JPH04193399A - Operating method of aeration stirrer of single tank type anaerobic and aerobic activated sludge method - Google Patents

Operating method of aeration stirrer of single tank type anaerobic and aerobic activated sludge method

Info

Publication number
JPH04193399A
JPH04193399A JP2323087A JP32308790A JPH04193399A JP H04193399 A JPH04193399 A JP H04193399A JP 2323087 A JP2323087 A JP 2323087A JP 32308790 A JP32308790 A JP 32308790A JP H04193399 A JPH04193399 A JP H04193399A
Authority
JP
Japan
Prior art keywords
aeration
tank
sludge
activated sludge
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2323087A
Other languages
Japanese (ja)
Inventor
Yoshio Sakai
好雄 堺
Masami Kitagawa
政美 北川
Mitsuhiko Ogasawara
小笠原 光彦
Masaroku Kawauchi
正六 川内
Hideki Iwabe
岩部 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GESUIDOU JIGYODAN
Hanshin Engineering Co Ltd
Ebara Corp
Kubota Corp
Original Assignee
NIPPON GESUIDOU JIGYODAN
Hanshin Engineering Co Ltd
Ebara Corp
Ebara Infilco Co Ltd
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GESUIDOU JIGYODAN, Hanshin Engineering Co Ltd, Ebara Corp, Ebara Infilco Co Ltd, Kubota Corp filed Critical NIPPON GESUIDOU JIGYODAN
Priority to JP2323087A priority Critical patent/JPH04193399A/en
Publication of JPH04193399A publication Critical patent/JPH04193399A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To effectively progress the oxidation under an aerobic condition and the denitrification and dephosphorization under an anaerobic condition by operating a stirring mechanism in such a manner that the rotating speed of the stirring mechanism at the time of aeration and the rotating speed of the stirring mechanism at the time of the stop of the aeration vary. CONSTITUTION:The rotating speed of stirring vanes is varied by a controller 5 in the case of using a submersible aerator 3 or a propeller. An inverter or VS motor is adequately used to change the rotating speed. Sewage flows through an inflow pipe 8 into an aeration tank 1 and the oxidation decomposition by aeration or denitrification or the taking in of org. matter under the anaerobic condition is executed. The liquid mixture of an aeration tank 1 is sent via a piping 14 to a settling basin 2 and is subjected to a solid-liquid sepn. to treated water and sludge in this settling basin 2. The supernatant, thereafter, flows as the treated water 9 to the outside of the system and the separated and concentrated sludge is returned as return sludge via a return piping 10 to the aeration tank 1 by a pump 11. A part of the return sludge is properly discharged as excess sludge via an excess sludge withdrawing pipe 16 by a pump 15.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機性汚濁物質を含む下水、産業廃水等の有
機性汚水を、単槽式嫌気好気活性汚泥法で生物学的に処
理する際における、曝気攪拌装置の運転・制御方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method for biologically treating organic wastewater such as sewage and industrial wastewater containing organic pollutants using a single-tank anaerobic and aerobic activated sludge method. The present invention relates to a method for operating and controlling an aeration agitation device.

[従来の技術] 曝気攪拌装置を用いて曝気を間欠的に行うことは、従来
から、回分式活性汚泥法や単槽式嫌気気性(特開平1−
310798号)等で行われている。この場合、曝気機
能と攪拌機能を別途に設けるものと、曝気機能と攪拌機
能をひとつの装置で兼用するものとかある。
[Prior art] Intermittent aeration using an aeration agitation device has conventionally been used in the batch activated sludge method and the single tank anaerobic method (Japanese Patent Application Laid-Open No.
310798) etc. In this case, there are systems in which the aeration function and stirring function are provided separately, and systems in which the aeration function and the stirring function are combined in one device.

曝気機能と攪拌機能を別途に設けたものとしては、外部
にブロワを設けた散気管とその上部に攪押接を設けたも
のかある。また攪拌と曝気の両機能を持つ装置としては
、ケーシング内の羽根車の前または後に圧縮空気を送り
、水流の剪断作用または羽根車の回転作用で気泡を微細
化し、液中に拡散させる水中機械式の装置や、或いは、
ポンプによる圧力水を液ノズルを通すことでシェツト流
を形成させ、同時に送風機から送られた圧縮空気を混ぜ
て気液混相流を形成させる循環ポンプ混合式の装置等が
ある。
Examples of systems that have separate aeration and agitation functions include an aeration pipe with an external blower and an agitation fitting above the aeration pipe. In addition, as a device that has both stirring and aeration functions, there is an underwater machine that sends compressed air before or after the impeller in the casing, and uses the shearing action of the water flow or the rotational action of the impeller to atomize air bubbles and disperse them into the liquid. type equipment, or
There is a circulating pump mixing type device in which pressurized water from a pump is passed through a liquid nozzle to form a shet flow, and at the same time, compressed air sent from a blower is mixed to form a gas-liquid multiphase flow.

