JP5944468B2 - Sewage treatment system - Google Patents

Sewage treatment system Download PDF

Info

Publication number
JP5944468B2
JP5944468B2 JP2014223287A JP2014223287A JP5944468B2 JP 5944468 B2 JP5944468 B2 JP 5944468B2 JP 2014223287 A JP2014223287 A JP 2014223287A JP 2014223287 A JP2014223287 A JP 2014223287A JP 5944468 B2 JP5944468 B2 JP 5944468B2
Authority
JP
Japan
Prior art keywords
tank
raw water
aerobic
nitrous oxide
oxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014223287A
Other languages
Japanese (ja)
Other versions
JP2015044197A (en
Inventor
勇治 古屋
勇治 古屋
重浩 鈴木
重浩 鈴木
誠二 本間
誠二 本間
浩 塩見
浩 塩見
里名 河野
里名 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Metawater Co Ltd
Original Assignee
Tokyo Metropolitan Government
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government, Metawater Co Ltd filed Critical Tokyo Metropolitan Government
Priority to JP2014223287A priority Critical patent/JP5944468B2/en
Publication of JP2015044197A publication Critical patent/JP2015044197A/en
Application granted granted Critical
Publication of JP5944468B2 publication Critical patent/JP5944468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、好気処理によって下水中に含まれるアンモニア性窒素を亜硝酸性窒素や硝酸性窒素に硝化する下水処理システムに関するものである。   The present invention relates to a sewage treatment system that nitrifies ammoniacal nitrogen contained in sewage to nitrite nitrogen or nitrate nitrogen by aerobic treatment.

生活排水や工場排水などの下水中に含まれるアンモニア性窒素は、下水の放流先となる湖沼や内湾などの閉鎖性水域における溶存酸素の低下や富栄養化現象の原因になることが知られている。このため、下水処理設備では好気処理が行われている。好気処理とは、反応槽内の下水に投入した、若しくは、下水中に元々存在する硝化菌などの好気性微生物を利用して、アンモニア性窒素を亜硝酸性窒素や硝酸性窒素に硝化する処理のことを意味する。   Ammonia nitrogen contained in sewage such as domestic and industrial wastewater is known to cause a decrease in dissolved oxygen and eutrophication in closed water areas such as lakes and inner bays where sewage is discharged. Yes. For this reason, aerobic treatment is performed in the sewage treatment facility. Aerobic treatment means nitrification of ammonia nitrogen into nitrite nitrogen or nitrate nitrogen by using aerobic microorganisms such as nitrifying bacteria that are introduced into the sewage in the reaction tank or originally exist in the sewage. Means processing.

このような好気処理では、微生物活動や反応槽の運転条件などの変化によって、反応副生成物として亜酸化窒素ガス(NO)が発生することが知られている。亜酸化窒素ガスは温室効果ガスであり、その温室効果は二酸化炭素ガスの約310倍と非常に高い。また、亜酸化窒素ガスは、フロンガスと同様、成層圏のオゾン層を破壊するオゾン層破壊ガスとしても問題視されている。このため、大気中への亜酸化窒素ガスの放出を抑制することが地球環境保護の観点から急務となっている。 In such aerobic treatment, it is known that nitrous oxide gas (N 2 O) is generated as a reaction by-product due to changes in microbial activity, reaction tank operating conditions, and the like. Nitrous oxide gas is a greenhouse gas, and its greenhouse effect is as high as about 310 times that of carbon dioxide gas. Nitrous oxide gas is also regarded as a problem as an ozone depleting gas that destroys the stratospheric ozone layer, like chlorofluorocarbon gas. For this reason, it is an urgent task to suppress the release of nitrous oxide gas to the atmosphere from the viewpoint of protecting the global environment.

このような背景から、近年、大気中への亜酸化窒素ガスの放出を抑制するための発明が幾つか提案されている(特許文献1〜3参照)。特許文献1記載の発明は、亜酸化窒素ガスを溶解させた吸収液を無酸素槽に供給することにより、無酸素槽内の脱窒菌によって亜酸化窒素ガスを窒素ガスに還元するものである。特許文献2記載の発明は、亜酸化窒素ガスを含有する含有ガスを無酸素槽内に供給する前に、脱窒菌の反応を阻害する酸素を含有ガスから除去するものである。特許文献3記載の発明は、亜酸化窒素ガスを溶解させた吸収液を嫌気性条件下で処理することによって、亜酸化窒素ガスを窒素ガスに還元するものである。   Against this background, in recent years, several inventions for suppressing the release of nitrous oxide gas into the atmosphere have been proposed (see Patent Documents 1 to 3). The invention described in Patent Document 1 is to reduce the nitrous oxide gas to nitrogen gas by denitrifying bacteria in the oxygen-free tank by supplying an absorption liquid in which the nitrous oxide gas is dissolved to the oxygen-free tank. In the invention described in Patent Document 2, oxygen that inhibits the reaction of denitrifying bacteria is removed from the containing gas before the containing gas containing nitrous oxide gas is supplied into the anoxic tank. The invention described in Patent Document 3 reduces nitrous oxide gas to nitrogen gas by treating an absorbing solution in which nitrous oxide gas is dissolved under anaerobic conditions.

