JP5075926B2 - Sewage treatment apparatus and sewage treatment method - Google Patents

Sewage treatment apparatus and sewage treatment method Download PDF

Info

Publication number
JP5075926B2
JP5075926B2 JP2010009614A JP2010009614A JP5075926B2 JP 5075926 B2 JP5075926 B2 JP 5075926B2 JP 2010009614 A JP2010009614 A JP 2010009614A JP 2010009614 A JP2010009614 A JP 2010009614A JP 5075926 B2 JP5075926 B2 JP 5075926B2
Authority
JP
Japan
Prior art keywords
aeration
measuring
treated water
water quality
sewage treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010009614A
Other languages
Japanese (ja)
Other versions
JP2011147858A (en
Inventor
剛 武本
一郎 山野井
秀之 田所
卓矢 上門
直樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010009614A priority Critical patent/JP5075926B2/en
Publication of JP2011147858A publication Critical patent/JP2011147858A/en
Application granted granted Critical
Publication of JP5075926B2 publication Critical patent/JP5075926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、下水処理の過程で発生する温室効果ガスを削減するための運転制御を適用した下水処理装置及び下水処理方法に係り、特に、生物反応槽の曝気槽から発生する亜酸化窒素(N2O)を対象とした下水処理装置及び下水処理方法に関する。 The present invention relates to a sewage treatment apparatus and a sewage treatment method to which operation control for reducing greenhouse gas generated in the process of sewage treatment is applied, and in particular, nitrous oxide (N) generated from an aeration tank of a biological reaction tank. The present invention relates to a sewage treatment apparatus and a sewage treatment method for 2 O).

下水処理方法には、活性汚泥と呼ばれる微生物により生物学的に処理する活性汚泥法がある。活性汚泥法では、下水中の窒素は、アンモニア体窒素を硝酸体窒素に酸化する硝化工程と、硝酸体窒素を窒素ガスに還元する脱窒工程により除去される。硝化工程,脱窒工程の副生成物として亜酸化窒素(N2O)が生成することが知られている。亜酸化窒素(N2O)は二酸化炭素(CO2)の310倍の温室効果があり、地球温暖化防止のための排出削減対象物質になっている。 The sewage treatment method includes an activated sludge method in which biological treatment is performed with microorganisms called activated sludge. In the activated sludge method, nitrogen in sewage is removed by a nitrification step in which ammonia nitrogen is oxidized to nitrate nitrogen and a denitrification step in which nitrate nitrogen is reduced to nitrogen gas. It is known that nitrous oxide (N 2 O) is generated as a byproduct of the nitrification process and the denitrification process. Nitrous oxide (N 2 O) has a greenhouse effect 310 times that of carbon dioxide (CO 2 ), and is an emission reduction target substance for preventing global warming.

〔非特許文献1〕に記載のように、N2O生成量が増加する条件には、硝化反応の進行および不完全な脱窒反応が挙げられる。〔特許文献1〕には、N2Oガスを連続モニタリングして回分式活性汚泥法の嫌気と好気の時間配分を制御する方法が記載されている。〔特許文献2〕には、硝化槽で発生した亜酸化窒素ガスを酸素除去装置に送気し、含有ガスに混在する酸素を予め除去した脱酸素ガスを脱窒槽の廃水中に導入する亜酸化窒素ガスの生物学的処理方法が記載されている。 As described in [Non-Patent Document 1], conditions for increasing the amount of N 2 O produced include the progress of nitrification reaction and incomplete denitrification reaction. [Patent Document 1] describes a method of controlling the anaerobic and aerobic time distribution of the batch activated sludge process by continuously monitoring N 2 O gas. In [Patent Document 2], nitrous oxide gas generated in a nitrification tank is fed to an oxygen removing device, and deoxygenated gas from which oxygen contained in the contained gas has been removed in advance is introduced into waste water of the denitrification tank. A method for biological treatment of nitrogen gas is described.

特開2007−244949号公報JP 2007-244949 A 特開2007−75821号公報JP 2007-75821 A

下水道の長期的技術開発に関する基礎調査、(財)下水道新技術推進機構(1996)http://www.jiwet.jp/result/annual/plan/1996a1-1-2m.htmBasic research on long-term sewerage technology development, New Sewerage Technology Promotion Organization (1996) http://www.jiwet.jp/result/annual/plan/1996a1-1-2m.htm

2O生成量を抑制する手段には脱窒反応の促進が考えられる。〔特許文献1〕に記載の従来の技術は、硝化反応と脱窒反応の制御のためにN2Oのモニタリング値を用いたものであり、必ずしもN2Oを抑制するための制御条件になっていない恐れがある。また、〔特許文献1〕に記載の従来の技術は、回分式活性汚泥法であるため嫌気と好気の時間を制御できるが、公共下水道などで多く適用されている嫌気−無酸素−好気法,循環式硝化脱窒法などは、回分式でなく連続式のため、嫌気時間や好気時間は、槽容積と下水の流入流量に依存しているため反応時間の制御は困難であった。又、〔特許文献2〕に記載の従来の技術は、硝化槽で発生した亜酸化窒素ガスを脱窒槽の廃水中に導入して亜酸化窒素ガスの放出を防止しているが、脱窒槽が適切な状態でないため、N2Oを抑制するための制御条件になっていない恐れがある。 As a means for suppressing the amount of N 2 O produced, it is conceivable to promote a denitrification reaction. The conventional technique described in [Patent Document 1] uses the monitoring value of N 2 O for controlling the nitrification reaction and the denitrification reaction, and is necessarily a control condition for suppressing N 2 O. There is no fear. In addition, the conventional technique described in [Patent Document 1] is a batch activated sludge method, and thus can control anaerobic and aerobic times. However, anaerobic-anoxic-aerobic that is often applied in public sewers and the like. Since the method and the circulation type nitrification denitrification method are continuous, not batch, the anaerobic time and aerobic time depend on the tank volume and the inflow rate of sewage, so it is difficult to control the reaction time. In addition, in the conventional technique described in [Patent Document 2], the nitrous oxide gas generated in the nitrification tank is introduced into the waste water of the denitrification tank to prevent the release of the nitrous oxide gas. Since it is not an appropriate state, there is a possibility that it is not a control condition for suppressing N 2 O.

本発明の目的は、生物反応槽から放出されるN2O濃度を制御指標とし、脱窒反応を促進する運転条件を制御し、N2O放出量を削減できる下水処理装置及び下水処理方法を提供することにある。 An object of the present invention is to provide a sewage treatment apparatus and a sewage treatment method capable of reducing the amount of N 2 O emission by controlling the operating conditions for promoting the denitrification reaction using the N 2 O concentration released from the biological reaction tank as a control index. It is to provide.