回分式活性汚泥法や単槽式嫌気好気法においては、曝気
時には外部のブロワと攪拌機か同時に作動して曝気と攪
拌か行われ、好気的条件のもとて活性汚泥に接触した流
入有機物は、酸化されてC02とH2Oに、またNH4
−NはN0x−Nになる。一方、曝気停止時にはブロワ
の運転を停止し、空気あるいは酸素を含む気体の供給を
止めるが、攪拌機もしくはポンプはそのまま稼働させて
流入汚水と活性汚泥の混合攪拌を行う。この結果、曝気
槽内の溶存酸素は急速に消費され嫌気的条件になり、流
入した有機物は脱窒素による分解もしくは脱りん菌によ
る取り込みか行われる。また、N0x−NはN2に還元
されて大気中に放散される。
In the batch activated sludge method and the single tank anaerobic and aerobic method, an external blower and a stirrer are operated simultaneously during aeration to perform aeration and stirring, and the inflow organic matter that comes into contact with the activated sludge under aerobic conditions is is oxidized to C02 and H2O, and NH4
-N becomes N0x-N. On the other hand, when aeration is stopped, the operation of the blower is stopped and the supply of air or gas containing oxygen is stopped, but the agitator or pump is kept running to mix and stir the inflowing sewage and activated sludge. As a result, the dissolved oxygen in the aeration tank is rapidly consumed, resulting in anaerobic conditions, and the organic matter that has flowed into the tank is either decomposed by denitrification or taken up by dephosphorizing bacteria. Further, NOx-N is reduced to N2 and dissipated into the atmosphere.

こうした運転を行うことにより単一の曝気槽においても
BOD、SS除去のみならす窒素、りん除去なとの高度
処理も可能となるため、こうした曝気槽内に曝気機能と
攪拌機構を併用させた曝気攪拌装置を用いることが普及
し始めている。
By performing this type of operation, advanced treatment such as not only BOD and SS removal but also nitrogen and phosphorous removal can be performed in a single aeration tank, so aeration and stirring can be carried out by combining an aeration function and a stirring mechanism in such an aeration tank. The use of devices is becoming popular.

[発明が解決しようとする課題] このように曝気攪拌装置では、攪拌機あるいはポンプに
より加圧された圧力水が液ノズルから噴出して生成され
るシェツト流の流速により、圧縮気体が微細化されるた
め、散気板方式単独の場合よりも酸素溶解効率か高くな
り、その結果、曝気風量を低減することかできるため送
風機の動力を削減できるという利点を持つ。しかし、攪
拌のための動力も必要なため全体としてのエネルキー消
費量はそれほど削減されれてはいなかった。
[Problems to be Solved by the Invention] In this way, in the aeration stirring device, compressed gas is atomized by the flow rate of the shet flow generated when pressurized water pressurized by the stirrer or pump is ejected from the liquid nozzle. Therefore, the oxygen dissolution efficiency is higher than that of the diffuser plate method alone, and as a result, the amount of aeration air can be reduced, which has the advantage of reducing the power of the blower. However, since power is also required for stirring, the overall energy consumption has not been reduced much.

更に、曝気時においては曝気の他に攪拌による動力も加
わるため、活性汚泥のフロックに対する剪断力が大きく
なり、活性汚泥の性状、特にフロックの微細化による沈
降特性の低下、処理水の白濁及び浮上汚泥の増加などの
問題点が認められた。
Furthermore, during aeration, power from agitation is applied in addition to aeration, which increases the shearing force on activated sludge flocs, causing deterioration in the properties of activated sludge, especially in sedimentation properties due to finer flocs, and clouding and floating of treated water. Problems such as an increase in sludge were recognized.

特に、小規模汚水を対象に単一の曝気槽と沈殿池からな
る連続流入を前提とした単槽式の嫌気好気活性汚泥法で
はこの傾向か高く、その改善策か必要とされている。
In particular, this tendency is high in the single-tank anaerobic and aerobic activated sludge method, which targets small-scale sewage and is based on continuous inflow consisting of a single aeration tank and settling tank, and improvements are needed.

本発明はこの様な従来技術の問題点に鑑みて提案された
もので、汚水を効果的に処理することが出来る新規な汚
水処理方法の提供を目的としている。
The present invention has been proposed in view of the problems of the prior art, and aims to provide a novel sewage treatment method that can effectively treat sewage.

[課題を解決するための手段] 発明者は上記問題点を改善するため鋭意検討を重ねた結
果、曝気時と曝気停止時における攪拌の回転数を適宜変
更すること、および曝気時においても最適な回転数で運
転する事で良好な処理成績が得られる事を見いだし、本
発明を創作するに至った。
[Means for Solving the Problems] As a result of intensive studies to improve the above-mentioned problems, the inventors decided to appropriately change the rotational speed of stirring during aeration and when stopping aeration, and to improve the optimum speed even during aeration. It was discovered that good processing results could be obtained by operating at a high rotational speed, and the present invention was created.