特開平10−128389号公報JP-A-10-128389 特開2000−246055号公報JP 2000-246055 A 特開2002−204926号公報JP 2002-204926 A

しかしながら、特許文献1,3記載の発明によれば、吸収液を貯留するための吸収槽や吸収槽内で吸収液を循環させるための循環ポンプなどの付加的な装置を用意する必要がある。また、特許文献2記載の発明によれば、含有ガスから酸素を除去するための酸素除去装置を用意する必要がある。このため、特許文献1〜3記載の発明によれば、大気中への亜酸化窒素ガスの放出を抑制する下水処理システムを安価に構成することが困難であった。   However, according to the inventions described in Patent Documents 1 and 3, it is necessary to prepare an additional device such as an absorption tank for storing the absorption liquid and a circulation pump for circulating the absorption liquid in the absorption tank. Further, according to the invention described in Patent Document 2, it is necessary to prepare an oxygen removing device for removing oxygen from the contained gas. For this reason, according to invention of patent documents 1-3, it was difficult to comprise the sewage treatment system which suppresses discharge | release of the nitrous oxide gas to air | atmosphere at low cost.

本発明は、上記課題に鑑みてなされたものであって、その目的は、大気中への亜酸化窒素ガスの放出を安価に抑制可能な下水処理システムを提供することにある。   This invention is made | formed in view of the said subject, The objective is to provide the sewage treatment system which can suppress discharge | release of nitrous oxide gas to air | atmosphere at low cost.

上記課題を解決し、目的を達成するために、本発明の一態様に係る下水処理システムは、原水供給路から供給された原水が流入する、嫌気条件下で該原水中に含まれる有機物を活性汚泥に取り込むと共に該活性汚泥中に含まれるリンを該原水に放出する嫌気槽と、前記嫌気槽から流出した処理原水が流入する、無酸素条件下で該処理原水中に含まれる亜硝酸性窒素及び硝酸性窒素を窒素ガスに還元する無酸素槽と、前記無酸素槽から流出した処理原水が流入する、好気条件下で該処理原水中に含まれるアンモニア性窒素を亜硝酸性窒素及び硝酸性窒素に硝化すると共に該処理原水中に含まれるリンを活性汚泥中に取り込む、該処理原水の流れ方向に沿って配列された複数の好気槽と、前記好気槽から流出した処理原水が流入する、該処理原水に含まれる活性汚泥を沈殿させる沈殿槽と、前記沈殿槽内に堆積する活性汚泥を前記嫌気槽に返送する汚泥返送路と、最下流の前記好気槽内の硝化液を前記無酸素槽に循環する硝化液循環路と、前記複数の好気槽内で発生した亜酸化窒素ガスの濃度を検出する濃度検出部と、前記濃度検出部の検出結果に基づいて、前記複数の好気槽内に存在する前記亜酸化窒素ガスを前記無酸素槽に供給するガス供給路と、前記好気槽内における亜酸化窒素ガスの発生量が所定値未満になるように、前記濃度検出部が検出した亜酸化窒素ガスの発生量に基づいて、前記好気槽内の亜酸化窒素ガスの前記無酸素槽への供給量を制御するガス送り制御装置と、を備える。   In order to solve the above problems and achieve the object, a sewage treatment system according to one embodiment of the present invention activates organic substances contained in raw water under anaerobic conditions in which the raw water supplied from the raw water supply path flows. An anaerobic tank that takes in the sludge and releases phosphorus contained in the activated sludge to the raw water, and a nitrite nitrogen contained in the treated raw water under anoxic conditions into which the treated raw water flowing out of the anaerobic tank flows And an oxygen-free tank for reducing nitrate nitrogen to nitrogen gas, and treated raw water flowing out of the oxygen-free tank flows in. Ammonia nitrogen contained in the treated raw water under aerobic conditions is converted to nitrite nitrogen and nitric acid. A plurality of aerobic tanks arranged in the flow direction of the treated raw water, which are nitrified to oxidative nitrogen and take in phosphorus contained in the treated raw water into the activated sludge, and the treated raw water flowing out of the aerobic tank The treated raw water flowing in A sedimentation tank for precipitating the activated sludge contained therein, a sludge return path for returning the activated sludge accumulated in the sedimentation tank to the anaerobic tank, and a nitrification solution in the most downstream aerobic tank are circulated to the anoxic tank A nitrifying liquid circulation path, a concentration detection unit for detecting a concentration of nitrous oxide gas generated in the plurality of aerobic tanks, and a detection result of the concentration detection unit, in the plurality of aerobic tanks A gas supply path for supplying the nitrous oxide gas present to the oxygen-free tank, and a sub-flow detected by the concentration detector so that the amount of nitrous oxide gas generated in the aerobic tank is less than a predetermined value. A gas feed control device that controls a supply amount of the nitrous oxide gas in the aerobic tank to the anoxic tank based on a generation amount of the nitrogen oxide gas.

