KR100945458B1 - Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP. - Google Patents
Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP. Download PDFInfo
- Publication number
- KR100945458B1 KR100945458B1 KR1020070095670A KR20070095670A KR100945458B1 KR 100945458 B1 KR100945458 B1 KR 100945458B1 KR 1020070095670 A KR1020070095670 A KR 1020070095670A KR 20070095670 A KR20070095670 A KR 20070095670A KR 100945458 B1 KR100945458 B1 KR 100945458B1
- Authority
- KR
- South Korea
- Prior art keywords
- tank
- concentration
- phosphorus
- nitrogen
- aerobic denitrification
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/308—Biological phosphorus removal
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5209—Regulation methods for flocculation or precipitation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/121—Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/006—Regulation methods for biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1205—Particular type of activated sludge processes
- C02F3/1215—Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1205—Particular type of activated sludge processes
- C02F3/1221—Particular type of activated sludge processes comprising treatment of the recirculated sludge
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/20—Activated sludge processes using diffusers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/105—Phosphorus compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/002—Construction details of the apparatus
- C02F2201/005—Valves
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/005—Processes using a programmable logic controller [PLC]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/04—Oxidation reduction potential [ORP]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/10—Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/22—O2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Analytical Chemistry (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
본 발명은 하수처리장이나 폐수처리장에서 질소와 인을 고율로 제거하기위한 고도처리에 관한 것으로서, 더욱 상세하게는 완전자동 운전으로 호기탈질에 의하여 질소를 고율로 제거하고, 응집제를 이용하여 인을 고율로 제거하는는 고도처리장치에 관한 것이다.The present invention relates to a high-treatment for removing nitrogen and phosphorus at a high rate in a sewage treatment plant or a wastewater treatment plant, and more specifically, to remove nitrogen at a high rate by aerobic denitrification in a fully automatic operation, and high rate of phosphorus using a flocculant. Removal is directed to an advanced treatment apparatus.
이를 위하여 본 발명은 유량 조정조로부터 이송된 유입하수와 반송슬러지를 혼합하는 혼합조, 인 방출을 위한 혐기조, 질산화와 탈질을 동시에 하는 호기 탈질조, 용존산소 농도를 높이는 호기조, 경사판식 중력식 침전지, 응집 여과기를 연속으로 설치하고, 유량 조정조에는 총질소농도계를 설치하고, 호기탈질조에는 용존 산소 농도계와 산화 환원전위계(ORP) 및 총질소농도계, 암모니성 질소 농도계, 질산성 질소 농도계, 혼합액 농도계를 설치하고, 유량조정조와 호기탈질조의 총질소농도차이가 일정하게 유지되도록 잉여 슬러지량과 반송 슬러지량을 자동 조절하게 하고, 호기탈질조용 송풍기와 산화환원 전위계를 자동연동운전하게 하여, 산화 환원 전위가 미리 정한 값으로 일정하게 유지될 수 있도록 하되, 호기탈질조의 암모니아성 질소 농도 값이 증가하거나 감소하면 그에 상응하여 공기공급량을 자동조절 하여, 이상적인 호기 탈질을 유지하여 질소를 낮은 농도까지 제거하고, 경사판 침전지를 통과한 상등수는 응집제와 혼합하여 응집지에서 커다란 플록으로 성장시켜서 섬유상 여과기에서, 플록을 제거함으로서 수중의 인을 낮은 농도가 되게 처리하는 것에 특징이 있다.To this end, the present invention is a mixing tank for mixing the influent sewage and conveying sludge transferred from the flow control tank, an anaerobic tank for phosphorus release, an aerobic denitrification tank for simultaneous nitrification and denitrification, an aerobic tank to increase the dissolved oxygen concentration, gradient plate type sedimentation basin, flocculation Filters are installed continuously, total nitrogen concentration meter is installed in the flow rate adjustment tank, dissolved oxygen concentration meter, redox potential meter (ORP), total nitrogen concentration meter, ammonia nitrogen concentration meter, nitrate nitrogen concentration meter, and mixed liquid concentration meter are installed in the aerobic denitrification tank. The excess sludge amount and the return sludge amount are automatically adjusted so that the total nitrogen concentration difference between the flow regulating tank and the aerobic denitrification tank is kept constant.The blower and the redox potentiometer for the aerobic denitrification tank are automatically interlocked, and the redox potential is previously determined. Ammonia nitrogen concentration value in aerobic denitrification tank can be maintained at a fixed value. When increasing or decreasing, the air supply is automatically adjusted accordingly, maintaining ideal aerobic denitrification to remove nitrogen to low concentrations, and the supernatant passing through the swash plate settles with coagulant and grows into large flocs in the coagulant, This method is characterized by treating the phosphorus in water at a low concentration by removing the floc.
