槽内の窒素除去能力をリアルタイムで監視することなく、何らかの要因で硝化菌又は脱窒菌の活性が低下した場合には硝化・脱窒反応処理が破綻する前に活性汚泥槽の処理負荷を軽減でき正常状態に戻すことのできる廃液処理方法及び廃液処理装置を提供することを目的とする。   The present invention has been made in view of such points, and without monitoring the nitrogen removal capability in the activated sludge tank in real time, if the activity of nitrifying bacteria or denitrifying bacteria decreases for some reason, nitrification / denitrification is performed. It is an object of the present invention to provide a waste liquid treatment method and a waste liquid treatment apparatus that can reduce the treatment load of the activated sludge tank and restore the normal state before the nitrogen reaction treatment breaks down.

本発明の廃液処理方法は、活性汚泥槽において空気曝気と曝気停止とを繰り返す間欠曝気により該活性汚泥槽に流入する発酵廃液を処理する廃液処理方法において、前記活性汚泥槽内のpH値を計測し、前記間欠曝気の処理サイクルにおける現サイクル終了時点のpH値と現サイクル以前の処理サイクルにおけるサイクル開始時点でのpH値との差分を算出し、算出された差分の絶対値が閾値を超える場合に前記活性汚泥槽への発酵廃液の流入量を低下させることを特徴とする。
The waste liquid treatment method of the present invention is a waste liquid treatment method for treating fermentation waste liquid flowing into an activated sludge tank by intermittent aeration in which air aeration and aeration stop are repeated in the activated sludge tank, and measuring the pH value in the activated sludge tank. When the difference between the pH value at the end of the current cycle in the intermittent aeration processing cycle and the pH value at the cycle start time in the processing cycle before the current cycle is calculated, and the absolute value of the calculated difference exceeds the threshold value In addition, the inflow amount of fermentation waste liquid to the activated sludge tank is reduced .

また本発明の廃液処理装置は、活性汚泥槽において空気曝気と曝気停止とを繰り返す間欠曝気により該活性汚泥槽に流入する発酵廃液を処理する廃液処理装置において、前記活性汚泥槽へ発酵廃液を流入させる廃液流入手段と、前記活性汚泥槽内のpH値を計測する計測手段と、前記計測手段からpH値を取り込み、前記間欠曝気の処理サイクルにおける現サイクル終了時点のpH値と現サイクル以前の処理サイクルにおけるサイクル開始時点でのpH値との差分を算出し、算出された差分の絶対値が閾値を超える場合に前記廃液流入手段を制御して前記活性汚泥槽への発酵廃液の流入量を低下させる制御手段と、を具備することを特徴とする。
The waste liquid treatment apparatus of the present invention is a waste liquid treatment apparatus for treating fermentation waste liquid flowing into the activated sludge tank by intermittent aeration in which repeated air aeration and aeration stop are performed in the activated sludge tank. Waste liquid inflow means, measuring means for measuring the pH value in the activated sludge tank, taking in the pH value from the measuring means, and the pH value at the end of the current cycle in the intermittent aeration processing cycle and the processing before the current cycle Calculate the difference from the pH value at the cycle start time in the cycle, and control the waste liquid inflow means when the absolute value of the calculated difference exceeds the threshold value to reduce the inflow amount of the fermentation waste liquid to the activated sludge tank And a control means.

これらの発明によれば、現サイクル終了時点のpH値と現サイクル開始時点又は現サイクル以前の処理サイクルにおけるサイクル開始時点でのpH値との差分に基づいて活性汚泥槽への発酵廃液の流入量を調節することにより、何らかの要因で硝化菌又は脱窒菌の活性が低下しても、1サイクル単位で活性汚泥槽の処理負荷を軽減させることができ、迅速に正常状態に戻すことができる。   According to these inventions, the inflow amount of the fermentation waste liquid into the activated sludge tank is based on the difference between the pH value at the end of the current cycle and the pH value at the start of the current cycle or at the start of the cycle in the treatment cycle before the current cycle. Thus, even if the activity of nitrifying bacteria or denitrifying bacteria decreases due to some factor, the processing load of the activated sludge tank can be reduced in units of one cycle, and the normal state can be quickly restored.

また本発明の廃液処理方法は、活性汚泥槽において空気曝気と曝気停止とを繰り返す間欠曝気により該活性汚泥槽に流入する発酵廃液を処理する廃液処理方法において、前記活性汚泥槽内のpH値を計測し、前記間欠曝気の処理サイクルにおける現サイクルでのpH平均値と現サイクルより前の1サイクルでのpH平均値との差分を算出し、算出された差分の絶対値が閾値を超える場合に前記活性汚泥槽への発酵廃液の流入量を低下させることを特徴とする。
Further, the waste liquid treatment method of the present invention is a waste liquid treatment method for treating fermentation waste liquid flowing into the activated sludge tank by intermittent aeration that repeats aeration and aeration stop in the activated sludge tank, wherein the pH value in the activated sludge tank is adjusted. When the difference between the pH average value in the current cycle in the treatment cycle of the intermittent aeration and the pH average value in one cycle before the current cycle is calculated, and the absolute value of the calculated difference exceeds the threshold value The inflow amount of the fermentation waste liquid to the activated sludge tank is reduced .

