JP3772882B2 - Methane fermentation treatment method - Google Patents

Methane fermentation treatment method Download PDF

Info

Publication number
JP3772882B2
JP3772882B2 JP2003384479A JP2003384479A JP3772882B2 JP 3772882 B2 JP3772882 B2 JP 3772882B2 JP 2003384479 A JP2003384479 A JP 2003384479A JP 2003384479 A JP2003384479 A JP 2003384479A JP 3772882 B2 JP3772882 B2 JP 3772882B2
Authority
JP
Japan
Prior art keywords
aeration
ammonia
time
nitrogen
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003384479A
Other languages
Japanese (ja)
Other versions
JP2005144306A (en
Inventor
豊 森
正 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003384479A priority Critical patent/JP3772882B2/en
Publication of JP2005144306A publication Critical patent/JP2005144306A/en
Application granted granted Critical
Publication of JP3772882B2 publication Critical patent/JP3772882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

本発明は、嫌気性微生物を用いて、糞尿、生ゴミ、食品加工残滓等の有機性廃棄物を処理するメタン発酵処理に関し、更に詳しくは、メタン発酵した発酵廃液の処理方法に関する。   The present invention relates to a methane fermentation treatment that uses anaerobic microorganisms to treat organic waste such as manure, garbage, and food processing residue, and more particularly to a method for treating a fermentation waste liquid that has undergone methane fermentation.

生ごみ等や下水の余剰汚泥などの有機性廃棄物をメタン発酵し、メタンガスとしてエネルギーを回収する方法が省資源、循環型社会形成の一環とて採用されている。   A method of methane fermentation of organic wastes such as garbage and surplus sludge from sewage and recovering energy as methane gas has been adopted as part of resource saving and recycling society formation.

メタン発酵は有機物をメタンと炭酸ガスに分解するが、100%分解されるわけではなく、発酵廃液中には高濃度の有機成分が残っている。また、発酵廃液中には、発酵残渣もしくはメタン発酵槽で増殖した菌体としての汚泥があり、この汚泥中には高濃度の窒素成分が含まれる。更に、有機物の分解生成物であるアンモニアも高濃度に含まれる。したがって、発酵廃液はそのまま下水道や河川には放流できず、有機物と窒素成分を分解除去する処理が必要である。   Methane fermentation decomposes organic matter into methane and carbon dioxide, but it is not 100% decomposed, and high-concentration organic components remain in the fermentation waste liquid. Further, in the fermentation waste liquid, there is a sludge as a fermentation residue or a microbial cell grown in a methane fermentation tank, and this sludge contains a high concentration of nitrogen components. Furthermore, ammonia, which is a decomposition product of organic matter, is also contained at a high concentration. Therefore, the fermentation waste liquid cannot be discharged into the sewer or river as it is, and a process for decomposing and removing organic substances and nitrogen components is necessary.

上記のメタン発酵廃液の処理方法として、活性汚泥処理法の一つである間欠曝気式活性汚泥法(以下、間欠曝気法ともいう)が知られている。この間欠曝気法では、メタン発酵廃液中の有機物は、活性汚泥を構成する微生物の食物となり分解除去される。   As a method for treating the above methane fermentation waste liquid, an intermittent aeration activated sludge method (hereinafter also referred to as an intermittent aeration method), which is one of activated sludge treatment methods, is known. In this intermittent aeration method, the organic matter in the methane fermentation waste liquid is decomposed and removed as food for microorganisms constituting the activated sludge.

窒素は空気で曝気した好気性条件で、廃液中のアンモニアをアンモニア酸化菌によって亜硝酸に酸化され、この亜硝酸が亜硝酸酸化菌によって硝酸に酸化される(硝化反応)。続いて、空気曝気を停止した嫌気性条件で、亜硝酸もしくは硝酸中の酸素を使い発酵廃液中の有機物を酸化する脱窒菌の作用により、亜硝酸もしくは硝酸は還元され、窒素ガスとして除去(脱窒反応)される。窒素除去と微生物の関係を整理すると以下の表1のようになる。   Nitrogen is aerobic under aeration with air, and ammonia in waste liquid is oxidized to nitrous acid by ammonia oxidizing bacteria, and this nitrous acid is oxidized to nitric acid by nitrite oxidizing bacteria (nitrification reaction). Subsequently, nitrous acid or nitric acid is reduced and removed as nitrogen gas by the action of denitrifying bacteria that oxidize organic matter in the fermentation waste liquid using oxygen in nitrous acid or nitric acid under anaerobic conditions where air aeration is stopped. Nitrogen reaction). Table 1 below summarizes the relationship between nitrogen removal and microorganisms.

Figure 0003772882
Figure 0003772882

このような間欠曝気処理を効率よく行うために、例えば、下記の特許文献1には、間欠曝気処理が行われる反応槽内のpH変化を計測してその屈曲点から硝化反応の終了を検知するとともに、得られた硝化時間から原水窒素濃度を推定し、この原水窒素濃度から反応槽の窒素負荷を一定にするために原水流量を制御する窒素含有排水の処理方法が開示されている。   In order to efficiently perform such intermittent aeration processing, for example, in Patent Document 1 below, the pH change in the reaction tank in which intermittent aeration processing is performed is measured, and the end of the nitrification reaction is detected from the inflection point. In addition, a nitrogen-containing wastewater treatment method is disclosed in which the raw water nitrogen concentration is estimated from the obtained nitrification time, and the raw water flow rate is controlled in order to make the nitrogen load of the reaction tank constant from the raw water nitrogen concentration.

更に、下記の特許文献2には、単独反応槽において好気と嫌気処理を繰り返す間欠曝気処理方法において、反応槽内の温度、pHを基準にして、好気時間と嫌気時間の比率を設定し、制御する方法が開示されている。   Furthermore, in the following Patent Document 2, in the intermittent aeration treatment method in which aerobic treatment and anaerobic treatment are repeated in a single reaction tank, the ratio of aerobic time and anaerobic time is set based on the temperature and pH in the reaction tank. A method of controlling is disclosed.

更にまた、下記の特許文献3には、間欠曝気式活性汚泥法により有機系廃水の脱窒処理を行うに当たり、処理水pHを記憶手段に逐次記憶させ、記憶されたpH値の経時的変化より各好気的微生物処理および嫌気的微生物処理におけるpH変化速度ならびにpH変化幅を演算手段に演算させて、pH変化速度が標準速度に達したのち事実上0になる時点の出現の有無に基づき、硝化反応および脱窒反応の進行状況を診断することが開示されている。
特開平11−253990号公報 特開平10−249386号公報 特開平8−323394号公報
Furthermore, in Patent Document 3 below, when performing denitrification treatment of organic wastewater by the intermittent aeration activated sludge method, the treated water pH is sequentially stored in the storage means, and the time-dependent change in the stored pH value is described. Based on the presence or absence of the occurrence of a point at which the pH change rate reaches zero after the pH change rate reaches the standard rate by causing the calculation means to calculate the pH change rate and the pH change width in each aerobic microorganism treatment and anaerobic microorganism treatment, Diagnosing the progress of nitrification and denitrification reactions is disclosed.
Japanese Patent Laid-Open No. 11-253990 JP-A-10-249386 JP-A-8-323394

上記のように、間欠曝気法は、廃水中の有機物を使って亜硝酸もしくは硝酸を還元し窒素ガスにするので、窒素量に見合う有機物量が必要である。   As described above, the intermittent aeration method uses the organic matter in the wastewater to reduce nitrous acid or nitric acid into nitrogen gas, and therefore requires an amount of organic matter commensurate with the amount of nitrogen.

