JP2015104712A - Sewage treatment system and method - Google Patents

Sewage treatment system and method Download PDF

Info

Publication number
JP2015104712A
JP2015104712A JP2013248922A JP2013248922A JP2015104712A JP 2015104712 A JP2015104712 A JP 2015104712A JP 2013248922 A JP2013248922 A JP 2013248922A JP 2013248922 A JP2013248922 A JP 2013248922A JP 2015104712 A JP2015104712 A JP 2015104712A
Authority
JP
Japan
Prior art keywords
sedimentation basin
aeration tank
surplus sludge
sewage treatment
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013248922A
Other languages
Japanese (ja)
Inventor
信幸 中村
Nobuyuki Nakamura
信幸 中村
剛 武本
Takeshi Takemoto
剛 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013248922A priority Critical patent/JP2015104712A/en
Publication of JP2015104712A publication Critical patent/JP2015104712A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sewage treatment method that can reduce the air blowing amount and power consumption of a blower by improving removal ratios of organic matter, nitrogen, and phosphorus in a primary sedimentation basin to reduce an inflow load to a downstream side aeration tank.SOLUTION: A sewage treatment system comprises a primary sedimentation basin having an inflow water passage into which sewage flows, an aeration tank installed downstream of the primary sedimentation basin, and a final sedimentation basin installed downstream of the aeration tank. Surplus sludge of the final sedimentation basin is returned into the inflow water passage of the primary sedimentation basin to be supplied to the primary sedimentation basin. Aeration is carried out by a blower in the aeration tank. The sewage treatment system comprises a control device of the blower that supplies air to the aeration tank to determine dissolved oxygen in the aeration tank, and a control device for the surplus sludge supplied to the primary sedimentation basin. The control device for the surplus sludge determines the amount of the surplus sludge flowing into the primary sedimentation basin to control the flow rate of the surplus sludge returned from the final sedimentation basin to the primary sedimentation basin.

Description

本発明は、下水を活性汚泥によって生物学的に処理する下水処理設備及び下水処理方法に関する。   The present invention relates to a sewage treatment facility and a sewage treatment method for biologically treating sewage with activated sludge.

従来における下水処理設備として例えば特許文献1の下水処理設備では、下水が流入する流入水路を有する最初沈殿池と、最初沈殿池の下流に設けられた曝気槽と、曝気槽の下流に最終沈殿池を備えている。また活性汚泥によって下水を処理する下水処理方法として、最終沈殿池の余剰汚泥を最初沈殿池の流入水路に投入している。   As a conventional sewage treatment facility, for example, in the sewage treatment facility of Patent Document 1, a first sedimentation basin having an inflow channel into which sewage flows, an aeration tank provided downstream of the first sedimentation basin, and a final sedimentation basin downstream of the aeration tank It has. As a sewage treatment method for treating sewage with activated sludge, surplus sludge from the final sedimentation basin is introduced into the inflow channel of the first sedimentation basin.

特許文献1には、最終沈殿池の余剰汚泥を最初沈殿池の流入水路に投入するための設備や制御手法について具体的な開示はないが、この点について特許文献2では最終沈殿池から最初沈殿池に至る流入水路(戻りライン)に開閉弁を備えて、バッチ的に余剰汚泥を投入することが記載されている。また特許文献2では原水(下水)の有機物濃度を監視し、これが所定濃度を超える場合に余剰汚泥を最初沈殿池の前段で混合、投入するとしている。   Patent Document 1 does not specifically disclose the equipment or control method for introducing surplus sludge from the final sedimentation basin into the inflow channel of the first sedimentation basin. It is described that an inflow water channel (return line) leading to a pond is provided with an on-off valve, and surplus sludge is charged batchwise. Further, in Patent Document 2, the organic matter concentration of raw water (sewage) is monitored, and when this exceeds a predetermined concentration, excess sludge is mixed and introduced at the first stage of the first sedimentation basin.

係る下水処理設備では、下水中の有機物、窒素、燐を活性汚泥と呼ばれる微生物の集合体で生物学的に処理している。活性汚泥は下水を処理する際に酸素を必要とするため、下水を曝気槽へ導入してブロワーによりエアレーションし、空気中の酸素を溶解させることで酸素を供給している。   In such a sewage treatment facility, organic matter, nitrogen and phosphorus in the sewage are biologically treated with an aggregate of microorganisms called activated sludge. Since activated sludge requires oxygen when treating sewage, oxygen is supplied by introducing sewage into an aeration tank, aeration with a blower, and dissolving oxygen in the air.

