JP6448177B2 - Aerobic / anaerobic combined reaction tank and operation method thereof - Google Patents

Aerobic / anaerobic combined reaction tank and operation method thereof Download PDF

Info

Publication number
JP6448177B2
JP6448177B2 JP2013155100A JP2013155100A JP6448177B2 JP 6448177 B2 JP6448177 B2 JP 6448177B2 JP 2013155100 A JP2013155100 A JP 2013155100A JP 2013155100 A JP2013155100 A JP 2013155100A JP 6448177 B2 JP6448177 B2 JP 6448177B2
Authority
JP
Japan
Prior art keywords
tank
aerobic
aeration
anaerobic
air diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013155100A
Other languages
Japanese (ja)
Other versions
JP2015024369A (en
Inventor
祐二 添田
祐二 添田
永江 信也
信也 永江
義雄 北川
北川  義雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2013155100A priority Critical patent/JP6448177B2/en
Publication of JP2015024369A publication Critical patent/JP2015024369A/en
Application granted granted Critical
Publication of JP6448177B2 publication Critical patent/JP6448177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

本発明は、例えば下水処理場などの水処理施設において使用される好気嫌気兼用反応槽およびその運転方法に関する。   The present invention relates to an aerobic / anaerobic combined reaction tank used in a water treatment facility such as a sewage treatment plant, and an operation method thereof.

従来、この種の好気嫌気兼用反応槽としては、例えば図11に示すように、槽81内の底部に複数の散気装置82〜84が設置され、槽81内の上部に攪拌装置85が設けられたものがある。攪拌装置85は、攪拌翼86と、攪拌翼86を回転させる駆動装置87とを有している。   Conventionally, as this kind of aerobic / anaerobic reaction tank, as shown in FIG. 11, for example, a plurality of air diffusers 82 to 84 are installed at the bottom of the tank 81, and an agitator 85 is provided at the top of the tank 81. There is something provided. The stirring device 85 has a stirring blade 86 and a driving device 87 that rotates the stirring blade 86.

また、中央の散気装置82は攪拌翼86の真下に位置し、残りの散気装置83,84は中央の散気装置82の両側方に位置している。
これによると、例えば、冬季において、図11に示すように、攪拌装置85を停止するとともに各散気装置82〜84を作動させる好気運転を行う。これにより、各散気装置82〜84から被処理水88中に多数の気泡が放出されて上昇し、槽81内の被処理水88に、上昇流90と、上昇流90が水面付近で反転して下降する下降流91とが形成される。
The central air diffuser 82 is located directly below the stirring blade 86, and the remaining air diffusers 83 and 84 are located on both sides of the central air diffuser 82.
According to this, for example, in winter, as shown in FIG. 11, the aerobic operation in which the stirring device 85 is stopped and each of the air diffusers 82 to 84 is operated is performed. As a result, a large number of bubbles are discharged from the air diffusers 82 to 84 into the treated water 88 and rise, and the upward flow 90 and the upward flow 90 are reversed in the vicinity of the water surface to the treated water 88 in the tank 81. Thus, a descending flow 91 descending is formed.

また、夏季において、図12に示すように、攪拌装置85を作動させるとともに各散気装置82〜84を停止することにより、攪拌翼86が回転して、攪拌翼86の真下に下降流91が発生する。   In summer, as shown in FIG. 12, the stirring device 85 is operated and the air diffusers 82 to 84 are stopped, so that the stirring blade 86 rotates, and the downward flow 91 is directly below the stirring blade 86. Occur.

尚、上記のような好気嫌気兼用反応槽は例えば下記特許文献1に記載されている。   In addition, the aerobic anaerobic combined reaction tank as described above is described in, for example, Patent Document 1 below.

特開2013−27810JP 2013-27810 A

しかしながら上記の従来形式では、下降流91が攪拌翼86の真下に位置する散気装置82に当るため、槽81内の底部(槽81の底面と散気装置83,84との間の部分)の流れ92の速度(以下、底部流速と言う)が低下し、槽81内の汚泥が、拡散されず、底部に沈降して分離し、汚泥処理の効率が低下するといった問題がある。   However, since the downward flow 91 hits the diffuser 82 located directly below the stirring blade 86 in the above-mentioned conventional type, the bottom of the tank 81 (the portion between the bottom of the tank 81 and the diffusers 83 and 84). The speed of the flow 92 (hereinafter referred to as the bottom portion flow velocity) decreases, and the sludge in the tank 81 is not diffused but settles and separates at the bottom, resulting in a decrease in sludge treatment efficiency.

本発明は、槽内の底部流速の低下を抑制して、汚泥が槽内の底部に沈降するのを防止することができる好気嫌気兼用反応槽およびその運転方法を提供することを目的とする。   An object of the present invention is to provide an aerobic / anaerobic combined reaction tank capable of suppressing a decrease in the bottom flow velocity in the tank and preventing the sludge from sinking to the bottom in the tank, and an operating method thereof. .

上記目的を達成するために、本第1発明は、槽内の被処理液に下降流を発生させる下降流発生手段と、槽内底部に設置されて被処理液に散気を行う散気装置と、制御装置とが備えられた好気嫌気兼用反応槽であって、
下降流発生手段は、槽内の上部に設けられて、下降流発生手段自身の真下に下降流を発生させ、
下降流発生手段の真下を非散気領域とし、
非散気領域の少なくとも一側方を散気領域とし、
散気装置は、散気領域に設置されるとともに、非散気領域に設置されず、且つ下降流発生手段よりも下位に配置され、
散気装置と槽底面との間および散気装置と槽壁内側面との間に流通路が形成され、
非散気領域に発生した下降流が、槽内底部まで下降し、流通路を通って反転し、上昇流となって散気領域を流れ、
制御装置は、好気嫌気兼用反応槽の下流側において測定された被処理液中の溶存酸素量の値に基づいて、下降流発生手段を停止するとともに散気装置を作動させる好気運転と、下降流発生手段を作動させるとともに散気装置を停止する嫌気運転とを切換えるものである。
In order to achieve the above object, the first aspect of the present invention is a downflow generating means for generating a downflow in the liquid to be processed in the tank, and an air diffuser installed at the bottom of the tank to diffuse the liquid to be processed. And an aerobic / anaerobic combined reaction tank equipped with a control device,
The downward flow generating means is provided in the upper part of the tank, and generates the downward flow immediately below the downward flow generating means itself.
Immediately below the downflow generation means is a non-aeration region,
At least one side of the non-aeration area is defined as an aeration area,
The air diffuser is installed in the air diffused area, is not installed in the non-air diffused area, and is disposed below the downflow generating means.
A flow path is formed between the air diffuser and the tank bottom surface and between the air diffuser and the tank wall inner surface,
The downward flow generated in the non-aeration region descends to the bottom of the tank, reverses through the flow passage, flows up the diffusion region as an upward flow,
The control device, based on the value of dissolved oxygen amount in the liquid to be treated measured downstream of the aerobic / anaerobic combined reaction tank, aerobic operation to stop the downflow generation means and activate the aeration device, It switches the anaerobic operation in which the downflow generating means is operated and the air diffuser is stopped.

これによると、例えば、下降流発生手段を停止するとともに散気装置を作動させる好気運転を行った際、散気装置から被処理液中に放出された多数の気泡が上昇し、槽内の散気領域に上昇流が発生する。この上昇流は液面付近で反転して下降流となり、下降流は、非散気領域を槽内底部まで下降した後、流通路を通って反転し、上昇流となって散気領域を槽壁内側面に沿って流れる。これにより、非散気領域と散気領域とを上下方向に旋回する旋回流が槽内に発生する。   According to this, for example, when an aerobic operation is performed to stop the downflow generation means and operate the diffuser, a large number of bubbles released from the diffuser into the liquid to be treated rise, An upward flow is generated in the diffused area. This upward flow is reversed near the liquid level to become a downward flow, and the downward flow is lowered through the non-aeration area to the bottom of the tank and then reverses through the flow path to become an upward flow and the diffusion area to the tank. It flows along the inner wall. Thereby, the swirl | vortex flow which swirls a non-aeration area | region and an aeration area | region to an up-down direction generate | occur | produces in a tank.

この際、非散気領域には散気装置が設置されていないため、下降流は、非散気領域内において、散気装置に当らずに、槽内底部まで下降する。これにより、槽内の底部流速の低下が抑制され、汚泥が十分に拡散されるので、汚泥が槽内の底部に沈降するのを防止することができる。   At this time, since the air diffuser is not installed in the non-air diffused region, the downward flow descends to the bottom of the tank without hitting the air diffuser in the non-air diffused region. Thereby, since the fall of the bottom part flow velocity in a tank is suppressed and sludge is fully spread | diffused, it can prevent that sludge settles to the bottom part in a tank.