호기탈질, 총질소, 암모니아성질소 , 질산성질소 , 고도처리. TMS Aerobic denitrification, total nitrogen, ammonia nitrogen, nitrate nitrogen, advanced treatment. TMS
Description
본 발명은 하/폐수처리장에서 유입수중의 질소와 인을 제거하는 고도처리에 관한 것으로서, 특히 호기탈질공정을 완전 자동화하여 생물학적으로 질소를 고율로 제거하고, 응집제를 이용하여 인을 고율로 제거하는 기술이다.The present invention relates to a high-level treatment for removing nitrogen and phosphorus from influent water in sewage / wastewater treatment plants. Particularly, the present invention relates to a highly automated removal of aerobic denitrification process to biologically remove nitrogen at a high rate, and to remove phosphorus at a high rate using a flocculant. Technology.
본 발명은 하/폐수중의 질소 및 인을 고율로 제거하는 고도처리에 관한 기술이다.The present invention relates to an advanced treatment for removing nitrogen and phosphorus in sewage / waste water at high rates.
하/폐수(이하 "하수"라 통칭한다)중의 질소와 인을 생물학적으로 제거하는 기술로서는 A2/0 공정, 혐기호기 SBR공정 등이 대표적인 것이지만 어느 것이나 질소제거율을 80%이하이기 때문에 방류수중의 잔류질소 농도가 높고, 생물학적 질소 공정은 슬러지의 체류시간(SRT)이 길어서 생물학적으로 인을 제거하는 데는 부정적 요인이 된다.And / effluent (the "sewer" referred to collectively) are and the like in the Examples of A 2/0 process, anaerobic aerobic SBR process technology for the biological removal of nitrogen and a typical but because whichever is the nitrogen removal rate of 80% or less in the discharged water The high residual nitrogen concentration and the biological nitrogen process have long residence time (SRT) of sludge, which is a negative factor for biological removal of phosphorus.
최근에 방류수역 및 수계보호를 위하여 환경오염물질 배출 총량규제가 강화됨에 따라 방류수의 질소 농도 및 인 농도가 매우 낮아야만하게 되었다.Recently, as the regulation of total discharge of environmental pollutants is strengthened for protection of discharged waters and water systems, the concentration of nitrogen and phosphorus in discharged water has to be very low.
널리 알려지지는 않았지만 질산화 동시 탈질공정( 호기탈질 공정 이라고도 함, 본 발명에서는 "호기탈질" 이라 칭한다)이 있는데 이 공정은 슬러지의 내부순환 없이 질소제거율을 높일 수 있고, 이론적으로는 방류수의 질소 농도를 1mg/L까지 낮출 수 있다.Although not widely known, there is a nitrification simultaneous denitrification process (also referred to as an aerobic denitrification process, referred to as "aerobic denitrification" in the present invention), which can increase the nitrogen removal rate without internal sludge circulation and theoretically increase the nitrogen concentration of the effluent. Can be lowered to 1 mg / L.
그러나 이 공정은 운전의 기준이 되는 ORP값이 일부 알려져 있을 뿐으로 효과적이고 안정적인 고도처리를 위한 조건들은 개발되어 있지 않다.However, this process has only some known ORP values as a standard of operation, and conditions for effective and stable altitude treatment have not been developed.
그리고 이 공정 역시 긴 슬러지 체류시간을 필요로 하기 때문에 생물학적으로 인을 제거하는 데는 한계가 있어 낮은 인 농도의 방류수를 얻을 수 없었다.In addition, this process also requires a long sludge residence time, so there is a limit to the removal of phosphorus biologically, it was not possible to obtain a low phosphorus effluent.