有機物を含んだ下水は、導入管を通して、曝気槽に導入される。曝気槽には、散気管により空気が導入され、曝気槽内の下水に空気中の酸素が溶解する。このような曝気槽における生物学的処理の制御方法の1つとして、曝気槽の下水中の溶存酸素を計測し、これを一定とするような制御方法が知られている。   Sewage containing organic matter is introduced into the aeration tank through the introduction pipe. Air is introduced into the aeration tank through a diffuser tube, and oxygen in the air is dissolved in sewage in the aeration tank. As one method of controlling biological treatment in such an aeration tank, a control method is known in which dissolved oxygen in the sewage of the aeration tank is measured and made constant.

この制御手法では下水中に設けられた溶存酸素濃度計により測定された溶存酸素濃度を制御手段へ入力し、制御手段はこの入力された溶存酸素濃度と、設定値入力手段により予め制御手段に設定された溶存酸素濃度設定値を比較する。入力された溶存酸素濃度が設定値よりも低い場合は、送風手段へ送風量を増大させるべく制御指令を出力し、溶存酸素濃度が設定値よりも高い場合は、送風手段へ送風量を減少させるべく制御指令を出力する。かかる制御手法を紹介した例として例えば、特許文献3がある。   In this control method, the dissolved oxygen concentration measured by the dissolved oxygen concentration meter provided in the sewage is input to the control means, and the control means is preset in the control means by the input dissolved oxygen concentration and the set value input means. Compare the dissolved oxygen concentration setting values. When the input dissolved oxygen concentration is lower than the set value, a control command is output to the blowing means to increase the blowing amount, and when the dissolved oxygen concentration is higher than the set value, the blowing amount is reduced to the blowing means. A control command is output accordingly. For example, Patent Document 3 is an example of introducing such a control method.

又、特許文献4にはBOD量(生物化学的酸素要求量)に着目して、その計測値と目標処理水BOD値との差を汚水の汚れの指標値として算出し、この指標値と流量の積に依存した曝気風量の目標値を算出し、この目標値にしたがって送風機の送風量を制御するものが記載されている。   Further, Patent Document 4 pays attention to the BOD amount (biochemical oxygen demand amount), calculates the difference between the measured value and the target treated water BOD value as an index value of dirty water, and the index value and the flow rate. The target value of the aeration air volume depending on the product of the above is calculated, and the air volume of the blower is controlled according to this target value.

特開昭63−139088号公報JP-A 63-139088 特開2010−264424号公報JP 2010-264424 A 特開2007−144277号公報JP 2007-144277 A 特開2000−325980号公報JP 2000-325980 A

係る曝気槽での処理に関して、例えば生物学的処理を大規模に行う下水処理場などでは、ブロワーの動力コストが施設維持費に対して大きな割合を占めている。ブロワーの動力コストを削減して曝気量が少なくなると下水処理が満足できず処理水水質が悪化する。このため、品質を維持しながらブロワーの消費電力削減することが課題となっている。   Regarding the treatment in the aeration tank, for example, in a sewage treatment plant that performs biological treatment on a large scale, the power cost of the blower accounts for a large proportion of the facility maintenance cost. If the power cost of the blower is reduced and the amount of aeration is reduced, the sewage treatment cannot be satisfied and the quality of the treated water is deteriorated. For this reason, it has been a challenge to reduce the power consumption of the blower while maintaining the quality.

因みに、曝気槽へ導入される下水中の有機物量が増大した場合、有機物除去のために好気性微生物が溶存酸素を大量に消費する。この結果下水中の溶存酸素濃度が低下するので、特許文献3や特許文献4に記載の従来の技術手法では、送風手段により送風すべき送風量が増大し、ブロワーの消費する電力が増大してしまう恐れがあった。   Incidentally, when the amount of organic matter in the sewage introduced into the aeration tank increases, aerobic microorganisms consume a large amount of dissolved oxygen to remove the organic matter. As a result, the dissolved oxygen concentration in the sewage is lowered, so in the conventional technical methods described in Patent Document 3 and Patent Document 4, the amount of air to be blown by the blowing means is increased, and the power consumed by the blower is increased. There was a fear.

以上のことから本発明の目的は、最初沈殿池での有機物、窒素、燐の除去率を向上させ、後段の曝気槽への流入負荷を低減することで送風量を削減し、ブロワーの消費電力を削減できる下水処理方法を提供することにある。   From the above, the object of the present invention is to improve the removal rate of organic matter, nitrogen and phosphorus in the first sedimentation basin, reduce the air flow by reducing the inflow load to the aeration tank in the subsequent stage, and the power consumption of the blower Is to provide a method for treating sewage.