また、下降流発生手段を作動させるとともに散気装置を停止する嫌気運転を行った際、下降流が、下降流発生手段によって非散気領域に発生し、非散気領域を槽内底部まで下降した後、流通路を通って反転し、上昇流となって散気領域を槽壁内側面に沿って流れる。これにより、非散気領域と散気領域とを上下方向に旋回する旋回流が槽内に発生する。   In addition, when anaerobic operation is performed to operate the downflow generation means and stop the diffuser, downflow is generated in the non-aeration area by the downflow generation means, and the non-aeration area descends to the bottom of the tank. After that, it reverses through the flow passage and becomes an upward flow and flows along the inner surface of the tank wall through the diffused region. Thereby, the swirl | vortex flow which swirls a non-aeration area | region and an aeration area | region to an up-down direction generate | occur | produces in a tank.

この際、非散気領域には散気装置が設置されていないため、下降流は、非散気領域内において、散気装置に当らずに、槽内底部まで下降する。これにより、槽内の底部流速の低下が抑制され、汚泥が十分に拡散されるので、汚泥が槽内の底部に沈降するのを防止することができる。
また、例えば測定された溶存酸素量の値が所定値以下の場合、好気運転を行って散気装置から散気する。これにより、被処理液中の溶存酸素量が増加し、測定される溶存酸素量の値が所定値を超えると、好気運転から嫌気運転に切換えられ、散気装置からの散気が停止する。その後、被処理液中の溶存酸素量が減少し、測定される溶存酸素量の値が所定値以下になると、嫌気運転から好気運転に切換えられ、散気装置から散気が行われる。これにより、過剰な散気が抑制され、過曝気によるバルキングを予防することができる。
At this time, since the air diffuser is not installed in the non-air diffused region, the downward flow descends to the bottom of the tank without hitting the air diffuser in the non-air diffused region. Thereby, since the fall of the bottom part flow velocity in a tank is suppressed and sludge is fully spread | diffused, it can prevent that sludge settles to the bottom part in a tank.
For example, when the value of the measured dissolved oxygen amount is equal to or less than a predetermined value, aerobic operation is performed to diffuse air from the air diffuser. As a result, the amount of dissolved oxygen in the liquid to be treated increases, and when the value of the measured dissolved oxygen amount exceeds a predetermined value, the aerobic operation is switched to the anaerobic operation, and the aeration from the aeration device stops. . Thereafter, when the amount of dissolved oxygen in the liquid to be treated decreases and the value of the measured amount of dissolved oxygen falls below a predetermined value, the anaerobic operation is switched to the aerobic operation, and aeration is performed from the aeration device. Thereby, excessive aeration is suppressed and the bulking by overaeration can be prevented.

本第2発明における好気嫌気兼用反応槽は、散気装置はメンブレン式散気装置であり、
メンブレン式散気装置は、開閉自在な複数の散気孔が形成された弾性変形自在な散気膜を有しているものである。
In the aerobic / anaerobic combined reaction tank in the second invention, the air diffuser is a membrane air diffuser,
The membrane type air diffuser has an elastically deformable air diffuser film in which a plurality of air diffuser holes that can be opened and closed are formed.

これによると、散気装置を停止した際、散気膜が収縮して散気孔が閉じるため、嫌気運転時において、散気孔が目詰まりするのを防止できる。また、好気運転時において、散気装置を作動させた際、散気膜が膨張して散気孔が開き、散気孔から被処理液中に気泡が放出される。   According to this, when the air diffuser is stopped, the air diffuser film contracts and the air diffuser hole is closed, so that the air diffuser can be prevented from being clogged during anaerobic operation. Further, during the aerobic operation, when the air diffuser is operated, the air diffuser film expands to open the air diffuser holes, and bubbles are released from the air diffuser holes into the liquid to be treated.

本第3発明における好気嫌気兼用反応槽は、槽底面から散気装置までの上下方向の距離が200mm以上に設定され、
槽壁内側面から散気装置までの水平方向の距離が200mm以上で且つ1000mm未満に設定されているものである。
The aerobic / anaerobic combined reaction tank in the third invention is set such that the vertical distance from the bottom of the tank to the diffuser is 200 mm or more,
The horizontal distance from the inner surface of the tank wall to the air diffuser is set to be 200 mm or more and less than 1000 mm.

これによると、非散気領域を槽内底部まで下降した下降流は、スムーズに流通路を通って反転し、上昇流となって散気領域を槽壁内側面に沿って流れる。この際、槽壁内側面から散気装置までの水平方向の距離が200mm以上で且つ1000mm未満に設定されているため、上昇流は、槽壁内側面に沿って流れた後、液面付近で散気領域から非散気領域に反転し、下降流となって確実に非散気領域を流れる。これにより、散気領域(すなわち散気装置と槽壁内側面との間)に下降流が発生するのを防止することができる。   According to this, the downward flow that has descended from the non-aeration area to the bottom of the tank is smoothly reversed through the flow passage, and flows upward along the inner surface of the tank wall. At this time, since the horizontal distance from the inner surface of the tank wall to the air diffuser is set to 200 mm or more and less than 1000 mm, the upward flow flows along the inner surface of the tank wall and then near the liquid level. It reverses from the air diffused area to the non-air diffused area and becomes a downward flow to surely flow through the non-air diffused area. Thereby, it can prevent that a downward flow generate | occur | produces in an aeration area | region (namely, between an aeration apparatus and a tank wall inner surface).

本第4発明は、槽内の被処理液に下降流を発生させる下降流発生手段と、槽内底部に設置されて被処理液に散気を行う散気装置とを備え、
下降流発生手段は、槽内の上部に設けられて、下降流発生手段自身の真下に下降流を発生させ、
下降流発生手段の真下を非散気領域とし、
非散気領域の少なくとも一側方を散気領域とし、
散気装置は、散気領域に設置されるとともに、非散気領域に設置されず、且つ下降流発生手段よりも下位に配置され、
散気装置と槽底面との間および散気装置と槽壁内側面との間に流通路が形成され、
非散気領域に発生した下降流が、槽内底部まで下降し、流通路を通って反転し、上昇流となって散気領域を流れる好気嫌気兼用反応槽の運転方法であって、
好気嫌気兼用反応槽の下流側において、被処理液中の溶存酸素量を測定し、
測定された溶存酸素量の値に基づいて、下降流発生手段を停止するとともに散気装置を作動させる好気運転と、下降流発生手段を作動させるとともに散気装置を停止する嫌気運転とを切換えるものである。
The fourth invention comprises a downward flow generating means for generating a downward flow in the liquid to be processed in the tank, and an air diffuser installed at the bottom of the tank to diffuse the liquid to be processed.
The downward flow generating means is provided in the upper part of the tank, and generates the downward flow immediately below the downward flow generating means itself.
Immediately below the downflow generation means is a non-aeration region,
At least one side of the non-aeration area is defined as an aeration area,
The air diffuser is installed in the air diffused area, is not installed in the non-air diffused area, and is disposed below the downflow generating means.
A flow path is formed between the air diffuser and the tank bottom surface and between the air diffuser and the tank wall inner surface,
The downward flow generated in the non-aeration region descends to the bottom of the tank, reverses through the flow passage, and operates as an aerobic / anaerobic combined reaction tank that flows through the diffusion region as an upward flow,
On the downstream side of the aerobic / anaerobic combined reaction tank, measure the amount of dissolved oxygen in the liquid to be treated,
Based on the measured amount of dissolved oxygen, the aerobic operation for stopping the downflow generation means and operating the aeration device and the anaerobic operation for operating the downflow generation means and stopping the aeration device are switched. Is.

これによると、例えば測定された溶存酸素量の値が所定値以下の場合、好気運転を行って散気装置から散気する。これにより、被処理液中の溶存酸素量が増加し、測定される溶存酸素量の値が所定値を超えると、好気運転から嫌気運転に切換えられ、散気装置からの散気が停止する。その後、被処理液中の溶存酸素量が減少し、測定される溶存酸素量の値が所定値以下になると、嫌気運転から好気運転に切換えられ、散気装置から散気が行われる。これにより、過剰な散気が抑制され、過曝気によるバルキングを予防することができる。   According to this, for example, when the value of the measured amount of dissolved oxygen is equal to or less than a predetermined value, aerobic operation is performed and air is diffused from the air diffuser. As a result, the amount of dissolved oxygen in the liquid to be treated increases, and when the value of the measured dissolved oxygen amount exceeds a predetermined value, the aerobic operation is switched to the anaerobic operation, and the aeration from the aeration device stops. . Thereafter, when the amount of dissolved oxygen in the liquid to be treated decreases and the value of the measured amount of dissolved oxygen falls below a predetermined value, the anaerobic operation is switched to the aerobic operation, and aeration is performed from the aeration device. Thereby, excessive aeration is suppressed and the bulking by overaeration can be prevented.