しかし、メタン発酵においては、発酵廃液はメタン発酵過程で有機物が分解されているため脱窒工程に必要な有機物量が不足しやすくなる。このため、別途有機物源としてメチルアルコールなどの添加が必要になるという問題があった。また、硝化反応を進めるために空気曝気を行う際には曝気動力が必要となり、この空気を供給する曝気の動力が必要となるのでコストがかかるという問題があった。   However, in methane fermentation, the amount of organic matter required for the denitrification step tends to be insufficient because the organic matter is decomposed in the fermentation waste liquid during the methane fermentation process. For this reason, there has been a problem that it is necessary to add methyl alcohol or the like as an organic substance source. In addition, there is a problem in that aeration power is required when performing air aeration in order to advance the nitrification reaction, and the aeration power for supplying the air is required, which increases costs.

また、上記の特許文献1〜3においては、反応槽内のpH変化によって好気性反応の終了時を検知しているものの、この検知を利用して空気曝気の時間や温度を最適に制御し、嫌気性反応時の脱窒素に必要な有機物量や、好気性反応時の曝気空気量を減少する点については検討されていない。   In the above Patent Documents 1 to 3, although the end of the aerobic reaction is detected by the pH change in the reaction tank, the time and temperature of air aeration are optimally controlled using this detection, The amount of organic substances necessary for denitrification during an anaerobic reaction and the amount of aerated air during an aerobic reaction have not been studied.

本発明の目的は、上記の従来技術の問題点に鑑みてなされたものであり、間欠曝気槽内の硝化反応を亜硝酸型で制御することにより、硝化工程で必要な空気量を削減でき、更に、脱窒工程での有機物必要量を削減できる方法を提供することにある。   The object of the present invention was made in view of the above-mentioned problems of the prior art, and by controlling the nitrification reaction in the intermittent aeration tank with a nitrite type, the amount of air required in the nitrification process can be reduced, Furthermore, it is providing the method which can reduce the organic substance required amount in a denitrification process.

すなわち、本発明のメタン発酵処理方法は、有機性廃棄物をメタン発酵槽内に投入し、嫌気性微生物によりメタン発酵させて発酵廃液として取り出した後、この発酵廃液を活性汚泥槽に投入して空気曝気と曝気停止とを交互に繰り返す間欠曝気処理を行い、前記発酵廃液中のアンモニアを窒素ガスに転換して除去するメタン発酵処理方法であって、
前記空気曝気を25〜35℃で行うと共に、前記空気曝気において、前記活性汚泥槽内のpH、溶存酸素、アンモニア濃度より選択される少なくとも1つを測定することにより、アンモニア性窒素を亜硝酸性窒素に転換させる反応が終了する時間を、前記空気曝気と前記曝気停止とを交互に繰り返す各サイクル毎に検出し、前記空気曝気の時間が、検出された前記終了時間の1〜1.5倍となるように制御することを特徴とする。
That is, in the methane fermentation treatment method of the present invention, an organic waste is put into a methane fermentation tank, methane-fermented by anaerobic microorganisms and taken out as a fermentation waste liquid, and then this fermentation waste liquid is put into an activated sludge tank. An intermittent aeration process in which air aeration and aeration stop are alternately repeated, and the ammonia in the fermentation waste liquid is converted to nitrogen gas to be removed, and a methane fermentation treatment method,
The air aeration is performed at 25 to 35 ° C., and at the air aeration, at least one selected from pH, dissolved oxygen, and ammonia concentration in the activated sludge tank is measured, whereby ammonia nitrogen is converted into nitrite. The time for completing the reaction for conversion to nitrogen is detected for each cycle in which the air aeration and the aeration stop are alternately repeated, and the air aeration time is 1 to 1.5 times the detected end time . It is characterized by controlling to become .

一般に、アンモニアの硝化反応と脱窒反応は以下の(1)〜(4)式に従って進行する。このうち(1)、(2)式が空気曝気における好気性反応(硝化反応)であり、(3)、(4)式は曝気停止時の嫌気性反応(脱窒反応)である。   Generally, ammonia nitrification reaction and denitrification reaction proceed according to the following formulas (1) to (4). Among these, the expressions (1) and (2) are aerobic reactions (nitrification reaction) in air aeration, and the expressions (3) and (4) are anaerobic reactions (denitrification reaction) when aeration is stopped.

NH4 ++3/2O2→NO2 +H2O・・・・・・・・・・(1)
NO2 +1/2O2→NO3 ・・・・・・・・・・・・・・(2)
2NO2 +6H→N2+2H2O+2OH・・・・・・・(3)
2NO3 +10H→N2+4H2O+2OH・・・・・・(4)
本発明においては、前記空気曝気を25〜35℃で行う。アンモニア酸化菌と亜硝酸酸化菌との増殖速度には温度依存性があり、15℃程度以上の温度条件においては、亜硝酸酸化菌よりアンモニア酸化菌の増殖速度の方が速く、高温条件ほどその差は大きくなることが知られている。したがって、空気曝気を25〜35℃で行うことにより、硝化反応において、亜硝酸酸化菌のみが減少してゆき、亜硝酸から硝酸への反応が進行しなくなり、短時間で硝化反応を亜硝酸までで止めることができる。
また、本発明においては、前記空気曝気において、前記活性汚泥槽内のpH、溶存酸素、アンモニア濃度より選択される少なくとも1つを測定することにより、アンモニア性窒素を亜硝酸性窒素に転換させる反応が終了する時間を、前記空気曝気と前記曝気停止とを交互に繰り返す各サイクル毎に検出し、前記空気曝気の時間が、検出された前記終了時間の1〜1.5倍となるように制御する。アンモニア酸化菌/亜硝酸酸化菌の増殖速度の比は、比較的温度が高い条件においては1.5程度となる。したがって、空気曝気の時間を、アンモニア性窒素を亜硝酸性窒素に転換させる反応が終了する時間を最小とし、この1.5倍を最大とすることで、亜硝酸酸化菌が系内に維持できない条件とできる。
このように、本発明の方法によれば、活性汚泥槽内のアンモニア酸化菌の菌数が増加し、かつ、亜硝酸酸化菌の菌数が減少するように空気曝気の時間及び温度を調整したので、上記の反応のうち、硝化反応においては、アンモニア性窒素を亜硝酸性窒素に転換させる(1)式の反応のみが進行して亜硝酸で止まり(2)式の反応が進行しなくなる。したがって、(2)式の酸素分が不要となるので、空気曝気に必要な酸素量(空気量)を最大25%削減できる。
NH 4 + + 3 / 2O 2 → NO 2 + H 2 O (1)
NO 2 - + 1 / 2O 2 → NO 3 - ·············· (2)
2NO 2 - + 6H → N 2 + 2H 2 O + 2OH - ······· (3)
2NO 3 - + 10H → N 2 + 4H 2 O + 2OH - ······ (4)
In this invention, the said air aeration is performed at 25-35 degreeC. The growth rate of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria is temperature-dependent. Under temperature conditions of about 15 ° C or higher, the growth rate of ammonia-oxidizing bacteria is faster than that of nitrite-oxidizing bacteria. The difference is known to increase. Therefore, by performing air aeration at 25 to 35 ° C., only nitrite-oxidizing bacteria are reduced in the nitrification reaction, the reaction from nitrous acid to nitric acid does not proceed, and the nitrification reaction to nitrous acid is performed in a short time. You can stop at.
In the present invention, in the air aeration, the reaction for converting ammonia nitrogen into nitrite nitrogen by measuring at least one selected from pH, dissolved oxygen, and ammonia concentration in the activated sludge tank. Is detected for each cycle in which the air aeration and the aeration stop are alternately repeated, and the air aeration time is controlled to be 1 to 1.5 times the detected end time. To do. The ratio of the growth rate of ammonia-oxidizing bacteria / nitrite-oxidizing bacteria is about 1.5 under relatively high temperature conditions. Therefore, nitrite-oxidizing bacteria cannot be maintained in the system by minimizing the time required for air aeration to complete the reaction for converting ammoniacal nitrogen to nitrite nitrogen and maximizing this 1.5 times. Can be with conditions.
Thus, according to the method of the present invention, the time and temperature of air aeration were adjusted so that the number of ammonia oxidizing bacteria in the activated sludge tank increased and the number of nitrite oxidizing bacteria decreased. Therefore, in the nitrification reaction among the above reactions, only the reaction of the formula (1) for converting ammonia nitrogen to the nitrite nitrogen proceeds, stops at the nitrous acid, and the reaction of the formula (2) does not proceed. Therefore, since the oxygen content of the formula (2) is not necessary, the oxygen amount (air amount) necessary for air aeration can be reduced by up to 25%.