上記目的を達成するために、本発明は、下水が流入する流入水路を有する最初沈殿池と、最初沈殿池の下流に設けられた曝気槽と、曝気槽の下流の最終沈殿池を備え、最終沈殿池の余剰汚泥を最初沈殿池の流入水路に戻して投入するように構成され、曝気槽ではブロワーによりエアレーションを行っている下水処理設備であって、曝気槽に空気供給して曝気槽内の溶存酸素量を決定するブロワーの制御装置と、最初沈殿池に投入する余剰汚泥の制御装置を備え、余剰汚泥の制御装置は、最初沈殿池に流入する余剰汚泥投入量を決定して、最終沈殿池から最初沈殿池に戻る余剰汚泥の流量を制御することを特徴とする。   To achieve the above object, the present invention comprises a first settling basin having an inflow channel into which sewage flows, an aeration tank provided downstream of the first settling basin, and a final settling basin downstream of the aeration tank. It is configured so that excess sludge from the settling basin is returned to the inflow channel of the settling basin first, and the aeration tank is a sewage treatment facility that is aerated by a blower, and supplies air to the aeration tank. It has a blower control device that determines the amount of dissolved oxygen and a control device for excess sludge that is put into the first sedimentation basin. The surplus sludge control device determines the amount of surplus sludge that flows into the first sedimentation basin, and final sedimentation. It is characterized by controlling the flow rate of excess sludge that returns from the pond to the first settling basin.

本発明によれば、最初沈殿池での有機物、窒素、燐の除去率を向上させることで、後段の活性汚泥による下水処理負荷を低減することにより、送風量を削減し消費エネルギーを削減できる。   According to the present invention, by improving the removal rate of organic matter, nitrogen, and phosphorus in the first sedimentation basin, the amount of blown air can be reduced and the energy consumption can be reduced by reducing the sewage treatment load due to the activated sludge in the subsequent stage.

本発明の下水処理方法を具備した下水処理装置の構成図。The block diagram of the sewage treatment apparatus which comprised the sewage treatment method of this invention. 下水処理手法を示すフロー図。The flowchart which shows a sewage treatment method.

本発明の実施例を、図を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の下水処理方法を具備した下水処理施設の全体構成図である。   FIG. 1 is an overall configuration diagram of a sewage treatment facility equipped with a sewage treatment method of the present invention.

最初沈殿池1には流入水路2から下水が流入しており、流入した下水の固形物質を沈降分離する。固形物質を沈降分離した後の被処理水は、下流の曝気槽3に流入する。曝気槽3には複数の微生物群からなる活性汚泥が生息する。   First, sewage flows into the settling basin 1 from the inflow channel 2, and the solid material of the sewage that has entered is settled and separated. The water to be treated after the solid substance is settled and separated flows into the downstream aeration tank 3. In the aeration tank 3, activated sludge composed of a plurality of microbial groups is inhabited.

通常、活性汚泥は微生物の塊状のフロックとして曝気槽3内を浮遊している。ブロワー4の先には散気手段5が接続され、曝気槽3がエアレーションされる。エアレーションにより空気中の酸素が溶解し、溶存酸素として活性汚泥に供給され、下水中の有機物、窒素、燐が除去される。ブロワー4のエアレーション量は下水中の有機物、窒素、燐に比例するため、流入下水の流量や濃度で変化させることで、ブロワー4の消費する電力の削減が可能である。さらに曝気槽3の下流には最終沈殿池6が設置され、ここでは活性汚泥が沈降分離され、上澄み液を処理水として放流している。   Usually, the activated sludge floats in the aeration tank 3 as a floc of microorganisms. The air diffuser 5 is connected to the tip of the blower 4, and the aeration tank 3 is aerated. Oxygen in the air is dissolved by aeration and supplied to the activated sludge as dissolved oxygen, and organic substances, nitrogen and phosphorus in the sewage are removed. Since the aeration amount of the blower 4 is proportional to the organic matter, nitrogen, and phosphorus in the sewage, the power consumed by the blower 4 can be reduced by changing the flow rate and concentration of the inflowing sewage. Further, a final sedimentation basin 6 is installed downstream of the aeration tank 3, where activated sludge is settled and separated, and the supernatant liquid is discharged as treated water.

なお最初沈殿池1の底部には一般的に初沈汚泥と呼ばれる沈降分離された固形物質が蓄積しており、初沈汚泥ポンプ7を起動させることで系外に排出される。これに対し、最終沈殿池6の底部に沈降分離された成分は活性汚泥である。この活性汚泥は返送汚泥ポンプ8によって曝気槽3の上流部に戻され、下水中の有機物、窒素、燐の除去に再利用される。   In addition, in the bottom of the first sedimentation basin 1, a sedimented solid substance generally called primary sedimentation sludge is accumulated, and is discharged outside the system by starting the primary sedimentation sludge pump 7. On the other hand, the component settled and separated at the bottom of the final settling basin 6 is activated sludge. This activated sludge is returned to the upstream portion of the aeration tank 3 by the return sludge pump 8 and reused for removing organic matter, nitrogen and phosphorus in the sewage.

