JP5725869B2 - Waste water treatment apparatus and operation method thereof - Google Patents

Waste water treatment apparatus and operation method thereof Download PDF

Info

Publication number
JP5725869B2
JP5725869B2 JP2011003089A JP2011003089A JP5725869B2 JP 5725869 B2 JP5725869 B2 JP 5725869B2 JP 2011003089 A JP2011003089 A JP 2011003089A JP 2011003089 A JP2011003089 A JP 2011003089A JP 5725869 B2 JP5725869 B2 JP 5725869B2
Authority
JP
Japan
Prior art keywords
concentration
oxygen
target value
downstream
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011003089A
Other languages
Japanese (ja)
Other versions
JP2012143696A (en
Inventor
均 中沢
均 中沢
幸男 川口
幸男 川口
拓 藤原
拓 藤原
和雄 中町
和雄 中町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Sewage Works Agency
Kochi University NUC
Maezawa Industries Inc
Original Assignee
Japan Sewage Works Agency
Kochi University NUC
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Sewage Works Agency, Kochi University NUC, Maezawa Industries Inc filed Critical Japan Sewage Works Agency
Priority to JP2011003089A priority Critical patent/JP5725869B2/en
Publication of JP2012143696A publication Critical patent/JP2012143696A/en
Application granted granted Critical
Publication of JP5725869B2 publication Critical patent/JP5725869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、排水処理装置及びその運転方法に関し、詳しくは、無終端水路を用いた生物学的排水処理方法によって窒素の除去を含む排水の浄化処理を行う排水処理装置及びその運転方法に関する。   The present invention relates to a wastewater treatment apparatus and an operation method thereof, and more particularly, to a wastewater treatment apparatus that performs purification treatment of wastewater including removal of nitrogen by a biological wastewater treatment method using an endless water channel and an operation method thereof.

生物学的な排水処理を行う方法として、オキシデーションディッチ法が広く知られている。このオキシデーションディッチ法は、無端状に形成したディッチ(無終端水路)内の水を循環させながら一部で曝気することにより、ディッチ内に好気域と無酸素域とを形成し、有機物の分解だけでなく、好気域での硝化反応と無酸素域での脱窒反応とによって窒素分も除去するようにしている。   The oxidation ditch method is widely known as a biological wastewater treatment method. This oxidation ditch method forms an aerobic region and an anoxic region in the ditch by aerating part of the water in the endlessly formed ditch (endless water channel) while circulating it. In addition to decomposition, nitrogen is also removed by a nitrification reaction in an aerobic region and a denitrification reaction in an anoxic region.

オキシデーションディッチ法は、大規模処理場に比べて日間変動が大きい小規模処理場に適しているが、日間変動によってディッチ内における負荷が大きく変動するため、負荷に応じてディッチ内の流速や酸素供給量(曝気量)を調節し、前記好気域と無酸素域とのバランスを適正に保つことが重要となる。このため、好気域の上流側と下流側との適当な位置に溶存酸素計(DO計)をそれぞれ設置し、各DO計の測定値(DO値)に基づいて循環液の流速及び酸素の供給量をそれぞれ調節することにより、いわゆる二点DO制御によって好気域と無酸素域とのバランスを適正に保つようにしている(例えば、特許文献1参照。)。   The oxidation ditch method is suitable for small-scale treatment plants that have large daily fluctuations compared to large-scale treatment plants, but the load in the ditch varies greatly due to daily fluctuations. It is important to adjust the supply amount (aeration amount) and maintain a proper balance between the aerobic region and the anoxic region. For this reason, dissolved oxygen meters (DO meters) are installed at appropriate positions on the upstream side and downstream side of the aerobic region, respectively, and the flow rate of the circulating fluid and the oxygen concentration are measured based on the measured values (DO values) of each DO meter. By adjusting the supply amount, the balance between the aerobic region and the anaerobic region is appropriately maintained by so-called two-point DO control (see, for example, Patent Document 1).

また、排水中の窒素分(アンモニア性窒素、硝酸性窒素)の除去については、アンモニア性窒素濃度と硝酸性窒素濃度とを測定して曝気ロータの回転数を調節することによって両者の濃度差を一定の範囲内に制御したり(例えば、特許文献2参照。)、好気性領域と嫌気性領域との比を制御するとともに硝酸性窒素濃度とアンモニア性窒素濃度との比を制御したり(例えば、特許文献3参照。)、アンモニア性窒素濃度と硝酸性窒素濃度とを測定して曝気運転と非曝気運転とを切り替えたり(例えば、特許文献4参照。)するなどの提案がなされている。   Regarding the removal of nitrogen (ammonia nitrogen, nitrate nitrogen) in the waste water, the concentration difference between the two is adjusted by measuring the ammonia nitrogen concentration and nitrate nitrogen concentration and adjusting the rotation speed of the aeration rotor. It is controlled within a certain range (for example, refer to Patent Document 2), and the ratio between the aerobic region and the anaerobic region is controlled and the ratio between the nitrate nitrogen concentration and the ammonia nitrogen concentration is controlled (for example, Patent Document 3), and proposals have been made such as switching between aeration operation and non-aeration operation by measuring ammonia nitrogen concentration and nitrate nitrogen concentration (for example, see Patent Document 4).

特開2005−52804号公報JP 2005-52804 A 特開平8−1184号公報JP-A-8-1184 特開平8−323384号公報JP-A-8-323384 特開2005−715号公報JP-A-2005-715

しかし、特許文献1に記載された方法では、流入アンモニア負荷の大きな変動に対して、最適な処理性能を得るためには各DO計の設定値の変更が必要になる。また、特許文献2〜4に記載された方法では、アンモニア性窒素濃度と硝酸性窒素濃度とを測定して制御するようにしているが、いずれの方法も制御が極めて困難であり、制御できたとしても、窒素分を十分に除去することは困難である。   However, in the method described in Patent Document 1, it is necessary to change the set value of each DO meter in order to obtain optimum processing performance with respect to a large fluctuation in the inflow ammonia load. In addition, in the methods described in Patent Documents 2 to 4, the ammonia nitrogen concentration and the nitrate nitrogen concentration are measured and controlled. However, both methods are extremely difficult to control and can be controlled. However, it is difficult to sufficiently remove the nitrogen content.

そこで本発明は、前記二点DO制御の長所を活かしながら窒素分を効果的に除去することができる排水処理装置及びその運転方法を提供することを目的としている。   Then, this invention aims at providing the waste-water-treatment apparatus which can remove a nitrogen content effectively, utilizing the advantage of the said 2 point | piece DO control, and its operating method.