また、これにより脱窒反応においては、硝酸から脱窒する(4)式の反応が進行しなくなり、(3)式の亜硝酸からの脱窒のみが進行する。ここで(3)式と(4)式とを比べると(3)式のほうが必要な水素が40%少ない。この水素は系内に供給される有機物から得ているため、(3)式の亜硝酸からの脱窒のほうが、少ない有機物量で脱窒を行うことができる。したがって、脱窒に必要な有機物量を減らすことができ、脱窒素時のメタノールの添加を不要とするか、又はメタノール添加量を減らすことができる。   As a result, in the denitrification reaction, the reaction (4) denitrifying from nitric acid does not proceed, and only the denitrification from nitrous acid (3) proceeds. Here, when the formula (3) is compared with the formula (4), the formula (3) requires 40% less hydrogen. Since this hydrogen is obtained from an organic substance supplied into the system, denitrification from nitrous acid of the formula (3) can be performed with a smaller amount of organic substance. Therefore, the amount of organic matter necessary for denitrification can be reduced, and the addition of methanol at the time of denitrification is not required, or the amount of methanol added can be reduced.

また、本発明では、前記アンモニア性窒素を前記亜硝酸性窒素に転換させる反応が終了する時間を、前記活性汚泥槽内のpH、溶存酸素、アンモニア濃度より選択される少なくとも1つを測定することにより決定する。 In the present invention, the time for completing the reaction for converting the ammonia nitrogen to the nitrite nitrogen is measured by measuring at least one selected from pH, dissolved oxygen, and ammonia concentration in the activated sludge tank. determined by.

記の(1)式の終点は、アンモニウムイオンの存在量で検出できるので、pH、溶存酸素、アンモニア濃度より選択される少なくとも1つによって、アンモニア性窒素を亜硝酸性窒素に転換させる反応が終了する時間を容易に検出することができる。 End point of the upper Symbol of formula (1), can be detected in the presence of ammonium ions, pH, dissolved oxygen, by at least one selected from ammonia concentration, reaction of converting the ammonium nitrogen to nitrite nitrogen The end time can be easily detected.

更に、本発明においては、前記空気曝気の時間の上限値及び下限値をあらかじめ設定しておき、前記アンモニア性窒素を前記亜硝酸性窒素に転換させる反応が終了する時間が、この上限値又は下限値を超えた場合に前記空気曝気を終了させることが好ましい。   Furthermore, in the present invention, an upper limit value and a lower limit value of the air aeration time are set in advance, and the time for completing the reaction for converting the ammonia nitrogen to the nitrite nitrogen is the upper limit value or the lower limit value. The air aeration is preferably terminated when the value is exceeded.

この態様によれば、上限値は、例えば、運転する温度および窒素負荷、脱窒速度から嫌気時間において脱窒が完了する時間をあらかじめ計算し、その時間が1サイクル中に確保できるように設定する。また、下限値は文献値などのアンモニア酸化菌の増殖速度より、運転する温度条件における必要な好気時間を計算しあらかじめ設定する。これによって、1サイクル内で間欠曝気処理を終了することができる。   According to this aspect, the upper limit value is set so that, for example, the time for completing the denitrification is calculated in advance in the anaerobic time from the operating temperature, nitrogen load, and denitrification speed, and that time can be secured in one cycle. . The lower limit value is set in advance by calculating the required aerobic time under the operating temperature conditions from the growth rate of ammonia oxidizing bacteria such as literature values. As a result, the intermittent aeration process can be completed within one cycle.

また、本発明においては、前記空気曝気と曝気停止とを交互に繰り返すサイクルが1〜4時間であることが好ましい。この態様によれば、1サイクルを1時間以上とすることにより、アンモニアから亜硝酸への反応が終了する時間の誤検出を防止できる。すなわち、1サイクルが短い場合は1日に入る原水量が少なくなり、好気、嫌気でのアンモニア、亜硝酸の濃度変動が小さくなり、終了点を捉え難くなるが、これを防止できる。また、1サイクルを4時間以下とすることで、アンモニア、亜硝酸の濃度変動が大きくなり、このアンモニア、亜硝酸の濃度が高くなり過ぎて硝化反応に阻害が起きるのを防止できる。   Moreover, in this invention, it is preferable that the cycle which repeats the said air aeration and aeration stop alternately is 1-4 hours. According to this aspect, by setting one cycle to 1 hour or longer, it is possible to prevent erroneous detection of the time when the reaction from ammonia to nitrous acid ends. That is, when one cycle is short, the amount of raw water entering the day is reduced, and the concentration fluctuations of aerobic and anaerobic ammonia and nitrous acid are reduced, making it difficult to grasp the end point, but this can be prevented. Further, by setting one cycle to 4 hours or less, the concentration fluctuations of ammonia and nitrous acid are increased, and it is possible to prevent the ammonia and nitrous acid concentrations from becoming too high and inhibiting the nitrification reaction.

本発明によれば、間欠曝気槽内の硝化反応を亜硝酸型で制御することができ、これによって硝化工程における必要な空気量を削減でき、曝気に要するコストを低減できる。また、脱窒工程における有機物必要量も削減できるので、有機物源として別途メチルアルコールなどの添加が不要とするか、添加量を削減でき、脱窒工程のコストも低減できる。   According to the present invention, the nitrification reaction in the intermittent aeration tank can be controlled by the nitrite type, whereby the amount of air required in the nitrification step can be reduced and the cost required for aeration can be reduced. Further, since the required amount of organic substances in the denitrification process can be reduced, it is unnecessary to add methyl alcohol or the like as an organic substance source, or the addition amount can be reduced, and the cost of the denitrification process can be reduced.