上記目的を達成するために、本発明の下水処理装置及び下水処理方法は、上流側に設置される嫌気槽と下流側に設置される好気槽を有する活性汚泥が投入されている複数の反応槽により下水を処理し、好気槽の上部に設置され、好気槽に設置される複数の曝気手段によって曝気される曝気ガスを回収するためのガス回収手段によって集められた排ガス中のN2O濃度をN2O計測手段により計測し、N2O計測手段の計測信号に基づいて複数の曝気手段のうち最も嫌気槽側の曝気手段の送風量を調整する前段曝気手段調整器を制御するものである。 In order to achieve the above object, the sewage treatment apparatus and the sewage treatment method of the present invention include a plurality of reactions in which activated sludge having an anaerobic tank installed on the upstream side and an aerobic tank installed on the downstream side is charged. N 2 in the exhaust gas collected by the gas recovery means for treating the sewage by the tank, and installed in the upper part of the aerobic tank, and recovering the aerated gas aerated by the plurality of aeration means installed in the aerobic tank the O 2 concentration is measured by N 2 O measuring means, for controlling the front aeration means adjuster for adjusting the blowing rate of most anaerobic tank side of the aeration unit of the plurality of aeration means on the basis of the measurement signal of N 2 O measurement means Is.

又、N2O計測手段の計測信号に基づいて前記好気槽の下流側から前記嫌気槽に反応液を循環するための循環手段の流量を制御するものである。 Further, the flow rate of the circulating means for circulating the reaction liquid from the downstream side of the aerobic tank to the anaerobic tank is controlled based on the measurement signal of the N 2 O measuring means.

又、N2O計測手段の計測信号に基づいて前記嫌気槽に炭素源を投入するための炭素源投入手段の流量を制御するものである。 Further, the flow rate of the carbon source feeding means for feeding the carbon source into the anaerobic tank is controlled based on the measurement signal of the N 2 O measuring means.

又、好気槽に設置される複数の曝気手段によって曝気される曝気ガスを回収するためのガス回収手段によって集められた排ガス中のN2O濃度をN2O計測手段により計測し、NO3−N計測手段により嫌気槽の下流側に反応液のNO3−Nを計測し、N2O計測手段とNO3−N計測手段の各計測値が予め設定された上限値を超過した際に、嫌気槽に炭素源を投入するための炭素源投入手段と、好気槽の下流側から嫌気槽に反応液を循環するための循環手段と、好気槽に複数の曝気手段と最も嫌気槽側の曝気手段の送風量を調整するための曝気手段調整器のうちの少なくとも一つを制御するものである。 Further, the N 2 O concentration in the exhaust gas collected by the gas collecting means for collecting the aerated gas aerated by the plurality of aeration means installed in the aerobic tank is measured by the N 2 O measuring means, and NO 3 When NO 3 -N of the reaction liquid is measured downstream of the anaerobic tank by the -N measuring means, and each measured value of the N 2 O measuring means and the NO 3 -N measuring means exceeds a preset upper limit value , A carbon source charging means for charging the carbon source into the anaerobic tank, a circulation means for circulating the reaction liquid from the downstream side of the aerobic tank to the anaerobic tank, a plurality of aeration means in the aerobic tank and the most anaerobic tank It controls at least one of the aeration means adjusters for adjusting the air flow rate of the side aeration means.

本発明によれば、生物反応槽のN2O発生量を元に、生物反応槽の運転を制御することで脱窒反応を促進し、N2O発生量を抑制できる。 According to the present invention, based on the N 2 O emissions of biological reactor, to promote the denitrification by controlling the operation of the bioreactor, it is possible to suppress the N 2 O emissions.

本発明の実施例1の下水処理装置の構成図である。It is a block diagram of the sewage treatment apparatus of Example 1 of this invention. 本発明の実施例2の下水処理装置の構成図である。It is a block diagram of the sewage treatment apparatus of Example 2 of this invention. 本発明の実施例3の下水処理装置の構成図である。It is a block diagram of the sewage treatment apparatus of Example 3 of this invention. 本発明の実施例4の下水処理装置の構成図である。It is a block diagram of the sewage treatment apparatus of Example 4 of this invention. 本発明の実施例5の下水処理装置の構成図である。It is a block diagram of the sewage treatment apparatus of Example 5 of this invention.

本発明の各実施例について図面を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

本発明の実施例1を図1により説明する。図1は本実施例の下水処理装置の構成図である。   A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a configuration diagram of a sewage treatment apparatus according to this embodiment.

複数の微生物群が生息している活性汚泥が投入されている反応槽が直列に接続されており、上流側に嫌気槽1、嫌気槽1の下流に順次、好気槽2,好気槽3,好気槽4が設けられている。図示していないが、好気槽4の後段には沈殿池が設けられ、好気槽2〜4の反応液を処理水と汚泥とに固液分離する。分離された汚泥の一部は、図示していないポンプにより嫌気槽1に返送汚泥として戻される。   A reaction tank in which activated sludge inhabiting a plurality of microbial groups is inserted is connected in series. , An aerobic tank 4 is provided. Although not shown in the figure, a settling basin is provided in the subsequent stage of the aerobic tank 4 to separate the reaction liquid in the aerobic tanks 2 to 4 into treated water and sludge. A part of the separated sludge is returned as returned sludge to the anaerobic tank 1 by a pump (not shown).

好気槽2〜4には、それぞれ曝気手段5〜7が設置されている。曝気手段5〜7は、それぞれ配管によりブロワ8に接続され、ブロワ8と曝気手段5の間の配管には、前段曝気手段調整器9が設置されている。ブロワ8により供給される空気は曝気手段5〜7に送られ曝気手段5〜7から、それぞれ好気槽2〜4で曝気される。   Aeration means 5 to 7 are installed in the aerobic tanks 2 to 4, respectively. The aeration means 5 to 7 are respectively connected to the blower 8 by piping, and a pre-stage aeration means adjuster 9 is installed in the piping between the blower 8 and the aeration means 5. The air supplied by the blower 8 is sent to the aeration means 5 to 7 and aerated from the aeration means 5 to 7 in the aerobic tanks 2 to 4, respectively.

好気槽2〜4で曝気された空気は、好気槽2〜4内の撹拌と下水を処理する際に活性汚泥が必要とする酸素を供給している。前段曝気手段調整器9の開度を制御することで、好気槽群の前段である好気槽2は曝気量が変更される。   The air aerated in the aerobic tanks 2 to 4 supplies oxygen necessary for the activated sludge when processing the agitation and sewage in the aerobic tanks 2 to 4. By controlling the opening degree of the pre-stage aeration means adjuster 9, the amount of aeration is changed in the aerobic tank 2 which is the front stage of the aerobic tank group.