本発明では、単槽式の嫌気好気活性汚泥処理装置の曝気
槽に曝気装置と攪拌装置もしくは曝気と攪拌か一体化し
た曝気攪拌装置を設置し、汚水を連続的に流入させなが
ら前記曝気攪拌装置を用いて間欠的に曝気を行うと共に
、曝気時における攪拌機構の回転数と曝気停止時におけ
る攪拌機構の回転数とを異なる様に運転している。
In the present invention, an aeration device and an agitation device or an aeration and agitation device that integrates aeration and agitation are installed in the aeration tank of a single-tank anaerobic and aerobic activated sludge treatment equipment, and the aeration and agitation are performed while continuously flowing wastewater. Aeration is performed intermittently using a device, and the rotation speed of the stirring mechanism during aeration is different from the rotation speed of the stirring mechanism when aeration is stopped.

本発明において、流入水の負荷量に応じて、すなわち汚
水のBOD負荷、Do濃度、0RPO内の少なくとも一
つに対応して曝気時における攪拌装置の回転数、曝気風
量、或いはその両方を変更することも出来る。
In the present invention, the rotation speed of the stirring device during aeration, the aeration air volume, or both are changed according to the load amount of inflow water, that is, according to at least one of the BOD load, Do concentration, and 0RPO of wastewater. You can also do that.

また、予め設定したタイムシーケンスに従って曝気時に
おける攪拌装置の回転数、曝気風量、或いはその両方を
変更する様に構成しても良い。
Further, the rotation speed of the stirring device during aeration, the aeration air volume, or both may be configured to be changed according to a preset time sequence.

本発明の実施に際して、曝気槽内にDo計、ORP計を
設置し、曝気時においてDo値を1〜4■/lの範囲に
制御するのが好ましく、或いはORP値を+50〜+1
00mV (金塩化銀電極で計測)の範囲に制御するの
が好ましい。ここで、Do値或いはORP値か高い場合
には、攪拌装置の回転数及び/又は曝気風量を下げ、低
い場合には上げる様に制御される。
When carrying out the present invention, it is preferable to install a Do meter and an ORP meter in the aeration tank and control the Do value within the range of 1 to 4 ■/l during aeration, or the ORP value to be controlled within the range of +50 to +1.
It is preferable to control the voltage within a range of 00 mV (measured with a gold-silver chloride electrode). Here, when the Do value or the ORP value is high, the rotation speed of the stirring device and/or the aeration air volume is controlled to be lowered, and when it is low, it is controlled to be increased.

また、曝気攪拌装置の回転数制御には種々の公知技術を
適用できるが、特にインバータを用いれば消費電力を著
しく減少することかできるので、エネルギ的にも有利で
ある。
Further, various known techniques can be applied to control the rotation speed of the aeration stirring device, but in particular, the use of an inverter can significantly reduce power consumption, which is advantageous in terms of energy.

曝気停止時においては曝気攪拌装置の回転数は低速とな
る。具体的には、攪拌装置の攪拌羽根の周速が5m/′
秒以下となる様に回転数が制御される。換言すると本発
明においては、攪拌装置の回転数を基準として制御を行
っても、撹拌羽根の周速度を基準に制御を行っても良い
When the aeration is stopped, the rotational speed of the aeration stirring device becomes low. Specifically, the circumferential speed of the stirring blade of the stirring device is 5 m/'
The rotation speed is controlled so that it is within seconds. In other words, in the present invention, the control may be performed based on the rotational speed of the stirring device or the peripheral speed of the stirring blade.

[作用] 上記した様な構成を有する本発明の方法によれば、曝気
時における攪拌装置の回転数と曝気停止時の回転数とを
異なる様に運転することにより、好気的条件における酸
化および嫌気的条件における脱窒素や脱りんを効果的に
進行させる。その結果、活性汚泥の性状を良好なものと
して、特にフロックの微細化による沈降特性の低下や処
理水の白濁、浮上汚泥の増加を抑制し、効率的な汚水処
理を達成することが出来る。
[Function] According to the method of the present invention having the above-described configuration, by operating the stirring device at different rotational speeds during aeration and at different rotational speeds when the aeration is stopped, oxidation and Effectively promotes denitrification and dephosphorization under anaerobic conditions. As a result, the properties of the activated sludge are made good, and in particular, it is possible to suppress the deterioration of sedimentation properties due to finer flocs, the cloudiness of treated water, and the increase in floating sludge, thereby achieving efficient sewage treatment.

[実施例] 添付した図面及び表を参照して、以下に本発明の詳細な
説明する。
[Example] The present invention will be described in detail below with reference to the accompanying drawings and tables.

第1図に示す装置は、曝気槽に曝気攪拌装置と攪拌装置
を設けた場合の汚泥性状、処理水質に対する影響を調べ
るための実施例において用いられるものである。
The apparatus shown in FIG. 1 is used in an example for investigating the effects on sludge properties and treated water quality when an aeration tank is provided with an aeration agitator and an agitator.