본 발명의 과제는 호기탈질 공정의 운전에, 각종 계측기와 자동제어 장치를 이용하여 최적의 상태로 공정을 자동운전 하여, 질소 제거율을 극대화함과 동시에 안정적으로 유지하고, 경사판식 중력침전지로 정화한 상등수에 응집제를 투여하여 응집, 여과하여 방류수중의 인 농도를 매우 낮게 유지하는 것이다.An object of the present invention is to automatically operate the process in an optimal state using various measuring instruments and automatic control devices in the operation of the aerobic denitrification process, to maximize the nitrogen removal rate while maintaining a stable, and purified by a gradient plate type settler A coagulant is administered to the supernatant to coagulate and filter to keep the phosphorus concentration in the effluent very low.
본 발명은 유량조정조에 총질소 농도계를 설치하고 호기탈질조에는 총질소농도계, 암모니아성 질소 농도계, 질산성 질소 농도계, DO 농도계, 산화환원전위계, MLSS농도계를 설치하고, 경사판 침전지와 응집여과기를 설치하고, 최종 방류구에는 TMS를 설치하여 총질소농도차, 암모니아성 질소 농도값, 질산성 질소 농도값, 산화환원전위값 및 인 농도에 따라 미리 정한 공정조절이 자동적으로 이루어지도록 하여 하수중의 질소 및 인을 고율로 제거하도록 하였다.In the present invention, a total nitrogen concentration meter is installed in a flow control tank, and a total nitrogen concentration meter, an ammonia nitrogen concentration meter, a nitrate nitrogen concentration meter, a DO concentration meter, a redox potential meter, and an MLSS concentration meter are installed in an aerobic denitrification tank, and a gradient plate settler and a coagulation filter are installed. In the final outlet, TMS is installed so that predetermined process control is automatically performed according to the total nitrogen concentration difference, ammonia nitrogen concentration value, nitrate nitrogen concentration value, redox potential value and phosphorus concentration. Phosphorus was removed at a high rate.
본 발명은, 각종 계측기와 자동제어 장치를 이용한 완전 자동운전으로, 고도처리공정인 호기탈질 공정의 처리효율을 높이고, 응집여과를 이용하여 하수중의 질소 및 인을 고율로 제거함으로서, 방류수중의 질소 및 인의 농도를 매우 낮게 유지하고, 방류수역의 수질과 생태계를 보전하는 효과가 있으며, 공정구성이 단순하여 경제적이고 유지관리가 용이한 효과가 있다.The present invention is a fully automatic operation using various measuring instruments and automatic control devices to improve the treatment efficiency of the aerobic denitrification process, which is a high-treatment process, and to remove nitrogen and phosphorus in sewage at a high rate by using coagulation filtration. It maintains very low concentrations of nitrogen and phosphorus, conserves water quality and ecosystems in the effluent, and has a simple process configuration that is economical and easy to maintain.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
하수는 전처리 시설(1)로 유입되어 협잡물을 제거한 다음 유량조정조(2)로 유입되고, 유입펌프(4)에 의하여 혼합조(5)로 이송하고, 혼합조(5)에서 혼합교반기(6)의 교반 작용으로 반송 슬러지와 균등하게 혼합된다.The sewage flows into the
혼합조(5)을 통과한 하수는 혐기성으로 유지되는 인 방출조(7)로 이송되어, 혐기상태에서 교반기(8)로 서서히 교반되면서 세포내에 축적하였던 인을 방출하고, 호기탈질조(9)로 이송된다.The sewage having passed through the mixing tank 5 is transferred to the
호기탈질조(9)에는 산화환원 전위계(14), 총질소 농도계(15), MLSS농도계(16), 암모니아성질소 농도계(17), 질산성질소 농도계(18), DO농도계(19)를 설치하고, 바닥에는 산기관1(10)을 설치하고, 산기관1은 배관을 통하여 공기량 제어밸브1(11)에 연결하고 공기량 제어밸브1은 풍량가변 송풍기(13)에 연결하였다.The
상기 각종 계측기는 신호선으로 연결하여 제어반(36)에 연결하였고, 제어반 (36)에서는 필요한 연산 및 제어 신호를 발생하며, 제어 신호는 대응하는 각종 기계장치에 연결하였다.The various measuring instruments were connected to the
호기탈질조(9)에서는 산화환원전위를 +300mV( 수소전극 기준, 백금전극으로는 + 125mV)로 유지하면, 아질산균인 니트로소모나스가 작용하여, 아질산화( 암모니아성 질소를 아질산(NO2)으로 산화)함과 동시에 아질산을 질소가스(N2)로 변환시켜 공기 중으로 방출하면서 하수중의 질소를 제거한다.In the aerobic denitrification tank (9), if the redox potential is maintained at +300 mV (based on hydrogen electrode, +125 mV for platinum electrode), nitrosomonas, which is a nitrite bacterium, acts to provide nitrous oxide (ammonia nitrogen to nitrite (NO 2). At the same time, nitrous acid is converted into nitrogen gas (N 2 ) and released into the air to remove nitrogen from the sewage.