好気槽2〜4の上部には曝気した排ガスを回収するガス回収手段10〜12がそれぞれ設置されている。ガス回収手段10〜12により回収された排ガスは、ガス回収手段10〜12のそれぞれに接続された配管により1つの配管に集約されて排気され、排気される排ガスは、配管に設置されたN2O計測手段13によってN2O濃度が計測されている。N2O計測手段13の計測信号は、制御手段14に伝達される。制御手段14は、計測されるN2O濃度に基づいて前段曝気手段調整器9を制御し、好気槽2への曝気量を制御する。 In the upper part of the aerobic tanks 2 to 4, gas recovery means 10 to 12 for recovering the aerated exhaust gas are respectively installed. The exhaust gas recovered by the gas recovery means 10-12 is collected and exhausted to one pipe by the pipe connected to each of the gas recovery means 10-12, and the exhaust gas exhausted is N 2 installed in the pipe. The O 2 measuring means 13 measures the N 2 O concentration. A measurement signal from the N 2 O measuring means 13 is transmitted to the control means 14. The control means 14 controls the pre-stage aeration means adjuster 9 based on the measured N 2 O concentration, and controls the amount of aeration to the aerobic tank 2.

2Oは、嫌気槽の脱窒工程おいてNO3−N→NO2−N→N2O→N2へと還元される過程で生成する。脱窒反応が良好に進行している場合、N2OはN2ガスなとり大気中に放出されるが、脱窒反応が不完全、すなわち脱窒不良になるとN2Oが反応液に溶解して蓄積する。 N 2 O is generated in the process of reduction from NO 3 —N → NO 2 —N → N 2 O → N 2 in the denitrification step of the anaerobic tank. When the denitrification reaction is proceeding well, N 2 O is released into the atmosphere without N 2 gas, but when the denitrification reaction is incomplete, that is, when the denitrification is poor, N 2 O dissolves in the reaction solution. Accumulate.

溶解性N2Oは、嫌気槽1から好気槽2へ流入すると、曝気によりパージされ、排ガス中のN2O濃度が増加する。このため、溶解性N2Oの蓄積を抑制できればN2O排出量を削減できる。溶存N2Oの蓄積を抑制するためには、脱窒反応を促進する運転条件に制御することが必要である。 When the soluble N 2 O flows from the anaerobic tank 1 to the aerobic tank 2, it is purged by aeration, and the N 2 O concentration in the exhaust gas increases. Therefore, it is possible to reduce the N 2 O emissions if suppressing the accumulation of soluble N 2 O. In order to suppress the accumulation of dissolved N 2 O, it is necessary to control the operating conditions to promote the denitrification reaction.

なお、図1に示す例では、N2O計測手段13はガス回収手段10〜12の排ガスの合流後の配管に設置されているが、好気槽2で曝気によりパージされたN2Oを計測するためには、ガス回収手段10の配管に設置するとよい。 In the example shown in FIG. 1, the N 2 O measuring means 13 is installed in the pipe after the exhaust gas merging of the gas recovery means 10 to 12, but N 2 O purged by aeration in the aerobic tank 2 is used. In order to measure, it is good to install in the piping of the gas recovery means 10.

本実施例では、排ガス中のN2O濃度の増加が検知された際に、その原因が脱窒不良であると推定して脱窒促進運転を行う。本実施例の制御方法について説明する。 In this embodiment, when an increase in the N 2 O concentration in the exhaust gas is detected, it is estimated that the cause is a denitrification failure, and the denitrification promotion operation is performed. A control method according to the present embodiment will be described.

制御手段14は、N2O計測手段13の計測値が予め設定された上限値Aを超過した場合に、前段曝気手段調整器9を制御し、好気槽2への曝気量を予め設定された下限値Bに設定する。ここで、上限値Aは、N2O計測手段13の計測値の一日の平均値の1.5〜10倍に設定している。また、固定された数値を用いる場合には5ppm〜20ppmに設定している。下限値Bは、好気槽2を曝気により撹拌でき、溶存酸素濃度が低下して実質的に嫌気反応となる曝気量に設定される。 When the measured value of the N 2 O measuring means 13 exceeds the preset upper limit value A, the control means 14 controls the pre-stage aeration means adjuster 9 and the aeration amount to the aerobic tank 2 is preset. The lower limit B is set. Here, the upper limit value A is set to 1.5 to 10 times the daily average value of the measured value of the N 2 O measuring means 13. Moreover, when using the fixed numerical value, it is set to 5 ppm-20 ppm. The lower limit B is set to an aeration amount in which the aerobic tank 2 can be agitated by aeration, and the dissolved oxygen concentration is lowered to cause an anaerobic reaction substantially.

このように曝気量を下限値Bに設定する制御により、好気槽2は実質的には嫌気槽となる。溶解性N2Oが増加した原因として、脱窒反応の時間が短いことが原因であるため、嫌気槽を一時的に追加でき脱窒の反応時間を長くでき、脱窒反応を促進できる。好気槽2の嫌気化だけでは不足する場合は、順次嫌気槽側の好気槽を嫌気化させるとよい。 As described above, the aerobic tank 2 is substantially an anaerobic tank by controlling the aeration amount to the lower limit B. The cause of the increase in the soluble N 2 O is that the denitrification reaction time is short, so an anaerobic tank can be temporarily added, the denitrification reaction time can be increased, and the denitrification reaction can be promoted. In the case where the anaerobic tank 2 alone is insufficient, it is preferable to make the anaerobic tank on the anaerobic tank side anaerobic one after another.

なお、好気槽2を嫌気槽にすると、後段の好気槽での滞留時間が短くなる。このため、硝化反応の時間が短くなり、窒素除去率を低下する恐れがある。そこで、本実施例では、制御手段14がブロワ8からの曝気量を維持したまま、前段曝気手段調整器9を制御して好気槽2の曝気量を低下させるようにしている。このように制御すると、好気槽3と好気槽4の曝気量は増加し、好気槽3〜4の溶存酸素濃度を上昇させる。一般的に、硝化反応は溶存酸素濃度が高いほど、反応速度が速くなるため、硝化時間が短くても硝化量の維持が可能である。硝化量が低下する場合は、制御手段14は、前段曝気手段調整器9を制御した際にブロワ8の曝気量を増加させる。なお、ブロワ8の曝気量を変更すると曝気ガスの希釈によりN2O計測手段13の計測値が変化する。制御手段14は、ブロワ8の全体の曝気量又は排ガス流量と、N2O計測手段13の計測値からN2O生成速度を算出し、N2O生成速度を制御指標に、前段曝気手段調整器9を制御すると良い。 If the aerobic tank 2 is an anaerobic tank, the residence time in the subsequent aerobic tank is shortened. For this reason, the time for the nitrification reaction is shortened and the nitrogen removal rate may be reduced. Therefore, in the present embodiment, the aeration amount in the aerobic tank 2 is reduced by controlling the upstream aeration means adjuster 9 while the control means 14 maintains the aeration amount from the blower 8. By controlling in this way, the amount of aeration in the aerobic tank 3 and the aerobic tank 4 increases, and the dissolved oxygen concentration in the aerobic tanks 3 to 4 is increased. In general, the higher the dissolved oxygen concentration in the nitrification reaction, the faster the reaction rate. Therefore, even if the nitrification time is short, the nitrification amount can be maintained. When the nitrification amount decreases, the control unit 14 increases the aeration amount of the blower 8 when the pre-stage aeration unit adjuster 9 is controlled. When the aeration amount of the blower 8 is changed, the measurement value of the N 2 O measurement means 13 changes due to dilution of the aeration gas. The control means 14 calculates the N 2 O production rate from the entire aeration amount or exhaust gas flow rate of the blower 8 and the measured value of the N 2 O measurement means 13, and adjusts the pre-stage aeration means using the N 2 O production rate as a control index. The device 9 may be controlled.