また活性汚泥は下水を処理することで増殖する。このため、所定量の活性汚泥を維持するためには一部を廃棄する必要がある。廃棄する汚泥は一般的に余剰汚泥と呼ばれ、最終沈殿池6の余剰汚泥ポンプ9によって廃棄される。   Activated sludge grows by treating sewage. For this reason, in order to maintain a predetermined amount of activated sludge, it is necessary to discard a part. The sludge to be discarded is generally called surplus sludge and is discarded by the surplus sludge pump 9 in the final sedimentation basin 6.

余剰汚泥ポンプ9の下流側には調整弁10と調整弁11が設置されている。調整弁10が「開」、調整弁11が「閉」の状態では余剰汚泥は汚泥処理系(図示せず)に流下し、廃棄処理される。調整弁10が「閉」、調整弁11が「開」の状態では余剰汚泥は最初沈殿池1での沈降分離処理の後、初沈汚泥ポンプ7の起動によって汚泥処理系に流下し、廃棄処理される。   A regulating valve 10 and a regulating valve 11 are installed on the downstream side of the excess sludge pump 9. When the regulating valve 10 is “open” and the regulating valve 11 is “closed”, excess sludge flows down to a sludge treatment system (not shown) and is disposed of. When the regulating valve 10 is “closed” and the regulating valve 11 is “open”, surplus sludge flows into the sludge treatment system by starting the first settling sludge pump 7 after the settling separation process in the first settling basin 1 and is disposed of. Is done.

なお調整弁11の下流にはタンク17とポンプ16が備えられており、余剰汚泥はタンク17に蓄積されたのち、ポンプ16により誘引されて流入水路2に流下し、下水と混合されて最初沈殿池1に流入する。ここではタンク17には十分な量の余剰汚泥が蓄積されている。このため、調整弁10と調整弁11の開閉状態にかかわらず、最初沈殿池1に対する余剰汚泥の連続供給が実現されている。   In addition, a tank 17 and a pump 16 are provided downstream of the regulating valve 11. After the excess sludge is accumulated in the tank 17, it is attracted by the pump 16 and flows down into the inflow water channel 2, and is mixed with sewage for the first precipitation. It flows into the pond 1. Here, a sufficient amount of excess sludge is accumulated in the tank 17. For this reason, the continuous supply of the excess sludge to the first sedimentation tank 1 is realized irrespective of the open / closed state of the regulating valve 10 and the regulating valve 11.

上記構成の下水処理設備における制御は、2つの制御装置により実現される。その一つは曝気槽3に空気供給するブロワー4の制御装置CBである。ブロワー4の制御装置CBとしてはいくつかの方式のものが考えられるが、前述した特許文献3、特許文献4の技術が利用可能である。いずれのものも溶存酸素の信号で制御されている。溶存酸素量が少なければ供給酸素量を増やし、溶存酸素量が多ければ供給酸素量を減らしている。流入有機物が少ないと、溶存酸素量が上昇するためブロワー出力が抑制されるという関係にある。   Control in the sewage treatment facility having the above configuration is realized by two control devices. One of them is a control device CB for the blower 4 for supplying air to the aeration tank 3. Although several types of control devices CB for the blower 4 are conceivable, the techniques of Patent Document 3 and Patent Document 4 described above can be used. Both are controlled by the dissolved oxygen signal. If the dissolved oxygen amount is small, the supply oxygen amount is increased, and if the dissolved oxygen amount is large, the supply oxygen amount is decreased. When the amount of inflowing organic matter is small, the amount of dissolved oxygen is increased, so that the blower output is suppressed.

もう一つの制御装置は、最初沈殿池1に投入する余剰汚泥の制御装置15である。図1に示す汚泥処理設備を運用制御するための制御装置15は、被処理水の流量を計測する流量計13、被処理水中の有機物濃度を測定する水質計測器14を流入経路2に取り付け、流量計13の計測信号と水質計測器14の計測信号を制御手段15に入力し、制御手段15にて流量と有機物濃度の積から処理負荷を判断し、余剰汚泥と凝集剤の投入量を決定し、調整弁10と調整弁11と凝集剤投入手段12を調整する。なお、被処理水中の有機物濃度を測定する水質計測器14の代わりに、有機物濃度と相関関係にある別の水質項目を測定する計測器を用いて、制御手段15に入力する有機物濃度の代替としても良い。   Another control device is a control device 15 for surplus sludge that is initially introduced into the settling basin 1. A control device 15 for operating and controlling the sludge treatment facility shown in FIG. 1 is provided with a flow meter 13 for measuring the flow rate of the water to be treated and a water quality measuring device 14 for measuring the concentration of organic substances in the water to be treated. The measurement signal of the flow meter 13 and the measurement signal of the water quality measuring instrument 14 are input to the control means 15, and the control means 15 judges the processing load from the product of the flow rate and the organic substance concentration, and determines the input amount of surplus sludge and flocculant. Then, the adjustment valve 10, the adjustment valve 11, and the flocculant charging means 12 are adjusted. Instead of the water quality measuring device 14 for measuring the organic matter concentration in the water to be treated, a measuring device for measuring another water quality item correlated with the organic matter concentration is used as an alternative to the organic matter concentration input to the control means 15. Also good.