上記目的を達成するため、本発明の排水処理装置は、無終端水路に循環流発生手段及び酸素供給手段を備え、該酸素供給手段の下流側の好気域と、該好気域の終端から前記酸素供給手段に至る無酸素域とを形成し、前記好気域における上流側と下流側とに、循環液中の溶存酸素濃度を測定する上流側溶存酸素計及び下流側溶存酸素計をそれぞれ設け、前記上流側溶存酸素計で測定した上流側溶存酸素濃度に基づいて前記酸素供給手段による酸素の供給量を制御する酸素供給量制御手段と、前記下流側溶存酸素計で測定した下流側溶存酸素濃度に基づいて前記循環流発生手段による循環液の流速を制御する流速制御手段とを設けるとともに、循環液中のアンモニア及び硝酸の濃度を測定するアンモニア/硝酸濃度測定手段を設け、該アンモニア/硝酸濃度測定手段で測定したアンモニア濃度があらかじめ設定したアンモニア濃度下限値を下回るときには、上流側酸素濃度目標値及び下流側酸素濃度目標値をそれぞれ低い値に調節し、測定したアンモニア濃度があらかじめ設定したアンモニア濃度上限値を上回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方を高い値に調節し、測定したアンモニア濃度が前記アンモニア濃度上限値以下で、かつ、測定した硝酸濃度があらかじめ設定した硝酸濃度上限値を上回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方を低い値に調節する目標値制御手段を設けたことを特徴としている。 In order to achieve the above object, the waste water treatment apparatus of the present invention comprises a circulation flow generating means and an oxygen supply means in an endless water channel, and includes an aerobic region downstream of the oxygen supply unit and an end of the aerobic region. Forming an oxygen-free region leading to the oxygen supply means, and an upstream dissolved oxygen meter and a downstream dissolved oxygen meter for measuring the dissolved oxygen concentration in the circulating liquid on the upstream side and the downstream side in the aerobic region, respectively An oxygen supply amount control means for controlling the supply amount of oxygen by the oxygen supply means based on the upstream dissolved oxygen concentration measured by the upstream dissolved oxygen meter; and the downstream dissolved oxygen meter measured by the downstream dissolved oxygen meter. A flow rate controlling means for controlling the flow rate of the circulating fluid by the circulating flow generating means based on the oxygen concentration, and an ammonia / nitric acid concentration measuring means for measuring the concentrations of ammonia and nitric acid in the circulating fluid. When ammonia concentration measured by the nitric acid concentration measurement means is below a preset ammonia concentration lower limit, regulate upstream oxygen concentration target value and the downstream oxygen concentration target value to respective low values, the ammonia concentration measured preset When the ammonia concentration upper limit value is exceeded, at least one of the upstream oxygen concentration target value and the downstream oxygen concentration target value is adjusted to a high value, and the measured ammonia concentration is not more than the ammonia concentration upper limit value, and Provided with a target value control means for adjusting at least one of the upstream oxygen concentration target value and the downstream oxygen concentration target value to a low value when the measured nitric acid concentration exceeds a preset upper limit value of nitric acid concentration It is characterized by.

また、本発明の排水処理装置の運転方法は、無終端水路に循環流発生手段及び酸素供給手段を備え、該酸素供給手段の下流側の好気域と、該好気域の終端から前記酸素供給手段に至る無酸素域とを形成し、前記好気域における上流側と下流側とに、循環液中の溶存酸素濃度を測定する上流側溶存酸素計及び下流側溶存酸素計をそれぞれ設け、前記上流側溶存酸素計で測定した上流側溶存酸素濃度に基づいて前記酸素供給手段による酸素の供給量を制御する酸素供給量制御手段と、前記下流側溶存酸素計で測定した下流側溶存酸素濃度に基づいて前記循環流発生手段による循環液の流速を制御する流速制御手段とを設けるとともに、循環液中のアンモニア及び硝酸の濃度を測定するアンモニア/硝酸濃度測定手段を設け、該アンモニア/硝酸濃度測定手段で測定したアンモニア濃度及び硝酸濃度の少なくともいずれか一方の濃度に基づいて前記酸素供給量制御手段の上流側酸素濃度目標値及び前記流速制御手段の下流側酸素濃度目標値を調節する目標値制御手段を設けた排水処理装置の運転方法であって、前記酸素供給量制御手段は、測定した上流側溶存酸素濃度があらかじめ設定した前記上流側酸素濃度目標値となるように前記酸素供給手段による酸素の供給量を制御し、前記流速制御手段は、測定した下流側溶存酸素濃度があらかじめ設定した前記下流側酸素濃度目標値となるように前記循環流発生手段による循環液の流速を制御し、前記目標値制御手段は、測定したアンモニア濃度があらかじめ設定した前記アンモニア濃度下限値を下回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値をそれぞれ低い値に調節し、測定したアンモニア濃度があらかじめ設定したアンモニア濃度上限値を上回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方を高い値に調節し、測定したアンモニア濃度が前記アンモニア濃度上限値以下で、かつ、測定した硝酸濃度があらかじめ設定した硝酸濃度上限値を上回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方を低い値に調節する
ことを特徴としている。
Further, the operating method of the wastewater treatment apparatus of the present invention comprises a circulation flow generating means and an oxygen supply means in an endless water channel, and an aerobic region downstream of the oxygen supply means, and the oxygen from the end of the aerobic region Forming an oxygen-free region leading to the supply means, and providing an upstream dissolved oxygen meter and a downstream dissolved oxygen meter for measuring the dissolved oxygen concentration in the circulating liquid on the upstream side and the downstream side in the aerobic region, An oxygen supply amount control means for controlling an oxygen supply amount by the oxygen supply means based on an upstream dissolved oxygen concentration measured by the upstream dissolved oxygen meter, and a downstream dissolved oxygen concentration measured by the downstream dissolved oxygen meter And a flow rate control means for controlling the flow rate of the circulating fluid by the circulating flow generating means, and an ammonia / nitric acid concentration measuring means for measuring the concentrations of ammonia and nitric acid in the circulating fluid. A target value for adjusting the upstream oxygen concentration target value of the oxygen supply amount control means and the downstream oxygen concentration target value of the flow rate control means based on at least one of the ammonia concentration and the nitric acid concentration measured by the measuring means a method of operating is provided a control means the waste water treatment apparatus, the oxygen supply amount control means, by the oxygen supply means so that the upstream side of dissolved oxygen concentration measured becomes the upstream oxygen concentration target value set in advance to control the supply amount of oxygen, the flow rate control means controls the flow rate of the circulating liquid by the circulating flow generation means such that the downstream side of dissolved oxygen concentration measured becomes the downstream oxygen concentration target value set in advance, When the measured ammonia concentration is lower than the ammonia concentration lower limit value set in advance, the target value control means is configured to set the upstream oxygen concentration target value. Each of the downstream oxygen concentration target values is adjusted to a low value, and when the measured ammonia concentration exceeds a preset ammonia concentration upper limit value, at least one of the upstream oxygen concentration target value and the downstream oxygen concentration target value. When either one is adjusted to a high value and the measured ammonia concentration is equal to or lower than the ammonia concentration upper limit value and the measured nitric acid concentration exceeds the preset nitric acid concentration upper limit value, the upstream oxygen concentration target value and the downstream It is characterized in that at least one of the side oxygen concentration target values is adjusted to a low value.