以下、本発明について図面を用いて更に詳細に説明する。図1には、本発明の方法に用いるメタン発酵処理装置の一実施形態の概略構成図が示されている。   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 shows a schematic configuration diagram of an embodiment of a methane fermentation treatment apparatus used in the method of the present invention.

図1の処理装置は、メタン発酵槽1と、メタン発酵後の発酵廃液を処理するための間欠曝気槽3とから主に構成されている。そして、メタン発酵槽1からの配管は、供給ポンプ2を介して間欠曝気槽3に接続されており、間欠曝気槽3には処理水を排出するための配管が接続されている。   The processing apparatus of FIG. 1 is mainly comprised from the methane fermentation tank 1 and the intermittent aeration tank 3 for processing the fermentation waste liquid after methane fermentation. And the piping from the methane fermentation tank 1 is connected to the intermittent aeration tank 3 via the supply pump 2, and the intermittent aeration tank 3 is connected to a pipe for discharging treated water.

間欠曝気槽3内の底部には、酸素を含む気体(通常空気)で発酵廃液を曝気可能なように曝気装置7が設けられている。曝気装置7としては従来公知のものが使用可能であり特に限定されない。一方、間欠曝気槽3内の上部には、攪拌機5が設けられており、攪拌羽根によって発酵廃液を攪拌可能になっている。攪拌機5としても従来公知のものが使用可能であり特に限定されない。   An aeration device 7 is provided at the bottom of the intermittent aeration tank 3 so that the fermentation waste liquid can be aerated with a gas containing oxygen (normal air). A conventionally well-known thing can be used as the aeration apparatus 7, and it is not specifically limited. On the other hand, the stirrer 5 is provided in the upper part in the intermittent aeration tank 3, and the fermentation waste liquid can be stirred by the stirring blade. A conventionally well-known thing can be used also as the stirrer 5, and it is not specifically limited.

間欠曝気槽3の上部には温度計4が接続されており、この測定値に基づいて間欠曝気槽3内の温度を調節するように温度調節装置8が設けられている。温度調節装置8としては従来公知のヒーター等が使用できる。   A thermometer 4 is connected to the upper part of the intermittent aeration tank 3, and a temperature adjustment device 8 is provided so as to adjust the temperature in the intermittent aeration tank 3 based on the measured value. As the temperature control device 8, a conventionally known heater or the like can be used.

また、間欠曝気槽3の上部にはpH計が接続されており、後述する方法によって、発酵廃液中のpHを監視して曝気時間の決定が行えるようになっている。   In addition, a pH meter is connected to the upper part of the intermittent aeration tank 3, and the aeration time can be determined by monitoring the pH in the fermentation waste liquid by a method described later.

次に、この処理装置を用いた、本発明のメタン発酵処理方法について説明すると、図1において、牛、豚などの畜産糞尿や生ゴミ等の有機性廃棄物は、あらかじめ破砕、粉砕され、必要に応じて適度な水で希釈されてスラリー化された後、メタン発酵槽1に投入される。   Next, the methane fermentation treatment method of the present invention using this processing apparatus will be described. In FIG. 1, organic waste such as livestock manure such as cattle and pigs and garbage is crushed and crushed in advance. According to the above, the slurry is diluted with an appropriate amount of water to form a slurry, and then charged into the methane fermentation tank 1.

メタン発酵槽1ではスラリーのメタン発酵が行なわれ、嫌気性微生物による有機性廃棄物の分解が行われる。メタン発酵温度は特に限定されないが、例えば50〜60℃で行なうことができる。これによれば、より活性の高い、高温メタン菌での発酵が行なえるので、有機性廃棄物の分解速度を更に向上することができる。そして、一定時間毎に供給されるスラリーと同量の発酵液が、供給ポンプ2によってメタン発酵槽1から引き抜かれて間欠曝気槽3に送られる。なお、メタン発酵槽1で生成したバイオガスは、図示しないガスホルダーに回収され、燃料電池発電装置、ガスエンジン等の発電機やボイラーの燃料として有効利用されるようになっている。   In the methane fermenter 1, slurry methane fermentation is performed, and organic waste is decomposed by anaerobic microorganisms. Although the methane fermentation temperature is not particularly limited, for example, it can be performed at 50 to 60 ° C. According to this, since the fermentation with a high-temperature methane bacterium having higher activity can be performed, the decomposition rate of the organic waste can be further improved. Then, the same amount of fermented liquid as the slurry supplied at regular time intervals is extracted from the methane fermentation tank 1 by the supply pump 2 and sent to the intermittent aeration tank 3. The biogas generated in the methane fermentation tank 1 is collected in a gas holder (not shown) and is effectively used as a fuel for a power generator such as a fuel cell power generation device or a gas engine or a boiler.

次に、間欠曝気槽3内では、活性汚泥法による間欠曝気処理が行われる。すなわち、まず、曝気装置7によって曝気ガスである空気が供給され、好気性条件下で上記の硝化反応が行われる。   Next, in the intermittent aeration tank 3, the intermittent aeration process by the activated sludge method is performed. That is, first, air as aeration gas is supplied by the aeration apparatus 7 and the above nitrification reaction is performed under aerobic conditions.

このとき、本発明においては、空気曝気において、間欠曝気槽3内のアンモニア酸化菌の菌数が増加し、かつ、亜硝酸酸化菌の菌数が減少するように、空気曝気の時間及び温度を調整することを特徴としている。   At this time, in the present invention, in air aeration, the time and temperature of air aeration are set so that the number of ammonia oxidizing bacteria in the intermittent aeration tank 3 increases and the number of nitrite oxidizing bacteria decreases. It is characterized by adjusting.

上記のように、空気曝気は、アンモニア酸化菌によってアンモニア性窒素を亜硝酸性窒素に転換させる下記(1)式と、亜硝酸酸化菌によって前記亜硝酸性窒素を硝酸性窒素に転換させる下記(2)式とからなる酸化反応で進行する。   As described above, air aeration is performed by the following formula (1) for converting ammonia nitrogen to nitrite nitrogen by ammonia oxidizing bacteria, and the following formula (1) for converting the nitrite nitrogen to nitrate nitrogen by nitrite oxidizing bacteria ( 2) It proceeds by an oxidation reaction consisting of the formula:

NH4 ++3/2O2→NO2 +H2O・・・・・・・・・・(1)
NO2 +1/2O2→NO3 ・・・・・・・・・・・・(2)
硝化反応に関係する微生物は、アンモニア酸化菌と亜硝酸酸化菌である。アンモニア酸化菌と亜硝酸酸化菌の増殖速度には違いがあり、15℃程度以上の温度条件においては、亜硝酸酸化菌よりアンモニア酸化菌の増殖速度の方が速く、高温条件ほどその差は大きくなることが知られている(L.G.J.M.van Dongen, M.S.M.Jetten, M.C.M.van Loosdrecht, The Combined Sharon/Anammox Process, STOWA Report, IWA Publishing, 2001, p8)。
NH 4 + + 3 / 2O 2 → NO 2 + H 2 O (1)
NO 2 - + 1 / 2O 2 → NO 3 - ············ (2)
Microorganisms related to the nitrification reaction are ammonia oxidizing bacteria and nitrite oxidizing bacteria. There is a difference in the growth rate of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. Under temperature conditions of about 15 ° C or higher, the growth rate of ammonia-oxidizing bacteria is faster than that of nitrite-oxidizing bacteria. (LGJMvan Dongen, MSMJetten, MCMvan Loosdrecht, The Combined Sharon / Anammox Process, STOWA Report, IWA Publishing, 2001, p8).