また本発明の廃液処理装置は、活性汚泥槽において空気曝気と曝気停止とを繰り返す間欠曝気により該活性汚泥槽に流入する発酵廃液を処理する廃液処理装置において、前記活性汚泥槽へ発酵廃液を流入させる廃液流入手段と、前記活性汚泥槽内のpH値を計測する計測手段と、前記計測手段からpH値を取り込み、前記間欠曝気の処理サイクルにおける現サイクルでのpH平均値と現サイクルより前の1サイクルでのpH平均値との差分を算出し、算出された差分の絶対値が閾値を超える場合に前記廃液流入手段を制御して前記活性汚泥槽への発酵廃液の流入量を低下させる制御手段と、を具備することを特徴とする。
The waste liquid treatment apparatus of the present invention is a waste liquid treatment apparatus for treating fermentation waste liquid flowing into the activated sludge tank by intermittent aeration in which repeated air aeration and aeration stop are performed in the activated sludge tank. Waste liquid inflow means, measuring means for measuring the pH value in the activated sludge tank, taking in the pH value from the measuring means, the pH average value in the current cycle in the treatment cycle of the intermittent aeration and before the current cycle Control which calculates the difference with the pH average value in 1 cycle, and controls the waste liquid inflow means when the absolute value of the calculated difference exceeds the threshold value to decrease the inflow amount of the fermentation waste liquid to the activated sludge tank And means.

これらの発明により、現サイクルでのpH平均値と現サイクル以前の処理サイクルでのpH平均値との差分に基づいて前記活性汚泥槽への発酵廃液の流入量を調節することにより、何らかの要因で硝化菌又は脱窒菌の活性が低下しても、1サイクル単位で活性汚泥槽の処理負荷を軽減させることができ、迅速に正常状態に戻すことができる。   By these inventions, by adjusting the inflow amount of fermentation waste liquid to the activated sludge tank based on the difference between the pH average value in the current cycle and the pH average value in the treatment cycle before the current cycle, Even if the activity of nitrifying bacteria or denitrifying bacteria decreases, the processing load of the activated sludge tank can be reduced in units of one cycle, and the normal state can be quickly restored.

本発明によれば、活性汚泥槽内の窒素除去能力をリアルタイムで監視することなく、好気/嫌気条件の不備、水温変化、阻害物質混入などの外乱によって、硝化菌又は脱窒菌の活性が低下した場合であっても、硝化・脱窒反応処理が破綻する前に活性汚泥槽の処理負荷を軽減でき迅速に正常状態に戻すことができる。   According to the present invention, the activity of nitrifying bacteria or denitrifying bacteria decreases due to disturbances such as inadequate aerobic / anaerobic conditions, changes in water temperature, mixing of inhibitors, etc., without monitoring the nitrogen removal capacity in the activated sludge tank in real time. Even in this case, the processing load of the activated sludge tank can be reduced and the normal state can be quickly restored before the nitrification / denitrification reaction process fails.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
図1は、本発明の一実施の形態に係るメタン発酵処理システムの要部構成を示す模式図である。なお、前述した図5のメタン発酵処理システムと同様の構成要素には同一符号を付して説明の重複を避ける。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing a main configuration of a methane fermentation treatment system according to an embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the component similar to the methane fermentation processing system of FIG. 5 mentioned above, and duplication of description is avoided.

本実施の形態のメタン発酵処理システムは、メタン発酵槽110から発酵廃液101を引き抜いて活性汚泥槽120へ導入するための廃液流入手段としてのメタン発酵廃液供給ポンプ10と、活性汚泥槽120内のpH値を計測する計測手段としてのpH計11と、pH計11の計測結果を用いてメタン発酵廃液供給ポンプ10を制御して廃液流入量を調節する制御手段としての流入廃液量調節装置12とを備えている。これらメタン発酵廃液供給ポンプ10、pH計11、流入廃液量調節装置12からメタン発酵処理システムにおける廃液処理装置を構成している。   The methane fermentation treatment system of the present embodiment includes a methane fermentation waste liquid supply pump 10 as a waste liquid inflow means for extracting the fermentation waste liquid 101 from the methane fermentation tank 110 and introducing it into the activated sludge tank 120, and the activated sludge tank 120. a pH meter 11 as a measuring means for measuring the pH value, and an influent waste liquid amount adjusting device 12 as a control means for controlling the methane fermentation waste liquid supply pump 10 using the measurement result of the pH meter 11 to adjust the waste liquid inflow amount; It has. The methane fermentation waste liquid supply pump 10, the pH meter 11, and the inflow waste liquid amount adjusting device 12 constitute a waste liquid treatment apparatus in the methane fermentation treatment system.