本発明によれば、測定したアンモニア濃度や硝酸濃度に基づいて酸素供給量制御手段の上流側酸素濃度目標値及び流速制御手段の下流側酸素濃度目標値を調節することにより、アンモニア性窒素や硝酸性窒素を制御することができる。   According to the present invention, by adjusting the upstream oxygen concentration target value of the oxygen supply amount control means and the downstream oxygen concentration target value of the flow rate control means based on the measured ammonia concentration and nitric acid concentration, ammonia nitrogen and nitric acid Nitrogen can be controlled.

本発明の排水処理装置の一形態例を示す説明図である。It is explanatory drawing which shows one example of the waste water treatment apparatus of this invention. 目標値を下げる制御の説明図である。It is explanatory drawing of the control which lowers a target value. 目標値を上げる制御の説明図である。It is explanatory drawing of the control which raises a target value.

本形態例に示す排水処理装置は、生物学的排水処理方法によって窒素の除去を含む排水の浄化処理を行うディッチ11に循環流発生手段である一組の水流発生装置12と酸素供給手段である曝気装置13とを設け、ディッチ11内に矢印Fで示す方向の循環流を形成することにより、曝気装置13から所定の距離までの間に好気域14を、この好気域14の終端から曝気装置13までの間に無酸素域15をそれぞれ所定のバランスで形成するようにしている。   The wastewater treatment apparatus shown in the present embodiment is a set of water flow generation device 12 and oxygen supply means that are circulation flow generation means in the ditch 11 that performs wastewater purification treatment including nitrogen removal by a biological wastewater treatment method. By providing an aeration device 13 and forming a circulating flow in the direction indicated by the arrow F in the ditch 11, the aerobic region 14 is moved from the end of the aerobic region 14 to a predetermined distance from the aeration device 13. The oxygen-free region 15 is formed in a predetermined balance between the aeration device 13 and the aeration device 13.

好気域14の下流部には、出口流路16を介して最終沈殿池17が設けられ、無酸素域15の上流部には原水流入経路18が設けられるとともに、該原水流入経路18の途中には嫌気槽19が設けられている。さらに、最終沈殿池17には、分離した上澄み水が流出する処理水流出経路20と、沈降分離した汚泥を嫌気槽19に返送する返送汚泥経路21と、汚泥の一部を余剰汚泥として抜き取る汚泥抜出経路22とが設けられている。前記嫌気槽19は、該嫌気槽19に流入した原水と返送汚泥経路21から返送された汚泥とを混合して嫌気状態に所定時間保持する。   A final sedimentation basin 17 is provided in the downstream portion of the aerobic region 14 via the outlet channel 16, and a raw water inflow passage 18 is provided in the upstream portion of the anoxic region 15, and the middle of the raw water inflow passage 18 Is provided with an anaerobic tank 19. Further, in the final sedimentation basin 17, a treated water outflow path 20 through which the separated supernatant water flows out, a return sludge path 21 through which the settled and separated sludge is returned to the anaerobic tank 19, and sludge that extracts a part of the sludge as excess sludge. An extraction path 22 is provided. The anaerobic tank 19 mixes the raw water flowing into the anaerobic tank 19 and the sludge returned from the return sludge path 21 and keeps them in an anaerobic state for a predetermined time.

また、前記好気域14における循環液流れ方向上流側と下流側とには、循環液中の溶存酸素濃度を測定する上流側溶存酸素計(DO1)23と、下流側溶存酸素計(DO2)24とがそれぞれ設けられるとともに、ディッチ11内の適宜な位置、好ましくは、出口流路16の近傍には、循環液中のアンモニア(アンモニア性窒素)及び硝酸(硝酸性窒素)の濃度を測定するアンモニア/硝酸濃度測定手段25が設けられている。   An upstream dissolved oxygen meter (DO1) 23 for measuring the dissolved oxygen concentration in the circulating fluid and a downstream dissolved oxygen meter (DO2) are disposed upstream and downstream in the circulating fluid flow direction in the aerobic region 14. 24, and the concentration of ammonia (ammonia nitrogen) and nitric acid (nitrate nitrogen) in the circulating liquid is measured at an appropriate position in the ditch 11, preferably in the vicinity of the outlet channel 16. An ammonia / nitric acid concentration measuring means 25 is provided.

さらに、前記上流側溶存酸素計23で測定した上流側溶存酸素濃度に基づいて前記曝気装置13による酸素の供給量を制御する酸素供給量制御手段26と、前記下流側溶存酸素計24で測定した下流側溶存酸素濃度に基づいて前記一組の水流発生装置12による循環液の流速を制御する流速制御手段27と、アンモニア/硝酸濃度測定手段25で測定したアンモニア濃度及び硝酸濃度に基づいて前記酸素供給量制御手段26の上流側酸素濃度目標値及び前記流速制御手段27の下流側酸素濃度目標値を調節する目標値制御手段28とが設けられている。   Furthermore, the oxygen supply amount control means 26 for controlling the oxygen supply amount by the aeration apparatus 13 based on the upstream dissolved oxygen concentration measured by the upstream dissolved oxygen meter 23 and the downstream dissolved oxygen meter 24 measured. The flow rate control means 27 for controlling the flow rate of the circulating fluid by the set of water flow generators 12 based on the downstream dissolved oxygen concentration, and the oxygen concentration based on the ammonia concentration and nitric acid concentration measured by the ammonia / nitric acid concentration measurement means 25. A target value control means 28 for adjusting the upstream oxygen concentration target value of the supply amount control means 26 and the downstream oxygen concentration target value of the flow rate control means 27 is provided.

原水流入経路18から嫌気槽19に流入した原水は、最終沈殿池17から返送汚泥経路21を通って返送された汚泥と混合した混合液となり、嫌気槽19で嫌気状態に保持された後、ディッチ11の無酸素域15に流入して循環液に合流し、無酸素域15で無酸素状態に保持されることにより硝酸性窒素の脱窒が行われ、循環液中から窒素が除去される。   The raw water flowing into the anaerobic tank 19 from the raw water inflow path 18 becomes a mixed liquid mixed with the sludge returned from the final sedimentation basin 17 through the return sludge path 21 and is kept in an anaerobic state in the anaerobic tank 19. 11 flows into the oxygen-free region 15 and joins the circulating liquid, and is maintained in an oxygen-free state in the oxygen-free region 15, so that nitrate nitrogen is denitrified and nitrogen is removed from the circulating liquid.