本第5発明は、槽内の被処理液に下降流を発生させる下降流発生手段と、槽内底部に設置されて被処理液に散気を行う散気装置とを備え、
下降流発生手段は、槽内の上部に設けられて、下降流発生手段自身の真下に下降流を発生させ、
下降流発生手段の真下を非散気領域とし、
非散気領域の少なくとも一側方を散気領域とし、
散気装置は、散気領域に設置されるとともに、非散気領域に設置されず、且つ下降流発生手段よりも下位に配置され、
散気装置と槽底面との間および散気装置と槽壁内側面との間に流通路が形成され、
非散気領域に発生した下降流が、槽内底部まで下降し、流通路を通って反転し、上昇流となって散気領域を流れる好気嫌気兼用反応槽の運転方法であって、
好気嫌気兼用反応槽の下流側において、被処理液中の溶存酸素量を測定し、
測定された溶存酸素量の値に基づいて、散気装置を作動させる好気運転と、散気装置を停止する嫌気運転とを切換え、
嫌気運転に切換えた場合、槽内の被処理液の浮遊物濃度を測定し、
測定された浮遊物濃度の値に基づいて、下降流発生手段の作動および停止を切換えるものである。
The fifth invention comprises a downward flow generating means for generating a downward flow in the liquid to be processed in the tank, and an air diffuser installed at the bottom of the tank to diffuse the liquid to be processed.
The downward flow generating means is provided in the upper part of the tank, and generates the downward flow immediately below the downward flow generating means itself.
Immediately below the downflow generation means is a non-aeration region,
At least one side of the non-aeration area is defined as an aeration area,
The air diffuser is installed in the air diffused area, is not installed in the non-air diffused area, and is disposed below the downflow generating means.
A flow path is formed between the air diffuser and the tank bottom surface and between the air diffuser and the tank wall inner surface,
The downward flow generated in the non-aeration region descends to the bottom of the tank, reverses through the flow passage, and operates as an aerobic / anaerobic combined reaction tank that flows through the diffusion region as an upward flow,
On the downstream side of the aerobic / anaerobic combined reaction tank, measure the amount of dissolved oxygen in the liquid to be treated,
Based on the measured amount of dissolved oxygen, switching between aerobic operation to activate the aeration device and anaerobic operation to stop the aeration device,
When switching to anaerobic operation, measure the suspended matter concentration of the liquid to be treated in the tank,
Based on the value of the measured suspended solid concentration, the downflow generation means is switched between operation and stoppage.

これによると、汚泥が槽内で十分に攪拌混合されずに底部に沈降すると、その汚泥の沈降量が増加するのに応じて、測定される浮遊物濃度の値が低下する。従って、測定された浮遊物濃度の値が所定値以下の場合、下降流発生手段を作動することにより、下降流が、非散気領域に発生し、非散気領域を槽内底部まで下降した後、流通路を通って反転し、上昇流となって散気領域を槽壁内側面に沿って流れる。これにより、非散気領域と散気領域とを上下方向に旋回する旋回流が槽内に発生し、汚泥が槽内で十分に攪拌混合され、汚泥が槽内底部に沈降して分離するのを防止することができる。   According to this, when the sludge settles to the bottom without being sufficiently stirred and mixed in the tank, the value of the suspended matter concentration to be measured decreases as the amount of sludge sedimentation increases. Therefore, when the measured suspended matter concentration is less than or equal to the predetermined value, the downward flow is generated in the non-aeration region by operating the downward flow generation means, and the non-aeration region is lowered to the bottom of the tank. After that, it reverses through the flow passage and becomes an upward flow and flows along the inner surface of the tank wall through the diffused region. As a result, a swirl flow that swirls the non-aeration area and the aeration area in the vertical direction is generated in the tank, the sludge is sufficiently stirred and mixed in the tank, and the sludge settles and separates in the bottom of the tank. Can be prevented.

このような攪拌混合により、測定される浮遊物濃度の値が上昇して所定値を超えると、下降流発生手段を停止する。   When the value of the suspended solid concentration to be measured rises and exceeds a predetermined value due to such stirring and mixing, the downward flow generating means is stopped.

以上のように本発明によると、槽内の底部流速の低下が抑制され、汚泥が槽内の底部に沈降するのを防止することができるため、汚泥処理の効率が向上する。   As described above, according to the present invention, it is possible to suppress the lowering of the bottom part flow velocity in the tank and prevent the sludge from sinking to the bottom part in the tank, thereby improving the efficiency of the sludge treatment.

本発明の第1の実施の形態における好気嫌気兼用反応槽を備えた生物処理槽の図である。It is a figure of the biological treatment tank provided with the aerobic anaerobic combined reaction tank in the 1st Embodiment of this invention. 同、好気嫌気兼用反応槽の水平断面図である。It is a horizontal sectional view of an aerobic anaerobic combined reaction tank. 同、好気嫌気兼用反応槽の一部切欠き斜視図である。It is a partially cutaway perspective view of the aerobic / anaerobic combined reaction tank. 図2におけるX−X矢視図であり、好気運転時を示す。FIG. 3 is an XX arrow view in FIG. 2 and shows an aerobic operation. 同、好気嫌気兼用反応槽の嫌気運転時における断面図である。It is sectional drawing at the time of the anaerobic driving | running of the aerobic anaerobic combined reaction tank. 同、好気嫌気兼用反応槽の散気装置の斜視図である。It is a perspective view of the diffuser of the aerobic anaerobic combined reaction tank. 同、好気嫌気兼用反応槽の散気装置の一部拡大断面図であり、(a)は散気停止状態、(b)は散気状態を示す。It is a partial expanded sectional view of the diffuser of an aerobic and anaerobic combined reaction tank, (a) shows an aeration stop state, (b) shows an aeration state. 同、好気嫌気兼用反応槽の制御系のブロック図である。It is a block diagram of a control system of the aerobic anaerobic combined reaction tank. 本発明の第2の実施の形態における好気嫌気兼用反応槽の運転方法を説明するタイムチャートである。It is a time chart explaining the operating method of the aerobic anaerobic combined reaction tank in the 2nd Embodiment of this invention. 本発明の第3の実施の形態における好気嫌気兼用反応槽の運転方法を説明するタイムチャートである。It is a time chart explaining the operating method of the aerobic anaerobic combined reaction tank in the 3rd Embodiment of this invention. 従来の好気嫌気兼用反応槽の断面図であり、好気運転時を示す。It is sectional drawing of the conventional aerobic anaerobic combined reaction tank, and shows the time of an aerobic driving | operation. 同、好気嫌気兼用反応槽の断面図であり、嫌気運転時を示す。It is sectional drawing of an aerobic anaerobic combined reaction tank, and shows the time of anaerobic operation.

以下、本発明における実施の形態を、図面を参照して説明する。
(第1の実施の形態)
第1の実施の形態では、図1に示すように、1は下水処理施設において有機性の原水2(被処理液の一例)を生物処理する生物反応槽である。生物処理槽1は、上流側から下流側に向って、嫌気槽5と好気嫌気兼用反応槽6と第1および第2好気槽7,8とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
In the first embodiment, as shown in FIG. 1, reference numeral 1 denotes a biological reaction tank for biologically treating organic raw water 2 (an example of a liquid to be treated) in a sewage treatment facility. The biological treatment tank 1 has an anaerobic tank 5, an aerobic / anaerobic combined reaction tank 6, and first and second aerobic tanks 7 and 8 from the upstream side toward the downstream side.

嫌気槽5は、槽内の原水2を攪拌する攪拌装置11を有している。また、第1および第2好気槽7,8は、それぞれの槽内底部に、散気装置12,13を有している。
また、好気嫌気兼用反応槽6は以下のように構成されている。
The anaerobic tank 5 has a stirring device 11 for stirring the raw water 2 in the tank. Moreover, the 1st and 2nd aerobic tank 7 and 8 has the aeration apparatus 12 and 13 in each tank inner bottom part.
The aerobic / anaerobic combined reaction tank 6 is configured as follows.

図2,図3に示すように、好気嫌気兼用反応槽6は、平面視において長方形状の槽本体20と、槽内の原水2を攪拌して下降流15を発生させる低動力型の攪拌装置21(下降流発生手段の一例)と、槽内底部に設置されて原水2に散気を行う複数台のメンブレン式の散気装置22とを有している。   As shown in FIGS. 2 and 3, the aerobic / anaerobic combined reaction tank 6 is a low-powered stirring system that generates a downward flow 15 by stirring the tank body 20 having a rectangular shape in plan view and the raw water 2 in the tank. The apparatus 21 (an example of a downward flow generating means) and a plurality of membrane-type air diffusers 22 that are installed at the bottom of the tank and diffuse the raw water 2 are provided.