本発明に係る下水処理システムによれば、大気中への亜酸化窒素ガスの放出を安価に抑制することができる。   According to the sewage treatment system according to the present invention, release of nitrous oxide gas into the atmosphere can be suppressed at a low cost.

図1は、本発明の第1の実施形態である下水処理システムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a sewage treatment system according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態である下水処理システムの構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a sewage treatment system according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態である下水処理システムの構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of a sewage treatment system according to the third embodiment of the present invention. 図4は、図1に示す下水処理システムの変形例の構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of a modified example of the sewage treatment system shown in FIG. 図5は、図2に示す下水処理システムの変形例の構成を示すブロック図である。FIG. 5 is a block diagram showing a configuration of a modified example of the sewage treatment system shown in FIG. 図6は、図3に示す下水処理システムの変形例の構成を示すブロック図である。FIG. 6 is a block diagram showing a configuration of a modified example of the sewage treatment system shown in FIG.

以下、図面を参照して、本発明の第1乃至第3の実施形態である下水処理システムの構成について説明する。   Hereinafter, the configuration of a sewage treatment system according to the first to third embodiments of the present invention will be described with reference to the drawings.

〔第1の実施形態〕
始めに、図1を参照して、本発明の第1の実施形態である下水処理システムの構成について説明する。
[First Embodiment]
First, with reference to FIG. 1, the structure of the sewage treatment system which is the 1st Embodiment of this invention is demonstrated.

図1は、本発明の第1の実施形態である下水処理システムの構成を示す模式図である。図1に示すように、本発明の第1の実施形態である下水処理システム1は、嫌気槽11と、無酸素槽12と、複数の好気槽13a〜13cと、沈殿槽14と、汚泥返送路15と、硝化液循環路16と、を備える。   Drawing 1 is a mimetic diagram showing composition of a sewage treatment system which is a 1st embodiment of the present invention. As shown in FIG. 1, the sewage treatment system 1 which is the 1st Embodiment of this invention is the anaerobic tank 11, the anoxic tank 12, several aerobic tanks 13a-13c, the sedimentation tank 14, and sludge. A return path 15 and a nitrating liquid circulation path 16 are provided.

嫌気槽11には、原水供給路17から供給された原水が流入する。嫌気槽11では、嫌気条件下で原水中に含まれる有機物が活性汚泥に取り込まれると共に、活性汚泥中に含まれるリンが原水中に放出される。   The raw water supplied from the raw water supply path 17 flows into the anaerobic tank 11. In the anaerobic tank 11, organic substances contained in the raw water are taken into the activated sludge under anaerobic conditions, and phosphorus contained in the activated sludge is released into the raw water.

無酸素槽12には、嫌気槽11から流出した処理原水が流入する。無酸素槽12では、無酸素条件下で処理原水中に含まれる亜硝酸性窒素及び硝酸性窒素が窒素ガスに還元される。   The treated raw water that has flowed out of the anaerobic tank 11 flows into the anaerobic tank 12. In the oxygen-free tank 12, nitrite nitrogen and nitrate nitrogen contained in the treated raw water are reduced to nitrogen gas under oxygen-free conditions.

複数の好気槽13a〜13cは、処理原水の流れ方向に沿って直列に配列されている。複数の好気槽13a〜13cには、各好気槽の堰高を調整することによって、無酸素槽12から流出した処理原水がステップ流入する。各好気槽には、貯留される活性汚泥に対して散気を行うための図示しない散気装置が備えられている。複数の好気槽13a〜13cでは、好気条件下で処理原水中に含まれるアンモニア性窒素が亜硝酸性窒素及び硝酸性窒素に硝化される共に処理原水中に含まれるリンが活性汚泥中に取り込まれる。   The plurality of aerobic tanks 13a to 13c are arranged in series along the flow direction of the treated raw water. The raw water treated from the anaerobic tank 12 flows into the plurality of aerobic tanks 13a to 13c by adjusting the weir height of each aerobic tank. Each aerobic tank is provided with an air diffuser (not shown) for performing air diffusion on the stored activated sludge. In the aerobic tanks 13a to 13c, ammonia nitrogen contained in the treated raw water is nitrified to nitrite nitrogen and nitrate nitrogen under aerobic conditions, and phosphorus contained in the treated raw water is contained in the activated sludge. It is captured.

沈殿槽14には、最下流の好気槽13cから流出した処理原水が流入する。沈殿槽14では、処理原水が分離液と活性汚泥18とに分離される。沈殿槽14の側壁には、図示しない配管が接続されており、図示しない配管を介して消毒処理された分離液を系外に排出できるように構成されている。また、沈殿槽14の底部には、汚泥返送路15が接続されており、沈殿槽14の底部に堆積した活性汚泥18を嫌気槽11に返送できるように構成されている。   The processing raw water that has flowed out from the most downstream aerobic tank 13 c flows into the settling tank 14. In the settling tank 14, the treated raw water is separated into a separation liquid and activated sludge 18. A pipe (not shown) is connected to the side wall of the settling tank 14 so that the sterilized separation liquid can be discharged out of the system through the pipe (not shown). Further, a sludge return path 15 is connected to the bottom of the sedimentation tank 14 so that the activated sludge 18 deposited on the bottom of the sedimentation tank 14 can be returned to the anaerobic tank 11.