이때 호기탈질조(9)의 DO농도는 유입수 성상에 따라 다르나 0.2∼0.7mg/L범위로 유지된다.At this time, the DO concentration of the aerobic denitrification tank (9) is maintained in the range 0.2 ~ 0.7mg / L, depending on the influent properties.
호기탈질조(9)에서 산화환원전위가 적정치보다 높으면( 더 호기적인 상태)처리수중에 질산성 질소가 증가하고, 산화환원전위가 적정치보다 낮으면 암모니아성 질소가 증가한다.In the
두 경우 모두 질소제거율이 나빠지기 때문에 호기탈질조(9)의 유출부 수질에서 암모니아성 질소가 적정치 이상으로 증가하면 산화환원 전위를 높여야 하고, 산화환원 전위를 높이려면 호기탈질조(9)에 공급하는 공기량을 증가시켜야 한다.In both cases, since the nitrogen removal rate becomes worse, if the ammonia nitrogen in the outflow water quality of the aerobic denitrification tank (9) increases above an appropriate value, the redox potential should be increased, and to increase the redox potential, the aerobic denitrification tank (9) is required. The amount of air supplied must be increased.
질산성 질소가 적정치 이상으로 증가하면 산화환원전위를 낮게 하여야 하는데 산화환원전위를 낮게 하려면 호기탈질조(9)에 공급하는 공기량을 감소시켜야 한다.When the nitrate nitrogen increases above the optimum value, the redox potential should be lowered. To lower the redox potential, the amount of air supplied to the
이러한 작용을 사람이 수동으로 조절할 수는 없으므로, 호기탈질조(9)에 설치한 질산성 질소 농도계(18)과 암모니아성 질소 농도계(17) 및 산화환원 전위계 (14)와 DO농도계(19)의 신호를 이용하여 제어반(36)에 내장된 연산제어장치에서 [도면4] 와 [도면5] 의 연산 및 제어 신호를 발생하여, 공기량 제어밸브1(11)과 풍량가변 송풍기(13)의 운전조건을 자동적으로 변화하게 하여 조절한다.Since such a function cannot be manually controlled by a person, the nitrate
유입 하수량이 증가하거나 농도가 높아지거나 할 때에는 그 상태로 운전을 계속하면 MLSS부족으로 총질소 제거율이 저하하며, 이때 총 질소 제거율을 이상적으로 유지하려면 호기탈질조(9)내의 MLSS량을 증가시켜야 한다.If the inflow sewage is increased or the concentration is increased, the total nitrogen removal rate decreases due to the lack of MLSS, and the amount of MLSS in the aerobic denitrification tank (9) should be increased to maintain the total nitrogen removal rate ideally. .
이를 위하여 유량 조정조(2)에 설치한 총질소농도계(3)와 호기탈질조(9)의 유출부에 설치한 총질소농도계(15)의 총질소 농도값 차이가 적정치를 초과하거나 호기탈질조(9)내의 총질소 농도가 미리 정한 적정치를 초과하는 경우에는 [도면3] 의 연산 및 제어 신호를 발생하여, 잉여 슬러지펌프(38)의 운전시간을 줄이거나 펌프의 회전수를 감소시키도록 자동적으로 제어하여, 호기 탈질조(9)내의 MLSS농도를 증가시킴으로서 총 질소 제거율을 적정한 상태로 유지하고, 제어반(36)에서는 [도면3] ∼ [도면5] 의 연산 및 제어를 동시에 수행하여 호기탈질조(9)에서 총질소를 효과적으로 제거한다.To this end, the difference between the total nitrogen concentration values of the total nitrogen concentration meter 3 installed in the flow
호기탈질조(9)를 통과한 하수는 호기조(20)에서 DO농도가 1∼2mg/L이 되도록 포기를 하여 호기탈질조에서 미처리될 수도 있는 미량의 암모니아성 질소를 질산성 질소로 산화하고, 호기성미생물의 활성을 높인다.The sewage passing through the aerobic denitrification tank (9) gives up so that the DO concentration is 1 to 2 mg / L in the aerobic tank (20) to oxidize a small amount of ammonia nitrogen which may be untreated in the aerobic denitrification tank to nitrate nitrogen, Increase the activity of aerobic microorganisms.