槽本体20の長辺方向を長さ方向Lとし、短辺方向を幅方向Wとすると、槽本体20は、長さ方向Lにおいて対向する一対の槽壁23と、幅方向Wにおいて対向する一対の槽壁24と、底壁25と、天井壁26とを有している。   Assuming that the long side direction of the tank body 20 is the length direction L and the short side direction is the width direction W, the tank body 20 has a pair of tank walls 23 facing in the length direction L and a pair facing in the width direction W. The tank wall 24, the bottom wall 25, and the ceiling wall 26 are provided.

攪拌装置21は、天井壁26から回転軸29を介して垂下された攪拌翼30と、攪拌翼30を回転させる駆動装置31とを有している。図4に示すように、攪拌翼30は槽本体20内の幅方向Wにおける中央部に配置されている。槽本体20内には非散気領域Aと散気領域B,Cとが形成されている。非散気領域Aは攪拌翼30の真下に位置し、散気領域B,Cは幅方向Wにおける非散気領域Aの両側方に位置している。   The stirring device 21 includes a stirring blade 30 that is suspended from the ceiling wall 26 via a rotating shaft 29 and a drive device 31 that rotates the stirring blade 30. As shown in FIG. 4, the stirring blade 30 is arranged at the center in the width direction W in the tank body 20. A non-aeration area A and aeration areas B and C are formed in the tank body 20. The non-aeration region A is located directly below the stirring blade 30, and the aeration regions B and C are located on both sides of the non-aeration region A in the width direction W.

散気装置22は、散気領域B,Cに設置されるとともに、非散気領域Aには設置されていない。すなわち、図2に示すように、散気領域B,Cにはそれぞれ、幅方向Wにおいて3台(複数台)ずつで且つ長さ方向Lにおいて2台(複数台)ずつの散気装置22が設けられている。   The air diffuser 22 is installed in the air diffused areas B and C and is not installed in the non-air diffused area A. That is, as shown in FIG. 2, each of the air diffusion regions B and C includes three (a plurality of) aeration devices 22 in the width direction W and two (a plurality of) in the length direction L. Is provided.

図6に示すように、各散気装置22は、ベースプレート34の上面に散気膜35を装着し、所定位置に給気口36を設けたものであり、給気口36がベースプレート34と散気膜35との間に連通している。散気膜35は合成樹脂膜または合成ゴム膜等の膨縮自在な弾性膜に多数の開閉自在で小さな散気孔37を設けたものであり、散気膜35の周囲を固定部38によってベースプレート34に固定した構造をなす。   As shown in FIG. 6, each air diffuser 22 has a diffuser film 35 mounted on the upper surface of a base plate 34 and an air supply port 36 provided at a predetermined position. The air supply port 36 is diffused with the base plate 34. It communicates with the air membrane 35. The diffuser film 35 is formed by providing a large number of openable and closable small diffuser holes 37 on an elastic film that can be expanded and contracted, such as a synthetic resin film or a synthetic rubber film. The structure is fixed to

尚、給気口36には、各散気装置22に空気を供給する給気管(図示省略)が接続され、給気管には開閉自在な給気弁39(図8参照)が設けられている。給気弁39は自動弁又は制御弁であり、給気弁39を開くことにより散気装置22が作動し、給気弁39を閉じることにより散気装置22が停止する。   An air supply pipe (not shown) for supplying air to each air diffuser 22 is connected to the air supply port 36, and an air supply valve 39 (see FIG. 8) that can be opened and closed is provided on the air supply pipe. . The air supply valve 39 is an automatic valve or a control valve. When the air supply valve 39 is opened, the air diffuser 22 is activated, and when the air supply valve 39 is closed, the air diffuser 22 is stopped.

散気装置22が停止しているときは、図7(a)に示すように、散気膜35が水圧を受けてベースプレート34の上面に当接し、この際、散気孔37は閉じた状態となる。散気装置22が作動しているときは、圧縮空気が給気口36からベースプレート34と散気膜35との間に供給され、図7(b)に示すように、圧縮空気の圧力を受けて散気膜35がベースプレート34の上面から離間して膨らみ、散気孔37が開いた状態となり、散気孔37を通して原水2中へ気泡の放出が行なわれる。   When the air diffuser 22 is stopped, as shown in FIG. 7A, the air diffuser film 35 receives water pressure and comes into contact with the upper surface of the base plate 34. At this time, the air diffuser hole 37 is closed. Become. When the air diffuser 22 is in operation, compressed air is supplied from the air supply port 36 between the base plate 34 and the air diffuser film 35 and receives the pressure of the compressed air as shown in FIG. As a result, the diffuser film 35 swells away from the upper surface of the base plate 34 and the diffuser holes 37 are opened, and bubbles are released into the raw water 2 through the diffuser holes 37.

図2〜図4に示すように、これらの散気装置22は、槽本体20の底壁25に設置されたL形状の支持フレーム40に両端部を支持されて、槽本体20内の底部に設けられている。   As shown in FIGS. 2 to 4, these air diffusers 22 are supported by L-shaped support frames 40 installed on the bottom wall 25 of the tank body 20 at both ends, Is provided.

図4に示すように、散気装置22と槽本体20内の底面との間には流通路41が形成され、散気装置22と槽壁24の内側面との間には流通路42が形成されている。尚、槽本体20内の底面から散気装置22までの上下方向の距離Dが200mmに設定されている。また、槽壁24の内側面から散気装置22までの水平方向の距離Eが200mm以上で且つ1000mm未満に設定されている。   As shown in FIG. 4, a flow passage 41 is formed between the air diffuser 22 and the bottom surface of the tank body 20, and a flow passage 42 is formed between the air diffuser 22 and the inner surface of the tank wall 24. Is formed. The vertical distance D from the bottom surface in the tank body 20 to the air diffuser 22 is set to 200 mm. Further, a horizontal distance E from the inner surface of the tank wall 24 to the air diffuser 22 is set to be 200 mm or more and less than 1000 mm.

また、図8に示すように、好気嫌気兼用反応槽6には、駆動装置31を制御して攪拌装置21の作動および停止を制御するとともに、給気弁39を制御して散気装置22の作動および停止等を制御する制御装置44が設けられている。   Further, as shown in FIG. 8, in the aerobic / anaerobic combined reaction tank 6, the drive device 31 is controlled to control the operation and stop of the stirring device 21, and the air supply valve 39 is controlled to control the air diffuser 22. A control device 44 is provided for controlling the operation and stop of the motor.

以下、上記構成における作用を説明する。
図1に示すように、原水2は、先ず嫌気槽5に供給され、上流側の嫌気槽5から順次、下流側の好気嫌気兼用反応槽6、第1好気槽7、第2好気槽8に流れながら、各槽5〜8内で生物処理され、その後、最下流側の第2好気槽8から処理水46として排出される。この際、嫌気槽5内の原水2は攪拌装置11で攪拌され、第1および第2好気槽7,8内の原水2はそれぞれ散気装置12,13により散気される。
Hereinafter, the operation of the above configuration will be described.
As shown in FIG. 1, the raw water 2 is first supplied to the anaerobic tank 5, and sequentially from the upstream anaerobic tank 5, the downstream aerobic / anaerobic combined reaction tank 6, the first aerobic tank 7, and the second aerobic tank. While flowing into the tank 8, the biological treatment is performed in each of the tanks 5 to 8, and then discharged from the second aerobic tank 8 on the most downstream side as treated water 46. At this time, the raw water 2 in the anaerobic tank 5 is stirred by the stirring device 11, and the raw water 2 in the first and second aerobic tanks 7 and 8 is diffused by the air diffusers 12 and 13, respectively.

また、好気嫌気兼用反応槽6は、冬季において以下のような好気運転を行い、夏季において以下のような嫌気運転を行う。
好気運転時には、図4に示すように、攪拌装置21を停止するとともに各散気装置22を作動させる。これにより、圧縮空気が給気口36からベースプレート34と散気膜35との間に供給され、図7(b)に示すように、散気膜35が圧縮空気の圧力を受けてベースプレート34の上面から離間して膨張し、散気孔37が開いて、多数の気泡が散気孔37から原水2中に放出されて上昇する。
The aerobic / anaerobic combined reaction tank 6 performs the following aerobic operation in winter and performs the following anaerobic operation in summer.
At the time of aerobic operation, as shown in FIG. 4, the stirring device 21 is stopped and each air diffuser 22 is operated. Thereby, compressed air is supplied between the base plate 34 and the diffuser film 35 from the air supply port 36, and the diffuser film 35 receives the pressure of the compressed air as shown in FIG. The air diffuser 37 expands away from the upper surface, and a large number of air bubbles 37 are released from the air diffuser 37 into the raw water 2 and rise.