全体を符号20で示すこの装置は、実容積101の曝気
槽22と37!の沈殿池24から成り、曝気槽22内に
はエアーポンプ(図示せず)に接続した散気管26およ
びその上部の攪拌機28を設けている。ここでエアーポ
ンプはタイマ(図示せず)により間欠運転を行い以て曝
気かできるように構成されており、攪拌機28は回転数
が任意に変更できるものを使用した。
This apparatus, designated as a whole by the reference numeral 20, has an aeration tank 22 and 37! having an actual volume of 101! The aeration tank 22 is provided with an aeration pipe 26 connected to an air pump (not shown) and an agitator 28 above the aeration pipe 26. Here, the air pump was configured to perform aeration by intermittent operation using a timer (not shown), and the agitator 28 used was one whose rotational speed could be changed arbitrarily.

実験は、予めペプトン、酢酸を有機炭素源とした人工下
水で馴致した活性汚泥を用いて、その−部を実験装置に
投入し、同し人工下水を連続的に添加しながら予め設定
した攪拌機28の回転数および曝気条件のもとて24時
間処理を行い、汚泥性状、処理水質を調べた。データ採
取後汚泥を入れ替え、別の条件で同様の操作を行い、デ
ータを採取した。
The experiment used activated sludge that had been previously acclimatized with artificial sewage using peptone and acetic acid as organic carbon sources, and a portion of the activated sludge was put into the experimental apparatus, and the same artificial sewage was continuously added while the activated sludge was heated using a preset agitator 28. The treatment was carried out for 24 hours under the rotational speed and aeration conditions, and the properties of the sludge and the quality of the treated water were examined. After data collection, the sludge was replaced, the same operation was performed under different conditions, and data was collected.

第2図に、曝気を連続的に行い、攪拌機280回転数を
変えた場合の曝気槽22のDo、SV、、、、、処理水
透視度の結果を示す。
FIG. 2 shows the results of Do, SV, ..., and treated water transparency of the aeration tank 22 when aeration is performed continuously and the number of revolutions of the stirrer 280 is varied.

汚泥性状、処理水透視度は攪拌機28の回転数が110
0Orpを越えた付近から悪化し始め、1600rpm
以上ではかなり白濁した。一方、曝気槽22内のDoは
回転数を高めることにより上昇する傾向が認められた。
The sludge properties and treated water transparency are determined when the rotation speed of the agitator 28 is 110.
It started to get worse when it exceeded 0 orp and reached 1600 rpm.
Above that, it became quite cloudy. On the other hand, it was observed that Do in the aeration tank 22 tended to increase as the rotation speed increased.

以上の結果より、攪拌機28を設けるこ・とにより酸素
溶解効率は増加するが、攪拌機28の回転数がある一定
のレベルより高くなると汚泥性状、処理水水質に悪影響
を及ぼす事が明らかになった。
From the above results, it is clear that although oxygen dissolution efficiency increases by providing the agitator 28, when the rotation speed of the agitator 28 increases beyond a certain level, it has a negative effect on the sludge properties and the quality of the treated water. .

次に、曝気時においては酸素溶解効率を高めるため攪拌
機28の回転数を高めに設定し、曝気停止時においては
汚泥が沈降しない程度に攪拌機28の回転数を低くした
場合の処理性能について、各種検討した結果を表1にま
とめる。ここで、表1のRun5は曝気時あるいは曝気
停止時の回転数を時間帯により変更した。なお、この実
験では、汚水を連続的に流し、曝気および曝気停止の時
間サイクルを30分の間欠運転としである。
Next, we will discuss various treatment performances when the rotation speed of the agitator 28 is set high during aeration to increase oxygen dissolution efficiency, and when the aeration is stopped, the rotation speed of the agitator 28 is set low enough to prevent sludge from settling. The results of the study are summarized in Table 1. Here, in Run 5 of Table 1, the rotation speed during aeration or when aeration was stopped was changed depending on the time period. In this experiment, sewage was continuously flowed, and the time cycle of aeration and aeration stop was 30 minutes intermittently.

第1図で示す装置20を用いた実験の結果、曝気停止時
に攪拌機の回転数を低下させることにより、処理水水質
、汚泥性状か充分改善されることか明らかになった。
As a result of experiments using the apparatus 20 shown in FIG. 1, it became clear that the quality of treated water and the properties of sludge could be sufficiently improved by lowering the rotational speed of the agitator when aeration was stopped.

以上の実験結果を基づいて作成され、本願発明の実施に
好適な装置の構成及び作用について、第3図を参照しな
から説明する。
The configuration and operation of an apparatus created based on the above experimental results and suitable for carrying out the present invention will be described with reference to FIG. 3.

第3図において、本願発明の実施に好適な装置は曝気槽
1とそれに接続する沈殿池2から成り、曝気槽1には曝
気と攪拌の両機能を持つ水中機械式曝気攪拌装置3(水
中エアレータ)が設置され、該エアレータ3には空気配
管12を介してブロワ4がら空気か供給される。
In FIG. 3, the apparatus suitable for carrying out the present invention consists of an aeration tank 1 and a sedimentation tank 2 connected to it. ) is installed, and air is supplied to the aerator 3 from a blower 4 via an air pipe 12.