したがって、アンモニア酸化菌が増殖するスピードより遅く、かつ、亜硝酸酸化菌が増殖するスピードより早く間欠曝気槽より各菌を流出させれば、亜硝酸酸化菌のみが減少してゆき、亜硝酸から硝酸への反応が進行しなくなり、硝化反応は亜硝酸までで止まることになる。   Therefore, if each bacterium flows out of the intermittent aeration tank earlier than the speed at which ammonia-oxidizing bacteria grow and faster than the speed at which nitrite-oxidizing bacteria grow, only the nitrite-oxidizing bacteria will decrease and The reaction to nitric acid will not proceed, and the nitrification reaction will stop at nitrous acid.

したがって、本発明においては、空気曝気を、アンモニア酸化菌の増殖速度が前記亜硝酸酸化菌の増殖速度より高くなる温度で行うことが好ましく、具体的には、温度計4によって温度を計測し、温度調節装置8を用いて25〜35℃に制御しながら空気曝気を行うことがより好ましい。   Therefore, in the present invention, air aeration is preferably performed at a temperature at which the growth rate of ammonia-oxidizing bacteria is higher than the growth rate of the nitrite-oxidizing bacteria. Specifically, the temperature is measured by the thermometer 4, It is more preferable to perform air aeration while controlling to 25-35 degreeC using the temperature control apparatus 8. FIG.

温度が25℃未満では、アンモニア酸化菌と亜硝酸酸化菌の増殖速度の差が小さく、安定した運転ができないので好ましくない。また、35℃を超えると菌の活性が低下して処理効率が低下するので好ましくない。   If the temperature is less than 25 ° C., the difference in growth rate between the ammonia-oxidizing bacteria and the nitrite-oxidizing bacteria is small, and a stable operation cannot be performed. On the other hand, if the temperature exceeds 35 ° C., the activity of the bacteria is lowered and the treatment efficiency is lowered, which is not preferable.

また、本発明においては、空気曝気の時間は前記アンモニア性窒素を前記亜硝酸性窒素に転換させる反応が終了する時間の1〜1.5倍とすることが好ましい。   In the present invention, the air aeration time is preferably 1 to 1.5 times as long as the reaction time for converting the ammoniacal nitrogen to the nitrite nitrogen is completed.

本発明における間欠曝気法は、好気性条件と嫌気条件を繰返し行うことにより窒素の除去を行っているが、上記のアンモニアや亜硝酸を酸化する微生物は、好気条件では増殖することができるが、嫌気条件では増殖できずに死滅のみが進行する。ここで、アンモニアを酸化するアンモニア酸化菌の増殖速度は、系内のアンモニア濃度に依存せずにほぼ一定と考えることができるので、間欠曝気槽内が安定して運転されている条件においては、好気条件のアンモニア酸化が終了する時間(アンモニア濃度が低下してゼロとなるまでの時間)が、アンモニア酸化菌に対して系内に菌を維持するのに必要な最低時間となる。   The intermittent aeration method in the present invention removes nitrogen by repeatedly performing an aerobic condition and an anaerobic condition. However, the above microorganisms that oxidize ammonia and nitrous acid can grow under an aerobic condition. In anaerobic conditions, it cannot grow and only kills. Here, the growth rate of the ammonia-oxidizing bacteria that oxidize ammonia can be considered to be almost constant without depending on the ammonia concentration in the system, so under the conditions where the intermittent aeration tank is stably operated, The time required for the end of the aerobic ammonia oxidation (the time until the ammonia concentration is reduced to zero) is the minimum time required for maintaining the bacteria in the system against the ammonia oxidizing bacteria.

一方、亜硝酸酸化菌については、上述のようにアンモニア酸化菌より増殖速度が遅いため、アンモニア酸化菌の増殖に必要な好気時間ぎりぎりで運転することにより、死滅および系外に流出する量が勝るため、亜硝酸酸化菌は系内に維持できなくなり、結果としてアンモニアの酸化は亜硝酸までで停止する。   On the other hand, since the growth rate of nitrite-oxidizing bacteria is slower than that of ammonia-oxidizing bacteria as described above, the amount of death and outflow to the outside of the system can be reduced by operating only at the aerobic time necessary for the growth of ammonia-oxidizing bacteria. In order to win, nitrite-oxidizing bacteria cannot be maintained in the system, and as a result, the oxidation of ammonia stops up to nitrite.

空気曝気を、アンモニア性窒素を前記亜硝酸性窒素に転換させる反応が終了する時間未満(1倍未満)で行った場合、アンモニア酸化菌は増殖するより、死滅および系外に流出する量が勝ってしまうため、アンモニア酸化菌は徐々に減少してゆき、アンモニアの酸化が進行しなくなるので好ましくない。   When air aeration is performed in less than the time (less than 1 time) when the reaction for converting ammonia nitrogen to nitrite nitrogen is completed (less than 1 time), the ammonia-oxidizing bacteria are more likely to die and outflow out of the system. Therefore, ammonia-oxidizing bacteria gradually decrease, which is not preferable because ammonia oxidation does not proceed.

また、アンモニア酸化菌/亜硝酸酸化菌の増殖速度の比は、上記のように比較的温度が高い条件においてが最大1.5程度である。したがって、空気曝気の時間を、アンモニア性窒素を前記亜硝酸性窒素に転換させる反応が終了する時間の1.5倍以下とすることで、亜硝酸酸化菌を系内に維持できない条件とすることができる。逆に1.5倍を超えると、亜硝酸酸化菌も増殖できる条件となり、亜硝酸から硝酸への反応が進むので好ましくない。   The ratio of the growth rate of ammonia-oxidizing bacterium / nitrite-oxidizing bacterium is about 1.5 at maximum under the condition of relatively high temperature as described above. Therefore, by setting the time of air aeration to 1.5 times or less of the time for completing the reaction for converting ammonia nitrogen to nitrite nitrogen, the condition that nitrite oxidizing bacteria cannot be maintained in the system is set. Can do. On the other hand, if it exceeds 1.5 times, it becomes a condition that nitrite oxidizing bacteria can also grow, and the reaction from nitrous acid to nitric acid proceeds, which is not preferable.

なお、この実施形態においては、pH計6によって、アンモニア性窒素を前記亜硝酸性窒素に転換させる反応が終了する時間を測定して決定する。   In this embodiment, the pH meter 6 is used to measure and determine the time for completing the reaction for converting ammoniacal nitrogen to the nitrite nitrogen.