図2には、制御装置15における概略の処理フローを示している。処理手順S1では、本発明での処理に必要な各種のプロセス量として被処理水の流量や被処理水中の有機物濃度を入力する。処理手順S2では、被処理水の流量とその有機物濃度の積として有機物量(処理負荷)を算出する。   FIG. 2 shows a schematic processing flow in the control device 15. In the processing procedure S1, the flow rate of the water to be treated and the organic substance concentration in the water to be treated are input as various process amounts necessary for the treatment in the present invention. In the processing procedure S2, the amount of organic matter (processing load) is calculated as the product of the flow rate of the water to be treated and the concentration of the organic matter.

処理手順S3では、被処理水の有機物量(処理負荷)とポンプ16の流量の関係から、余剰汚泥投入量を決定する。有機物量(処理負荷)が大きいときは余剰汚泥投入量を増やして下水中の有機物の吸着量を増大させ、有機物量(処理負荷)が小さいときは余剰汚泥投入量を減らして下水中の有機物の吸着量を減少させる。ポンプ16は、定めた余剰汚泥投入量となるようにポンプ16を制御する(処理手順S4)。   In the processing procedure S3, the surplus sludge input amount is determined from the relationship between the organic matter amount (processing load) of the water to be treated and the flow rate of the pump 16. When the amount of organic matter (treatment load) is large, the amount of surplus sludge input is increased to increase the amount of organic matter adsorbed in the sewage, and when the amount of organic matter (treatment load) is small, the amount of surplus sludge input is reduced to reduce the amount of organic matter in the sewage. Reduce the amount of adsorption. The pump 16 controls the pump 16 so that the determined amount of excess sludge is input (processing procedure S4).

処理手順S5では、求めた流入流量に応じて凝集剤の投入量を制御する。一般に最初沈殿池1での滞留時間は流入流量に依存し、流入流量が多ければ滞留時間が短くなるので沈殿はしにくくなり、流入流量が少なければ滞留時間が長くなる。このため、流入流量が多いときは凝集剤の投入量を増やして凝集効果を増加させ、流入流量が少ないときは凝集剤の投入量を減らして凝集効果を低減させるように制御する。   In processing procedure S5, the amount of flocculant charged is controlled in accordance with the determined inflow rate. Generally, the residence time in the first settling basin 1 depends on the inflow flow rate. If the inflow flow rate is large, the residence time becomes short, so that the sedimentation is difficult. If the inflow flow rate is small, the residence time becomes long. For this reason, when the inflow flow rate is large, the amount of flocculant input is increased to increase the coagulation effect, and when the inflow rate is small, control is performed to decrease the coagulant input amount to reduce the coagulation effect.

また処理手順S6では、調整弁10、11を制御する。タンク17には十分な量の余剰汚泥が蓄積されているという前提であれば、調整弁10、11は適宜の時間間隔で開閉を行い、タンク17への間欠的な余剰汚泥供給を行えばよい。タンクレベルを見ながら適宜開閉を繰り返せばよい。   In the processing procedure S6, the control valves 10 and 11 are controlled. If it is assumed that a sufficient amount of excess sludge is accumulated in the tank 17, the regulating valves 10 and 11 may be opened and closed at appropriate time intervals to intermittently supply the excess sludge to the tank 17. . Opening and closing may be repeated as appropriate while looking at the tank level.

本発明によれば余剰汚泥の一部または全量を最初沈殿池1に投入することで、下水中の有機物などを吸着後に沈降分離できるため、曝気槽3の流入負荷を削減できる。このため、曝気槽3で下水を処理するためのブロワー4の消費電力を削減できる。また、曝気槽3での活性汚泥による処理量が少なくなり活性汚泥の増殖量が減少し、余剰汚泥量も減少するため、汚泥処理系の処理負荷を削減できる。   According to the present invention, by introducing a part or all of the excess sludge into the settling basin 1 first, it is possible to settle and separate organic matter in the sewage after adsorption, so that the inflow load of the aeration tank 3 can be reduced. For this reason, the power consumption of the blower 4 for processing sewage in the aeration tank 3 can be reduced. In addition, the amount of treatment with activated sludge in the aeration tank 3 is reduced, the amount of activated sludge is increased, and the amount of surplus sludge is also reduced, so that the treatment load of the sludge treatment system can be reduced.