循環液は、水流発生装置12を経て曝気装置13を通過する際に、ブロワBから圧送されて循環液中に噴出した空気と接触することにより、液中に酸素を取り込んで好気性状態となり、好気域14を流れながら有機物の分解やアンモニア性窒素の硝化が行われ、循環液中から有機物及びアンモニア性窒素が除去される。   When the circulating fluid passes through the aeration device 13 via the water flow generator 12, it comes into contact with the air pumped from the blower B and jetted into the circulating fluid, so that oxygen is taken into the fluid and becomes an aerobic state. While flowing through the aerobic region 14, organic matter is decomposed and ammoniacal nitrogen is nitrified, and organic matter and ammoniacal nitrogen are removed from the circulating fluid.

好気域14の終端部を流れる循環液の一部は、出口流路16を通って最終沈殿池17に抜き出され、最終沈殿池17で循環液の固液分離が行われる。最終沈殿池17で分離した上澄み液は、処理水流出経路20から放流され、沈殿した汚泥の一部は汚泥抜出経路22から余剰汚泥として抜き取られ、残りの汚泥は、返送汚泥経路21を通って前記嫌気槽19に返送される。また、最終沈殿池17に抜き出されなかった循環液は、溶存酸素の減少によって無酸素状態となり、無酸素域15の上流部分で嫌気槽19からの前記混合液と合流してディッチ11内を循環する。   A part of the circulating fluid flowing through the end portion of the aerobic region 14 is extracted to the final sedimentation basin 17 through the outlet channel 16, and the circulating fluid is subjected to solid-liquid separation in the final sedimentation basin 17. The supernatant liquid separated in the final sedimentation basin 17 is discharged from the treated water outflow path 20, a part of the settled sludge is extracted as excess sludge from the sludge extraction path 22, and the remaining sludge passes through the return sludge path 21. And returned to the anaerobic tank 19. In addition, the circulating fluid that has not been withdrawn into the final sedimentation basin 17 becomes oxygen-free due to a decrease in dissolved oxygen, and merges with the mixed solution from the anaerobic tank 19 in the upstream portion of the oxygen-free zone 15 to enter the interior of the ditch 11. Circulate.

前記酸素供給量制御手段26は、測定した上流側溶存酸素濃度があらかじめ設定した上流側酸素濃度目標値となるように前記曝気装置13による酸素の供給量を制御する。例えば、流入原水の負荷の変動により、上流側溶存酸素濃度が上流側酸素濃度目標値として設定された適正範囲を下回った場合は、酸素不足状態であるから、曝気装置13による曝気量を増大させて上流側溶存酸素濃度が適正範囲に入るように制御し、適正範囲を上回った場合は、酸素過剰状態であるから、曝気装置13による曝気量を減少させて上流側溶存酸素濃度が適正範囲に入るように制御する。   The oxygen supply amount control means 26 controls the oxygen supply amount by the aeration apparatus 13 so that the measured upstream dissolved oxygen concentration becomes a preset upstream oxygen concentration target value. For example, if the upstream dissolved oxygen concentration falls below the appropriate range set as the upstream oxygen concentration target value due to fluctuations in the load of the inflow raw water, the amount of aeration by the aeration device 13 is increased because the oxygen is insufficient. The upstream dissolved oxygen concentration is controlled so as to fall within the appropriate range. If the upstream dissolved oxygen concentration exceeds the appropriate range, it is an oxygen excess state. Therefore, the amount of aeration by the aeration device 13 is reduced so that the upstream dissolved oxygen concentration falls within the proper range. Control to enter.

また、前記流速制御手段27は、測定した下流側溶存酸素濃度があらかじめ設定した下流側酸素濃度目標値となるように前記水流発生装置12の回転速度を制御する。例えば、流入原水の負荷の変動により、下流側溶存酸素計24で測定した下流側溶存酸素濃度が下流側酸素濃度目標値として設定された適正範囲を超えて高濃度になった場合は、水流発生装置12を減速して循環液の流速を低下させることにより、下流側溶存酸素濃度が適正範囲に入るように制御し、下流側溶存酸素濃度が適正範囲を下回って低濃度になった場合は、水流発生装置12を増速して循環液の流速を上昇させることにより、下流側溶存酸素濃度が適正範囲に入るように制御する。   The flow rate control means 27 controls the rotational speed of the water flow generator 12 so that the measured downstream dissolved oxygen concentration becomes a preset downstream oxygen concentration target value. For example, when the downstream dissolved oxygen concentration measured by the downstream dissolved oxygen meter 24 becomes higher than the appropriate range set as the downstream oxygen concentration target value due to fluctuations in the load of the inflow raw water, water flow is generated. By reducing the flow rate of the circulating fluid by decelerating the device 12, it is controlled so that the downstream dissolved oxygen concentration falls within the proper range, and when the downstream dissolved oxygen concentration falls below the proper range and becomes a low concentration, By controlling the water flow generator 12 to increase the flow rate of the circulating fluid, the downstream dissolved oxygen concentration is controlled to fall within an appropriate range.

そして、前記目標値制御手段28は、アンモニア/硝酸濃度測定手段25で測定したアンモニア濃度があらかじめ設定したアンモニア濃度下限値を下回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方、好ましくは双方を低い値に調節し、測定したアンモニア濃度が前記アンモニア濃度上限値を上回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方、好ましくは双方を高い値に調節する。   Then, when the ammonia concentration measured by the ammonia / nitric acid concentration measuring means 25 falls below a preset ammonia concentration lower limit value, the target value control means 28 sets the upstream oxygen concentration target value and the downstream oxygen concentration target value. At least one of them, preferably both are adjusted to a low value, and when the measured ammonia concentration exceeds the ammonia concentration upper limit value, at least one of the upstream oxygen concentration target value and the downstream oxygen concentration target value, Preferably both are adjusted to a high value.

すなわち、目標値制御手段28は、アンモニア/硝酸濃度測定手段25で測定したディッチ11内の循環液のアンモニア濃度がアンモニア濃度下限値を下回るときには、図2に示すように、酸素供給量制御手段26の上流側酸素濃度目標値Aを、該上流側酸素濃度目標値Aよりも低い溶存酸素濃度とした目標値ALに下げたり、前記流速制御手段27の下流側酸素濃度目標値Bを、該下流側酸素濃度目標値Bよりも低い溶存酸素濃度とした目標値BLに下げたりする。   That is, when the ammonia concentration of the circulating fluid in the ditch 11 measured by the ammonia / nitric acid concentration measuring means 25 falls below the ammonia concentration lower limit value, the target value control means 28, as shown in FIG. The upstream oxygen concentration target value A is reduced to a target value AL that is a dissolved oxygen concentration lower than the upstream oxygen concentration target value A, or the downstream oxygen concentration target value B of the flow rate control means 27 is For example, the dissolved oxygen concentration is lowered to the target value BL lower than the side oxygen concentration target value B.