本実施例によれば、溶解性N2OをN2に還元する脱窒反応を促進し、排ガス中のN2O濃度を低下できN2O放出量を削減できる。 According to this example, the denitrification reaction for reducing soluble N 2 O to N 2 is promoted, the N 2 O concentration in the exhaust gas can be reduced, and the amount of N 2 O released can be reduced.

本発明の実施例2を図2により説明する。図2は本実施例の下水処理装置の構成図である。   A second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a configuration diagram of the sewage treatment apparatus of this embodiment.

本実施例は、実施例1と同様に構成されているが、本実施例では、前段曝気手段調整器9が設けられていなく、好気槽4の反応液を嫌気槽1に循環する循環ポンプ15を設けている。   The present embodiment is configured in the same manner as in the first embodiment, but in this embodiment, the upstream aeration means adjuster 9 is not provided, and the circulation pump that circulates the reaction solution in the aerobic tank 4 to the anaerobic tank 1. 15 is provided.

循環ポンプ15は好気槽4の反応液を嫌気槽1に循環する。本実施例の運転方式は硝化液循環法といわれ、嫌気槽1は無酸素槽といわれる。本実施例では、循環ポンプ15による反応液の循環により好気槽で酸化されたNO3−Nが嫌気槽1に流入し、N2ガスに還元されることで窒素除去率の向上が期待できる。循環ポンプ15の流量は制御手段14により制御される。 The circulation pump 15 circulates the reaction solution in the aerobic tank 4 to the anaerobic tank 1. The operation method of the present embodiment is called a nitrification liquid circulation method, and the anaerobic tank 1 is called an oxygen-free tank. In this embodiment, NO 3 —N oxidized in the aerobic tank by the circulation of the reaction liquid by the circulation pump 15 flows into the anaerobic tank 1 and is reduced to N 2 gas, so that an improvement in nitrogen removal rate can be expected. . The flow rate of the circulation pump 15 is controlled by the control means 14.

反応液の循環に伴い、好気槽4から嫌気槽1に流入するNO3−Nが過剰になると、N2OからN2ガスへの還元が間に合わず、好気槽2への流入水に溶解性N2Oが増加し、排ガス中のN2O濃度が増加する。そこで、本実施例では、制御手段14は、N2O計測手段13の計測値が上限値Aを超過した時に循環ポンプ15の循環流量を低下させる。循環流量の低下により、嫌気槽1に流入するNO3−Nが減少するため、脱窒不良時でも溶解性N2Oの蓄積を防止できる。循環流量の低下は、窒素除去率の低下を招くため、制御手段14は窒素除去率の目標値を維持できる範囲で循環流量を低下させると良い。 With the circulation of the reaction solution, the NO 3 -N flowing from aerobic tank 4 to the anaerobic tank 1 is excessive, the reduction from the N 2 O to N 2 gas is too late, the inflow water to the aerobic tank 2 Soluble N 2 O increases and the N 2 O concentration in the exhaust gas increases. Therefore, in this embodiment, the control means 14 reduces the circulation flow rate of the circulation pump 15 when the measured value of the N 2 O measurement means 13 exceeds the upper limit value A. Since NO 3 —N flowing into the anaerobic tank 1 decreases due to the decrease in the circulation flow rate, accumulation of soluble N 2 O can be prevented even when denitrification is defective. Since the reduction of the circulation flow rate causes a reduction of the nitrogen removal rate, the control means 14 may reduce the circulation flow rate within a range where the target value of the nitrogen removal rate can be maintained.

本実施例によれば、循環するNO3−Nを減少させ、脱窒不良時においても溶解性N2Oの蓄積を抑制でき、排ガス中のN2O濃度を低下できN2O放出量を削減できる。 According to the present embodiment, the circulating NO 3 —N can be reduced, the accumulation of soluble N 2 O can be suppressed even in the case of poor denitrification, the N 2 O concentration in the exhaust gas can be reduced, and the amount of N 2 O released can be reduced. Can be reduced.

本発明の実施例3を図3により説明する。図3は本実施例の下水処理装置の構成図である。   A third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a configuration diagram of the sewage treatment apparatus of this embodiment.

本実施例は、実施例1と同様に構成されているが、本実施例では、前段曝気手段調整器9が設けられていなく、有機物を追加投入する炭素源投入ポンプ16を設けている。炭素源投入ポンプ16は、活性汚泥が脱窒反応をする際に必要な電子供与体である有機物を追加投入する。有機物としてはメタノール、最初沈殿池で発生する汚泥などが挙げられる。炭素源投入ポンプ16の流量は制御手段14で制御される。   The present embodiment is configured in the same manner as in the first embodiment, but in this embodiment, the pre-stage aeration means regulator 9 is not provided, but a carbon source input pump 16 for additionally supplying organic substances is provided. The carbon source charging pump 16 additionally charges an organic substance that is an electron donor necessary when the activated sludge performs a denitrification reaction. Organic substances include methanol and sludge generated in the first sedimentation basin. The flow rate of the carbon source charging pump 16 is controlled by the control means 14.

流入下水中の有機物が低下すると、電子供与体が減少し、脱窒量が減少する。脱窒量の減少に伴い溶解性N2Oが嫌気槽1の反応液に蓄積し、溶解性N2Oが好気槽2に流入することで、曝気により排ガスにパージされてN2O放出量が増加する。本実施例では、制御手段14は、N2O計測手段13の計測値が上限値Aを超過した時に炭素源投入ポンプ16を起動させる。炭素源投入ポンプ16の流量は、予め設定されている設定値であり、流量がこの設定値となるように運転される。嫌気槽1に有機物が投入されると、脱窒反応が促進され溶解性N2OはN2ガスに還元される。 When the organic matter in the inflowing sewage falls, the electron donor decreases and the amount of denitrification decreases. As the amount of denitrification decreases, soluble N 2 O accumulates in the reaction solution in the anaerobic tank 1 and the soluble N 2 O flows into the aerobic tank 2 so that it is purged to the exhaust gas by aeration and releases N 2 O. The amount increases. In this embodiment, the control means 14 activates the carbon source charging pump 16 when the measured value of the N 2 O measuring means 13 exceeds the upper limit value A. The flow rate of the carbon source charging pump 16 is a preset set value, and is operated so that the flow rate becomes this set value. When an organic substance is introduced into the anaerobic tank 1, the denitrification reaction is promoted and the soluble N 2 O is reduced to N 2 gas.