なお、曝気攪拌装置としては水中機械式曝気攪拌装置(
水中エアレータ)の代りに循環ポンプ混会式散気装置を
用いてもよ(、あるいは曝気攪拌装置として散気管或い
は散気板を設は且つその上部に攪拌機例えばプロペラ等
を設けて、第1図の装置と同様な構成としても良い。
Note that the aeration and stirring device is an underwater mechanical aeration and stirring device (
Instead of a submersible aerator, a circulating pump mixed type aeration device may be used (or, an aeration pipe or a diffuser plate may be installed as an aeration and agitation device, and an agitator such as a propeller may be provided above the aeration device, as shown in Fig. 1). The configuration may be similar to that of the device.

水中エアレータ3あるいはプロペラを用いる場合には攪
拌羽根の回転数を、そして循環ポンプ混合式散気装置の
場合にはポンプ内羽根車の回転数を、それぞれコントロ
ーラ5を介して可変なものとする。回転数の変更はイン
バータもしくはVSモータか好適であり、コントローラ
5により制御される。ブロワ4はタイマもしくはコント
ローラ6により間欠運転が可能なものを使用する。 汚
水は流入管8を通して曝気槽1に流入し、曝気もしくは
脱窒素による酸化分解あるいは嫌気的条件での有機物取
り込みか行われる。
When using the underwater aerator 3 or a propeller, the rotation speed of the stirring blade, and when using the circulation pump mixed diffuser, the rotation speed of the impeller within the pump are made variable via the controller 5. The rotation speed is preferably changed using an inverter or a VS motor, and is controlled by the controller 5. The blower 4 is one that can be operated intermittently by a timer or controller 6. Sewage flows into the aeration tank 1 through an inflow pipe 8, and is subjected to oxidative decomposition by aeration or denitrification, or organic matter is taken in under anaerobic conditions.

曝気槽1の混合液は配管14を介して沈殿池2に送られ
、該沈殿池2て処理水と汚泥に固液分離される。その後
、上澄液は処理水9として系外に流出し、分離濃縮され
た汚泥は返送汚泥として返送配管10を介してポンプ1
1により曝気槽1に戻される。ここで返送汚泥の一部は
余剰汚泥として、余剰汚泥引き抜き管16を介してポン
プ15により適宜排出される。
The mixed liquid in the aeration tank 1 is sent to the sedimentation tank 2 via a pipe 14, where it is separated into solid and liquid into treated water and sludge. Thereafter, the supernatant liquid flows out of the system as treated water 9, and the separated and concentrated sludge is sent to the pump 1 as return sludge via return piping 10.
1 is returned to the aeration tank 1. Here, a part of the returned sludge is appropriately discharged as surplus sludge by the pump 15 via the surplus sludge extraction pipe 16.

本発明を実施するこの装置においては、水中エアレータ
3(あるいは攪拌機)の回転数は、曝気停止時において
は低速で運転される。具体的には攪拌羽根(図示せず)
の周速が5m/秒以下か良い。
In this apparatus implementing the present invention, the rotational speed of the submersible aerator 3 (or agitator) is operated at a low speed when aeration is stopped. Specifically, a stirring blade (not shown)
It is good if the circumferential speed is 5 m/sec or less.

また曝気時においては流入水質・水量に時間変動かあり
、BOD負荷か変動する場合は負荷条件に応じて酸素の
供給量を変えるのか好ましい。特に脱窒素、脱りん性能
を上げるためには曝気時に過剰の酸素を吹き込む事は避
ける必要かある。そのため、BOD負荷か低いときには
攪拌機の回転数を下げて酸素溶解効率を下げるか、或い
はそれと同時に曝気風量も減少せしめ、酸素供給量を減
らすような運転を行う。   ゛ この場合、水中エアレータ3(あるいは攪拌機)の回転
数およびブロワ4からの空気供給量は、曝気槽1内に設
置したDo計あるいはORP計17と連動させ、コント
ローラ5.6を通して制御することができる。ここで、
曝気時においてはり。
In addition, during aeration, the quality and amount of inflow water fluctuate over time, and if the BOD load fluctuates, it is preferable to change the amount of oxygen supplied depending on the load conditions. In particular, in order to improve denitrification and dephosphorization performance, it is necessary to avoid blowing in excess oxygen during aeration. Therefore, when the BOD load is low, the rotation speed of the stirrer is lowered to lower the oxygen dissolution efficiency, or at the same time, the aeration air volume is also reduced to reduce the oxygen supply amount. In this case, the rotation speed of the submersible aerator 3 (or agitator) and the amount of air supplied from the blower 4 can be controlled through the controller 5.6 in conjunction with the Do meter or ORP meter 17 installed in the aeration tank 1. can. here,
Beams during aeration.