これにより、酸素供給量制御手段26は、上流側溶存酸素計(DO1)23で測定した上流側溶存酸素濃度が上流側酸素濃度目標値ALとして設定された適正範囲を上回っていると判断したときには、曝気装置13による曝気量を減少させて上流側溶存酸素濃度が上流側酸素濃度目標値ALの適正範囲に入るように制御する。   Accordingly, when the oxygen supply amount control means 26 determines that the upstream dissolved oxygen concentration measured by the upstream dissolved oxygen meter (DO1) 23 exceeds the appropriate range set as the upstream oxygen concentration target value AL. Then, the amount of aeration by the aeration device 13 is decreased so that the upstream dissolved oxygen concentration falls within the appropriate range of the upstream oxygen concentration target value AL.

同様に、流速制御手段27においても、下流側溶存酸素計(DO2)24で測定した下流側溶存酸素濃度が下流側酸素濃度目標値BLとして設定された適正範囲を上回っていると判断したときには、水流発生装置12を減速して循環液の流速を低下させることにより、下流側溶存酸素濃度が下流側酸素濃度目標値BLの適正範囲に入るように制御する。   Similarly, when the flow rate control means 27 determines that the downstream dissolved oxygen concentration measured by the downstream dissolved oxygen meter (DO2) 24 exceeds the appropriate range set as the downstream oxygen concentration target value BL, The water flow generator 12 is decelerated to reduce the flow rate of the circulating fluid, so that the downstream dissolved oxygen concentration is controlled to fall within the appropriate range of the downstream oxygen concentration target value BL.

このように、酸素供給量制御手段26の上流側酸素濃度目標値及び流速制御手段27の下流側酸素濃度目標値の少なくともいずれか一方を目標値AL,BLに下げて制御することにより、ディッチ11内の循環液における溶存酸素濃度が全体的に低く制御されることになり、好気域14の領域が減少して無酸素域15の領域が増大する。これにより、硝化菌によるアンモニアの酸化作用が抑制されて循環液のアンモニア濃度が徐々に上昇する。また、過剰な溶存酸素によって硝化菌が自己酸化分解することを防止できるとともに、曝気装置13及び水流発生装置12の消費動力を低減することができる。   In this way, by controlling at least one of the upstream oxygen concentration target value of the oxygen supply amount control means 26 and the downstream oxygen concentration target value of the flow rate control means 27 to the target values AL and BL, control is performed by the ditch 11. The dissolved oxygen concentration in the circulating fluid is controlled to be low as a whole, and the region of the aerobic region 14 decreases and the region of the anoxic region 15 increases. Thereby, the oxidizing action of ammonia by nitrifying bacteria is suppressed, and the ammonia concentration in the circulating fluid gradually increases. In addition, it is possible to prevent nitrifying bacteria from undergoing auto-oxidative decomposition due to excessive dissolved oxygen, and it is possible to reduce power consumption of the aeration apparatus 13 and the water flow generation apparatus 12.

逆に、アンモニア/硝酸濃度測定手段25で測定したディッチ11内の循環液のアンモニア濃度がアンモニア濃度上限値を上回るときには、図3に示すように、酸素供給量制御手段26の上流側酸素濃度目標値Aを、該上流側酸素濃度目標値Aよりも高い溶存酸素濃度とした目標値AHに上げたり、前記流速制御手段27の下流側酸素濃度目標値Bを、該下流側酸素濃度目標値Bよりも高い溶存酸素濃度とした目標値BHに上げたりする。   Conversely, when the ammonia concentration of the circulating fluid in the ditch 11 measured by the ammonia / nitric acid concentration measuring means 25 exceeds the ammonia concentration upper limit value, the upstream oxygen concentration target of the oxygen supply amount control means 26 as shown in FIG. The value A is raised to a target value AH which is a dissolved oxygen concentration higher than the upstream oxygen concentration target value A, or the downstream oxygen concentration target value B of the flow velocity control means 27 is changed to the downstream oxygen concentration target value B. Or higher to the target value BH with a higher dissolved oxygen concentration.

これにより、酸素供給量制御手段26は、測定した上流側溶存酸素濃度が上流側酸素濃度目標値AHとして設定された適正範囲を下回ったと判断したときには、曝気装置13による曝気量を増加させて上流側溶存酸素濃度が上流側酸素濃度目標値AHの適正範囲に入るように制御する。   As a result, when the oxygen supply amount control means 26 determines that the measured upstream dissolved oxygen concentration falls below the appropriate range set as the upstream oxygen concentration target value AH, the oxygen supply amount control means 26 increases the aeration amount by the aeration device 13 to increase the upstream amount. Control is performed so that the side dissolved oxygen concentration falls within an appropriate range of the upstream oxygen concentration target value AH.

同様に、流速制御手段27においても、測定した下流側溶存酸素濃度が下流側酸素濃度目標値BHとして設定された適正範囲を下回ったと判断したときには、水流発生装置12を増速して循環液の流速を上昇させることにより、下流側溶存酸素濃度が下流側酸素濃度目標値BHの適正範囲に入るように制御する。   Similarly, in the flow rate control means 27, when it is determined that the measured downstream dissolved oxygen concentration falls below the appropriate range set as the downstream oxygen concentration target value BH, the water flow generator 12 is accelerated to increase the circulating fluid flow rate. By increasing the flow rate, the downstream dissolved oxygen concentration is controlled to fall within the appropriate range of the downstream oxygen concentration target value BH.

このように、酸素供給量制御手段26の上流側酸素濃度目標値A及び流速制御手段27の下流側酸素濃度目標値Bの少なくともいずれか一方を目標値AH,BHに上げて制御することにより、ディッチ11内の循環液における溶存酸素濃度が全体的に高く制御されることになり、好気域14の領域が増大して無酸素域15の領域が減少する。これにより、硝化菌によるアンモニアの酸化作用が促進され、アンモニアが亜硝酸や硝酸に変化することで循環液のアンモニア濃度が徐々に低下する。   In this manner, by controlling at least one of the upstream oxygen concentration target value A of the oxygen supply amount control means 26 and the downstream oxygen concentration target value B of the flow rate control means 27 to the target values AH and BH, The dissolved oxygen concentration in the circulating fluid in the ditch 11 is controlled to be high as a whole, and the region of the aerobic region 14 increases and the region of the anoxic region 15 decreases. As a result, the oxidizing action of ammonia by nitrifying bacteria is promoted, and the ammonia concentration in the circulating fluid is gradually lowered by changing the ammonia to nitrous acid or nitric acid.

いずれの制御の場合も、アンモニア/硝酸濃度測定手段25で測定したアンモニア濃度が、アンモニア濃度下限値以上になったり、アンモニア濃度上限値以下になったりした場合は、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値をあらかじめ設定した元の目標値A,Bに戻すことにより、あらかじめ設定された通常の制御を行うことにより、効率よく排水処理を行うことができる。   In any control, when the ammonia concentration measured by the ammonia / nitric acid concentration measuring means 25 becomes equal to or higher than the ammonia concentration lower limit value or lower than the ammonia concentration upper limit value, the upstream oxygen concentration target value and By returning the downstream oxygen concentration target value to the original target values A and B set in advance, the waste water treatment can be performed efficiently by performing the preset normal control.