本実施例によれば、有機物の減少に由来する脱窒不良時においても溶解性N2Oの蓄積を抑制でき、排ガス中のN2O濃度を低減できN2O放出量を削減できる。 According to the present embodiment, it is possible to suppress the accumulation of soluble N 2 O even at the time of poor denitrification resulting from the decrease in organic matter, to reduce the N 2 O concentration in the exhaust gas, and to reduce the amount of N 2 O released.

本発明の実施例4を図4により説明する。図4は本実施例の下水処理装置の構成図である。   A fourth embodiment of the present invention will be described with reference to FIG. FIG. 4 is a configuration diagram of the sewage treatment apparatus of this embodiment.

本実施例は、実施例1と同様に構成されているが、本実施例では、さらに好気槽4の反応液を嫌気槽1に循環する循環ポンプ15と、有機物を追加投入する炭素源投入ポンプ16と、嫌気槽1の反応液のNO3−Nを計測するためのNO3−N計測手段17を設けている。NO3−N計測手段17の計測信号は制御手段14に送られる。 The present embodiment is configured in the same manner as in the first embodiment, but in this embodiment, a circulation pump 15 that circulates the reaction solution in the aerobic tank 4 to the anaerobic tank 1 and a carbon source input that additionally inputs organic matter. A pump 16 and NO 3 -N measuring means 17 for measuring NO 3 -N of the reaction solution in the anaerobic tank 1 are provided. The measurement signal of the NO 3 -N measuring means 17 is sent to the control means 14.

脱窒反応によりNO3−Nは、NO2−N→N2O→N2へと還元されるため、NO3−Nが嫌気槽に残留していると溶解性N2Oが残留している可能性が高く、溶解性N2Oの指標にできる。 NO 3 —N is reduced to NO 2 —N → N 2 O → N 2 by the denitrification reaction, so if NO 3 —N remains in the anaerobic tank, soluble N 2 O remains. It can be used as an index of soluble N 2 O.

本実施例の制御方法について説明する。制御手段14は、NO3−N計測手段17とN2O計測手段13の計測値を受信する。制御手段14は、N2O計測手段13の計測値が上限値Aを超過し、NO3−N計測手段17の計測値が上限値B以上で、1)前段曝気手段調整器9による好気槽2の曝気量を下限値にする、2)循環ポンプ15の循環流量を低下させる、3)炭素源投入ポンプ16を起動させる制御の中から、何れか一つ以上を実施する。 A control method according to the present embodiment will be described. The control means 14 receives the measured values of the NO 3 -N measuring means 17 and the N 2 O measuring means 13. The control means 14 is such that the measured value of the N 2 O measuring means 13 exceeds the upper limit value A and the measured value of the NO 3 -N measuring means 17 is equal to or higher than the upper limit value B. 1) Aerobic by the pre-stage aeration means adjuster 9 The aeration amount in the tank 2 is set to the lower limit value, 2) the circulation flow rate of the circulation pump 15 is reduced, and 3) one or more of the controls for starting the carbon source charging pump 16 are performed.

上限値Bは1〜10mg/Lに設定する。N2O計測手段13の計測値が上限値Aを超過し、NO3−N計測手段17の計測値が上限値Bを超過した場合は、脱窒不良により溶解性N2Oが増加し、排ガス中のN2O濃度が増加したことが分かる。このため、対応策として上述した1)〜3)の制御を行い、脱窒反応を促進する運転条件にすることでN2O排出量を削減できる。 The upper limit B is set to 1-10 mg / L. When the measured value of the N 2 O measuring means 13 exceeds the upper limit value A and the measured value of the NO 3 —N measuring means 17 exceeds the upper limit value B, the solubility N 2 O increases due to denitrification failure, It can be seen that the N 2 O concentration in the exhaust gas has increased. Therefore, and it controls the above-described 1) to 3) as a countermeasure, it is possible to reduce the N 2 O emissions by the operating conditions that promote denitrification.

なお、NO3−N計測手段17の代わりに溶解性N2Oを計測するための溶解性N2O計測手段でもよい。また、上述の前段曝気手段調整器9,循環ポンプ15,炭素源投入ポンプ16の3つが全て設置されている必要はなく、何れか一つ以上設置されていれば良い。又、複数設置されている場合は、順次制御すると良く、N2O生成量の抑制に加えて窒素除去率が向上できる運転条件が望ましいため、制御する順番は炭素源投入ポンプ16を上位にするとよい。 It may be a soluble N 2 O measurement means for measuring the solubility N 2 O instead of NO 3 -N measuring means 17. Further, it is not necessary that all of the above-mentioned pre-stage aeration means regulator 9, circulation pump 15, and carbon source input pump 16 are installed, and any one or more of them may be installed. In addition, when a plurality of units are installed, it is preferable to sequentially control them, and it is desirable to have an operation condition that can improve the nitrogen removal rate in addition to the suppression of the amount of N 2 O generation. Good.

本実施例によれば、嫌気槽1での脱窒不良が原因でN2O放出量が増加している条件を特定でき、脱窒反応を促進させる運転に制御できるため、排ガス中のN2O濃度を低減できN2O放出量を削減できる。 According to this embodiment, since the de-窒不good under anaerobic tank 1 can identify the conditions that N 2 O emissions caused is increased, it can be controlled in operation to promote the denitrification reaction, N 2 in the flue gas O concentration can be reduced and N 2 O emission amount can be reduced.

本発明の実施例5を図5により説明する。図5は本実施例の下水処理装置の構成図である。   A fifth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a configuration diagram of the sewage treatment apparatus of this embodiment.

本実施例は、実施例4と同様に構成されているが、本実施例では、NO3−N計測手段17が設けられていなく、流入水水質計測手段18,処理水水質計測手段19,処理水水質推定手段20,処理水水質判定手段21が設けられている。流入水水質計測手段18,処理水水質計測手段19,処理水水質推定手段20は、それぞれ処理水水質判定手段21に接続されている。 The present embodiment is configured in the same manner as the fourth embodiment, but in this embodiment, the NO 3 -N measuring means 17 is not provided, and the influent water quality measuring means 18, the treated water quality measuring means 19, and the treatment Water quality estimation means 20 and treated water quality determination means 21 are provided. The influent water quality measuring means 18, the treated water quality measuring means 19, and the treated water quality estimating means 20 are connected to the treated water quality determining means 21, respectively.

流入水水質計測手段18は、流入水中の有機物,窒素,りんなどを計測し、計測値を処理水水質判定手段21に送る。処理水水質計測手段19は、処理水水質基準項目である有機物,窒素,りんなどを計測し、計測値を処理水水質判定手段21に送る。処理水水質推定手段20は、処理水水質基準項目である有機物,窒素,りんなどの濃度を算出し、その算出値を処理水水質判定手段21に送る。   The influent water quality measurement means 18 measures organic matter, nitrogen, phosphorus, etc. in the inflow water and sends the measured values to the treated water quality determination means 21. The treated water quality measuring means 19 measures organic matter, nitrogen, phosphorus, etc., which are treated water quality standard items, and sends the measured values to the treated water quality determining means 21. The treated water quality estimation means 20 calculates the concentration of organic matter, nitrogen, phosphorus, etc., which are treated water quality standard items, and sends the calculated value to the treated water quality determination means 21.