特に本発明では、投入汚泥量を連続的に制御しているので、ブロワー4の消費電力削減に大きく貢献できる。特許文献などではバッチ的に投入を行うので、ブロワーの負荷の変動が大きく、消費電力が安定しない。本発明では日夜、季節を通じて消費電力の変動幅を小さくできるので、ブロワー駆動用の電動機の小型化などを通じてブロワー4の消費電力削減に貢献する。   In particular, in the present invention, the amount of input sludge is continuously controlled, so that it can greatly contribute to the reduction of power consumption of the blower 4. In patent documents and the like, since the charging is performed in batches, the load of the blower is largely fluctuated and the power consumption is not stable. In the present invention, the fluctuation range of the power consumption can be reduced throughout the day, night, and season, which contributes to the reduction of the power consumption of the blower 4 through downsizing the motor for driving the blower.

なお、流入経路2には凝集剤投入手段12により凝集剤を流入経路2へ投入可能な構造とすることで、被処理水中の有機物を最初沈殿池で凝集沈殿させ、初沈汚泥として除去することで曝気槽3への流入負荷を削減することができる。   The inflow path 2 has a structure in which the flocculant can be input into the inflow path 2 by the flocculant charging means 12, so that the organic matter in the water to be treated is coagulated and settled in the first sedimentation basin and removed as initial sludge. Thus, the inflow load into the aeration tank 3 can be reduced.

本発明の効果についてさらに説明する。活性汚泥は下水と接触すると、下水中の有機物などを吸着することが知られている。特に、余剰汚泥は吸着物質の分解が完了しており吸着力が回復しているため、大きな吸着力が見込める。また、一般的に最初沈殿池1の滞留時間は数時間で設計されているため流入水路2より注入した活性汚泥が吸着するための時間を確保できている。なお、流入水路2では調整弁11を経た余剰汚泥と下水とが混合される構造になっていることが望ましい。   The effects of the present invention will be further described. It is known that activated sludge adsorbs organic matter in sewage when it comes into contact with sewage. In particular, surplus sludge is expected to have a large adsorption power since the decomposition of the adsorbed material has been completed and the adsorption power has recovered. Moreover, since the residence time of the first settling basin 1 is generally designed to be several hours, a time for adsorbing the activated sludge injected from the inflow water channel 2 can be secured. In addition, it is desirable for the inflow water channel 2 to have a structure in which surplus sludge that has passed through the regulating valve 11 and sewage are mixed.

1:最初沈殿池
2:流入経路
3:曝気槽
4:ブロワー
5:散気手段
6:最終沈殿池
7:初沈汚泥ポンプ
8:返送汚泥ポンプ
9:余剰汚泥ポンプ
10、11:調整弁
12:凝集剤投入手段
13:流量計
14:水質計測器
15:制御手段
16:余剰汚泥タンク
17:余剰汚泥投入ポンプ
1: First sedimentation tank 2: Inflow path 3: Aeration tank 4: Blower 5: Air diffuser 6: Final sedimentation tank 7: Initial sedimentation sludge pump 8: Return sludge pump 9: Surplus sludge pump 10, 11: Regulating valve 12: Flocculant charging means 13: flow meter 14: water quality measuring device 15: control means 16: surplus sludge tank 17: surplus sludge charging pump

Claims (6)