メタン発酵廃液供給ポンプ10は、メタン発酵槽110から排出された発酵廃液101を活性汚泥槽120へ導く配管に設けられ、流入廃液量調節装置12からの指令信号によって流入量を制御可能に構成されている。流入廃液量調節装置12は、CPU、制御プログラムを記憶したROM等の不揮発性メモリ、CPUの動作において使用されるRAM等の揮発性メモリ、pH計11から測定値を取り込むと共にメタン発酵廃液供給ポンプ10に指令信号を送出するインタフェース等から構成される。流入廃液量調節装置12では、pH計11から取り込まれる計測値を用いて流入廃液量の適否を判断し、判断結果に応じてメタン発酵廃液供給ポンプ10に指令信号を与える。   The methane fermentation waste liquid supply pump 10 is provided in a pipe that guides the fermentation waste liquid 101 discharged from the methane fermentation tank 110 to the activated sludge tank 120, and is configured to be able to control the inflow amount by a command signal from the inflow waste liquid amount adjusting device 12. ing. The influent waste liquid amount adjusting device 12 includes a CPU, a nonvolatile memory such as a ROM storing a control program, a volatile memory such as a RAM used in the operation of the CPU, a measured value from the pH meter 11, and a methane fermentation waste liquid supply pump. 10 is composed of an interface for sending command signals. The inflow waste liquid amount adjusting device 12 determines the suitability of the inflow waste liquid amount using the measured value taken from the pH meter 11, and gives a command signal to the methane fermentation waste liquid supply pump 10 according to the determination result.

活性汚泥槽120では空気曝気(好気工程)と曝気停止(嫌気工程)を繰り返す間欠曝気運転が行われる。好気工程において硝化反応の進行に伴ってアンモニアが消費されるためpH値が低下する。嫌気工程では脱窒反応の進行に伴って硝酸が消費されアルカリ度が供給されるためpH値が上昇する。通常、活性汚泥槽120内で硝化・脱窒反応が問題なく進行していれば、上述のアルカリ度増減及びメタン発酵廃液からのアルカリ度供給により、活性汚泥槽120内のアルカリ度がバランスし、各サイクル開始時点のpH値は一定に保たれる。   In the activated sludge tank 120, an intermittent aeration operation that repeats air aeration (aerobic process) and aeration stop (anaerobic process) is performed. Since ammonia is consumed as the nitrification reaction proceeds in the aerobic process, the pH value decreases. In the anaerobic process, as the denitrification reaction proceeds, nitric acid is consumed and alkalinity is supplied, so that the pH value rises. Normally, if the nitrification / denitrification reaction proceeds without problems in the activated sludge tank 120, the alkalinity in the activated sludge tank 120 is balanced by the above-described increase / decrease in alkalinity and alkalinity supply from the methane fermentation waste liquid, The pH value at the start of each cycle is kept constant.

ところで、例えば1サイクル中に脱窒反応が終了していない場合は、脱窒に伴うアルカリ度の供給が不十分となり、1サイクル終了時点のpH値が1サイクル開始時点のpH値より低下してしまう。この状態が継続するとpH値が徐々に低下して行き、それに伴って硝化菌、脱窒菌の活性も低下してしまうので、さらに窒素除去が悪化する。   By the way, for example, when the denitrification reaction is not completed during one cycle, the supply of alkalinity accompanying denitrification is insufficient, and the pH value at the end of one cycle is lower than the pH value at the start of one cycle. End up. If this state continues, the pH value gradually decreases, and the activities of nitrifying bacteria and denitrifying bacteria also decrease accordingly, so that nitrogen removal is further deteriorated.

図2は発明者らが行った廃液処理実験において、窒素除去が悪化した場合の活性汚泥槽120内のpH値変化の推移を示すグラフである。各処理サイクルにおいて、脱窒が終了していない状態が継続しており、このために好気開始時点のpH値が徐々に低下している。それに伴って硝化菌、脱窒菌の活性も低下して行き、活性汚泥槽120内にアンモニア、亜硝酸、硝酸が蓄積したことが判明した。   FIG. 2 is a graph showing the transition of the pH value change in the activated sludge tank 120 when nitrogen removal deteriorates in the waste liquid treatment experiment conducted by the inventors. In each treatment cycle, the state where the denitrification is not completed continues, and for this reason, the pH value at the start of aerobic gradually decreases. Along with this, the activity of nitrifying bacteria and denitrifying bacteria also decreased, and it was found that ammonia, nitrous acid, and nitric acid accumulated in the activated sludge tank 120.