さらに、アンモニア/硝酸濃度測定手段25で測定したアンモニア濃度が、アンモニア濃度下限値以上、アンモニア濃度上限値以下であって、アンモニア濃度が適正な範囲に入っている場合でも、アンモニア/硝酸濃度測定手段25で測定した硝酸濃度があらかじめ設定した硝酸濃度上限値を上回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方を低い目標値AL,BLに調節する。これにより、前記同様に、曝気装置13による曝気量が減少したり、水流発生装置12が減速したりすることで無酸素域15の領域が増大し、無酸素域15における脱窒反応が促進され、徐々に硝酸濃度が低下する。この場合も、硝酸濃度が硝酸濃度上限値以下になったら上流側酸素濃度目標値及び下流側酸素濃度目標値を元の目標値A,Bに戻す。   Furthermore, even if the ammonia concentration measured by the ammonia / nitric acid concentration measuring means 25 is not less than the ammonia concentration lower limit value and not more than the ammonia concentration upper limit value, and the ammonia concentration is within an appropriate range, the ammonia / nitric acid concentration measuring means. When the nitric acid concentration measured in 25 exceeds the preset nitric acid concentration upper limit value, at least one of the upstream oxygen concentration target value and the downstream oxygen concentration target value is adjusted to low target values AL and BL. Thus, as described above, the amount of aeration by the aeration device 13 decreases or the water flow generation device 12 decelerates, so that the region of the anoxic region 15 increases and the denitrification reaction in the anoxic region 15 is promoted. The nitric acid concentration gradually decreases. Also in this case, when the nitric acid concentration falls below the nitric acid concentration upper limit value, the upstream oxygen concentration target value and the downstream oxygen concentration target value are returned to the original target values A and B.

このように、循環液中のアンモニア濃度をアンモニア濃度下限値とアンモニア濃度上限値との間の一定の濃度範囲に制御するとともに、循環液中硝酸濃度を硝酸濃度上限値以下に制御するために、アンモニア濃度及び硝酸濃度に基づいて酸素供給量制御手段26の上流側酸素濃度目標値及び流速制御手段27の下流側酸素濃度目標値をそれぞれ調節するようにしているので、酸素供給量制御手段26と流速制御手段27とによってディッチ11内の溶存酸素濃度を確実に制御することができ、好気域14と無酸素域15との比率をアンモニア濃度や硝酸濃度に応じて最適な比率に制御することができる。   Thus, in order to control the ammonia concentration in the circulating fluid to a certain concentration range between the ammonia concentration lower limit value and the ammonia concentration upper limit value, and to control the nitric acid concentration in the circulating fluid below the nitric acid concentration upper limit value, Since the upstream oxygen concentration target value of the oxygen supply amount control means 26 and the downstream oxygen concentration target value of the flow rate control means 27 are adjusted based on the ammonia concentration and the nitric acid concentration, respectively, the oxygen supply amount control means 26 and The dissolved oxygen concentration in the ditch 11 can be reliably controlled by the flow rate control means 27, and the ratio of the aerobic region 14 and the anoxic region 15 is controlled to an optimum ratio according to the ammonia concentration and the nitric acid concentration. Can do.

すなわち、従来のように、測定した硝酸性窒素濃度とアンモニア性窒素濃度とに基づいてこれらの濃度を直接的に制御する場合に比べて、好気域14と無酸素域15とのバランスが大きく崩れたりすることがないので、ディッチ11から最終沈殿池17に抜き出される循環液の状態も安定し、循環液中に含まれる窒素分の濃度も安定し、排水処理効率の向上を図れるとともに、消費動力の低減も図ることができる。   That is, the balance between the aerobic region 14 and the anaerobic region 15 is larger than in the conventional case where these concentrations are directly controlled based on the measured nitrate nitrogen concentration and ammonia nitrogen concentration. Since it does not collapse, the state of the circulating fluid extracted from the ditch 11 to the final sedimentation basin 17 is stable, the concentration of nitrogen contained in the circulating fluid is also stable, and wastewater treatment efficiency can be improved. It is also possible to reduce power consumption.

さらに、放流水中のアンモニア濃度を極力低く抑える必要がある場合には、前記アンモニア濃度上限値を低くするだけで確実な制御を行うことが可能であり、同様に、放流水中の硝酸濃度を極力低く抑える必要がある場合には、前記硝酸濃度上限値を低くするだけで確実な制御を行うことが可能である。また、放流水中の窒素分を極力低く抑える必要がある場合には、アンモニア濃度と硝酸濃度との和を全窒素濃度として演算し、あらかじめ設定したアンモニア濃度と硝酸濃度との比率に基づいて上流側酸素濃度目標値及び下流側酸素濃度目標値をそれぞれ調節することで全窒素濃度が最小となるように制御することも可能であり、全窒素濃度が規制値以下となる条件で好気域14の領域を小さくすることにより、酸素供給手段である曝気装置13のブロワB及び循環流発生手段である水流発生装置12のモータの消費電力を削減することができる。   Furthermore, when it is necessary to keep the ammonia concentration in the effluent water as low as possible, it is possible to perform reliable control only by reducing the upper limit value of the ammonia concentration. Similarly, the nitric acid concentration in the effluent water is as low as possible. When it is necessary to suppress this, it is possible to perform reliable control only by reducing the upper limit value of the nitric acid concentration. In addition, when it is necessary to keep the nitrogen content in the effluent water as low as possible, the sum of ammonia concentration and nitric acid concentration is calculated as the total nitrogen concentration, and the upstream side is calculated based on the ratio of ammonia concentration and nitric acid concentration set in advance. It is possible to control the total nitrogen concentration to be the minimum by adjusting the oxygen concentration target value and the downstream oxygen concentration target value, respectively. By reducing the area, it is possible to reduce the power consumption of the blower B of the aeration apparatus 13 that is an oxygen supply means and the motor of the water flow generation apparatus 12 that is a circulation flow generation means.

なお、制御用の上限値や下限値、目標値は、複数段階設定することが可能であり、目標値を二段階以上で上下することもでき、目標値に対する適正範囲の幅も任意に設定することができる。また、アンモニア濃度の測定値に対して上流側酸素濃度目標値及び下流側酸素濃度目標値をそれぞれ連続的に変化させることも可能である。   The upper limit, lower limit, and target value for control can be set in multiple stages, the target value can be raised or lowered in two or more stages, and the width of the appropriate range for the target value can be set arbitrarily. be able to. It is also possible to continuously change the upstream oxygen concentration target value and the downstream oxygen concentration target value with respect to the measured value of the ammonia concentration.