호기탈질조에서 탈질이 효과적으로 일어나기 위해서는 체류시간 8시간에 MLSS농도는 3,000mg/L로 운전한 실험 결과로부터, 본 발명에서는 기존의 활성 슬러지공정의 체류시간인 5∼6시간에서 호기탈질이 일어나도록 MLSS농도를 4,500mg/L로 유지하게 하였다.In order to effectively perform denitrification in the aerobic denitrification tank, the MLSS concentration was 8 hours and the experimental result of operating at 3000 mg / L. In the present invention, the aerobic denitrification occurred at 5 to 6 hours, which is the residence time of the existing activated sludge process. The MLSS concentration was maintained at 4,500 mg / L.
MLSS농도가 이렇게 높아지면 침전성이 나빠져서 기존의 중력식 침전지에서는 안정적으로 침전이 일어나기 어렵기 때문에 본 발명에서는, 침전지를 침전속도가 빠른 경사판 침전지(24)로 계획하였다.As the MLSS concentration is so high, the sedimentation properties deteriorate, so that it is difficult to stably occur in the existing gravity sedimentation basin. In the present invention, the sedimentation basin is designed as a gradient
인의 제거는 인 방출조(7)에서 인을 방출하였던 인 제거 미생물이 호기 탈질조(9)의 호기성상태에서 인을 재 흡수하는데 이 재 흡수량은 정상적인 세포의 인 성분량보다 3~5배 더 많이 흡수하여 미생물의 세포내에 축적하고 이 미생물이 호기조(20)을 거쳐 경사판 침전지(24)에서 잉여 슬러지로 제거되면서 인도 함께 제거 된다.Phosphorus removal re-absorbs phosphorus in the aerobic state of the aerobic denitrification tank (9), which releases phosphorus from the phosphorus discharge tank (7), which absorbs 3 to 5 times more than that of normal cells. The microorganisms accumulate in the cells of the microorganisms, and the microorganisms are removed together with the excess sludge in the slant
이때의 인 제거율은 활성 슬러지공정보다는 높지만 호기탈질조(9) 미생물의 슬러지 체류시간(SRT)이 길어서, 인 제거율이 약간 저하되어 실제적인 제거율은 60%대 정도이다.At this time, the phosphorus removal rate is higher than that of the activated sludge process, but the sludge residence time (SRT) of the
따라서 환경오염물질배출 총량제에 대응하는 수준인 0.2∼0.5mg/L수준으로 낮추기 위해서는 알루미늄 염(alum)이나 염화 제2철 등의 응집제를 사용하여 추가적으로 인을 제거하여야 한다.Therefore, in order to lower the level corresponding to the total amount of environmental pollutant emissions, 0.2 to 0.5 mg / L, phosphorus should be additionally removed by using an aluminum salt (alum) or ferric chloride such as ferric chloride.
하수처리장의 인 유입농도는 통상적으로 5mg/L정도이므로 생물학적으로 60%가 제거되었다면 남은 농도는 2.0mg/L이며 이를 0.5mg/L이하로 낮추기 위해서는 인 1 mole에 대하여 약 3∼5mole의 응집제를 공급하여야 한다.Phosphorus inflow concentration in sewage treatment plant is usually about 5mg / L, so if 60% is removed biologically, the remaining concentration is 2.0mg / L. To lower it below 0.5mg / L, about 3 ~ 5mole of flocculant is added per mole of phosphorus. Must be supplied.