硝化液循環路16は、無酸素槽12と最下流の好気槽13cとを接続する配管であり、好気槽13c内の硝化液を無酸素槽12に循環する。   The nitrification liquid circulation path 16 is a pipe connecting the anoxic tank 12 and the most downstream aerobic tank 13 c, and circulates the nitrating liquid in the aerobic tank 13 c to the anoxic tank 12.

本発明の第1の実施形態である下水処理システム1には、大気中への亜酸化窒素ガスの放出を抑制するために、負荷検出部19a〜19dと、原水ステップ流路20と、流入窒素負荷制御装置21と、が設けられている。   In the sewage treatment system 1 according to the first embodiment of the present invention, the load detectors 19a to 19d, the raw water step flow path 20, and the inflow nitrogen are used to suppress the release of nitrous oxide gas into the atmosphere. And a load control device 21.

負荷検出部19a〜19dはそれぞれ、無酸素槽12及び好気槽13a〜13cに設けられている。負荷検出部19a〜19dは、各槽におけるアンモニア性窒素負荷(例えば、アンモニア酸化細菌量、亜硝酸酸化細菌量、アンモニア性窒素濃度、亜硝酸性窒素濃度、硝酸性窒素濃度、酸素消費速度など)を検出する。負荷検出部19a〜19dは、検出されたアンモニア性窒素負荷の値を流入窒素負荷制御装置21に入力する。   The load detection units 19a to 19d are provided in the anoxic tank 12 and the aerobic tanks 13a to 13c, respectively. The load detection units 19a to 19d are ammonia nitrogen loads in each tank (for example, ammonia oxidizing bacteria amount, nitrite oxidizing bacteria amount, ammonia nitrogen concentration, nitrite nitrogen concentration, nitrate nitrogen concentration, oxygen consumption rate, etc.) Is detected. The load detection units 19 a to 19 d input the detected ammonia nitrogen load value to the inflow nitrogen load control device 21.

原水ステップ流路20は、原水供給路17から供給された原水の一部を無酸素槽12及び好気槽13a〜13cに供給するための配管である。原水供給路17から無酸素槽12及び好気槽13a〜13cの各槽への原水の供給量はそれぞれ、バルブ22a〜22dの開度を制御することによって調整される。   The raw water step flow path 20 is a pipe for supplying a part of the raw water supplied from the raw water supply path 17 to the anoxic tank 12 and the aerobic tanks 13a to 13c. The amount of raw water supplied from the raw water supply path 17 to each of the oxygen-free tank 12 and the aerobic tanks 13a to 13c is adjusted by controlling the openings of the valves 22a to 22d, respectively.

流入窒素負荷制御装置21は、ワークステーションやパーソナルコンピュータなどの情報処理装置によって構成されている。流入窒素負荷制御装置21は、負荷検出部19a〜19dから入力された無酸素槽12及び好気槽13a〜13cの各槽におけるアンモニア性窒素負荷の値に基づいて、各槽におけるアンモニア性窒素負荷が所定値未満になるようにバルブ22a〜22dの開度を制御して各槽に原水を供給する。例えば、負荷検出部19dによって検出されたアンモニア性窒素負荷の値が所定値以上である場合、流入窒素負荷制御装置21は、バルブ22dを開くことによって好気槽13c内に原水を供給する。好気槽13a〜13c内における亜酸化窒素ガスの発生量は、アンモニア性窒素負荷の増加に応じて増加する。従って、このようにアンモニア性窒素負荷の値に応じて好気槽13a〜13cに原水を供給することにより、好気槽13a〜13c内におけるアンモニア性窒素負荷の値を所定値未満に保ち、大気中への亜酸化窒素ガスの放出を抑制することができる。   The inflow nitrogen load control device 21 is configured by an information processing device such as a workstation or a personal computer. Inflow nitrogen load control device 21 is based on the value of ammonia nitrogen load in each tank of anaerobic tank 12 and aerobic tanks 13a-13c inputted from load detection parts 19a-19d, and ammonia nitrogen load in each tank The raw water is supplied to each tank by controlling the opening degree of the valves 22a to 22d so that becomes less than a predetermined value. For example, when the value of the ammonia nitrogen load detected by the load detector 19d is greater than or equal to a predetermined value, the inflow nitrogen load control device 21 supplies raw water into the aerobic tank 13c by opening the valve 22d. The amount of nitrous oxide gas generated in the aerobic tanks 13a to 13c increases as the ammoniacal nitrogen load increases. Therefore, by supplying raw water to the aerobic tanks 13a to 13c according to the value of the ammonia nitrogen load in this way, the value of the ammonia nitrogen load in the aerobic tanks 13a to 13c is kept below a predetermined value, and the atmosphere Release of nitrous oxide gas into the inside can be suppressed.