間欠曝気槽3内では、好気条件において硝化反応の進行に伴いpHが低下していき、アンモニアがなくなるとpHの低下が止まり、その後、炭酸ガスが脱気されるためpHは逆に上昇傾向を示す。したがって、このpHの屈曲点から、上記(1)式の終了が判定できる。   In the intermittent aeration tank 3, the pH decreases as the nitrification reaction proceeds under aerobic conditions. When ammonia is exhausted, the pH stops decreasing, and then the carbon dioxide gas is degassed, so the pH tends to increase. Indicates. Therefore, the end of the above equation (1) can be determined from the inflection point of the pH.

図2は、上記のpHの屈曲点から、アンモニア性窒素を前記亜硝酸性窒素に転換させる反応が終了する時間を検出する制御ブロック図の一例である。   FIG. 2 is an example of a control block diagram for detecting the time at which the reaction of converting ammonia nitrogen into the nitrite nitrogen is completed from the above-described pH inflection point.

まず、pH計6からの信号(ステップS1)を一次遅れフィルタによりノイズ除去(ステップS2)した後、微分器で微分演算を行なう(ステップS3)。微分値はアンモニアが無くなる点において、マイナスからプラスに変化するため(ステップS4)、この変化が起こった時間をTaとして検出する(ステップS5)。このTaに対して1〜1.5を乗じた値をT(pH)とし(ステップS6)、好気条件の経過時間(T)とT(pH)を比較し(ステップS7)、T>T(pH)となった時点で曝気装置8を停止させ(ステップS8)、好気条件を完了させればよい。   First, after removing noise (step S2) from the signal from the pH meter 6 (step S1) using a first-order lag filter, a differentiation operation is performed using a differentiator (step S3). Since the differential value changes from minus to plus at the point where ammonia disappears (step S4), the time when this change occurs is detected as Ta (step S5). The value obtained by multiplying Ta by 1 to 1.5 is defined as T (pH) (step S6), and the elapsed time (T) and T (pH) in the aerobic condition are compared (step S7), and T> T (pH ), The aeration apparatus 8 is stopped (step S8), and the aerobic condition is completed.

図3は上記のpHの屈曲点から、アンモニア性窒素を前記亜硝酸性窒素に転換させる反応が終了する時間を検出する制御ブロック図の他の例である。この例では、上記のS3、S4のように微分点を検出する代わりに、S9、S10においてpHの差分計算を行い、その差分が正か負かによって変化点を検出する点が図2と異なっている。   FIG. 3 is another example of a control block diagram for detecting the time at which the reaction of converting ammonia nitrogen into the nitrite nitrogen is completed from the above-described pH inflection point. This example differs from FIG. 2 in that instead of detecting differential points as in S3 and S4 above, pH difference calculation is performed in S9 and S10, and change points are detected depending on whether the difference is positive or negative. ing.

すなわち、pH計6からの信号(ステップS1)を一次遅れフィルタによりノイズ除去(ステップS2)した後、この値を一旦メモリに格納する(ステップS9)。その後、所定の時間、例えば60〜180秒後の値と比較して差分を計算する(ステップS10)。   That is, after the signal from the pH meter 6 (step S1) is denoised by a first-order lag filter (step S2), this value is temporarily stored in the memory (step S9). Thereafter, a difference is calculated by comparison with a value after a predetermined time, for example, 60 to 180 seconds (step S10).

例えば、差分=(現在のpH)−(メモリ格納値)とすれば、この差分が負のときはpHが低下している好気工程の硝化過程中であり、差分が正のときはpHが上昇しているので硝化過程は終了している。よって、この差分が負から正に転じる変化点を判定して(ステップS11)、この変化点が起こった時間をTaとして検出すればよく(ステップS5)、以後は図2と同様に、このTaに対して1〜1.5を乗じた値をT(pH)とし(ステップS6)、好気条件の経過時間(T)とT(pH)を比較し(ステップS7)、T>T(pH)となった時点で曝気装置8を停止させ(ステップS8)、好気条件を完了させてもよい。   For example, if difference = (current pH) − (memory stored value), when this difference is negative, the nitrification process of the aerobic process where the pH is decreasing is in progress, and when the difference is positive, the pH is Since it is rising, the nitrification process is complete. Therefore, the change point at which this difference turns from negative to positive is determined (step S11), and the time at which this change point occurs may be detected as Ta (step S5). A value obtained by multiplying 1 to 1.5 is set to T (pH) (step S6), the elapsed time (T) of aerobic conditions is compared with T (pH) (step S7), and T> T (pH) At that time, the aeration apparatus 8 may be stopped (step S8), and the aerobic condition may be completed.

なお、この好気時間には、あらかじめ上限値と下限値を設定しておき、T(pH)がこの上下限値の範囲外の場合は、上限値または下限値で好気時間を終了することが好ましい。   Note that an upper limit and a lower limit are set in advance for this aerobic time, and when the T (pH) is outside the range of the upper and lower limits, the aerobic time is terminated at the upper limit or the lower limit. Is preferred.

上限値としては、例えば、運転する温度および窒素負荷、脱窒速度から嫌気時間において脱窒が完了する時間を計算し、その時間が1サイクル中に確保できるように設定する。また、下限値としては、文献値などのアンモニア酸化菌の増殖速度より、運転する温度条件における必要な空気曝気の時間を計算し設定する。   As the upper limit value, for example, the time for completing the denitrification in the anaerobic time is calculated from the operating temperature, the nitrogen load, and the denitrification speed, and is set so that the time can be secured in one cycle. Further, as the lower limit value, the necessary air aeration time under the operating temperature condition is calculated and set from the growth rate of ammonia oxidizing bacteria such as literature values.

上記の空気曝気終了後、攪拌機5を動かし、供給ポンプ2より一定量の発酵廃液を供給する。この状態で間欠曝気槽3は溶存酸素が無い状態となり、上記の(3)式の反応である亜硝酸からの脱窒反応が進行する。そして、このとき、好気反応において硝酸が生成していなので、脱窒反応における上記の(4)式の反応も進行せず、結果として、上記の(1)、(3)式の反応のみが優勢に進行して硝酸が生成しない状態となる。   After the air aeration is completed, the stirrer 5 is moved, and a certain amount of fermentation waste liquid is supplied from the supply pump 2. In this state, the intermittent aeration tank 3 is in a state where there is no dissolved oxygen, and denitrification reaction from nitrous acid, which is the reaction of the above formula (3), proceeds. At this time, since nitric acid is generated in the aerobic reaction, the reaction of the above formula (4) in the denitrification reaction does not proceed, and as a result, only the reactions of the above formulas (1) and (3) are performed. It progresses predominantly and becomes a state where nitric acid is not generated.

なお、好気時間と嫌気時間の合計は、タイマー等によって1〜4時間にサイクル時間を設定することが好ましい。この結果、この実施形態においては、このサイクル時間と、上記の方法によって求められた空気曝気時間との差が嫌気条件の時間となる。   The total of the aerobic time and the anaerobic time is preferably set to 1 to 4 hours by a timer or the like. As a result, in this embodiment, the difference between the cycle time and the air aeration time obtained by the above method is the time for the anaerobic condition.