下水が流入する流入水路を有する最初沈殿池と、該最初沈殿池の下流に設けられた曝気槽と、該曝気槽の下流に最終沈殿池を備え、該最終沈殿池の余剰汚泥を前記最初沈殿池の流入水路に戻して投入するように構成され、前記曝気槽ではブロワーによりエアレーションを行っている下水処理設備であって、
前記曝気槽に空気供給して曝気槽内の溶存酸素量を決定するブロワーの制御装置と、前記最初沈殿池に投入する余剰汚泥の制御装置を備え、
前記余剰汚泥の制御装置は、前記最初沈殿池に流入する余剰汚泥投入量を決定して、前記最終沈殿池から前記最初沈殿池に戻る余剰汚泥の流量を制御することを特徴とする下水処理設備。
A first settling basin having an inflow channel into which sewage flows, an aeration tank provided downstream of the first settling basin, and a final settling basin downstream of the aeration tank, and surplus sludge in the final settling basin The sewage treatment facility is configured to return to the inflow water channel of the pond, and is aerated by a blower in the aeration tank,
A blower control device that determines the amount of dissolved oxygen in the aeration tank by supplying air to the aeration tank, and a surplus sludge control device that is put into the first settling basin,
The surplus sludge control device determines the amount of surplus sludge that flows into the first sedimentation basin, and controls the flow rate of surplus sludge that returns from the final sedimentation basin to the first sedimentation basin. .
請求項1に記載の下水処理設備であって、
前記余剰汚泥の制御装置は、前記流入水路の流入流量に応じて流入水路に投入する凝集剤の流量を調整することを特徴とする下水処理設備。
A sewage treatment facility according to claim 1,
The surplus sludge control device adjusts the flow rate of the flocculant to be introduced into the inflow water channel according to the inflow rate of the inflow water channel.
請求項1または請求項2に記載の下水処理設備であって、
前記最終沈殿池の余剰汚泥を前記最初沈殿池の流入水路に戻すための流路に余剰汚泥を蓄積するタンクと該タンク内の余剰汚泥を連続的に供給するポンプとを備え、前記余剰汚泥投入量の信号により前記ポンプを運転制御することを特徴とする下水処理設備。
A sewage treatment facility according to claim 1 or 2,
A tank for accumulating excess sludge in a flow path for returning surplus sludge from the final sedimentation basin to the inflow water channel of the first sedimentation basin, and a pump for continuously supplying the excess sludge in the tank; A sewage treatment facility for controlling the operation of the pump according to a signal of the amount.
下水が流入する流入水路を有する最初沈殿池と、該最初沈殿池の下流に設けられた曝気槽と、該曝気槽の下流に最終沈殿池を備え、該最終沈殿池の余剰汚泥を前記最初沈殿池の流入水路に戻して投入するように構成され、前記曝気槽ではブロワーによりエアレーションを行っている下水処理設備の下水処理方法であって、
前記曝気槽に空気供給して曝気槽内の溶存酸素量を決定し、前記最初沈殿池に投入する余剰汚泥を制御するとともに、
前記余剰汚泥の制御のために、前記最初沈殿池に流入する余剰汚泥投入量を決定して、前記最終沈殿池から前記最初沈殿池に戻る余剰汚泥の流量を制御することを特徴とする下水処理方法。
A first settling basin having an inflow channel into which sewage flows, an aeration tank provided downstream of the first settling basin, and a final settling basin downstream of the aeration tank, and surplus sludge in the final settling basin A sewage treatment method configured to return to the inflow water channel of the pond, and in the aeration tank, aeration is performed by a blower.
Determining the amount of dissolved oxygen in the aeration tank by supplying air to the aeration tank, and controlling the excess sludge to be put into the first settling tank;
In order to control the surplus sludge, the amount of surplus sludge that flows into the first sedimentation basin is determined, and the flow rate of surplus sludge that returns from the final sedimentation basin to the first sedimentation basin is controlled. Method.
請求項4に記載の下水処理方法であって、
前記流入水路の流量と、該流量の有機物濃度を基に余剰汚泥の投入量を決定することを特徴とする下水処理方法。
A sewage treatment method according to claim 4,
A sewage treatment method characterized in that an input amount of surplus sludge is determined based on a flow rate of the inflow channel and an organic substance concentration at the flow rate.
請求項4または請求項5に記載の下水処理方法において、
前記流入水路の流量を基に、前記最初沈殿池に投入する最初沈殿池凝集剤の投入量を決定することを特徴とする下水処理方法。
In the sewage treatment method according to claim 4 or 5,
A sewage treatment method, wherein an input amount of an initial settling basin flocculant to be input to the first settling basin is determined based on a flow rate of the inflow water channel.
JP2013248922A 2013-12-02 2013-12-02 Sewage treatment system and method Pending JP2015104712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248922A JP2015104712A (en) 2013-12-02 2013-12-02 Sewage treatment system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248922A JP2015104712A (en) 2013-12-02 2013-12-02 Sewage treatment system and method

Publications (1)

Publication Number Publication Date
JP2015104712A true JP2015104712A (en) 2015-06-08

Family

ID=53435177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248922A Pending JP2015104712A (en) 2013-12-02 2013-12-02 Sewage treatment system and method

Country Status (1)