〔第2の実施形態〕
次に、図2を参照して、本発明の第2の実施形態である下水処理システムの構成について説明する。
[Second Embodiment]
Next, with reference to FIG. 2, the structure of the sewage treatment system which is the 2nd Embodiment of this invention is demonstrated.

図2は、本発明の第2の実施形態である下水処理システムの構成を示す模式図である。図2に示すように、本発明の第2の実施形態である下水処理システム2は、嫌気槽11と、無酸素槽12と、複数の好気槽13a〜13cと、沈殿槽14と、汚泥返送路15と、硝化液循環路16と、を備える。なお、これらの構成要素は、第1の実施形態である下水処理システム1における構成要素と同じであるので、以下ではその説明を省略する。   FIG. 2 is a schematic diagram showing a configuration of a sewage treatment system according to a second embodiment of the present invention. As shown in FIG. 2, the sewage treatment system 2 which is the 2nd Embodiment of this invention is the anaerobic tank 11, the anoxic tank 12, several aerobic tanks 13a-13c, the sedimentation tank 14, and sludge. A return path 15 and a nitrating liquid circulation path 16 are provided. In addition, since these components are the same as the components in the sewage treatment system 1 which is 1st Embodiment, the description is abbreviate | omitted below.

本発明の第2の実施形態である下水処理システム2には、大気中への亜酸化窒素ガスの放出を抑制するために、滞留時間制御装置31が設けられている。滞留時間制御装置31は、ワークステーションやパーソナルコンピュータなどの情報処理装置によって構成されている。滞留時間制御装置31は、例えば沈殿槽14から汚泥返送路15への活性汚泥18の引き抜き回数や引き抜き量を制御することによって、沈殿槽14内における活性汚泥18の滞留時間を制御する。活性汚泥18内に含まれる亜酸化窒素ガスは、沈殿槽14内に滞留している間に活性汚泥18内で分解されていく。従って、活性汚泥18を速やかに汚泥返送路15へと引き抜くのではなく、所定時間以上滞留させるように活性汚泥18の滞留時間を制御することによって、大気中への亜酸化窒素ガスの放出を抑制することができる。   The sewage treatment system 2 according to the second embodiment of the present invention is provided with a residence time control device 31 in order to suppress the release of nitrous oxide gas into the atmosphere. The residence time control device 31 is configured by an information processing device such as a workstation or a personal computer. The residence time control device 31 controls the residence time of the activated sludge 18 in the sedimentation tank 14 by controlling, for example, the number of withdrawals and the withdrawal amount of the activated sludge 18 from the sedimentation tank 14 to the sludge return path 15. The nitrous oxide gas contained in the activated sludge 18 is decomposed in the activated sludge 18 while staying in the settling tank 14. Therefore, the activated sludge 18 is not pulled out to the sludge return path 15 immediately, but the residence time of the activated sludge 18 is controlled so as to stay for a predetermined time or more, thereby suppressing the release of nitrous oxide gas into the atmosphere. can do.

〔第3の実施形態〕
最後に、図3を参照して、本発明の第3の実施形態である下水処理システムの構成について説明する。
[Third Embodiment]
Finally, with reference to FIG. 3, the structure of the sewage treatment system which is the 3rd Embodiment of this invention is demonstrated.

図3は、本発明の第3の実施形態である下水処理システムの構成を示す模式図である。図3に示すように、本発明の第3の実施形態である下水処理システム3は、嫌気槽11と、無酸素槽12と、複数の好気槽13a〜13cと、沈殿槽14と、汚泥返送路15と、硝化液循環路16と、を備える。なお、これらの構成要素は、第1及び第2の実施形態である下水処理システム1,2における構成要素と同じであるので、以下ではその説明を省略する。   FIG. 3 is a schematic diagram showing a configuration of a sewage treatment system according to the third embodiment of the present invention. As shown in FIG. 3, the sewage treatment system 3 which is the 3rd Embodiment of this invention is the anaerobic tank 11, the anaerobic tank 12, several aerobic tanks 13a-13c, the sedimentation tank 14, and sludge. A return path 15 and a nitrating liquid circulation path 16 are provided. In addition, since these components are the same as the components in the sewage treatment systems 1 and 2 which are 1st and 2nd embodiment, the description is abbreviate | omitted below.

本発明の第3の実施形態である下水処理システム3には、大気中への亜酸化窒素ガスの放出を抑制するために、ガス検出部41a〜41cと、ガス供給路42と、ガス送り制御装置43と、が設けられている。   In the sewage treatment system 3 according to the third embodiment of the present invention, in order to suppress the release of nitrous oxide gas into the atmosphere, gas detectors 41a to 41c, a gas supply path 42, and a gas feed control And a device 43.

ガス検出部41a〜41cはそれぞれ、好気槽13a〜13cに設けられている。ガス検出部41a〜41cは、亜酸化窒素ガスセンサによって構成され、各好気槽内における亜酸化窒素ガスの濃度を検出する。ガス検出部41a〜41cは、検出された亜酸化窒素ガスの濃度の値をガス送り制御装置43に入力する。 The gas detection parts 41a-41c are provided in the aerobic tanks 13a-13c, respectively. The gas detection parts 41a-41c are comprised by the nitrous oxide gas sensor, and detect the density | concentration of the nitrous oxide gas in each aerobic tank. The gas detectors 41 a to 41 c input the detected nitrous oxide gas concentration value to the gas feed controller 43.