前記アンモニア/硝酸濃度測定手段は、アンモニアイオン及び硝酸イオンを1本のセンサーで同時に測定可能なものを用いることが好ましいが、アンモニア用、硝酸用をそれぞれ用いることもできる。また、循環流発生手段及び酸素供給手段も、ディッチの構成や処理水量などの条件に応じて任意のものを用いることができる。さらに、原水の状態や処理目標によっては嫌気槽を省略することもでき、嫌気槽に代えて好気槽を設置することも可能である。   The ammonia / nitric acid concentration measuring means is preferably one that can simultaneously measure ammonia ions and nitrate ions with a single sensor, but it can also be used for ammonia and nitric acid, respectively. Any circulating flow generating means and oxygen supplying means can be used depending on conditions such as the configuration of the ditch and the amount of treated water. Furthermore, the anaerobic tank can be omitted depending on the state of the raw water and the treatment target, and an aerobic tank can be installed instead of the anaerobic tank.

11…ディッチ、12…水流発生装置、13…曝気装置、14…好気域、15…無酸素域、16…出口流路、17…最終沈殿池、18…原水流入経路、19…嫌気槽、20…処理水流出経路、21…返送汚泥経路、22…汚泥抜出経路、23…上流側溶存酸素計(DO1)、24…下流側溶存酸素計(DO2)、25…アンモニア/硝酸濃度測定手段、26…酸素供給量制御手段、27…流速制御手段、28…目標値制御手段   DESCRIPTION OF SYMBOLS 11 ... Ditch, 12 ... Water flow generator, 13 ... Aeration apparatus, 14 ... Aerobic area, 15 ... Anoxic area, 16 ... Outlet flow path, 17 ... Final sedimentation basin, 18 ... Raw water inflow path, 19 ... Anaerobic tank, 20 ... treated water outflow route, 21 ... return sludge route, 22 ... sludge extraction route, 23 ... upstream dissolved oxygen meter (DO1), 24 ... downstream dissolved oxygen meter (DO2), 25 ... ammonia / nitric acid concentration measuring means , 26 ... oxygen supply amount control means, 27 ... flow rate control means, 28 ... target value control means

Claims (2)

無終端水路に循環流発生手段及び酸素供給手段を備え、該酸素供給手段の下流側の好気域と、該好気域の終端から前記酸素供給手段に至る無酸素域とを形成し、前記好気域における上流側と下流側とに、循環液中の溶存酸素濃度を測定する上流側溶存酸素計及び下流側溶存酸素計をそれぞれ設け、前記上流側溶存酸素計で測定した上流側溶存酸素濃度に基づいて前記酸素供給手段による酸素の供給量を制御する酸素供給量制御手段と、前記下流側溶存酸素計で測定した下流側溶存酸素濃度に基づいて前記循環流発生手段による循環液の流速を制御する流速制御手段とを設けるとともに、循環液中のアンモニア及び硝酸の濃度を測定するアンモニア/硝酸濃度測定手段を設け、
該アンモニア/硝酸濃度測定手段で測定したアンモニア濃度があらかじめ設定したアンモニア濃度下限値を下回るときには、上流側酸素濃度目標値及び下流側酸素濃度目標値をそれぞれ低い値に調節し、測定したアンモニア濃度があらかじめ設定したアンモニア濃度上限値を上回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方を高い値に調節し、測定したアンモニア濃度が前記アンモニア濃度上限値以下で、かつ、測定した硝酸濃度があらかじめ設定した硝酸濃度上限値を上回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方を低い値に調節する目標値制御手段を設けたことを特徴とする排水処理装置。
A circulation flow generating means and an oxygen supply means are provided in the endless water channel, and an aerobic area downstream of the oxygen supply means and an anoxic area from the end of the aerobic area to the oxygen supply means are formed, An upstream dissolved oxygen meter that measures the dissolved oxygen concentration in the circulating fluid and a downstream dissolved oxygen meter are provided on the upstream and downstream sides in the aerobic region, respectively, and the upstream dissolved oxygen measured by the upstream dissolved oxygen meter. An oxygen supply amount control means for controlling the oxygen supply amount by the oxygen supply means based on the concentration; and a flow rate of the circulating fluid by the circulation flow generation means based on the downstream dissolved oxygen concentration measured by the downstream dissolved oxygen meter. And a flow rate control means for controlling the concentration, and ammonia / nitric acid concentration measurement means for measuring the concentration of ammonia and nitric acid in the circulating fluid,
When the ammonia concentration measured by the ammonia / nitric acid concentration measuring means falls below a preset ammonia concentration lower limit value, the upstream oxygen concentration target value and the downstream oxygen concentration target value are adjusted to low values, respectively, and the measured ammonia concentration When the ammonia concentration upper limit value set in advance is exceeded, at least one of the upstream oxygen concentration target value and the downstream oxygen concentration target value is adjusted to a high value, and the measured ammonia concentration is less than the ammonia concentration upper limit value. And a target value control means for adjusting at least one of the upstream oxygen concentration target value and the downstream oxygen concentration target value to a low value when the measured nitric acid concentration exceeds a preset upper limit value of nitric acid concentration. A wastewater treatment apparatus characterized by being provided.
無終端水路に循環流発生手段及び酸素供給手段を備え、該酸素供給手段の下流側の好気域と、該好気域の終端から前記酸素供給手段に至る無酸素域とを形成し、前記好気域における上流側と下流側とに、循環液中の溶存酸素濃度を測定する上流側溶存酸素計及び下流側溶存酸素計をそれぞれ設け、前記上流側溶存酸素計で測定した上流側溶存酸素濃度に基づいて前記酸素供給手段による酸素の供給量を制御する酸素供給量制御手段と、前記下流側溶存酸素計で測定した下流側溶存酸素濃度に基づいて前記循環流発生手段による循環液の流速を制御する流速制御手段とを設けるとともに、循環液中のアンモニア及び硝酸の濃度を測定するアンモニア/硝酸濃度測定手段を設け、該アンモニア/硝酸濃度測定手段で測定したアンモニア濃度及び硝酸濃度の少なくともいずれか一方の濃度に基づいて前記酸素供給量制御手段の上流側酸素濃度目標値及び前記流速制御手段の下流側酸素濃度目標値を調節する目標値制御手段を設けた排水処理装置の運転方法であって、
前記酸素供給量制御手段は、測定した上流側溶存酸素濃度があらかじめ設定した前記上流側酸素濃度目標値となるように前記酸素供給手段による酸素の供給量を制御し、前記流速制御手段は、測定した下流側溶存酸素濃度があらかじめ設定した前記下流側酸素濃度目標値となるように前記循環流発生手段による循環液の流速を制御し、前記目標値制御手段は、測定したアンモニア濃度があらかじめ設定した前記アンモニア濃度下限値を下回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値をそれぞれ低い値に調節し、測定したアンモニア濃度があらかじめ設定したアンモニア濃度上限値を上回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方を高い値に調節し、測定したアンモニア濃度が前記アンモニア濃度上限値以下で、かつ、測定した硝酸濃度があらかじめ設定した硝酸濃度上限値を上回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方を低い値に調節することを特徴とする排水処理装置の運転方法。
A circulation flow generating means and an oxygen supply means are provided in the endless water channel, and an aerobic area downstream of the oxygen supply means and an anoxic area from the end of the aerobic area to the oxygen supply means are formed, An upstream dissolved oxygen meter that measures the dissolved oxygen concentration in the circulating fluid and a downstream dissolved oxygen meter are provided on the upstream and downstream sides in the aerobic region, respectively, and the upstream dissolved oxygen measured by the upstream dissolved oxygen meter. An oxygen supply amount control means for controlling the oxygen supply amount by the oxygen supply means based on the concentration; and a flow rate of the circulating fluid by the circulation flow generation means based on the downstream dissolved oxygen concentration measured by the downstream dissolved oxygen meter. A flow rate control means for controlling the ammonia concentration, and an ammonia / nitric acid concentration measurement means for measuring the concentrations of ammonia and nitric acid in the circulating fluid. Based on one of a concentration of at least one of the concentration of the waste water treatment apparatus in which a target value control means for regulating the downstream oxygen concentration target value of the upstream oxygen concentration target value and the flow rate control means of said oxygen supply quantity control means Driving method,
Said oxygen supply quantity control means controls the supply amount of oxygen by the oxygen supply means so that the upstream side of dissolved oxygen concentration measured becomes the upstream oxygen concentration target value set in advance, the flow rate control means measures and the downstream side of dissolved oxygen concentration by controlling the flow rate of the circulating liquid by the circulating flow generation means so that the downstream oxygen concentration target value set in advance with the target value control means, the ammonia concentration measured preset When the ammonia concentration lower limit value is less than the lower limit, the upstream oxygen concentration target value and the downstream oxygen concentration target value are adjusted to lower values, respectively, and when the measured ammonia concentration exceeds a preset ammonia concentration upper limit value, Measured by adjusting at least one of the side oxygen concentration target value and the downstream oxygen concentration target value to a high value When the ammonia concentration is equal to or lower than the ammonia concentration upper limit value and the measured nitric acid concentration exceeds the preset nitric acid concentration upper limit value, at least one of the upstream oxygen concentration target value and the downstream oxygen concentration target value is set. A method for operating a wastewater treatment apparatus, characterized by adjusting to a low value.
JP2011003089A 2011-01-11 2011-01-11 Waste water treatment apparatus and operation method thereof Active JP5725869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011003089A JP5725869B2 (en) 2011-01-11 2011-01-11 Waste water treatment apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003089A JP5725869B2 (en) 2011-01-11 2011-01-11 Waste water treatment apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JP2012143696A JP2012143696A (en) 2012-08-02
JP5725869B2 true JP5725869B2 (en) 2015-05-27