処理水水質推定手段20は、国際水協会(IWA)から提案されている活性汚泥モデルを組み込んだシミュレータや、予め設定された運転条件と除去率の関係を用いて処理水水質を算出する。なお、処理水水質推定手段20は、運転条件や流入水水質情報を算出に用いる際には、流入水水質計測手段18や制御手段14からその情報を入手する。   The treated water quality estimation means 20 calculates the treated water quality using a simulator incorporating an activated sludge model proposed by the International Water Association (IWA) and a relationship between preset operating conditions and removal rates. The treated water quality estimating means 20 obtains the information from the influent water quality measuring means 18 and the control means 14 when using the operating conditions and the influent water quality information for calculation.

処理水水質判定手段21は、流入水水質計測手段18だけが設置されている場合には、予め設定された除去率から処理水水質を予測する。また、処理水水質判定手段21は、データベースを備え、流入水水質計測手段18の計測値により処理水水質を推定できるようにしてもよい。   When only the influent water quality measuring means 18 is installed, the treated water quality determining means 21 predicts the treated water quality from a preset removal rate. The treated water quality determination unit 21 may include a database so that the treated water quality can be estimated from the measurement value of the influent water quality measurement unit 18.

処理水水質判定手21は、流入水水質計測手段18,処理水水質計測手段19,処理水水質推定手段20のうちの少なくとも1により得られた処理水水質と予め設定された水質規制値とを比較する。水質項目は窒素にすることが望ましい。処理水水質判定手段21は、処理水水質が規制値以上か以下かの情報を制御手段14に与える。制御手段14は、N2O計測手段13の計測値が上限値Aを超過し、処理水水質が規制値以上の場合は、炭素源投入ポンプ16を起動する。 The treated water quality determination unit 21 uses the treated water quality obtained by at least one of the influent water quality measurement means 18, the treated water quality measurement means 19, and the treated water quality estimation means 20 and a preset water quality regulation value. Compare. The water quality item should be nitrogen. The treated water quality determination means 21 gives the control means 14 information on whether the treated water quality is above or below the regulation value. The control means 14 starts the carbon source injection pump 16 when the measured value of the N 2 O measuring means 13 exceeds the upper limit value A and the treated water quality is not less than the regulation value.

排ガスのN2O濃度が増加し、処理水の窒素濃度が増加した場合は、炭素源不足により脱窒反応が低下した恐れがあるので、このような制御を実施することで脱窒反応が促進され、N2O発生量を抑制できる。N2O計測手段13の計測値が上限値Aを超過し、処理水水質が規制値以上の場合には、循環ポンプ15の流量低下又は前段曝気手段調整器9を制御して好気槽2の嫌気化を行うことにより、窒素除去率の低下を招く場合があるので、水質規制値を満足するために制御を実施しない。したがって、制御手段14は、炭素源投入ポンプ16が設置されていない場合は、運転条件を変更しない。 If the N 2 O concentration in the exhaust gas increases and the nitrogen concentration in the treated water increases, the denitrification reaction may be reduced due to a shortage of the carbon source. Thus, the amount of N 2 O generated can be suppressed. When the measured value of the N 2 O measuring means 13 exceeds the upper limit value A and the quality of the treated water is equal to or higher than the regulation value, the flow rate of the circulation pump 15 is reduced or the pre-aeration means adjuster 9 is controlled to control the aerobic tank 2. Since anaerobic dehydration may lead to a decrease in nitrogen removal rate, control is not performed to satisfy the water quality regulation value. Therefore, the control means 14 does not change the operating conditions when the carbon source charging pump 16 is not installed.

制御手段14は、N2O計測手段13の計測値が上限値Aを超過し、処理水水質が規制値以下の場合は、循環ポンプ15の循環流量の低下、又は前段曝気手段調整器9による好気槽2への曝気量を下限値Aに設定する。これらの制御は除去率を低下させる恐れがあるが、処理水水質が良好なため処理水が規制値を超過することがない。制御手段14は、処理水水質を水質値で分類し、分類に応じて循環ポンプ15の循環流量を設定しても良い。 When the measured value of the N 2 O measuring unit 13 exceeds the upper limit value A and the quality of the treated water is below the regulation value, the control unit 14 reduces the circulating flow rate of the circulation pump 15 or uses the pre-stage aeration unit regulator 9. The amount of aeration to the aerobic tank 2 is set to the lower limit value A. Although these controls may reduce the removal rate, the treated water does not exceed the regulation value because the treated water quality is good. The control means 14 may classify the treated water quality by the water quality value and set the circulation flow rate of the circulation pump 15 according to the classification.

本実施例によれば、処理水水質を考慮して、溶解性N2Oを低下させる運転に制御できるため、排ガス中のN2O濃度を低減でき、N2O放出量を削減できる。又、処理水水質を規制値以内に維持できる。 According to the present embodiment, the operation can be controlled to reduce the soluble N 2 O in consideration of the quality of the treated water, so that the N 2 O concentration in the exhaust gas can be reduced and the amount of N 2 O released can be reduced. Moreover, the quality of treated water can be maintained within the regulation value.

1 嫌気槽
2〜4 好気槽
5〜7 曝気手段
8 ブロワ
9 前段曝気手段調整器
10〜12 ガス回収手段
13 N2O計測手段
14 制御手段
15 循環ポンプ
16 炭素源投入ポンプ
17 NO3−N計測手段
18 流入水水質計測手段
19 処理水水質計測手段
20 処理水水質推定手段
21 処理水水質判定手段
1 anaerobic tank 2-4 aerobic 5-7 aeration unit 8 blower 9 preceding aerating means adjusters 10 to 12 gas recovery unit 13 N 2 O measurement means 14 control means 15 circulating pump 16 carbon source is turned pump 17 NO 3 -N Measuring means 18 Influent water quality measuring means 19 Treated water quality measuring means 20 Treated water quality estimating means 21 Treated water quality judging means

Claims (6)