응집제 주입량은 제어반(36)과 응집제 주입 조절기(30)에서 [도면6] 의 프로그램을 수행하여 총인 농도계(25)와 TMS의 인농도를 이용하여 결정하되, 주입량은 총인 농도계(25)의 농도값과 방류수기준 인농도의 차이에 유량과 응집제 주입 몰(mole) 비를 곱하여 구하여, 자동적으로 주입량을 조절한다.Coagulant injection amount is determined using the phosphorus concentration of the total
인 제거를 위하여, 경사판 침전지의 상등수는 혼화지(26)에서 약 1∼5초의 짧은 시간동안에 응집제 주입기(28)에서 공급된 응집제와 교반에 의하여 접촉하면서, 침전성의 인 화합물의 플록을 형성한다.For phosphorus removal, the supernatant of the swash plate sedimentation basin is in contact with the flocculant supplied from the
이 플록은 응집지(27)에서 약 5∼10분간 응집되어 커다란 플록으로 성장한 다음 섬유상 여과기(31)에서 여과되어, 걸러진 고형물은 세척수 이송펌프(32)에 의하여 슬러지 저류조(39)로 이송된다.This floc is agglomerated in the
섬유상 여과기(31)에서는 유입된 플록의 약 85%가 제거되므로 방류수중의 인 농도는 0.3mg/L이하가 되고 섬유상 여과기는 손실수두가 300mm수두 이하이므로 자연유하 상태를 유지할 수 있다.Since the
섬유상 여과기(31)을 통과한 상등수는 소독장치(33)에서 세균이 제거된 상태의 깨끗한 물이 되어 방류된다.The supernatant that has passed through the
최종 방류구에는 TMS가 설치되어 유량 및 각종 수질항목을 측정하여 제어반(36)으로 전송함과 동시에 외부(환경관리공단)로 전송한다.TMS is installed in the final outlet, and measures the flow rate and various water quality items and transmits them to the
본 발명의 다른 실시 예는 유입하수의 농도 변화가 매우 큰 경우에 대응하기 위한 것으로 [도면2] 와 같이 공정을 구성하였다.Another embodiment of the present invention is to cope with the case where the change in the concentration of the influent sewage is very large, as shown in [Fig. 2].
[도면2] 의 공정은 상기 [도면1] 의 공정에 슬러지 보충조(41)와 슬러지 보충펌프(34-1)이 추가된 것으로서, 유입하수의 농도가 급격히 증가하는 경우에는 잉여슬러지 배출량 조정만으로는 유출수의 농도를 기준치 이하로 안정적으로 유지하는 것이 어렵기 때문에, 이때에는 슬러지 보충조(41)에 저장되었던 활성슬러지를 슬러지 보충펌프(34-1)로 양수하여 혼합조(5)를 통하여 상기 호기탈질조 등의 생물반응조에 신속하게 공급하여, 생물반응조의 혼합액 농도를 적정한 수준으로 높게 하여 급격히 증가한 하수의 오염물질을 분해처리 한다.The process shown in [Fig. 2] is a
유입하수의 농도가 낮아지면 경사판 침전지에서 침전된 슬러지를 우선 슬러지 보충조(41)에 만수위가 되도록 충전하고, 나머지 초과 슬러지는 잉여 슬러지펌프(38)을 통하여 슬러지 저류조로 이송하여 제거한 다음, 농축 탈수기(40)으로 탈수하여 탈수케이크를 장외로 반출하여 처분한다.When the concentration of the influent sewage is lowered, the sludge precipitated in the inclined plate settling basin is first charged to the
본 발명의 공정구성은 기본적으로는 활성 슬러지 공법과 유사하며 단지 운전조건과 구조물내 설비 일부가 다를뿐이므로 기존의 활성슬러지 공정을 개량 또는 일부 보완하면, 그대로 적용이 가능한 것을 알 수 있다.The process configuration of the present invention is basically similar to the activated sludge method, and only the operating conditions and some of the facilities in the structure are different. Therefore, if the existing activated sludge process is improved or partially supplemented, it can be seen that it can be applied as it is.
도면 1 은 본 발명의 구성을 표시한 공정도.1 is a process chart showing the configuration of the present invention.
도면 2 는 본 발명의 다른 실시 예를 나타낸 공정도.2 is a process chart showing another embodiment of the present invention.
도면 3 은 본 발명의 최적공정 유지를 위한 총질소 제거 프로그램 설명도.Figure 3 is an explanatory diagram of a total nitrogen removal program for maintaining the optimum process of the present invention.
도면 4 는 본 발명의 최적 공정유지를 위한 암모니아성 질소 제어 프로그램 설명도.4 is an explanatory diagram of the ammonia nitrogen control program for maintaining the optimum process of the present invention.