本実施の形態では、上述のような窒素除去悪化を防止するため、活性汚泥槽120内のpH値を計測し、現サイクル終了時点のpH値と現サイクル以前の処理サイクルにおけるサイクル開始時点のpH値との差分を計算し、その差分値に基づいて活性汚泥槽120に流入する発酵廃液101の流入量を調節するものとした。   In the present embodiment, in order to prevent the above-described deterioration of nitrogen removal, the pH value in the activated sludge tank 120 is measured, and the pH value at the end of the current cycle and the pH at the start of the cycle in the treatment cycle before the current cycle. The difference with the value was calculated, and the inflow amount of the fermentation waste liquid 101 flowing into the activated sludge tank 120 was adjusted based on the difference value.

そのため、流入廃液量調節装置13は、pH計11から測定値(pH値)を取り込み、間欠曝気処理のサイクル毎に現サイクル終了時点のpH値と現サイクル開始時点のpH値との差に基づいて発酵廃液101の活性汚泥槽120への流入量を制御する。すなわち、好気工程開始から嫌気工程の終了(又は嫌気工程の開始から好気工程の終了)を1サイクルとして、1サイクル開始時のpH値とサイクル終了時(次のサイクル開始時と同じ)のpH値との差分の絶対値を計算し、これにより得られた差分の絶対値を予め定めた閾値pHsと比較する。そして、差分の絶対値が閾値pHs以上となった場合、硝化・脱膣反応のバランスが崩れて窒素オーバーとなる危険があると判断し、メタン発酵廃液供給ポンプ10の流量を減少させて活性汚泥槽120へのメタン発酵廃液の流入量を低下させる。流入量低下の割合は現状の流入量に対して例えば1〜0.5倍の範囲とする。例えば、メタン発酵廃液供給ポンプ10の流量を減少させる場合、現行のメタン発酵廃液供給ポンプ10の流量に0.8を乗じた流量で次回以降のサイクルの流量制御を行う。   Therefore, the inflow waste liquid amount adjusting device 13 takes in the measured value (pH value) from the pH meter 11 and is based on the difference between the pH value at the end of the current cycle and the pH value at the start of the current cycle for each cycle of the intermittent aeration process. Then, the inflow amount of the fermentation waste liquid 101 into the activated sludge tank 120 is controlled. That is, from the start of the aerobic process to the end of the anaerobic process (or from the start of the anaerobic process to the end of the aerobic process) as one cycle, the pH value at the start of one cycle and the end of the cycle (same as the start of the next cycle) The absolute value of the difference from the pH value is calculated, and the absolute value of the difference thus obtained is compared with a predetermined threshold pHs. When the absolute value of the difference is equal to or greater than the threshold pHs, it is determined that there is a risk that the balance of nitrification / vaginosis reaction is lost and the nitrogen is over, and the flow rate of the methane fermentation waste liquid supply pump 10 is decreased to activate activated sludge. The amount of methane fermentation waste liquid flowing into the tank 120 is reduced. The rate of decrease in the inflow amount is set, for example, in the range of 1 to 0.5 times the current inflow amount. For example, when the flow rate of the methane fermentation waste liquid supply pump 10 is decreased, the flow rate control for the next and subsequent cycles is performed at a flow rate obtained by multiplying the current flow rate of the methane fermentation waste liquid supply pump 10 by 0.8.

活性汚泥槽120に流入する発酵廃液101の流入量を低下させることにより、1サイクル開始時のpH値とサイクル終了時のpH値との差分の絶対値が小さくなる。pH値の差分が殆ど認められなくなった時点で、活性汚泥槽120内の硝化・脱窒速度を既知の手法で測定し、発酵廃液101の供給量を徐々に増加させて定常運転時の廃液供給量に戻す。閾値は0から1サイクルのpH値の変化幅(図2では0.25)の範囲で設定することが好ましい。また、サイクル終了時と比較するpH値は上述のような現サイクルでなく、それ以前のサイクル(例えば、前サイクル、前々サイクルなど)の好気開始時のpH値でも良い。   By reducing the inflow amount of the fermentation waste liquid 101 flowing into the activated sludge tank 120, the absolute value of the difference between the pH value at the start of one cycle and the pH value at the end of the cycle becomes small. When almost no difference in pH value is observed, the nitrification / denitrification rate in the activated sludge tank 120 is measured by a known method, and the supply amount of the fermentation waste liquid 101 is gradually increased to supply the waste liquid during steady operation. Return to quantity. The threshold value is preferably set within a range of change in pH value from 0 to 1 cycle (0.25 in FIG. 2). Further, the pH value to be compared with that at the end of the cycle is not the current cycle as described above, but may be the pH value at the start of the aerobic cycle in the previous cycle (for example, the previous cycle, the cycle before the previous cycle, etc.).