Country Link
JP (1) JP2015104712A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079402A (en) * 2016-11-14 2018-05-24 株式会社日水コン Sewage treatment system and sewage treatment method
CN114644398A (en) * 2022-04-01 2022-06-21 广东省广业装备制造集团有限公司 Garbage leachate collecting and processing system
CN115490390A (en) * 2022-08-01 2022-12-20 中国市政工程西南设计研究总院有限公司 Sewage resource utilization system for rural area or village and town and use method thereof
CN115991548A (en) * 2023-02-15 2023-04-21 山东文通环保科技有限公司 Sewage treatment equipment and method for microbial fermentation
CN116161819A (en) * 2023-02-28 2023-05-26 中国建筑第二工程局有限公司 Purification equipment for improving decomposition efficiency of organic pollutants in sewage and application method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS5044655A (en) * 1973-08-27 1975-04-22
JPS5071151A (en) * 1973-10-25 1975-06-12
JPS5284847A (en) * 1976-01-07 1977-07-14 Hitachi Ltd Controlling device for active sludge water treating apparatus
JPS5328962A (en) * 1976-08-30 1978-03-17 Hokushin Electric Works Sewage treating apparatus by activated sludge
JPH0631291A (en) * 1992-07-16 1994-02-08 Hitachi Ltd Sewage treatment device
JP2001300577A (en) * 2000-04-27 2001-10-30 Fuji Electric Co Ltd Sewage treating method
JP2007222749A (en) * 2006-02-22 2007-09-06 Sumiju Kankyo Engineering Kk Waste water treatment apparatus and method
JP2010264424A (en) * 2009-05-18 2010-11-25 Kobelco Eco-Maintenance Co Ltd Organic wastewater treatment facility and method for operating the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS5044655A (en) * 1973-08-27 1975-04-22
JPS5071151A (en) * 1973-10-25 1975-06-12
JPS5284847A (en) * 1976-01-07 1977-07-14 Hitachi Ltd Controlling device for active sludge water treating apparatus
JPS5328962A (en) * 1976-08-30 1978-03-17 Hokushin Electric Works Sewage treating apparatus by activated sludge
JPH0631291A (en) * 1992-07-16 1994-02-08 Hitachi Ltd Sewage treatment device
JP2001300577A (en) * 2000-04-27 2001-10-30 Fuji Electric Co Ltd Sewage treating method
JP2007222749A (en) * 2006-02-22 2007-09-06 Sumiju Kankyo Engineering Kk Waste water treatment apparatus and method
JP2010264424A (en) * 2009-05-18 2010-11-25 Kobelco Eco-Maintenance Co Ltd Organic wastewater treatment facility and method for operating the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079402A (en) * 2016-11-14 2018-05-24 株式会社日水コン Sewage treatment system and sewage treatment method
CN114644398A (en) * 2022-04-01 2022-06-21 广东省广业装备制造集团有限公司 Garbage leachate collecting and processing system
CN115490390A (en) * 2022-08-01 2022-12-20 中国市政工程西南设计研究总院有限公司 Sewage resource utilization system for rural area or village and town and use method thereof
CN115490390B (en) * 2022-08-01 2023-09-19 中国市政工程西南设计研究总院有限公司 Rural or village and town sewage resource utilization system and application method thereof
CN115991548A (en) * 2023-02-15 2023-04-21 山东文通环保科技有限公司 Sewage treatment equipment and method for microbial fermentation
CN116161819A (en) * 2023-02-28 2023-05-26 中国建筑第二工程局有限公司 Purification equipment for improving decomposition efficiency of organic pollutants in sewage and application method

Similar Documents

Publication Publication Date Title
JP2015104712A (en) Sewage treatment system and method
JP6622093B2 (en) Granule formation method and waste water treatment method
JP2012200705A5 (en)
KR100945458B1 (en) Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP.
JP6404999B2 (en) Organic wastewater treatment equipment
KR20220024245A (en) Integrated control system for sewage treatment plant
JP2016182551A (en) Treatment method for organic waste water and treatment system therefor
WO2015072207A1 (en) Organic waste water treatment apparatus, organic waste water treatment method, and control program for organic waste water treatment apparatus
JP2017013014A (en) Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system
JP2012228645A (en) Water treatment apparatus, water treating method, and program for the method
KR101817471B1 (en) Wastewater Treatment System
JP6822833B2 (en) Wastewater treatment system and wastewater treatment method
JP2020110747A (en) Water treatment system
JP6529886B2 (en) Organic wastewater treatment system, control method and computer program
JP6243804B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
US20120181233A1 (en) Wastewater treatment system and method
NL2020210B1 (en) Method and system for water purification
US20140231360A1 (en) NH3 Feed-Forward Control of Blower Output
CN111732187A (en) Intelligent control method for sewage treatment water quality based on sludge reflux ratio
JP6396238B2 (en) Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program
JP6430324B2 (en) Waste water treatment method and waste water treatment apparatus
JP2015217375A (en) Sewage treatment apparatus and sewage treatment method
JP5848823B2 (en) Water treatment system
JP2016215154A (en) Method for forming granule and granule formation device
JP6839047B2 (en) Digestive sludge desorbed liquid treatment method, its treatment equipment, wastewater treatment method and wastewater treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170926