ガス供給路42は、好気槽13a〜13c内で発生した亜酸化窒素ガスを無酸素槽12に供給するための配管である。各好気槽から無酸素槽12への亜酸化窒素ガスの供給量はそれぞれ、バルブ44a〜44cの開度を制御することによって調整される。   The gas supply path 42 is a pipe for supplying nitrous oxide gas generated in the aerobic tanks 13 a to 13 c to the anoxic tank 12. The amount of nitrous oxide gas supplied from each aerobic tank to the oxygen-free tank 12 is adjusted by controlling the opening degree of the valves 44a to 44c.

ガス送り制御装置43は、ワークステーションやパーソナルコンピュータなどの情報処理装置によって構成されている。ガス送り制御装置43は、ガス検出部41a〜41cから入力された好気槽13a〜13c内における亜酸化窒素ガスの濃度の値に基づいて、好気槽13a〜13c内における亜酸化窒素ガスの濃度の値が所定値未満になるようにバルブ44a〜44cの開度を制御して好気槽13a〜13c内の亜酸化窒素ガスを無酸素槽12に供給する。例えば、ガス検出部41cによって検出された亜酸化窒素ガスの濃度の値が所定値以上である場合、ガス送り制御装置43は、バルブ44cを開くことによって好気槽13c内の亜酸化窒素ガスを無酸素槽12に供給する。無酸素槽12に供給された亜酸化窒素ガスは、脱窒処理によって無酸素槽12内で分解処理される。従って、このように亜酸化窒素ガスの濃度に応じて好気槽13a〜13c内の亜酸化窒素ガスを無酸素槽12に供給することにより、大気中への亜酸化窒素ガスの放出を抑制することができる。 The gas feed control device 43 is configured by an information processing device such as a workstation or a personal computer. Based on the value of the concentration of nitrous oxide gas in the aerobic tanks 13a to 13c input from the gas detectors 41a to 41c, the gas feed control device 43 determines the amount of nitrous oxide gas in the aerobic tanks 13a to 13c. The nitrous oxide gas in the aerobic tanks 13a to 13c is supplied to the anaerobic tank 12 by controlling the opening degree of the valves 44a to 44c so that the concentration value becomes less than a predetermined value. For example, when the concentration value of the nitrous oxide gas detected by the gas detection unit 41c is equal to or greater than a predetermined value, the gas feed control device 43 opens the valve 44c to remove the nitrous oxide gas in the aerobic tank 13c. Supply to the anoxic tank 12. The nitrous oxide gas supplied to the oxygen-free tank 12 is decomposed in the oxygen-free tank 12 by denitrification. Accordingly, by supplying the nitrous oxide gas in the aerobic tanks 13a to 13c to the anoxic tank 12 according to the concentration of the nitrous oxide gas in this way, the release of the nitrous oxide gas into the atmosphere is suppressed. be able to.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。例えば、第1乃至第3の実施形態である下水処理システムのうちの2つ以上を組み合わせて下水処理システムを構築してもよい。また、本実施形態は、A2O法を利用した下水処理システムに本発明を適用したものであるが、本発明は好気処理のみを行う標準法を利用した下水処理システムにも適用することができる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. For example, a sewage treatment system may be constructed by combining two or more of the sewage treatment systems according to the first to third embodiments. Moreover, although this embodiment applies this invention to the sewage treatment system using an A2O method, this invention is applicable also to the sewage treatment system using the standard method which performs only an aerobic treatment. .

すなわち、図4に示すように処理原水の流れ方向に沿って直列に配列された複数の好気槽13a〜13eを備える下水処理システムにおいて、2段目以後の好気槽13b〜13eに対して負荷検出部19a〜19d及びバルブ22a〜22dを設け、流入窒素負荷制御装置21が、負荷検出部19a〜19dから入力された好気槽13b〜13eの各槽におけるアンモニア性窒素負荷の値に基づいて、各槽におけるアンモニア性窒素負荷が所定値未満になるようにバルブ22a〜22dの開度を制御して各槽に原水を供給するようにしてもよい。   That is, as shown in FIG. 4, in the sewage treatment system including a plurality of aerobic tanks 13a to 13e arranged in series along the flow direction of the treated raw water, the aerobic tanks 13b to 13e after the second stage are used. Load detectors 19a to 19d and valves 22a to 22d are provided, and the inflow nitrogen load control device 21 is based on the value of ammonia nitrogen load in each of the aerobic tanks 13b to 13e input from the load detectors 19a to 19d. In addition, the opening of the valves 22a to 22d may be controlled so that the ammonia nitrogen load in each tank is less than a predetermined value, and raw water may be supplied to each tank.