これにより、図4に示すように、槽内の散気領域B,Cにそれぞれ上昇流16が発生し、上昇流16は水面付近で反転して下降流15となり、下降流15は、非散気領域Aを槽内底部まで下降した後、底壁25に沿って二方向へ流れ、流通路41,42を通って反転し、上昇流16となって散気領域B,Cを槽壁24の内側面に沿って流れる。これにより、攪拌装置21を停止した状態で、非散気領域Aと散気領域B,Cとを上下方向に旋回する旋回流17が槽内に発生し、槽内の原水2が攪拌されるため、攪拌に要する消費電力を低減することができる。   As a result, as shown in FIG. 4, an upflow 16 is generated in each of the air diffusion regions B and C in the tank, the upflow 16 is reversed near the water surface to become a downflow 15, and the downflow 15 is not diffused. After the air region A is lowered to the bottom of the tank, it flows in two directions along the bottom wall 25, reverses through the flow passages 41 and 42, and becomes the upward flow 16 so that the diffused regions B and C are moved to the tank wall 24. It flows along the inner surface of the. Thereby, in the state which stopped the stirring apparatus 21, the swirling flow 17 which swirls the non-aeration area | region A and the aeration area | regions B and C to an up-down direction generate | occur | produces in a tank, and the raw | natural water 2 in a tank is stirred. Therefore, power consumption required for stirring can be reduced.

この際、非散気領域Aには散気装置22が設置されていないため、下降流15は、非散気領域A内において、散気装置22に当らずに、槽内底部まで下降する。これにより、槽内の底部流速の低下が抑制され、底部流速を例えば0.1m/秒以上に保つことができ、汚泥が十分に拡散される。このため、汚泥が槽内の底部に沈降するのを防止することができ、汚泥処理の効率が向上する。   At this time, since the aeration device 22 is not installed in the non-aeration region A, the downflow 15 descends to the bottom of the tank in the non-aeration region A without hitting the aeration device 22. Thereby, the fall of the bottom part flow rate in a tank is suppressed, a bottom part flow rate can be maintained at 0.1 m / sec or more, for example, and sludge is fully spread | diffused. For this reason, it can prevent that sludge settles to the bottom part in a tank, and the efficiency of a sludge process improves.

尚、底部流速とは、底壁25から例えば100mm上方箇所の流れFの速度である。
また、嫌気運転時には、図5に示すように、攪拌装置21を作動させるとともに各散気装置22を停止する。これにより、攪拌装置21の攪拌翼30が回転し、下降流15が、非散気領域Aに発生し、非散気領域Aを槽内底部まで下降した後、底壁25に沿って二方向へ流れ、流通路41,42を通って反転し、上昇流16となって散気領域B,Cを槽壁24の内側面に沿って流れる。これにより、非散気領域Aと散気領域B,Cとを上下方向に旋回する旋回流17が槽内に発生する。
The bottom flow velocity is the velocity of the flow F at a location 100 mm above the bottom wall 25, for example.
Moreover, at the time of anaerobic operation, as shown in FIG. 5, while stirring apparatus 21 is operated, each aeration apparatus 22 is stopped. As a result, the stirring blade 30 of the stirring device 21 is rotated, and the downward flow 15 is generated in the non-aeration region A. After descending the non-aeration region A to the bottom in the tank, the two directions along the bottom wall 25 are performed. And flows through the flow passages 41 and 42 to become the upward flow 16 and flow along the inner surface of the tank wall 24 through the diffused regions B and C. Thereby, the swirl flow 17 which swirls the non-aeration area | region A and the aeration area | regions B and C to an up-down direction generate | occur | produces in a tank.

この際、非散気領域Aには散気装置22が設置されていないため、下降流15は、非散気領域A内において、散気装置22に当らずに、槽内底部まで下降する。これにより、槽内の底部流速の低下が抑制され、底部流速を0.1m/秒以上に保つことができ、汚泥が十分に拡散される。このため、汚泥が槽内の底部に沈降するのを防止することができ、汚泥処理の効率が向上する。   At this time, since the aeration device 22 is not installed in the non-aeration region A, the downflow 15 descends to the bottom of the tank in the non-aeration region A without hitting the aeration device 22. Thereby, the fall of the bottom part flow rate in a tank is suppressed, a bottom part flow rate can be kept at 0.1 m / sec or more, and sludge is fully spread | diffused. For this reason, it can prevent that sludge settles to the bottom part in a tank, and the efficiency of a sludge process improves.

尚、上記のように、反応速度の速い夏季において、好気嫌気兼用反応槽6を嫌気運転することにより、第1および第2好気槽7,8において硝化を行い、嫌気槽5と好気嫌気兼用反応槽6において脱窒を行うことができる。また、反応速度の遅い冬季において、好気嫌気兼用反応槽6を好気運転することにより、好気嫌気兼用反応槽6と第1および第2好気槽7,8とにおいて硝化を行い、嫌気槽5において脱窒を行うことができる。   As described above, in the summer when the reaction rate is high, the aerobic / anaerobic combined reaction tank 6 is anaerobically operated to perform nitrification in the first and second aerobic tanks 7, 8, and the anaerobic tank 5 and the aerobic tank. Denitrification can be performed in the anaerobic combined reaction tank 6. Further, in the winter when the reaction speed is slow, the aerobic / anaerobic combined reaction tank 6 is aerobically operated, whereby nitrification is performed in the aerobic / anaerobic combined reaction tank 6 and the first and second aerobic tanks 7 and 8. Denitrification can be performed in the tank 5.

尚、図5に示すように、嫌気運転時に各散気装置22を停止した際、図7(a)に示すように、散気膜35が水圧を受けて収縮しベースプレート34の上面に当接し、散気孔37が閉じるため、散気孔37の目詰まりを防止することができる。   As shown in FIG. 5, when each air diffuser 22 is stopped during anaerobic operation, the air diffuser film 35 contracts due to water pressure and contacts the upper surface of the base plate 34 as shown in FIG. 7A. Since the air diffuser 37 is closed, the air diffuser 37 can be prevented from being clogged.

また、図4,図5に示すように、距離Dを200mmに設定し、距離Eを200mm〜1000mmに設定したため、嫌気運転時および散気運転時において非散気領域Aを槽内底部まで下降した下降流15は、スムーズに流通路41,42を通過して反転し、上昇流16となって散気領域B,Cを槽壁24の内側面に沿って流れる。この際、上記Eが200mm〜1000mmに設定されているため、上昇流16は、槽壁24の内側面に沿って流れた後、水面付近で散気領域B,Cから非散気領域Aに反転し、下降流15となって確実に非散気領域Aを流れる。これにより、散気領域B,C(すなわち散気装置22と槽壁24の内側面との間)に下降流15が発生するのを防止することができる。   Also, as shown in FIGS. 4 and 5, since the distance D is set to 200 mm and the distance E is set to 200 mm to 1000 mm, the non-aeration area A is lowered to the bottom of the tank during anaerobic operation and aeration operation. The descending flow 15 smoothly passes through the flow passages 41 and 42 and is reversed to become the rising flow 16 and flows along the inner surface of the tank wall 24 through the diffused regions B and C. At this time, since E is set to 200 mm to 1000 mm, the upward flow 16 flows along the inner surface of the tank wall 24 and then flows from the diffused regions B and C to the non-diffused region A near the water surface. It reverses and becomes the downward flow 15 and flows through the non-aeration region A reliably. Thereby, it is possible to prevent the downward flow 15 from occurring in the diffused regions B and C (that is, between the diffuser 22 and the inner surface of the tank wall 24).

尚、仮に、上記Eを1000mm以上に設定すると、散気装置22と槽壁24との水平方向における間隔が広がり過ぎて、散気領域B,C(すなわち散気装置22と槽壁24の内側面との間)に下降流15が発生する虞がある。このように散気領域B,Cに下降流15が発生した場合、槽内の底部流速が低下してしまう虞がある。   If E is set to 1000 mm or more, the distance between the air diffuser 22 and the tank wall 24 in the horizontal direction is excessively widened, and the air diffused regions B and C (that is, the inside of the air diffuser 22 and the tank wall 24). There is a risk that a downward flow 15 may occur between the side surfaces). Thus, when the downward flow 15 occurs in the diffused regions B and C, there is a possibility that the bottom portion flow velocity in the tank is lowered.

また、攪拌装置21に低動力型の攪拌装置を用いることにより、攪拌装置21の消費電力を低減することができる。
(第2の実施の形態)
上記第1の実施の形態では、好気嫌気兼用反応槽6の好気運転と嫌気運転とを冬季と夏季とで切換えているが、第2の実施の形態では、図8に示すように、制御装置44にタイマー50を設け、所定の時間帯において、好気運転と嫌気運転とを交互に繰り返して行ってもよい。
Moreover, the power consumption of the stirring apparatus 21 can be reduced by using a low power type stirring apparatus for the stirring apparatus 21.
(Second Embodiment)
In the first embodiment, the aerobic operation and the anaerobic operation of the aerobic / anaerobic combined reaction tank 6 are switched between winter and summer, but in the second embodiment, as shown in FIG. A timer 50 may be provided in the control device 44, and aerobic operation and anaerobic operation may be alternately repeated in a predetermined time zone.