図3は、流入廃液量調節装置13の動作を示すフローチャートである。
流入廃液量調節装置13は、サイクル毎に1サイクル開始時にpH計11からその時点での測定値pHaを取り込んで保存する。あるサイクルにおける1サイクル終了時点のpH値は、次のサイクルの判断時には現サイクル開始時点のpH値として扱われる。
FIG. 3 is a flowchart showing the operation of the influent waste liquid amount adjusting device 13.
The inflow waste liquid amount adjusting device 13 takes in the measured value pHa at that time from the pH meter 11 and stores it at the start of one cycle for each cycle. The pH value at the end of one cycle in a certain cycle is treated as the pH value at the start of the current cycle when determining the next cycle.

流入廃液量調節装置13は、現サイクル終了時のpH計11の計測結果pHbと現サイクル開始時点のpH計11の計測値pHaとを取得し(ステップS10)、その差分を演算して絶対値を求める(ステップS11)。上記したように、現サイクル開始時点のpH値(pHa)に代えて前サイクル又は前々サイクル開始時のpH値と比較するようにしても良い。   The inflow waste liquid amount adjusting device 13 acquires the measurement result pHb of the pH meter 11 at the end of the current cycle and the measured value pHa of the pH meter 11 at the start of the current cycle (step S10), calculates the difference, and calculates the absolute value. Is obtained (step S11). As described above, the pH value (pHa) at the start of the current cycle may be compared with the pH value at the start of the previous cycle or the cycle before the previous cycle.

次いで、差分の絶対値|pHa−pHb|が閾値pHsを超えるかどうか判定する(ステップS12)。差分の絶対値|pHa−pHb|が閾値pHsを超える場合は、メタン発酵廃液供給ポンプ10の流量を減少させる(ステップS13)。例えば、現行のメタン発酵廃液供給ポンプの流量に0.8を乗じた流量にし、この流量で次回サイクルでの廃液供給を行う。差分の絶対値|pHa−pHb|が閾値pHs以下の場合は、メタン発酵廃液供給ポンプ10の流量を変更させることなく現状を維持する。   Next, it is determined whether or not the absolute value | pHa−pHb | of the difference exceeds the threshold pHs (step S12). If the absolute value of the difference | pHa−pHb | exceeds the threshold pHs, the flow rate of the methane fermentation waste liquid supply pump 10 is decreased (step S13). For example, the flow rate of the current methane fermentation waste liquid supply pump is multiplied by 0.8, and the waste liquid is supplied in the next cycle at this flow rate. When the absolute value of the difference | pHa−pHb | is equal to or lower than the threshold pHs, the current state is maintained without changing the flow rate of the methane fermentation waste liquid supply pump 10.

このように、本実施の形態のメタン発酵処理システムによれば、現サイクル終了時のpH値と現サイクル開始時のpH値(又は前サイクル、前々サイクル開始時のpH値)との差分の絶対値を計算し、これにより得られた差分の絶対値が予め定めた閾値pHs以上となった場合にメタン発酵廃液供給ポンプ10の流量を減少させて活性汚泥槽120への発酵廃液101の流入量を低下させるので、好気嫌気条件の不備、水温変化、阻害物質混入などの外乱によって、硝化菌や脱窒菌の活性が低下した場合でも、窒素除去の破綻を未然に防止することができる。   Thus, according to the methane fermentation treatment system of the present embodiment, the difference between the pH value at the end of the current cycle and the pH value at the start of the current cycle (or the pH value at the start of the previous cycle or the cycle before the previous cycle). When the absolute value of the difference obtained by calculating the absolute value is equal to or higher than a predetermined threshold pHs, the flow rate of the methane fermentation waste liquid supply pump 10 is decreased and the fermentation waste liquid 101 flows into the activated sludge tank 120. Since the amount is reduced, it is possible to prevent the failure of nitrogen removal even when the activity of nitrifying bacteria and denitrifying bacteria decreases due to disturbances such as inadequate aerobic and anaerobic conditions, changes in water temperature, and mixing of inhibitors.

また、本実施の形態のメタン発酵処理システムによれば、少なくとも1サイクル終了時(開始時)にpH値を取り込んで計算するだけなので、常にpH計11から測定値を取り込んでリアルタイムで水質分析して廃液流入量を制御する構成に比べて、流入廃液量調節装置12の負荷を大幅に軽減することができる。   In addition, according to the methane fermentation treatment system of the present embodiment, since the pH value is only taken and calculated at the end (start) of at least one cycle, the measured value is always taken from the pH meter 11 and the water quality is analyzed in real time. Thus, the load on the inflow waste liquid amount adjusting device 12 can be greatly reduced as compared with the configuration for controlling the inflow amount of waste liquid.