上流側に設置される嫌気槽と下流側に設置される好気槽を有する活性汚泥が投入されている複数の反応槽と、
前記好気槽に設置される複数の曝気手段と、
好気槽の上部に設置され曝気ガスを回収するためのガス回収手段と、
該ガス回収手段によって集められた排ガス中のN2O濃度を計測するためのN2O計測手段と、
前記嫌気槽の下流側に反応液のNO 3 −Nを計測するためのNO 3 −N計測手段と、
前記嫌気槽に炭素源を投入するための炭素源投入手段と、
前記好気槽の下流側から前記嫌気槽に反応液を循環するための循環手段と、
前記複数の曝気手段のうち最も嫌気槽側の前記曝気手段の送風量を調整するための前段曝気手段調整器と、
前記N 2 O計測手段と前記NO 3 −N計測手段の計測信号が入力され、前記炭素源投入手段、前記循環手段、前記前段曝気手段調整器の少なくとも一つを制御する制御手段と、
該制御手段は、前記NO 3 −N計測手段の計測値が予め設定された上限値を超過した際に、前記炭素源投入手段が前記嫌気槽に炭素源を投入するように制御し、又は、前記循環手段の流量を低下させ、かつ、前記N 2 O計測手段の計測値が増加し、予め設定された上限値を超えた時は、前記最も嫌気槽側の前記曝気手段の曝気量を予め設定されている下限値とするように前記前段曝気手段調整器を制御する下水処理装置。
A plurality of reaction tanks filled with activated sludge having an anaerobic tank installed on the upstream side and an aerobic tank installed on the downstream side;
A plurality of aeration means installed in the aerobic tank;
A gas recovery means installed at the top of the aerobic tank for recovering the aerated gas;
N 2 O measuring means for measuring the N 2 O concentration in the exhaust gas collected by the gas recovery means;
NO 3 -N measuring means for measuring NO 3 -N in the reaction solution downstream of the anaerobic tank ;
A carbon source input means for supplying a carbon source to the anaerobic tank;
A circulation means for circulating the reaction liquid from the downstream side of the aerobic tank to the anaerobic tank;
A pre-stage aeration means adjuster for adjusting the air flow rate of the aeration means on the most anaerobic tank side among the plurality of aeration means;
Control means for inputting measurement signals of the N 2 O measurement means and the NO 3 -N measurement means, and controlling at least one of the carbon source input means, the circulation means, and the pre-stage aeration means regulator;
The control means controls the carbon source input means to input a carbon source into the anaerobic tank when the measured value of the NO 3 —N measurement means exceeds a preset upper limit value, or When the flow rate of the circulating means is decreased and the measured value of the N 2 O measuring means increases and exceeds a preset upper limit value, the aeration amount of the aeration means on the most anaerobic tank side is set in advance. A sewage treatment apparatus that controls the front-stage aeration means adjuster so as to have a set lower limit value .
請求項1に記載の下水処理装置において、
前記前段曝気手段調整器を制御する時に、前記好気槽全体での曝気量は一定とした下水処理装置。
The sewage treatment apparatus according to claim 1,
A sewage treatment apparatus in which the amount of aeration in the entire aerobic tank is constant when the pre-stage aeration means adjuster is controlled.
請求項1に記載の下水処理装置において、The sewage treatment apparatus according to claim 1,
流入水の水質を計測するための流入水質計測手段と、Inflow water quality measuring means for measuring the quality of influent water,
処理水の水質を計測するための処理水水質計測手段と、Treated water quality measuring means for measuring the quality of treated water;
流入水水質,流入流量,運転条件の少なくとも一つを用いて処理水の水質を推定する処理水水質推定手段と、Treated water quality estimation means for estimating the quality of treated water using at least one of influent water quality, inflow rate, and operating conditions;
前記流入水水質計測手段,前記処理水水質計測手段,前記処理水水質推定手段の少なくとも1つの信号に基づいて処理水水質が基準値を満足しているか否かを判定する処理水水質判定手段とを備え、Treated water quality determining means for determining whether the treated water quality satisfies a reference value based on at least one signal of the influent water quality measuring means, the treated water quality measuring means, and the treated water quality estimating means; With
前記制御手段は、前記処理水水質判定手段の情報に基づいて処理水水質が基準値を満足していると判断された場合に運転量を変更する下水処理装置。The control means is a sewage treatment apparatus that changes the operation amount when it is determined that the treated water quality satisfies a reference value based on the information of the treated water quality determination means.
上流側に設置される嫌気槽と下流側に設置される好気槽を有する活性汚泥が投入されている複数の反応槽により下水を処理する下水処理方法であって、
前記好気槽の上部に設置され、前記好気槽に設置される複数の曝気手段によって曝気される曝気ガスを回収するためのガス回収手段によって集められた排ガス中のN 2 O濃度をN 2 O計測手段により計測すること、
NO 3 −N計測手段により前記嫌気槽の下流側に反応液のNO 3 −Nを計測すること、
前記NO 3 −N計測手段の計測値が予め設定された上限値を超過した際に、前記嫌気槽に炭素源を投入するための炭素源投入手段により投入炭素源を投入すること、又は、前記好気槽の下流側から前記嫌気槽に反応液を循環するための循環手段による循環流量を低下させること、
前記N 2 O計測手段の計測値が予め設定された上限値を超過した際に、制御手段が前記嫌気槽側の前記曝気手段の曝気量を予め設定されている下限値とすることを特徴とする下水処理方法。
A sewage treatment method for treating sewage with a plurality of reaction tanks in which activated sludge having an anaerobic tank installed on the upstream side and an aerobic tank installed on the downstream side is charged,
The N 2 O concentration in the exhaust gas collected by the gas recovery means for recovering the aerated gas installed at the upper part of the aerobic tank and aerated by the plurality of aeration means installed in the aerobic tank is expressed as N 2. Measuring with O measuring means,
Measuring the NO 3 -N of the reaction solution downstream of the anaerobic tank by NO 3 -N measuring means,
When the measured value of the NO 3 -N measuring means exceeds a preset upper limit value, the input carbon source is input by the carbon source input means for supplying the carbon source to the anaerobic tank, or Reducing the circulation flow rate by the circulation means for circulating the reaction liquid from the downstream side of the aerobic tank to the anaerobic tank,
When the measured value of the N 2 O measuring means exceeds a preset upper limit value, the control means sets the aeration amount of the aeration means on the anaerobic tank side to a preset lower limit value. sewage processing method.
請求項4に記載の下水処理方法において、The sewage treatment method according to claim 4,
制御手段が前記嫌気槽側の前記曝気手段の曝気量を予め設定されている下限値とするとともに、前記好気槽全体での曝気量は一定とした下水処理方法。A sewage treatment method, wherein the control means sets the aeration amount of the aeration means on the anaerobic tank side to a preset lower limit value, and the aeration quantity in the entire aerobic tank is constant.
請求項4に記載の下水処理方法において、The sewage treatment method according to claim 4,
流入水質計測手段により流入水の水質を計測すること、Measuring the quality of influent water by means of influent water quality measuring means,
処理水水質計測手段により処理水の水質を計測すること、Measuring the quality of the treated water by means of the treated water quality measuring means,
流入水水質,流入流量,運転条件の少なくとも一つを用いて処理水の水質を推定すること、Estimating the quality of treated water using at least one of influent water quality, inflow rate, and operating conditions;
前記処理水水質が基準値を満足しているか否かを判定して運転量を変更する下水処理方法。A sewage treatment method for determining whether or not the quality of the treated water satisfies a reference value and changing an operation amount.
JP2010009614A 2010-01-20 2010-01-20 Sewage treatment apparatus and sewage treatment method Active JP5075926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010009614A JP5075926B2 (en) 2010-01-20 2010-01-20 Sewage treatment apparatus and sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010009614A JP5075926B2 (en) 2010-01-20 2010-01-20 Sewage treatment apparatus and sewage treatment method