例えば、図9に示すように、午前7時から翌日の午前3時までの時間帯に好気運転を行い、午前3時から午前7時までの時間帯に嫌気運転を行うことを繰り返してもよい。
尚、上記第2の実施の形態において記載した各時刻は一例であって、これらの時刻に限定されるものではない。
For example, as shown in FIG. 9, even if the aerobic driving is performed during the time period from 7:00 am to 3:00 am the next day and the anaerobic driving is performed during the time period from 3:00 am to 7:00 am Good.
Each time described in the second embodiment is an example, and is not limited to these times.

(第3の実施の形態)
第3の実施の形態では、図10に示すように、午前7時から午後7時(19時)までの昼間の時間帯に好気運転を行い、午後7時から翌日の午前7時までの夜間の時間帯に、好気嫌気交互運転を行う。尚、好気嫌気交互運転は、例えば、嫌気運転を10分間行った後、好気運転を5分間行うことを交互に繰り返す。
(Third embodiment)
In the third embodiment, as shown in FIG. 10, aerobic driving is performed during the daytime from 7 am to 7 pm (19:00), and from 7 pm to 7 am on the following day. Alternating aerobic and anaerobic during night time. In the aerobic / anaerobic alternating operation, for example, after an anaerobic operation is performed for 10 minutes, an aerobic operation is alternately performed for 5 minutes.

これにより、好気嫌気兼用反応槽6内に流入する原水2の流入量が減少する夜間の時間帯において、好気運転と嫌気運転とを交互に繰り返すことにより、過剰な散気が抑制され、過曝気によるバルキングを予防することができる。   Thereby, in the night time zone when the inflow of the raw water 2 flowing into the aerobic / anaerobic combined reaction tank 6 is reduced, excessive aeration is suppressed by alternately repeating the aerobic operation and the anaerobic operation, Bulking due to over-aeration can be prevented.

尚、上記第3の実施の形態において記載した各時刻および時間は一例であって、これらの時刻および時間に限定されるものではない。
(第4の実施の形態)
第4の実施の形態では、図1,図8に示すように、好気嫌気兼用反応槽6の下流側となる生物処理槽1の末端の第2好気槽8にDO計53が設けられ、DO計53によって第2好気槽8内の原水2のDO(溶存酸素)を測定し、測定されたDO値に基づいて、好気嫌気兼用反応槽6における好気運転と嫌気運転とを切換える。
Each time and time described in the third embodiment is an example, and is not limited to these times and times.
(Fourth embodiment)
In the fourth embodiment, as shown in FIGS. 1 and 8, a DO meter 53 is provided in the second aerobic tank 8 at the end of the biological treatment tank 1 on the downstream side of the aerobic / anaerobic combined reaction tank 6. The DO meter 53 measures the DO (dissolved oxygen) of the raw water 2 in the second aerobic tank 8, and performs the aerobic operation and the anaerobic operation in the aerobic / anaerobic combined reaction tank 6 based on the measured DO value. Switch.

具体的には、DO計53によって測定されるDO値が例えば0.5mg/L(所定値の一例)以下に低下すれば、好気嫌気兼用反応槽6を嫌気運転から好気運転に切換える。これにより、好気嫌気兼用反応槽6の攪拌装置21が停止するとともに散気装置22が作動して散気が行われるため、好気嫌気兼用反応槽6内の原水2のDOが増加し、これに伴ってDO計53によって測定されるDO値が上昇する。   Specifically, when the DO value measured by the DO meter 53 falls below, for example, 0.5 mg / L (an example of a predetermined value), the aerobic / anaerobic combined reaction tank 6 is switched from anaerobic operation to aerobic operation. As a result, the stirring device 21 of the aerobic / anaerobic combined reaction tank 6 is stopped and the diffuser 22 is activated to perform the aeration, so the DO of the raw water 2 in the aerobic / anaerobic combined reaction tank 6 increases, Along with this, the DO value measured by the DO meter 53 increases.

そして、DO計53によって測定されるDO値が例えば2mg/L(所定値の一例)以上に上昇すると、好気嫌気兼用反応槽6を好気運転から嫌気運転に切換える。これにより、好気嫌気兼用反応槽6の攪拌装置21が作動するとともに散気装置22からの散気が停止され、好気嫌気兼用反応槽6内の原水2のDOが減少し、これに伴ってDO計53によって測定されるDO値が下降する。   When the DO value measured by the DO meter 53 rises to, for example, 2 mg / L (an example of a predetermined value) or more, the aerobic / anaerobic combined reaction tank 6 is switched from an aerobic operation to an anaerobic operation. As a result, the stirring device 21 of the aerobic / anaerobic combined reaction tank 6 is activated and the aeration from the diffuser 22 is stopped, and the DO of the raw water 2 in the aerobic / anaerobic combined reaction tank 6 is reduced. As a result, the DO value measured by the DO meter 53 decreases.

そして、DO計53によって測定されるDO値が例えば0.5mg/L以下に低下すると、好気嫌気兼用反応槽6を嫌気運転から好気運転に切換えることを繰り返す。これにより、過剰な散気が抑制され、過曝気によるバルキングを予防することができる。   Then, when the DO value measured by the DO meter 53 decreases to, for example, 0.5 mg / L or less, the aerobic / anaerobic combined reaction tank 6 is repeatedly switched from anaerobic operation to aerobic operation. Thereby, excessive aeration is suppressed and the bulking by overaeration can be prevented.

尚、上記第4の実施の形態において記載した各DOの数値は一例であって、これらの数値に限定されるものではない。
(第5の実施の形態)
第5の実施の形態では、図1,図8に示すように、好気嫌気兼用反応槽6にMLSS計55が設けられ、MLSS計55によって槽内の原水2のMLSS(平均浮遊物濃度)を測定し、測定されたMLSS値に基づいて、攪拌装置21の作動および停止を切換える。
In addition, the numerical value of each DO described in the said 4th Embodiment is an example, Comprising: It is not limited to these numerical values.
(Fifth embodiment)
In the fifth embodiment, as shown in FIGS. 1 and 8, the MLSS meter 55 is provided in the aerobic / anaerobic combined reaction tank 6, and the MLSS (average suspended solids concentration) of the raw water 2 in the tank is provided by the MLSS meter 55. And the operation and stop of the stirring device 21 are switched based on the measured MLSS value.

具体的には、先述した第4の実施の形態において、DO計53によって測定されるDO値が2mg/L(所定値の一例)以上である場合、好気嫌気兼用反応槽6が好気運転から嫌気運転に切換えられ、散気装置22からの散気が停止される。   Specifically, in the above-described fourth embodiment, when the DO value measured by the DO meter 53 is 2 mg / L (an example of a predetermined value) or more, the aerobic / anaerobic combined reaction tank 6 is in an aerobic operation. Is switched to anaerobic operation, and the aeration from the aeration device 22 is stopped.

この際、MLSS計55によって測定されるMLSS値が例えば1500mg/L(所定値の一例)以下であれば、攪拌装置21が作動して攪拌翼30が回転し、好気嫌気兼用反応槽6内の原水2が攪拌される。これにより、下降流15が、非散気領域Aに発生し、非散気領域Aを槽内底部まで下降した後、流通路41,42を通って反転し、上昇流16となって散気領域B,Cを槽壁24の内側面に沿って流れる。これにより、非散気領域Aと散気領域B,Cとを上下方向に旋回する旋回流17が槽内に発生し、汚泥が槽内で十分に攪拌混合され、汚泥が槽内底部に沈降して分離するのを防止することができる。   At this time, if the MLSS value measured by the MLSS meter 55 is, for example, 1500 mg / L (an example of a predetermined value) or less, the stirring device 21 is operated and the stirring blade 30 rotates, and the aerobic anaerobic combined reaction tank 6 The raw water 2 is stirred. Thereby, the downward flow 15 is generated in the non-aeration region A, and after descending the non-aeration region A to the bottom of the tank, it is reversed through the flow passages 41 and 42 to become the upward flow 16 and diffused. The regions B and C flow along the inner surface of the tank wall 24. As a result, a swirl flow 17 that swirls the non-aeration region A and the diffusion regions B and C in the vertical direction is generated in the tank, the sludge is sufficiently stirred and mixed in the tank, and the sludge settles on the bottom of the tank. To prevent separation.

このような攪拌混合により、MLSS計55で測定されるMLSS値が上昇して例えば3000mg/L(所定値の一例)を超えると、攪拌装置21を停止する。
その後、好気嫌気兼用反応槽6内の汚泥が次第に沈降し、汚泥の沈降量が増加するのに応じて、測定されるMLSS値が低下し、MLSS値が1500mg/L以下になれば、攪拌装置21が作動して攪拌を行うことを繰り返す。
When the MLSS value measured by the MLSS meter 55 rises and exceeds, for example, 3000 mg / L (an example of a predetermined value), the stirring device 21 is stopped.
Thereafter, if the sludge in the aerobic / anaerobic combined reaction tank 6 gradually settles and the amount of sludge settled increases, the measured MLSS value decreases, and if the MLSS value becomes 1500 mg / L or less, stirring is performed. It repeats that the apparatus 21 operates and performs stirring.