上記実施の形態では、現サイクル終了時のpH値と現サイクル開始時のpH値(又は前サイクル、前々サイクル開始時のpH値)との差分の絶対値を計算しているが、本発明はこれに限定されるものではない。例えば、現サイクルにおけるpH平均値と前サイクルにおけるpH平均値との差分を用いて廃液流入量を制御する構成としても良い。   In the above embodiment, the absolute value of the difference between the pH value at the end of the current cycle and the pH value at the start of the current cycle (or the pH value at the start of the previous cycle or the previous cycle) is calculated. Is not limited to this. For example, the waste liquid inflow amount may be controlled using a difference between the pH average value in the current cycle and the pH average value in the previous cycle.

図4は、各サイクルでのpH平均値を用いて廃液流入量を制御する流入廃液量調節装置の動作を示すフローチャートである。   FIG. 4 is a flowchart showing the operation of the influent waste liquid amount adjusting device for controlling the waste liquid inflow amount using the pH average value in each cycle.

1サイクル内で所定時間毎にpH値を取得する(ステップS20)。現サイクル終了時点で、現サイクルにおいて取得した複数のpH値から現サイクルにおけるpH値の平均値を算出する(ステップS21)。現サイクルのpH平均値pHaaと前サイクルのpH平均値pHabとの差分を演算して絶対値を求める(ステップS22)。   The pH value is acquired every predetermined time within one cycle (step S20). At the end of the current cycle, an average value of pH values in the current cycle is calculated from a plurality of pH values acquired in the current cycle (step S21). The difference between the pH average value pHaa of the current cycle and the pH average value pHab of the previous cycle is calculated to obtain an absolute value (step S22).

次いで、差分の絶対値|pHaa−pHab|が閾値pHasを超えるかどうか判定する(ステップS23)。差分の絶対値|pHaa−pHab|が閾値pHasを超える場合は、メタン発酵廃液供給ポンプ10(図1参照)の流量を減少させる(ステップS24)。差分の絶対値|pHaa−pHab|が閾値pHas以下の場合は、メタン発酵廃液供給ポンプ10の流量を変更させることなく現状を維持する。   Next, it is determined whether or not the absolute value | pHaa−pHab | of the difference exceeds the threshold value pHas (step S23). When the absolute value | pHaa−pHab | of the difference exceeds the threshold value pHas, the flow rate of the methane fermentation waste liquid supply pump 10 (see FIG. 1) is decreased (step S24). When the absolute value | pHaa−pHab | of the difference is equal to or less than the threshold pHas, the current state is maintained without changing the flow rate of the methane fermentation waste liquid supply pump 10.

このように、サイクル単位でのpH値の平均値を用いて、現サイクルのpH値の平均値pHaaとそれ以前のサイクルのpH値の平均値pHabとの差分の絶対値が閾値pHasを越える場合に廃液流量を減少させるように構成しても、上記同様に窒素除去の破綻を未然に防止することができる。   In this way, when the average value of pH values in cycle units is used and the absolute value of the difference between the average value pHaa of the current cycle's pH value and the average value pHab of the previous cycle's pH value exceeds the threshold pHas Even if the waste liquid flow rate is reduced, the failure of nitrogen removal can be prevented in the same manner as described above.

本発明は、発酵廃液を活性汚泥により処理するメタン発酵処理システムに適用することができる。   The present invention can be applied to a methane fermentation treatment system for treating fermentation waste liquid with activated sludge.

本発明の一実施の形態に係るメタン発酵廃液処理システムの要部構成を示す模式図The schematic diagram which shows the principal part structure of the methane fermentation waste liquid processing system which concerns on one embodiment of this invention. 窒素除去が悪化したときの活性汚泥槽内のpH値変化の推移を示す図The figure which shows transition of the pH value change in the activated sludge tank when nitrogen removal deteriorates 上記一実施の形態における流入廃液量調節装置の動作を示すフロー図The flowchart which shows operation | movement of the inflow waste liquid amount adjustment apparatus in the said one Embodiment. 上記一実施の形態において流入廃液量調節装置の変形例の動作を示すフロー図The flowchart which shows operation | movement of the modification of an inflow waste liquid amount adjusting device in the said one Embodiment. 従来のメタン発酵廃液処理システムの要部構成を示す模式図Schematic diagram showing the main components of a conventional methane fermentation wastewater treatment system

符号の説明Explanation of symbols

10…メタン発酵廃液供給ポンプ、11…pH計、12…流入廃液量調節装置、100…有機性廃棄物、101…発酵廃液、102…メタンガス、110…メタン発酵槽、120…活性汚泥槽、130…最終沈殿池   DESCRIPTION OF SYMBOLS 10 ... Methane fermentation waste liquid supply pump, 11 ... pH meter, 12 ... Inflow waste liquid amount control apparatus, 100 ... Organic waste, 101 ... Fermentation waste liquid, 102 ... Methane gas, 110 ... Methane fermentation tank, 120 ... Activated sludge tank, 130 ... Final sedimentation basin