Publications (2)

Publication Number Publication Date
JP2011147858A JP2011147858A (en) 2011-08-04
JP5075926B2 true JP5075926B2 (en) 2012-11-21

Family

ID=44535370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010009614A Active JP5075926B2 (en) 2010-01-20 2010-01-20 Sewage treatment apparatus and sewage treatment method

Country Status (1)

Country Link
JP (1) JP5075926B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5300827B2 (en) * 2010-11-18 2013-09-25 株式会社東芝 Biological wastewater treatment equipment
JP5665502B2 (en) * 2010-11-22 2015-02-04 メタウォーター株式会社 Sewage treatment system
JP2012245422A (en) * 2011-05-25 2012-12-13 Hitachi Ltd Water treatment process control device
JP5624598B2 (en) * 2011-11-08 2014-11-12 株式会社東芝 Membrane separation activated sludge treatment method and membrane separation activated sludge treatment apparatus
CN103278344B (en) * 2013-05-20 2016-08-17 中国人民大学 Device for measuring comprehensive oxygentransfer performance of aerator in technical state
WO2015062613A1 (en) * 2013-11-04 2015-05-07 Unisense Environment A/S Control system for a wastewater treatment facility
JP6373629B2 (en) * 2014-04-25 2018-08-15 株式会社日立製作所 Water treatment monitoring and control system, water treatment system having the same, and water treatment method
KR102318530B1 (en) * 2021-08-11 2021-10-29 주식회사 유앤유 Method, and System for Sewage Treatment Facility Energy Management Based on IoT

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143196A (en) * 1978-04-28 1979-11-08 Hitachi Ltd Dissolved oxygen concentration determination
JPS5513135A (en) * 1978-07-17 1980-01-30 Hitachi Ltd Measuring device for nitrogen content of waste water
JPS5544332A (en) * 1978-09-26 1980-03-28 Hitachi Ltd Control method of activated sludge water treating apparatus
JPS55151262A (en) * 1979-05-16 1980-11-25 Hitachi Ltd Measuring method for organism concentration
JPS55155797A (en) * 1979-05-24 1980-12-04 Agency Of Ind Science & Technol Preventing method of n2o gas in biological denitrification treatment
JPS5698399U (en) * 1979-12-27 1981-08-04
JPS5727197A (en) * 1980-07-25 1982-02-13 Hitachi Ltd Method for controlling aeration tank in active sludge water treatment process
JPS57132593A (en) * 1981-02-10 1982-08-16 Mitsubishi Heavy Ind Ltd Partial aeration method in sewage and night soil treatment
JPS5898195A (en) * 1981-12-04 1983-06-10 Hitachi Ltd Controlling method for biological denitrifying process
JPS58104697A (en) * 1981-12-16 1983-06-22 Hitachi Ltd Controlling method for biological denitrification
JPH07148496A (en) * 1993-11-29 1995-06-13 Meidensha Corp Method for controlling operation of modified process for circulation of activated sludge
JPH08117793A (en) * 1994-10-25 1996-05-14 Meidensha Corp Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method
JP3608256B2 (en) * 1995-06-30 2005-01-05 株式会社明電舎 Operation control method for circulating nitrification denitrification
JP3707526B2 (en) * 1999-02-19 2005-10-19 日立プラント建設株式会社 Waste water nitrification method and apparatus
JP3918349B2 (en) * 1999-03-04 2007-05-23 株式会社日立プラントテクノロジー Biological treatment method and apparatus for nitrous oxide gas
JP2003334582A (en) * 2002-05-21 2003-11-25 Meidensha Corp Air blow amount control method in activated sludge treatment, air blow amount control program and recording medium having program recorded thereon
JP2007244949A (en) * 2006-03-14 2007-09-27 Tohoku Univ Control procedure of nitrification process indexed by nitrous oxide
JP4465628B2 (en) * 2006-12-22 2010-05-19 株式会社日立プラントテクノロジー Biological treatment method and apparatus for nitrous oxide gas
JP2009165958A (en) * 2008-01-16 2009-07-30 Panasonic Corp Treatment state judging method of aeration tank and wastewater treatment control system using it
JP5006845B2 (en) * 2008-06-23 2012-08-22 大阪市 Method for suppressing generation of nitrous oxide
JP5140545B2 (en) * 2008-10-22 2013-02-06 メタウォーター株式会社 Air supply system and air supply method
JP5025020B2 (en) * 2008-11-07 2012-09-12 国立大学法人帯広畜産大学 Organic waste treatment system and method
JP4381473B1 (en) * 2009-03-25 2009-12-09 弘之 菅坂 Wastewater treatment equipment
JP5150560B2 (en) * 2009-05-22 2013-02-20 株式会社日立製作所 Sewage treatment method
JP5188451B2 (en) * 2009-05-22 2013-04-24 株式会社日立製作所 Water treatment equipment
JP5733785B2 (en) * 2009-10-20 2015-06-10 メタウォーター株式会社 Waste water treatment method and waste water treatment equipment
JP5377224B2 (en) * 2009-10-28 2013-12-25 メタウォーター株式会社 Gas generation amount reduction system and gas generation amount reduction method

Also Published As

Publication number Publication date
JP2011147858A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5075926B2 (en) Sewage treatment apparatus and sewage treatment method
KR100627874B1 (en) Sewage advanced treatment control system and the method thereof
JP5150560B2 (en) Sewage treatment method
JP5717188B2 (en) Waste water treatment method and waste water treatment equipment
JP5140545B2 (en) Air supply system and air supply method
WO2012042728A1 (en) Water treatment system and method for controlling aeration air quantity thereof
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
JP5685504B2 (en) Water treatment system and aeration air volume control method thereof
JP5100529B2 (en) Denitrification method of organic raw water incorporating scale prevention
JP5665502B2 (en) Sewage treatment system
JP5956372B2 (en) Water treatment apparatus and water treatment method
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JP2008036517A (en) Wastewater treatment apparatus and method
JP5300898B2 (en) Organic wastewater treatment equipment
JP5725869B2 (en) Waste water treatment apparatus and operation method thereof
CN106573807B (en) Aeration air volume calculating device and water treatment system
JP5656656B2 (en) Water treatment equipment
US20170217808A1 (en) Biological treatment method and biological treatment apparatus
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
JP4622958B2 (en) Nitrogen-containing waste liquid treatment method
JP5325124B2 (en) Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water
JP2013039577A (en) Sewage treatment method
JP2015024411A (en) Sewage treatment system
JP5944468B2 (en) Sewage treatment system
JP4743100B2 (en) Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R151 Written notification of patent or utility model registration

Ref document number: 5075926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3