また、先述した第4の実施の形態と同様に、DO計53によって測定されるDO値が0.5mg/L以下に低下すれば、好気嫌気兼用反応槽6を嫌気運転から好気運転に切換える。これにより、好気嫌気兼用反応槽6の攪拌装置21が停止するとともに散気装置22が作動して散気が行われる。   Similarly to the above-described fourth embodiment, if the DO value measured by the DO meter 53 decreases to 0.5 mg / L or less, the aerobic / anaerobic combined reaction tank 6 is changed from anaerobic operation to aerobic operation. Switch. As a result, the stirring device 21 of the aerobic / anaerobic combined reaction tank 6 is stopped and the air diffuser 22 is activated to perform air diffusion.

尚、上記第5の実施の形態において記載したMLSSおよびDOの各数値は一例であって、これらの数値に限定されるものではない。
上記各実施の形態では、図2に示すように、好気嫌気兼用反応槽6の槽本体20を、平面視において長方形状にしているが、長方形状に限定されるものではなく、例えば正方形状であってもよい。
In addition, each numerical value of MLSS and DO described in the said 5th Embodiment is an example, Comprising: It is not limited to these numerical values.
In each said embodiment, as shown in FIG. 2, although the tank main body 20 of the aerobic anaerobic combined reaction tank 6 is made into the rectangular shape in planar view, it is not limited to a rectangular shape, For example, square shape It may be.

上記各実施の形態では、散気装置22を、散気領域B,Cにそれぞれ、幅方向Wにおいて3台ずつで且つ長さ方向Lにおいて2台ずつ設置しているが、これらの台数に限定されるものではなく、複数台又は単数台設置してもよい。   In each of the above-described embodiments, three air diffusers 22 are installed in the air diffused regions B and C in the width direction W and two in the length direction L, respectively. However, a plurality or a single unit may be installed.

上記各実施の形態では、攪拌装置21を好気嫌気兼用反応槽6の非散気領域Aに1台設けているが、槽本体20の長さ方向Lにおいて複数台並べて設けてもよい。
上記各実施の形態では、図4に示すように、非散気領域Aの両側方に散気領域B,Cを形成したが、非散気領域Aの一側方のみに一方の散気領域Bを形成してもよく、或は、非散気領域Aの他側方のみに他方の散気領域Cを形成してもよい。
In each of the above embodiments, one agitation device 21 is provided in the non-aeration region A of the aerobic / anaerobic combined reaction tank 6, but a plurality of agitation apparatuses 21 may be provided side by side in the length direction L of the tank body 20.
In each of the above embodiments, as shown in FIG. 4, the air diffusion regions B and C are formed on both sides of the non-air diffusion region A, but one air diffusion region is provided only on one side of the non-air diffusion region A. B may be formed, or the other aeration region C may be formed only on the other side of the non-aeration region A.

2 原水(被処理液)
6 好気嫌気兼用反応槽
15 下降流
16 上昇流
21 攪拌装置(下降流発生手段)
22 散気装置
24 槽壁
35 散気膜
37 散気孔
41,42 流通路
A 非散気領域
B,C 散気領域
D,E 距離
2 Raw water (liquid to be treated)
6 Aerobic / anaerobic combined reaction tank 15 Downflow 16 Upflow 21 Stirring device (downflow generating means)
22 Air diffuser 24 Tank wall 35 Air diffuser film 37 Air diffuser holes 41, 42 Flow path A Non-air diffused area B, C Air diffused area D, E Distance

Claims (5)

槽内の被処理液に下降流を発生させる下降流発生手段と、槽内底部に設置されて被処理液に散気を行う散気装置と、制御装置とが備えられた好気嫌気兼用反応槽であって、
下降流発生手段は、槽内の上部に設けられて、下降流発生手段自身の真下に下降流を発生させ、
下降流発生手段の真下を非散気領域とし、
非散気領域の少なくとも一側方を散気領域とし、
散気装置は、散気領域に設置されるとともに、非散気領域に設置されず、且つ下降流発生手段よりも下位に配置され、
散気装置と槽底面との間および散気装置と槽壁内側面との間に流通路が形成され、
非散気領域に発生した下降流が、槽内底部まで下降し、流通路を通って反転し、上昇流となって散気領域を流れ、
制御装置は、好気嫌気兼用反応槽の下流側において測定された被処理液中の溶存酸素量の値に基づいて、下降流発生手段を停止するとともに散気装置を作動させる好気運転と、下降流発生手段を作動させるとともに散気装置を停止する嫌気運転とを切換えることを特徴とする好気嫌気兼用反応槽。
Aerobic / anaerobic combined reaction equipped with a downflow generating means for generating a downflow in the liquid to be treated in the tank, an air diffuser installed at the bottom of the tank to diffuse the liquid to be treated, and a control device A tank,
The downward flow generating means is provided in the upper part of the tank, and generates the downward flow immediately below the downward flow generating means itself.
Immediately below the downflow generation means is a non-aeration region,
At least one side of the non-aeration area is defined as an aeration area,
The air diffuser is installed in the air diffused area, is not installed in the non-air diffused area, and is disposed below the downflow generating means.
A flow path is formed between the air diffuser and the tank bottom surface and between the air diffuser and the tank wall inner surface,
The downward flow generated in the non-aeration region descends to the bottom of the tank, reverses through the flow passage, flows up the diffusion region as an upward flow,
The control device, based on the value of dissolved oxygen amount in the liquid to be treated measured downstream of the aerobic / anaerobic combined reaction tank, aerobic operation to stop the downflow generation means and activate the aeration device, An aerobic / anaerobic combined reaction tank that switches between an anaerobic operation in which the downflow generating means is operated and the air diffuser is stopped.
散気装置はメンブレン式散気装置であり、
メンブレン式散気装置は、開閉自在な複数の散気孔が形成された弾性変形自在な散気膜を有していることを特徴とする請求項1記載の好気嫌気兼用反応槽。
The diffuser is a membrane diffuser,
2. The aerobic / anaerobic combined reaction tank according to claim 1, wherein the membrane-type air diffuser has an elastically deformable air diffuser film in which a plurality of air diffuser holes that can be opened and closed are formed.
槽底面から散気装置までの上下方向の距離が200mm以上に設定され、
槽壁内側面から散気装置までの水平方向の距離が200mm以上で且つ1000mm未満に設定されていることを特徴とする請求項1又は請求項2記載の好気嫌気兼用反応槽。
The vertical distance from the tank bottom to the diffuser is set to 200 mm or more,
The aerobic / anaerobic combined reaction tank according to claim 1 or 2, wherein a horizontal distance from the inner surface of the tank wall to the diffuser is set to 200 mm or more and less than 1000 mm.
槽内の被処理液に下降流を発生させる下降流発生手段と、槽内底部に設置されて被処理液に散気を行う散気装置とを備え、
下降流発生手段は、槽内の上部に設けられて、下降流発生手段自身の真下に下降流を発生させ、
下降流発生手段の真下を非散気領域とし、
非散気領域の少なくとも一側方を散気領域とし、
散気装置は、散気領域に設置されるとともに、非散気領域に設置されず、且つ下降流発生手段よりも下位に配置され、
散気装置と槽底面との間および散気装置と槽壁内側面との間に流通路が形成され、
非散気領域に発生した下降流が、槽内底部まで下降し、流通路を通って反転し、上昇流となって散気領域を流れる好気嫌気兼用反応槽の運転方法であって、
好気嫌気兼用反応槽の下流側において、被処理液中の溶存酸素量を測定し、
測定された溶存酸素量の値に基づいて、下降流発生手段を停止するとともに散気装置を作動させる好気運転と、下降流発生手段を作動させるとともに散気装置を停止する嫌気運転とを切換えることを特徴とする好気嫌気兼用反応槽の運転方法。
A downward flow generating means for generating a downward flow in the liquid to be treated in the tank, and an air diffuser installed at the bottom of the tank to diffuse the liquid to be treated.
The downward flow generating means is provided in the upper part of the tank, and generates the downward flow immediately below the downward flow generating means itself.
Immediately below the downflow generation means is a non-aeration region,
At least one side of the non-aeration area is defined as an aeration area,
The air diffuser is installed in the air diffused area, is not installed in the non-air diffused area, and is disposed below the downflow generating means.
A flow path is formed between the air diffuser and the tank bottom surface and between the air diffuser and the tank wall inner surface,
The downward flow generated in the non-aeration region descends to the bottom of the tank, reverses through the flow passage, and operates as an aerobic / anaerobic combined reaction tank that flows through the diffusion region as an upward flow,
On the downstream side of the aerobic / anaerobic combined reaction tank, measure the amount of dissolved oxygen in the liquid to be treated,
Based on the measured amount of dissolved oxygen, the aerobic operation for stopping the downflow generation means and operating the aeration device and the anaerobic operation for operating the downflow generation means and stopping the aeration device are switched. A method for operating an aerobic / anaerobic combined reaction tank.
槽内の被処理液に下降流を発生させる下降流発生手段と、槽内底部に設置されて被処理液に散気を行う散気装置とを備え、
下降流発生手段は、槽内の上部に設けられて、下降流発生手段自身の真下に下降流を発生させ、
下降流発生手段の真下を非散気領域とし、
非散気領域の少なくとも一側方を散気領域とし、
散気装置は、散気領域に設置されるとともに、非散気領域に設置されず、且つ下降流発生手段よりも下位に配置され、
散気装置と槽底面との間および散気装置と槽壁内側面との間に流通路が形成され、
非散気領域に発生した下降流が、槽内底部まで下降し、流通路を通って反転し、上昇流となって散気領域を流れる好気嫌気兼用反応槽の運転方法であって、
好気嫌気兼用反応槽の下流側において、被処理液中の溶存酸素量を測定し、
測定された溶存酸素量の値に基づいて、散気装置を作動させる好気運転と、散気装置を停止する嫌気運転とを切換え、
嫌気運転に切換えた場合、槽内の被処理液の浮遊物濃度を測定し、
測定された浮遊物濃度の値に基づいて、下降流発生手段の作動および停止を切換えることを特徴とする好気嫌気兼用反応槽の運転方法。
A downward flow generating means for generating a downward flow in the liquid to be treated in the tank, and an air diffuser installed at the bottom of the tank to diffuse the liquid to be treated.
The downward flow generating means is provided in the upper part of the tank, and generates the downward flow immediately below the downward flow generating means itself.
Immediately below the downflow generation means is a non-aeration region,
At least one side of the non-aeration area is defined as an aeration area,
The air diffuser is installed in the air diffused area, is not installed in the non-air diffused area, and is disposed below the downflow generating means.
A flow path is formed between the air diffuser and the tank bottom surface and between the air diffuser and the tank wall inner surface,
The downward flow generated in the non-aeration region descends to the bottom of the tank, reverses through the flow passage, and operates as an aerobic / anaerobic combined reaction tank that flows through the diffusion region as an upward flow,
On the downstream side of the aerobic / anaerobic combined reaction tank, measure the amount of dissolved oxygen in the liquid to be treated,
Based on the measured amount of dissolved oxygen, switching between aerobic operation to activate the aeration device and anaerobic operation to stop the aeration device,
When switching to anaerobic operation, measure the suspended matter concentration of the liquid to be treated in the tank,
A method for operating an aerobic / anaerobic combined reaction tank, wherein the operation and stop of the downflow generation means are switched based on the measured suspended matter concentration.
JP2013155100A 2013-07-26 2013-07-26 Aerobic / anaerobic combined reaction tank and operation method thereof Active JP6448177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013155100A JP6448177B2 (en) 2013-07-26 2013-07-26 Aerobic / anaerobic combined reaction tank and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013155100A JP6448177B2 (en) 2013-07-26 2013-07-26 Aerobic / anaerobic combined reaction tank and operation method thereof