また、図5に示すように処理原水の流れ方向に沿って直列に配列された複数の好気槽13a〜13eを備える下水処理システムにおいて、滞留時間制御装置31が、例えば沈殿槽14から汚泥返送路15への活性汚泥18の引き抜き回数や引き抜き量を制御することによって、沈殿槽14内における活性汚泥18の滞留時間を制御するようにしてもよい。   Further, in the sewage treatment system including a plurality of aerobic tanks 13a to 13e arranged in series along the flow direction of the treated raw water as shown in FIG. 5, the residence time control device 31 returns sludge from the settling tank 14, for example. You may make it control the residence time of the activated sludge 18 in the sedimentation tank 14 by controlling the frequency | count of extraction and the amount of extraction of the activated sludge 18 to the path 15. FIG.

また、図6に示すように処理原水の流れ方向に沿って直列に配列された複数の好気槽13a〜13eを備える下水処理システムにおいて、2段目以後の好気槽13b〜13eに対してガス検出部41a〜41d及びバルブ44a〜44dを設け、ガス送り制御装置43が、ガス検出部41a〜41dから入力された好気槽13b〜13e内における亜酸化窒素ガスの濃度の値に基づいて、好気槽13b〜13e内における亜酸化窒素ガスの濃度の値が所定値未満になるようにバルブ44a〜44dの開度を制御して好気槽13b〜13e内の亜酸化窒素ガスを好気槽13aに供給するようにしてもよい。 Moreover, in the sewage treatment system provided with the several aerobic tanks 13a-13e arranged in series along the flow direction of process raw | natural water as shown in FIG. 6, with respect to the aerobic tanks 13b-13e after the 2nd step | paragraph. Gas detectors 41a to 41d and valves 44a to 44d are provided, and the gas feed control device 43 is based on the concentration value of nitrous oxide gas in the aerobic tanks 13b to 13e input from the gas detectors 41a to 41d. The nitrous oxide gas in the aerobic tanks 13b to 13e is favored by controlling the openings of the valves 44a to 44d so that the concentration of the nitrous oxide gas in the aerobic tanks 13b to 13e is less than a predetermined value. You may make it supply to the air tank 13a.

このように、本実施形態に基づいて当業者などによりなされる他の実施の形態、実施例及び運用技術などは全て本発明の範疇に含まれる。   As described above, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1,2,3 下水処理システム
11 嫌気槽
12 無酸素槽
13a〜13c 好気槽
14 沈殿槽
15 汚泥返送路
16 硝化液循環路
17 原水供給路
18 活性汚泥
19a〜19d 負荷検出部
20 原水ステップ流路
21 流入窒素負荷制御装置
22a〜22d,44a〜44c バルブ
31 滞留時間制御装置
41a〜41c ガス検出部
42 ガス供給路
43 ガス送り制御装置
1, 2, 3 Sewage treatment system 11 Anaerobic tank 12 Anoxic tank 13a-13c Aerobic tank 14 Sedimentation tank 15 Sludge return path 16 Nitrification liquid circulation path 17 Raw water supply path 18 Activated sludge 19a-19d Load detection part 20 Raw water step flow Path 21 Inflow nitrogen load control device 22a-22d, 44a-44c Valve 31 Residence time control device 41a-41c Gas detection part 42 Gas supply path 43 Gas feed control device

Claims (1)