値を1〜4■/lの範囲に制御するのか好ましく、OR
P値は+50〜100mV(金塩化銀電極で測定)の範
囲に制御するのが好ましい。いずれも値か高いときは回
転数及び/又は曝気風量を下げ低い場合は上げる様にす
る。
It is preferable to control the value within the range of 1 to 4 /l, and OR
The P value is preferably controlled within the range of +50 to 100 mV (measured with a gold-silver chloride electrode). If either value is high, reduce the rotation speed and/or aeration air volume, and if low, increase it.

なお、コントローラ5.6は互いに連結させても良く、
また1つのコントローラで制御しても良い。また家庭下
水のようにBOD負荷の時間変動がほぼ一定していると
きは、タイマと連動させて予め設定したタイムシーケン
スに従い回転数、曝気風量を制御して運転することがで
きる。
Note that the controllers 5 and 6 may be connected to each other,
Alternatively, it may be controlled by one controller. In addition, when the time fluctuation of BOD load is almost constant as in the case of domestic sewage, it is possible to operate by controlling the rotation speed and aeration air volume according to a preset time sequence in conjunction with a timer.

このように運転条件に応じて攪拌機構の回転数を変更し
たり、ブロワの曝気風量を変更することにより、活性汚
泥の汚泥性状と処理水水質を改善させることができる。
In this way, by changing the rotation speed of the stirring mechanism or changing the aeration air volume of the blower depending on the operating conditions, it is possible to improve the sludge properties of activated sludge and the quality of treated water.

また、回転数制御には種々の公知技術を適用できるか、
特にインバータを用いることにより消費動力を著しく減
少させることができ、エネルギー的にも有利となる。
Also, can various known techniques be applied to rotation speed control?
In particular, by using an inverter, power consumption can be significantly reduced, which is advantageous in terms of energy.

次に、さらに具体的な例について説明する。Next, a more specific example will be explained.

(1) 処理水量300m3/dの長時間曝気による団
地下水処理施設(曝気槽容積250m3)では、当初、
硝化か進行し、処理水pHの低下、活性汚泥の解体等の
問題か認められたことから(Runl)、曝気攪拌装置
を水中式曝気攪拌装置(水中エアレータ 出力2.2k
w)に変更し、30分毎の間欠曝気を行った。その結果
、高い窒素除去率か得られ、処理水水質も向上したか(
表2のRun2)、透視度か多少悪く、汚泥か付着した
微細気泡の浮上等も認められた。
(1) Initially, the underground water treatment facility (aeration tank volume: 250 m3) with long-term aeration with a treated water volume of 300 m3/d.
Because it was recognized that nitrification was progressing, the pH of the treated water was decreasing, and there were problems such as disassembly of activated sludge (Runl), the aeration agitation device was replaced with a submersible aeration agitation device (submersible aerator output 2.2k).
w), and intermittent aeration was performed every 30 minutes. As a result, a high nitrogen removal rate was obtained and the quality of the treated water improved (
In Run 2) of Table 2, the visibility was somewhat poor, and the floating of fine bubbles with sludge attached was also observed.

このため、エアレータにインバータを付け、曝気時には
300rpm(周速;3m/′s)、曝気停止時には1
0100rp周速;2.7 m / s )で運転した
。その結果、表2のRun3のデータに示すように処理
水質が向上するとともに、汚泥の沈降性も改善した。ま
た、エネルギー的にもかなりの削減効果か認められた。
For this reason, an inverter is attached to the aerator, and the speed is 300 rpm (peripheral speed; 3 m/'s) during aeration and 1 m/'s when aeration is stopped.
It was operated at a circumferential speed of 0100 rpm; 2.7 m/s). As a result, as shown in the data for Run 3 in Table 2, the quality of the treated water was improved, and the settling properties of the sludge were also improved. It was also recognized that there was a considerable energy saving effect.

(2) 実用積B m 3の曝気槽とそれに付随した沈
殿池(実用積: 4m’ )のパイロットプラント装置
を用いて家庭下水25m’/dの処理実験を行った。曝
気攪拌装置として水中機械式曝気攪拌装置(水中エアレ
ータ)のモデル機(出力04kw)を設置した。
(2) An experiment was conducted to treat domestic sewage of 25 m'/d using a pilot plant system consisting of an aeration tank with a practical volume of B m 3 and an associated settling tank (practical volume: 4 m'). A model machine (output: 04 kW) of an underwater mechanical aeration and stirring device (underwater aerator) was installed as an aeration and stirring device.