Publications (2)

Publication Number Publication Date
JP2015024369A JP2015024369A (en) 2015-02-05
JP6448177B2 true JP6448177B2 (en) 2019-01-09

Family

ID=52489488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155100A Active JP6448177B2 (en) 2013-07-26 2013-07-26 Aerobic / anaerobic combined reaction tank and operation method thereof

Country Status (1)

Country Link
JP (1) JP6448177B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533264B (en) * 2020-06-12 2024-01-26 贵州筑信水务环境产业有限公司 Biological film sewage treatment device and sewage treatment method using same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154286A (en) * 1984-08-24 1986-03-18 Hitachi Plant Eng & Constr Co Ltd Batch activated-sludge process
JPH0418720Y2 (en) * 1986-08-05 1992-04-27
JPH01128898U (en) * 1988-02-25 1989-09-01
JPH04193399A (en) * 1990-11-28 1992-07-13 Nippon Gesuidou Jigyodan Operating method of aeration stirrer of single tank type anaerobic and aerobic activated sludge method
JP2841131B2 (en) * 1991-06-19 1998-12-24 株式会社クボタ Activated sludge treatment method for sewage
JP2966993B2 (en) * 1992-01-17 1999-10-25 日立機電工業株式会社 Aeration apparatus and operation method thereof
JPH0716595A (en) * 1993-06-30 1995-01-20 Meidensha Corp Operation control method in modified method for circulating active sludge
JPH07136687A (en) * 1993-11-12 1995-05-30 Meidensha Corp Operation control method for modified active sludge circulation process in low water temperature period
JP3271521B2 (en) * 1996-07-09 2002-04-02 日立プラント建設株式会社 Wastewater nitrogen removal method and apparatus
JP3408699B2 (en) * 1996-09-05 2003-05-19 株式会社クボタ Sewage treatment equipment using immersion type membrane separation equipment
JP3451849B2 (en) * 1996-09-20 2003-09-29 Jfeエンジニアリング株式会社 Wastewater treatment method and apparatus
JPH1094796A (en) * 1996-09-20 1998-04-14 Nkk Corp Treatment of waste water and device therefor
US6585236B2 (en) * 2001-07-16 2003-07-01 Hitachi Kiden Kogyo, Ltd. Aerator
JP2004283809A (en) * 2003-03-25 2004-10-14 Hitachi Kiden Kogyo Ltd Method for controlling operation of aeration agitator
JP3772882B2 (en) * 2003-11-14 2006-05-10 富士電機ホールディングス株式会社 Methane fermentation treatment method
JP2005262090A (en) * 2004-03-18 2005-09-29 Kurita Water Ind Ltd Aeration tank
JP4291232B2 (en) * 2004-08-10 2009-07-08 株式会社神鋼環境ソリューション Aeration treatment method
JP2006289277A (en) * 2005-04-12 2006-10-26 Tsukishima Kikai Co Ltd Nitrate forming nitrification/denitrification method, method for nitrifying/denitrifying ammonia nitrogen-containing liquid and nitrate forming nitrification/denitrification equipment
JP5001587B2 (en) * 2006-06-09 2012-08-15 シャープ株式会社 Waste water treatment method and waste water treatment equipment
JP2008296169A (en) * 2007-06-01 2008-12-11 Hitachi Plant Technologies Ltd Method for operating aeration/agitation system
JP2013027810A (en) * 2011-07-28 2013-02-07 Kubota Corp Method for operation of aerobic and anaerobic reaction tank, and water treatment equipment

Also Published As

Publication number Publication date
JP2015024369A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
WO2018198422A1 (en) Membrane-separation activated sludge treatment device and membrane-separation activated sludge treatment method
CN105198071A (en) System for efficiently carrying out oxygenation in finite space
KR101012273B1 (en) The highly efficient rotary eddy flow typed surface aerator and the wastewater treatment method with thereof
KR20110058989A (en) Hybrid aerator system
US9181106B2 (en) Systems and methods for control of a gas or chemical
JP2010264422A (en) Denitrification treatment apparatus
CN110510815A (en) Integrated sewage treating apparatus and sewage water treatment method based on simultaneous nitrification-denitrification
JP6448177B2 (en) Aerobic / anaerobic combined reaction tank and operation method thereof
KR101334446B1 (en) The dissolved oxygen supply of a lake and dam and algae growth control unit
KR101353401B1 (en) Membrane bioreactors which are in response to the high processing load fluctuations effectively
CN209276218U (en) Recycle current flow fixed bed aerobic biofilter
JP4403495B2 (en) Wastewater treatment equipment
KR100882818B1 (en) An aeration apparatus
JP2014113511A (en) Membrane separation apparatus, and operation method of membrane separation apparatus
JP6562592B2 (en) Aerobic / anaerobic combined reaction tank and operation method thereof
CN109368772A (en) Recycle current flow fixed bed aerobic biofilter
JP2003088355A (en) Culture apparatus for aerobic microorganism and cultivation using the same
JP4819841B2 (en) Membrane separator
JP2006281183A (en) Water treatment apparatus using biological membrane
JP2004305916A (en) Membrane separator
JP2002001379A (en) Sewage treating apparatus and method
CN207313243U (en) A kind of micro- oxygen-short-cut denitrification oxidation ditch
JP5490491B2 (en) Sewage treatment equipment
KR101672022B1 (en) Sewage treatment methods using sequencing batch reactor and apparatus used therein
JP3830026B2 (en) Membrane separation type oxidation ditch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181204

R150 Certificate of patent or registration of utility model

Ref document number: 6448177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150