Family

ID=46787836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003089A Active JP5725869B2 (en) 2011-01-11 2011-01-11 Waste water treatment apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP5725869B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4279459A3 (en) * 2012-09-13 2023-12-13 D.C. Water & Sewer Authority Method and apparatus for nitrogen removal in wastewater treatment
JP6334897B2 (en) * 2013-11-20 2018-05-30 住友重機械エンバイロメント株式会社 Aeration and stirring system
SE538527C2 (en) 2014-06-17 2016-09-06 Xylem Ip Man S À R L Plant for the treatment of liquid and method for controlling such a plant
KR102029976B1 (en) * 2019-03-15 2019-11-26 (주)서인지엔티 Power saving and peak reduction Power saving and peak reduction of wastewater treatment facility using automatic operation system responding to demand response Automated operation control method for demand response

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339698A (en) * 1986-08-01 1988-02-20 Fuji Electric Co Ltd Method for controlling biological nitrification process
JPH01189397A (en) * 1988-01-25 1989-07-28 Toshiba Corp Air quantity controller for aeration tank
JP3983825B2 (en) * 1994-06-21 2007-09-26 三菱電機株式会社 Control device for oxidation ditch water treatment system
JP3525006B2 (en) * 1996-03-15 2004-05-10 株式会社東芝 Sewage treatment plant water quality control equipment
JP4365512B2 (en) * 2000-06-12 2009-11-18 株式会社東芝 Sewage treatment system and measurement system
JP4579450B2 (en) * 2001-05-18 2010-11-10 住友重機械エンバイロメント株式会社 Operation control method of oxidation ditch
JP4230310B2 (en) * 2003-08-07 2009-02-25 洋 津野 Waste water treatment apparatus and operation method thereof
JP4334317B2 (en) * 2003-10-23 2009-09-30 株式会社東芝 Sewage treatment system
JP4117274B2 (en) * 2004-08-17 2008-07-16 サーンエンジニアリング株式会社 Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment
JP2008036517A (en) * 2006-08-04 2008-02-21 Kochi Univ Wastewater treatment apparatus and method
JP5608027B2 (en) * 2010-09-27 2014-10-15 川崎重工業株式会社 Water treatment system and aeration air volume control method thereof

Also Published As

Publication number Publication date
JP2012143696A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP4780552B2 (en) Biological wastewater treatment method
CN108640279B (en) Real-time regulation and control device and method for continuous flow shortcut nitrification-anaerobic ammonia oxidation process
JP2010194481A (en) Sewage treatment apparatus and operation method of sewage treatment apparatus
JP5725869B2 (en) Waste water treatment apparatus and operation method thereof
JP5075926B2 (en) Sewage treatment apparatus and sewage treatment method
JP5606513B2 (en) Nitrogen / phosphorus removal treatment method and nitrogen / phosphorus removal treatment apparatus
JP6532723B2 (en) Method and system for treating organic wastewater
JP6404999B2 (en) Organic wastewater treatment equipment
JP5105243B2 (en) Membrane separation activated sludge treatment apparatus and method
JP5956372B2 (en) Water treatment apparatus and water treatment method
JP2012076081A (en) Membrane separation type activated sludge treatment apparatus and method thereof
JP2008036517A (en) Wastewater treatment apparatus and method
JP4230310B2 (en) Waste water treatment apparatus and operation method thereof
JP2011092831A (en) System and method for reducing amount of generated gas
JP2016140783A (en) Organic wastewater treatment method and apparatus
JP6158691B2 (en) Organic wastewater treatment apparatus, organic wastewater treatment method, and organic wastewater treatment apparatus control program
JP5863409B2 (en) Wastewater treatment equipment
JP2017013014A (en) Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system
US20200079669A1 (en) Water treatment apparatus for removing nitrogen contained in raw water and water treatment method using the same
KR102250419B1 (en) Water treatment apparatus for removing high concentration organic matter, nitrogen, phosphorus and water treatment method using the same
JP2015104712A (en) Sewage treatment system and method
JP2012228645A (en) Water treatment apparatus, water treating method, and program for the method
JP5656656B2 (en) Water treatment equipment
JP5325124B2 (en) Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water
JP5951531B2 (en) Wastewater treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150331

R150 Certificate of patent or registration of utility model

Ref document number: 5725869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250