Run1は対象として連続曝気を行ったもの(エアレー
タの回転数;i500rpm、周速10 m / s 
)である。Run2は曝気時1500rpm1曝気停止
時700rpm(周速4.7m/’S)で運転したもの
である。Run3は曝気時の午前1時から6時までは、
この時間帯の平均BOD容積負荷が0. 26Kg/m
3・dと低いため、曝気時のエアレータの回転数を10
100Orp周速6.7m/s)に下げ、そのほかの曝
気時は1500rpmで運転したものである。
Run 1 was subjected to continuous aeration (aerator rotation speed: i500 rpm, circumferential speed 10 m/s
). Run 2 was operated at 1500 rpm during aeration and 700 rpm when aeration was stopped (peripheral speed 4.7 m/'S). Run 3 is from 1:00 a.m. to 6:00 a.m. during aeration.
The average BOD volume load during this time period is 0. 26Kg/m
Since it is as low as 3.d, the rotation speed of the aerator during aeration is set to 10.
100 Orp peripheral speed was lowered to 6.7 m/s), and during other aeration operations, the operation was performed at 1500 rpm.

また曝気停止時は、700rpmで運転した。Further, when the aeration was stopped, the operation was performed at 700 rpm.

なお間欠曝気は1時間毎のサイクルで行い、早朝3時か
ら6時までは、この時間帯のBOD容積負荷が0.10
Kg/′m’ ・d以下であるため曝気風量も半分を落
とした。結果を表3にまとめる。
Intermittent aeration is performed in an hourly cycle, and from 3:00 am to 6:00 am, the BOD volume load during this time is 0.10.
Since it was less than Kg/'m'·d, the aeration air volume was also reduced by half. The results are summarized in Table 3.

Run1に比べ、Run2てはSS1窒素、りん除去の
向上か認められた。またR u n 3てはRun2よ
りさらに窒素、りんの除去効果か増し、BOD、SS、
透視度も良好な値か得られた。
Compared to Run 1, it was observed that SS1 nitrogen and phosphorus removal was improved in Run 2. In addition, Run 3 has an even greater nitrogen and phosphorus removal effect than Run 2, and has improved BOD, SS,
Good transparency values were also obtained.

[発明の効果] 本発明の作用効果を以下に列挙する。[Effect of the invention] The effects of the present invention are listed below.

(王)  曝気時における攪拌機構の回転数と曝気停止
時における攪拌機構の回転数とを異なる様に運転するこ
とにより、好気的条件における酸化および嫌気的条件に
おける脱窒や脱りんを効果的に進行させることが出来る
(King) By operating the stirring mechanism at different rotational speeds during aeration and when the aeration is stopped, oxidation under aerobic conditions and denitrification and dephosphorization under anaerobic conditions can be effectively achieved. It is possible to proceed to

(2) 活性汚泥の性状を良好なものとして、特にフロ
ックの微細化による沈降特性の低下や処理水の白濁、浮
上汚泥の増加を抑制し、効率的な汚水処理を達成するこ
とか出来る。
(2) By improving the properties of activated sludge, it is possible to achieve efficient sewage treatment by suppressing deterioration of sedimentation properties due to finer flocs, clouding of treated water, and increase in floating sludge.

(3) 全体としてのエネルキー消費量を低く抑えるこ
とが出来る。
(3) Overall energy consumption can be kept low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を一実施例を適用した装置を示す側面図
、第2図は第1図の装置の作用を示す特性図、第3図は
本発明の他の実施例を適用した装置を示す側面図である
。 1.22・・・曝気槽  2.24・・・沈殿池  3
・・・水中機械式曝気攪拌装置(水中エアレータ)26
・・・散気管  28・・・攪拌機構    1 表     2 表      3
Fig. 1 is a side view showing a device to which one embodiment of the present invention is applied, Fig. 2 is a characteristic diagram showing the operation of the device in Fig. 1, and Fig. 3 is a device to which another embodiment of the present invention is applied. FIG. 1.22... Aeration tank 2.24... Sedimentation tank 3
...Underwater mechanical aeration stirring device (underwater aerator) 26
... Diffusion pipe 28 ... Stirring mechanism 1 Table 2 Table 3

Claims (3)