図4には、本発明の方法に用いることができるメタン発酵処理装置の他の実施形態の概略構成図が示されている。なお、以下の実施形態の説明においては、前記実施形態と同一部分には同符合を付して、その説明を省略することにする。   FIG. 4 shows a schematic configuration diagram of another embodiment of the methane fermentation treatment apparatus that can be used in the method of the present invention. In the following description of the embodiment, the same parts as those in the above embodiment are given the same reference numerals, and the description thereof is omitted.

この実施形態においては、上記の実施形態におけるpH計6の代わりに溶存酸素計9を用いている点のみが、上記の実施形態と異なっている。   This embodiment is different from the above embodiment only in that a dissolved oxygen meter 9 is used instead of the pH meter 6 in the above embodiment.

この場合、まず、溶存酸素計(DO計)9による溶存酸素濃度が0.5〜2mg/Lとなるように曝気装置7を制御する。そして、間欠曝気槽3内にアンモニアが残存している状態では、アンモニア酸化による酸素の消費が大きいが、アンモニアが無くなると、酸素消費量が急減して溶存酸素計9の検出値が急増する、この増加を検知することによって上記(1)式の終了が判定できる。このように、本発明においては、溶存酸素濃度を測定することにより、上記(1)式の終了を判定してもよい。   In this case, first, the aeration apparatus 7 is controlled so that the dissolved oxygen concentration by the dissolved oxygen meter (DO meter) 9 is 0.5 to 2 mg / L. And in the state where ammonia remains in the intermittent aeration tank 3, the consumption of oxygen due to ammonia oxidation is large, but when the ammonia is exhausted, the oxygen consumption is rapidly reduced and the detection value of the dissolved oxygen meter 9 is rapidly increased. By detecting this increase, the end of the expression (1) can be determined. Thus, in this invention, you may determine completion | finish of said (1) Formula by measuring a dissolved oxygen concentration.

図5には、本発明の方法に用いることができるメタン発酵処理装置の更に他の実施形態の概略構成図が示されている。この実施形態においては、上記の第1の実施形態におけるpH計6の代わりにアンモニア計10を用いている点のみが、上記の第1の実施形態とことなっている。   FIG. 5 shows a schematic configuration diagram of still another embodiment of the methane fermentation treatment apparatus that can be used in the method of the present invention. In this embodiment, only the point that the ammonia meter 10 is used instead of the pH meter 6 in the first embodiment is different from the first embodiment.

この場合、アンモニア計10により間欠曝気槽3内のアンモニア濃度を計測し、このアンモニア濃度がゼロとなるまでの時間を検出することにより、上記(1)式の終了が判定できる。このように、本発明においては、直接アンモニア濃度を測定することにより、上記(1)式の終了を判定してもよい。   In this case, by measuring the ammonia concentration in the intermittent aeration tank 3 with the ammonia meter 10 and detecting the time until the ammonia concentration becomes zero, the end of the equation (1) can be determined. Thus, in the present invention, the end of the above equation (1) may be determined by directly measuring the ammonia concentration.

図1に示すような構成の装置を用い、メタン発酵処理後の発酵廃液を間欠曝気槽3で処理した。その結果を図6に示す。図6(a)は間欠曝気処理中における各種窒素化合物の経時変化を求めたグラフであり、図6(b)は、そのときのpHの変化を示したグラフである。   Using the apparatus configured as shown in FIG. 1, the fermentation waste liquid after the methane fermentation treatment was treated in the intermittent aeration tank 3. The result is shown in FIG. FIG. 6A is a graph obtained by determining changes with time of various nitrogen compounds during intermittent aeration treatment, and FIG. 6B is a graph showing changes in pH at that time.

まず、曝気装置7を稼動させた。その結果、図6(b)に示すように、好気工程が開始されると硝化反応により間欠曝気槽3内のpHが徐々に減少し、経過時間40分で屈曲点になり上昇に転じた。このpHの変化点を検出し、その検出時間に基づいて曝気装置7を60分まで運転した後に停止し、その後、攪拌機5を動かしながら、供給ポンプ2で一定量のメタン発酵液を間欠曝気槽3に供給した。なお、pHの変化点の検出には図3の制御方法を用いた。   First, the aeration apparatus 7 was operated. As a result, as shown in FIG. 6 (b), when the aerobic process was started, the pH in the intermittent aeration tank 3 gradually decreased due to the nitrification reaction, and became an inflection point after 40 minutes and started to rise. . This pH change point is detected, and the aeration apparatus 7 is operated up to 60 minutes based on the detection time and then stopped. Then, while the agitator 5 is moved, a constant amount of methane fermentation liquid is intermittently supplied by the supply pump 2. 3 was supplied. In addition, the control method of FIG. 3 was used for detection of the change point of pH.

その結果、図6(a)に示すように、間欠曝気槽内のアンモニア濃度(NH−N)は徐々に減少して40分後にゼロとなり、これとは逆に、亜硝酸濃度(NO−N)は40分後に一定となった。その後60分以降の嫌気状態では、アンモニア濃度は再度上昇し、亜硝酸濃度は徐々に減少した。 As a result, as shown in FIG. 6A, the ammonia concentration (NH 4 -N) in the intermittent aeration tank gradually decreases and becomes zero after 40 minutes. On the contrary, the nitrite concentration (NO 2 -N) became constant after 40 minutes. Thereafter, in an anaerobic state after 60 minutes, the ammonia concentration increased again and the nitrous acid concentration gradually decreased.

そして、このときの硝酸濃度(NO−N)は常にほぼゼロであったことから、上記のアンモニアの硝化反応と脱窒反応において、(1)式と(3)式のみが進行しており、硝酸を生成する(2)式、(4)式は進行していないことがわかる。 Since the nitric acid concentration (NO 3 -N) at this time was always almost zero, only the formulas (1) and (3) proceed in the above-described ammonia nitrification reaction and denitrification reaction. It can be seen that the formulas (2) and (4) that generate nitric acid do not proceed.

本発明のメタン発酵処理方法は、糞尿、生ゴミ、食品加工残滓等の有機性廃棄物を処理するために好適に用いられる。   The methane fermentation treatment method of the present invention is suitably used for treating organic waste such as manure, raw garbage, and food processing residue.

本発明に用いるメタン発酵処理装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the methane fermentation processing apparatus used for this invention. 間欠曝気処理中におけるpHの屈曲点を検出する制御ブロック図の一例である。It is an example of the control block diagram which detects the inflection point of pH during an intermittent aeration process. 間欠曝気処理中におけるpHの屈曲点を検出する制御ブロック図の他の例である。It is another example of the control block diagram which detects the inflection point of pH during intermittent aeration processing. 本発明に用いるメタン発酵処理装置の他の実施形態を示す概略構成図である。It is a schematic block diagram which shows other embodiment of the methane fermentation processing apparatus used for this invention. 本発明に用いるメタン発酵処理装置の更に他の実施形態を示す概略構成図である。It is a schematic block diagram which shows other embodiment of the methane fermentation processing apparatus used for this invention. 間欠曝気処理中における各種窒素化合物及びpHの経時変化を求めたグラフである。It is the graph which calculated | required the time-dependent change of various nitrogen compounds and pH during an intermittent aeration process.