Claims (4)

活性汚泥槽において空気曝気と曝気停止とを繰り返す間欠曝気により該活性汚泥槽に流入する発酵廃液を処理する廃液処理方法において、
前記活性汚泥槽内のpH値を計測し、前記間欠曝気の処理サイクルにおける現サイクル終了時点のpH値と現サイクル以前の処理サイクルにおけるサイクル開始時点でのpH値との差分を算出し、算出された差分の絶対値が閾値を超える場合に前記活性汚泥槽への発酵廃液の流入量を低下させることを特徴とする廃液処理方法。
In the waste liquid treatment method for treating the fermentation waste liquid flowing into the activated sludge tank by intermittent aeration that repeats air aeration and aeration stop in the activated sludge tank,
Measure the pH value in the activated sludge tank and calculate the difference between the pH value at the end of the current cycle in the intermittent aeration treatment cycle and the pH value at the cycle start time in the treatment cycle before the current cycle. When the absolute value of the difference exceeds the threshold value, the amount of fermentation waste liquid flowing into the activated sludge tank is reduced .
活性汚泥槽において空気曝気と曝気停止とを繰り返す間欠曝気により該活性汚泥槽に流入する発酵廃液を処理する廃液処理方法において、
前記活性汚泥槽内のpH値を計測し、前記間欠曝気の処理サイクルにおける現サイクルでのpH平均値と現サイクルより前の1サイクルでのpH平均値との差分を算出し、算出された差分の絶対値が閾値を超える場合に前記活性汚泥槽への発酵廃液の流入量を低下させることを特徴とする廃液処理方法。
In the waste liquid treatment method for treating the fermentation waste liquid flowing into the activated sludge tank by intermittent aeration that repeats air aeration and aeration stop in the activated sludge tank,
Measure the pH value in the activated sludge tank, calculate the difference between the pH average value in the current cycle in the intermittent aeration treatment cycle and the pH average value in one cycle before the current cycle , and calculate the difference When the absolute value of exceeds the threshold, the inflow amount of the fermentation waste liquid to the activated sludge tank is reduced .
活性汚泥槽において空気曝気と曝気停止とを繰り返す間欠曝気により該活性汚泥槽に流入する発酵廃液を処理する廃液処理装置において、
前記活性汚泥槽へ発酵廃液を流入させる廃液流入手段と、
前記活性汚泥槽内のpH値を計測する計測手段と、
前記計測手段からpH値を取り込み、前記間欠曝気の処理サイクルにおける現サイクル終了時点のpH値と現サイクル以前の処理サイクルにおけるサイクル開始時点でのpH値との差分を算出し、算出された差分の絶対値が閾値を超える場合に前記廃液流入手段を制御して前記活性汚泥槽への発酵廃液の流入量を低下させる制御手段と、
を具備することを特徴とする廃液処理装置。
In the waste liquid treatment apparatus for treating the fermentation waste liquid flowing into the activated sludge tank by intermittent aeration that repeats air aeration and aeration stop in the activated sludge tank,
Waste liquid inflow means for allowing fermentation waste liquid to flow into the activated sludge tank;
Measuring means for measuring the pH value in the activated sludge tank,
The incorporation of pH values from the measuring means, wherein the calculating the difference between the pH value at the cycle start point in pH value and the current cycle previous processing cycle of the current cycle at the end in the intermittent aeration process cycles, of the calculated difference Control means for controlling the waste liquid inflow means when the absolute value exceeds a threshold value to reduce the inflow amount of the fermentation waste liquid to the activated sludge tank;
A waste liquid treatment apparatus comprising:
活性汚泥槽において空気曝気と曝気停止とを繰り返す間欠曝気により該活性汚泥槽に流入する発酵廃液を処理する廃液処理装置において、
前記活性汚泥槽へ発酵廃液を流入させる廃液流入手段と、
前記活性汚泥槽内のpH値を計測する計測手段と、
前記計測手段からpH値を取り込み、前記間欠曝気の処理サイクルにおける現サイクルでのpH平均値と現サイクルより前の1サイクルでのpH平均値との差分を算出し、算出された差分の絶対値が閾値を超える場合に前記廃液流入手段を制御して前記活性汚泥槽への発酵廃液の流入量を低下させる制御手段と、
を具備することを特徴とする廃液処理装置。
In the waste liquid treatment apparatus for treating the fermentation waste liquid flowing into the activated sludge tank by intermittent aeration that repeats air aeration and aeration stop in the activated sludge tank,
Waste liquid inflow means for allowing fermentation waste liquid to flow into the activated sludge tank;
Measuring means for measuring the pH value in the activated sludge tank,
Taking the pH value from the measuring means, calculating the difference between the pH average value in the current cycle in the intermittent aeration treatment cycle and the pH average value in one cycle before the current cycle, and the absolute value of the calculated difference Control means for controlling the waste liquid inflow means to reduce the inflow amount of the fermentation waste liquid to the activated sludge tank when the threshold is exceeded ,
A waste liquid treatment apparatus comprising:
JP2006331120A 2006-12-07 2006-12-07 Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus Active JP4743100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331120A JP4743100B2 (en) 2006-12-07 2006-12-07 Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331120A JP4743100B2 (en) 2006-12-07 2006-12-07 Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus

Publications (2)

Publication Number Publication Date
JP2008142605A JP2008142605A (en) 2008-06-26
JP4743100B2 true JP4743100B2 (en) 2011-08-10

Family

ID=39603376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331120A Active JP4743100B2 (en) 2006-12-07 2006-12-07 Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus

Country Status (1)

Country Link
JP (1) JP4743100B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106565014A (en) * 2016-11-01 2017-04-19 华南理工大学 Anaerobic process domestication method for treating amino acid process condensing water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334583A (en) * 2002-05-21 2003-11-25 Matsushita Environment Airconditioning Eng Co Ltd Control method for intermittent aeration method and control device therefor
JP2005144306A (en) * 2003-11-14 2005-06-09 Fuji Electric Holdings Co Ltd Method for treatment by methane fermentation
JP2005218939A (en) * 2004-02-04 2005-08-18 Fuji Electric Holdings Co Ltd Method for treating nitrogen-containing waste liquid
JP2006281095A (en) * 2005-03-31 2006-10-19 Kubota Corp Method for treating organic waste
JP2008036558A (en) * 2006-08-08 2008-02-21 Fuji Electric Holdings Co Ltd Treatment method of nitrogen containing waste liquid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256755B2 (en) * 1995-03-30 2002-02-12 日立造船株式会社 Control method of feed wastewater amount in denitrification reaction
JPH08323394A (en) * 1995-06-02 1996-12-10 Fujita Corp Method for diagnosing intermittent aeration type activated sludge tank
JP2912901B1 (en) * 1998-03-13 1999-06-28 日本碍子株式会社 Treatment method for nitrogen-containing wastewater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334583A (en) * 2002-05-21 2003-11-25 Matsushita Environment Airconditioning Eng Co Ltd Control method for intermittent aeration method and control device therefor
JP2005144306A (en) * 2003-11-14 2005-06-09 Fuji Electric Holdings Co Ltd Method for treatment by methane fermentation
JP2005218939A (en) * 2004-02-04 2005-08-18 Fuji Electric Holdings Co Ltd Method for treating nitrogen-containing waste liquid
JP2006281095A (en) * 2005-03-31 2006-10-19 Kubota Corp Method for treating organic waste
JP2008036558A (en) * 2006-08-08 2008-02-21 Fuji Electric Holdings Co Ltd Treatment method of nitrogen containing waste liquid

Also Published As

Publication number Publication date
JP2008142605A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
CA2616624C (en) Method and arrangement for processing nitrogen-concentrated effluents in a sequential fractionated cycle biological reactor
KR101325659B1 (en) Apparatus for controlling aeration system by nitrification reaction in Sequencing Batch Reactor
JP5075926B2 (en) Sewage treatment apparatus and sewage treatment method
FR2921917A1 (en) Treating effluents containing nitrogen in the form of ammonium in biological reactor, by introducing volume of effluent in complete cycle in reactor thus allowing to exert pressure favorable to the development and activity of bacteria
EP2655269A1 (en) Method and facility for treating water by nitrosation/denitrosation, including at least an aeration step and a step for monitoring the oxygen supplied during the aeration step
JP5355314B2 (en) Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus
JP4334317B2 (en) Sewage treatment system
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
JP2010269255A (en) Sewage treatment method
CN113415887A (en) Biological enhanced denitrification device and application
JP3772882B2 (en) Methane fermentation treatment method
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JP4008694B2 (en) Sewage treatment plant water quality controller
JP2006204967A (en) Denitrification method and denitrification apparatus
JP4622958B2 (en) Nitrogen-containing waste liquid treatment method
JP4743100B2 (en) Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus
JP4576845B2 (en) Nitrogen-containing waste liquid treatment method
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
JP4716265B2 (en) Organic waste liquid treatment method and organic waste liquid treatment apparatus
JP5325124B2 (en) Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water
JP4335970B2 (en) Nitrogen-containing wastewater treatment equipment
JP4904738B2 (en) Nitrogen-containing waste liquid treatment method
JPH067792A (en) Treatment of organic waste water treatment apparatus
JP2001170685A (en) Treating device for nitrogen-containing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4743100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250