【特許請求の範囲】[Claims] (1)内部に曝気攪拌装置を配備し、汚水を連続的に流
入させながら該曝気攪拌装置を用いて攪拌作用を与えな
がら曝気を間欠的に行い、所要時間ごとに嫌気状態と好
気状態とを交互に繰返す単一の曝気槽と沈殿池とから成
る単槽式嫌気好気活性汚泥法における曝気攪拌装置の運
転方法において、前記曝気攪拌装置を、曝気時における
回転数と曝気停止時の回転数とが異なるように運転する
ことを特徴とする単槽式嫌気好気活性汚泥法における曝
気攪拌装置の運転方法。
(1) An aeration stirring device is installed inside, and while sewage is continuously flowing in, aeration is performed intermittently while giving a stirring action using the aeration stirring device, and the anaerobic state and aerobic state are changed at each required time. In a method for operating an aeration agitation device in a single-tank anaerobic and aerobic activated sludge method consisting of a single aeration tank and a settling tank that alternately repeat A method for operating an aeration agitation device in a single-tank anaerobic and aerobic activated sludge process, which is characterized by operating the aeration stirring device in different numbers.
(2)曝気槽への流入水の負荷量に対応して、曝気時に
おける曝気風量及び/又は曝気撹拌装置の回転数を変え
る請求項(1)に記載の単槽式嫌気好気活性汚泥法にお
ける曝気攪拌装置の運転方法。
(2) The single-tank anaerobic and aerobic activated sludge method according to claim (1), wherein the aeration air volume and/or the rotation speed of the aeration stirring device during aeration are changed in accordance with the load amount of water flowing into the aeration tank. How to operate an aeration agitator in.
(3)予め設定されたタイムシーケンスに従って、曝気
時における曝気風量および/又は曝気攪拌装置の回転数
を変える請求項(1)に記載の単槽式嫌気好気活性汚泥
法における曝気攪拌装置の運転方法。
(3) Operation of the aeration agitation device in the single-tank anaerobic and aerobic activated sludge method according to claim (1), wherein the aeration air volume and/or the rotation speed of the aeration agitation device during aeration are changed according to a preset time sequence. Method.
JP2323087A 1990-11-28 1990-11-28 Operating method of aeration stirrer of single tank type anaerobic and aerobic activated sludge method Pending JPH04193399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2323087A JPH04193399A (en) 1990-11-28 1990-11-28 Operating method of aeration stirrer of single tank type anaerobic and aerobic activated sludge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2323087A JPH04193399A (en) 1990-11-28 1990-11-28 Operating method of aeration stirrer of single tank type anaerobic and aerobic activated sludge method

Publications (1)

Publication Number Publication Date
JPH04193399A true JPH04193399A (en) 1992-07-13

Family

ID=18150933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2323087A Pending JPH04193399A (en) 1990-11-28 1990-11-28 Operating method of aeration stirrer of single tank type anaerobic and aerobic activated sludge method

Country Status (1)

Country Link
JP (1) JPH04193399A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326914B1 (en) * 1999-07-05 2002-03-13 임정규 High speed separator for water & wastewater treatment
JP2015024369A (en) * 2013-07-26 2015-02-05 株式会社クボタ Aerobic-cum-anaerobic reaction tank and operation method of the same
JP2015054255A (en) * 2013-09-10 2015-03-23 株式会社クボタ Reaction tank for aerobic-anaerobic use and method for driving the same
CN107406286A (en) * 2015-03-25 2017-11-28 赛莱默知识产权管理有限公司 Processing unit and processing equipment for control process installation method, for processing equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293192A (en) * 1988-05-19 1989-11-27 Hitachi Kiden Kogyo Ltd Method of operating aeration device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293192A (en) * 1988-05-19 1989-11-27 Hitachi Kiden Kogyo Ltd Method of operating aeration device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326914B1 (en) * 1999-07-05 2002-03-13 임정규 High speed separator for water & wastewater treatment
JP2015024369A (en) * 2013-07-26 2015-02-05 株式会社クボタ Aerobic-cum-anaerobic reaction tank and operation method of the same
JP2015054255A (en) * 2013-09-10 2015-03-23 株式会社クボタ Reaction tank for aerobic-anaerobic use and method for driving the same
CN107406286A (en) * 2015-03-25 2017-11-28 赛莱默知识产权管理有限公司 Processing unit and processing equipment for control process installation method, for processing equipment

Similar Documents

Publication Publication Date Title
JP2004237144A (en) Waste water disposal system
KR20170101664A (en) Advanced treatment Apparatus effectively removes the nutrients in sewage/waste water
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
JPH0461998A (en) Discharged water treatment device
JPH07100486A (en) Method for treating drainage
JPH04193399A (en) Operating method of aeration stirrer of single tank type anaerobic and aerobic activated sludge method
JPS63104699A (en) Method for controlling operation of anaerobic tank by underwater stirrer
CN210825614U (en) (AO)2- -precipitation integrated multistage circulation reactor
JP2587726B2 (en) Sewage treatment method
JP3621026B2 (en) Sewage treatment apparatus and treatment method
JPS602917B2 (en) Biological treatment method for wastewater
JPH0461716B2 (en)
JP2003320391A (en) Sewage treatment system and operation method therefor
JPS607997A (en) Process and apparatus for purifying filthy turbid water in anaerobic and aerobic treating tank using underwater stirring
JP2002336893A (en) Method of controlling operation of oxidation ditch
CN110526397A (en) (AO)2Precipitate integrated multi-stage recirculation reactor
JP2668467B2 (en) Sewage treatment method
JPH0738992B2 (en) Oxidation ditch
JP2002320994A (en) Method for operating oxidation ditch
JP2971662B2 (en) Sewage treatment method
JPH10211498A (en) Sewage treatment apparatus
KR100357771B1 (en) The advanced wastewater treatment method and equipment using the circular oxidation ditch of intermittent aeration method to improve the removal of nitrogen and phosphorus
CN114853174A (en) Energy-saving consumption-reducing carbon-removing denitrification wastewater treatment equipment and treatment process
JPS6068096A (en) Treatment of organic waste water
KR100340681B1 (en) Aerobic treatment method of simple sewage disposal treatment plant