符号の説明Explanation of symbols

1 メタン発酵槽
2 供給ポンプ
3 間欠曝気槽
4 温度計
5 攪拌機
6 pH計
7 曝気装置
8 温度調節装置
9 溶存酸素計
10 アンモニア計
DESCRIPTION OF SYMBOLS 1 Methane fermentation tank 2 Supply pump 3 Intermittent aeration tank 4 Thermometer 5 Stirrer 6 pH meter 7 Aeration apparatus 8 Temperature control apparatus 9 Dissolved oxygen meter 10 Ammonia meter

Claims (2)

有機性廃棄物をメタン発酵槽内に投入し、嫌気性微生物によりメタン発酵させて発酵廃液として取り出した後、この発酵廃液を活性汚泥槽に投入して空気曝気と曝気停止とを交互に繰り返す間欠曝気処理を行い、前記発酵廃液中のアンモニアを窒素ガスに転換して除去するメタン発酵処理方法であって、
前記空気曝気を25〜35℃で行うと共に、前記空気曝気において、前記活性汚泥槽内のpH、溶存酸素、アンモニア濃度より選択される少なくとも1つを測定することにより、アンモニア性窒素を亜硝酸性窒素に転換させる反応が終了する時間を、前記空気曝気と前記曝気停止とを交互に繰り返す各サイクル毎に検出し、前記空気曝気の時間が、検出された前記終了時間の1〜1.5倍となるように制御することを特徴とするメタン発酵処理方法。
An organic waste is put into a methane fermentation tank, methane-fermented with anaerobic microorganisms and taken out as a fermentation waste liquid, and then this fermentation waste liquid is put into an activated sludge tank to intermittently repeat air aeration and aeration stop alternately. A methane fermentation treatment method in which aeration treatment is performed and ammonia in the fermentation waste liquid is converted to nitrogen gas and removed.
The air aeration is performed at 25 to 35 ° C., and at the air aeration, at least one selected from pH, dissolved oxygen, and ammonia concentration in the activated sludge tank is measured, whereby ammonia nitrogen is converted into nitrite. The time for completing the reaction for conversion to nitrogen is detected for each cycle in which the air aeration and the aeration stop are alternately repeated, and the air aeration time is 1 to 1.5 times the detected end time . The methane fermentation processing method characterized by controlling so that it may become .
前記空気曝気と曝気停止とを交互に繰り返すサイクルが1〜4時間である請求項記載のメタン発酵処理方法。 The methane fermentation treatment method according to claim 1, wherein the air aeration and cycle repeating aeration stop and the alternately 1 to 4 hours.
JP2003384479A 2003-11-14 2003-11-14 Methane fermentation treatment method Expired - Lifetime JP3772882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384479A JP3772882B2 (en) 2003-11-14 2003-11-14 Methane fermentation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003384479A JP3772882B2 (en) 2003-11-14 2003-11-14 Methane fermentation treatment method

Publications (2)

Publication Number Publication Date
JP2005144306A JP2005144306A (en) 2005-06-09
JP3772882B2 true JP3772882B2 (en) 2006-05-10

Family

ID=34692857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384479A Expired - Lifetime JP3772882B2 (en) 2003-11-14 2003-11-14 Methane fermentation treatment method

Country Status (1)

Country Link
JP (1) JP3772882B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289277A (en) * 2005-04-12 2006-10-26 Tsukishima Kikai Co Ltd Nitrate forming nitrification/denitrification method, method for nitrifying/denitrifying ammonia nitrogen-containing liquid and nitrate forming nitrification/denitrification equipment
JP4904738B2 (en) * 2005-07-28 2012-03-28 富士電機株式会社 Nitrogen-containing waste liquid treatment method
JP4716265B2 (en) * 2006-12-04 2011-07-06 富士電機株式会社 Organic waste liquid treatment method and organic waste liquid treatment apparatus
JP4835932B2 (en) * 2006-12-04 2011-12-14 富士電機株式会社 Methane fermentation treatment system
JP4743099B2 (en) * 2006-12-07 2011-08-10 富士電機株式会社 Defoaming method and defoaming control device
JP4743100B2 (en) * 2006-12-07 2011-08-10 富士電機株式会社 Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus
JP4765931B2 (en) * 2006-12-28 2011-09-07 富士電機株式会社 Nitrogen-containing waste liquid treatment method
JP2009082811A (en) * 2007-09-28 2009-04-23 Fuji Electric Holdings Co Ltd Waste liquid treatment apparatus and method
JP4835580B2 (en) * 2007-11-13 2011-12-14 富士電機株式会社 Nitrogen-containing waste liquid treatment method
JP5025020B2 (en) * 2008-11-07 2012-09-12 国立大学法人帯広畜産大学 Organic waste treatment system and method
JP6448177B2 (en) * 2013-07-26 2019-01-09 株式会社クボタ Aerobic / anaerobic combined reaction tank and operation method thereof
JP6211547B2 (en) * 2015-01-23 2017-10-11 三井造船環境エンジニアリング株式会社 Batch-type denitrification treatment apparatus, batch tank for denitrification treatment, and batch-type denitrification treatment method
JP7048462B2 (en) * 2018-09-14 2022-04-05 日立造船株式会社 Solution treatment system and solution treatment method

Also Published As

Publication number Publication date
JP2005144306A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US9169142B2 (en) Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor
CN103226366B (en) The control method of short distance nitration Anammox integral type denitrification process
JP3772882B2 (en) Methane fermentation treatment method
JP4910266B2 (en) Nitrification method and treatment method of ammonia-containing nitrogen water
Changyong et al. Effect of sludge retention time on nitrite accumulation in real-time control biological nitrogen removal sequencing batch reactor
JP4872171B2 (en) Biological denitrification equipment
JP2010269255A (en) Sewage treatment method
JP4576845B2 (en) Nitrogen-containing waste liquid treatment method
JP4837706B2 (en) Ammonia nitrogen removal equipment
CN105481092A (en) Sewage treatment device achieving automatic control function by monitoring N2O and control method
JP4327770B2 (en) Biological nitrification treatment method and nitrification treatment apparatus for wastewater containing ammonia nitrogen
JP5148642B2 (en) Wastewater nitrogen treatment method and equipment
JP4622958B2 (en) Nitrogen-containing waste liquid treatment method
Yang et al. Nitrite accumulation in the treatment of wastewaters with high ammonia concentration
CN110357257A (en) One kind being used for urban wastewater treatment firm advanced nitrogen oxidative system and construction method
Guo et al. Efficient and integrated start-up strategy for partial nitrification to nitrite treating low C/N domestic wastewater
JP2004290921A (en) Methane fermentation method and system
JP4904738B2 (en) Nitrogen-containing waste liquid treatment method
Ye et al. Nitrogen removal via nitrite in domestic wastewater treatment using combined salt inhibition and on-line process control
TWI564253B (en) Wastewater treatment system
JP2912901B1 (en) Treatment method for nitrogen-containing wastewater
Yang et al. Advanced nitrogen removal via nitrite from municipal wastewater in a pilot-plant sequencing batch reactor
JP4765931B2 (en) Nitrogen-containing waste liquid treatment method
Li et al. Nitrogen removal from pharmaceutical manufacturing wastewater via nitrite and the process optimization with on-line control
CN205472940U (en) Sewage treatment plant through monitoring N2O automatic control

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Ref document number: 3772882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term