原水供給路から供給された原水が流入する、嫌気条件下で該原水中に含まれる有機物を活性汚泥に取り込むと共に該活性汚泥中に含まれるリンを該原水に放出する嫌気槽と、
前記嫌気槽から流出した処理原水が流入する、無酸素条件下で該処理原水中に含まれる亜硝酸性窒素及び硝酸性窒素を窒素ガスに還元する無酸素槽と、
前記無酸素槽から流出した処理原水が流入する、好気条件下で該処理原水中に含まれるアンモニア性窒素を亜硝酸性窒素及び硝酸性窒素に硝化すると共に該処理原水中に含まれるリンを活性汚泥中に取り込む、該処理原水の流れ方向に沿って配列された複数の好気槽と、
前記好気槽から流出した処理原水が流入する、該処理原水に含まれる活性汚泥を沈殿させる沈殿槽と、
前記沈殿槽内に堆積する活性汚泥を前記嫌気槽に返送する汚泥返送路と、
最下流の前記好気槽内の硝化液を前記無酸素槽に循環する硝化液循環路と、
前記複数の好気槽内で発生した亜酸化窒素ガスの濃度を検出する濃度検出部と、
前記濃度検出部の検出結果に基づいて、前記複数の好気槽内に存在する前記亜酸化窒素ガスを前記無酸素槽に供給するガス供給路と、
前記好気槽内における亜酸化窒素ガスの濃度が所定値未満になるように、前記濃度検出部が検出した亜酸化窒素ガスの濃度に基づいて、前記好気槽内の亜酸化窒素ガスの前記無酸素槽への供給量を制御するガス送り制御装置と、を備える
ことを特徴とする下水処理システム。
An anaerobic tank into which raw water supplied from the raw water supply channel flows, takes in organic matter contained in the raw water under anaerobic conditions into the activated sludge, and releases phosphorus contained in the activated sludge to the raw water;
An anaerobic tank for reducing the nitrite nitrogen and nitrate nitrogen contained in the treated raw water to an oxygen gas under anaerobic conditions into which the treated raw water flowing out of the anaerobic tank flows;
Nitrogenous nitrogen contained in the treated raw water is nitrified to nitrite nitrogen and nitrate nitrogen under aerobic conditions into which the treated raw water that has flowed out of the oxygen-free tank flows, and phosphorus contained in the treated raw water. A plurality of aerobic tanks arranged along the flow direction of the treated raw water to be taken into the activated sludge;
A settling tank for precipitating activated sludge contained in the treated raw water into which the treated raw water flowing out of the aerobic tank flows;
A sludge return path for returning activated sludge accumulated in the settling tank to the anaerobic tank;
A nitrification liquid circulation path for circulating the nitrification liquid in the aerobic tank at the most downstream to the anoxic tank;
A concentration detector for detecting the concentration of nitrous oxide gas generated in the plurality of aerobic tanks;
Based on the detection result of the concentration detector, a gas supply path for supplying the nitrous oxide gas present in the plurality of aerobic tanks to the anoxic tank,
Based on the concentration of the nitrous oxide gas detected by the concentration detector so that the concentration of the nitrous oxide gas in the aerobic tank is less than a predetermined value, the nitrous oxide gas in the aerobic tank is A sewage treatment system comprising: a gas feed control device that controls a supply amount to the anoxic tank.
JP2014223287A 2014-10-31 2014-10-31 Sewage treatment system Active JP5944468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014223287A JP5944468B2 (en) 2014-10-31 2014-10-31 Sewage treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014223287A JP5944468B2 (en) 2014-10-31 2014-10-31 Sewage treatment system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010260228A Division JP5665502B2 (en) 2010-11-22 2010-11-22 Sewage treatment system

Publications (2)

Publication Number Publication Date
JP2015044197A JP2015044197A (en) 2015-03-12
JP5944468B2 true JP5944468B2 (en) 2016-07-05

Family

ID=52670204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014223287A Active JP5944468B2 (en) 2014-10-31 2014-10-31 Sewage treatment system

Country Status (1)

Country Link
JP (1) JP5944468B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105399277A (en) * 2015-12-12 2016-03-16 常州大学 Rural sewage treatment apparatus
CN105621814B (en) * 2016-03-07 2018-09-11 北京恩菲环保股份有限公司 High-quality regeneration water treatment system and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814997A (en) * 1981-07-17 1983-01-28 Hitachi Ltd Control method for biological denitrification process
JPS58104698A (en) * 1981-12-18 1983-06-22 Hitachi Ltd Controlling method for biological denitrification
US5820760A (en) * 1997-06-30 1998-10-13 Competitive Technologies Of Pa, Inc. Process for reducing nitrous oxide emission from waste water treatment
JP3918349B2 (en) * 1999-03-04 2007-05-23 株式会社日立プラントテクノロジー Biological treatment method and apparatus for nitrous oxide gas
JP5140545B2 (en) * 2008-10-22 2013-02-06 メタウォーター株式会社 Air supply system and air supply method
JP5377224B2 (en) * 2009-10-28 2013-12-25 メタウォーター株式会社 Gas generation amount reduction system and gas generation amount reduction method

Also Published As

Publication number Publication date
JP2015044197A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5665502B2 (en) Sewage treatment system
JP4796631B2 (en) Method and system for nitrifying and denitrifying sewage
CN105776700B (en) A kind of waste water nitrogen phosphorus " zero-emission " technology
JP4997460B2 (en) Wastewater treatment system
JP5238002B2 (en) Organic waste water treatment apparatus and treatment method
US20130048558A1 (en) Water treatment method and ultrapure water producing method
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
JP5075926B2 (en) Sewage treatment apparatus and sewage treatment method
JP5944467B2 (en) Sewage treatment system
US11685677B2 (en) Nitrite-oxidizing bacteria activity inhibitor and method
JP6532723B2 (en) Method and system for treating organic wastewater
JP2020006341A (en) Sewage treatment method and apparatus
JP5944468B2 (en) Sewage treatment system
JP6474208B2 (en) Aeration air volume calculation device and water treatment system
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JP5300898B2 (en) Organic wastewater treatment equipment
JP5656656B2 (en) Water treatment equipment
JP4335970B2 (en) Nitrogen-containing wastewater treatment equipment
JP6529886B2 (en) Organic wastewater treatment system, control method and computer program
KR100783790B1 (en) Apparatus for wastewater treatment with multi-stage denitification-filtration and method for wastewater treatment using the same
JP2011139982A (en) Method and apparatus for treating nitrogen-containing water biologically
JP5021902B2 (en) Organic wastewater treatment facility and treatment method
JP5628955B2 (en) Organic waste water treatment apparatus and treatment method
JP2016022421A (en) Sludge treatment method
JP2001029991A (en) Water treatment method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20141212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160525

R150 Certificate of patent or registration of utility model

Ref document number: 5944468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250