도면 5 는 본 발명의 최적 공정유지를 위한 질산성 질소 제어 프로그램 설명도.5 is an explanatory diagram of a nitrate nitrogen control program for maintaining an optimal process of the present invention.
도면 6 은 본 발명의 최적 공정유지를 위한 총인 제어 프로그램 설명도.6 is an explanatory view of a total phosphorus control program for optimal process maintenance of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070095670A KR100945458B1 (en) | 2007-09-20 | 2007-09-20 | Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070095670A KR100945458B1 (en) | 2007-09-20 | 2007-09-20 | Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP. |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090030397A KR20090030397A (en) | 2009-03-25 |
KR100945458B1 true KR100945458B1 (en) | 2010-03-05 |
Family
ID=40696697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070095670A KR100945458B1 (en) | 2007-09-20 | 2007-09-20 | Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP. |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100945458B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101272273B1 (en) * | 2012-10-30 | 2013-06-13 | 황상철 | Water purifing system for management of sludge blanket level |
KR101817471B1 (en) * | 2016-06-20 | 2018-02-21 | 김승제 | Wastewater Treatment System |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101106471B1 (en) * | 2011-03-31 | 2012-01-25 | 이경섭 | A biochemical waste water disposal plant |
KR101312584B1 (en) * | 2011-07-27 | 2013-10-07 | (주) 상원이엔씨 | total phosphorous removal system and the total phosphorous removal mehtod using both coagulating sedimentation device and filtering device |
KR20150000481A (en) | 2012-03-09 | 2015-01-02 | 메타워터 가부시키가이샤 | Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program |
CN106115916A (en) * | 2016-08-04 | 2016-11-16 | 安徽华骐环保科技股份有限公司 | One is put aerobic nitrification, two ends anoxic denitrification filter tank technique and device thereof |
KR102052163B1 (en) * | 2017-02-13 | 2020-01-09 | 바이오메카 주식회사 | Wastewater treatment apparatus and method |
KR101880619B1 (en) * | 2017-07-31 | 2018-08-16 | (주)티에스케이워터 | Method for treating wastewater from biogas plant using food waste |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040031359A (en) * | 2002-10-04 | 2004-04-13 | 엄태경 | Advanced treatment apparaters and method for removal of nitrogen and phosphorus inf sewage water |
KR100759847B1 (en) * | 2006-10-17 | 2007-09-18 | (주)범한엔지니어링 종합건축사 사무소 | Advanced swage and waste water treatment method and apparatus with improved anaerobic basin and recirculation part. |
-
2007
- 2007-09-20 KR KR1020070095670A patent/KR100945458B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040031359A (en) * | 2002-10-04 | 2004-04-13 | 엄태경 | Advanced treatment apparaters and method for removal of nitrogen and phosphorus inf sewage water |
KR100759847B1 (en) * | 2006-10-17 | 2007-09-18 | (주)범한엔지니어링 종합건축사 사무소 | Advanced swage and waste water treatment method and apparatus with improved anaerobic basin and recirculation part. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101272273B1 (en) * | 2012-10-30 | 2013-06-13 | 황상철 | Water purifing system for management of sludge blanket level |
KR101817471B1 (en) * | 2016-06-20 | 2018-02-21 | 김승제 | Wastewater Treatment System |
Also Published As
Publication number | Publication date |
---|---|
KR20090030397A (en) | 2009-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100945458B1 (en) | Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP. | |
JP4931495B2 (en) | Method and apparatus for removing phosphorus and nitrogen from sewage | |
JP3434438B2 (en) | Wastewater treatment method and wastewater treatment device | |
CN103402926A (en) | Methods and systems for treating wastewater | |
KR100873416B1 (en) | Sewage processing apparatus and method using activated sludge of a sequencing batch reactor | |
CA2199517C (en) | Installation for biological water treatment for the production of drinkable water | |
KR101018587B1 (en) | Membrane treatment device for eliminating nitrogen and/or phosphorus | |
KR20130118682A (en) | Optimized coagulant feeding devices based on the prediction of phosphorus concentrations | |
JP4409415B2 (en) | Method for removing phosphorus and / or nitrogen from sewage | |
JP2001054792A (en) | Method and apparatus for treating wastewater | |
KR20090055160A (en) | Wastewater treatment system and method using an equalization tank as a biological reactor | |
KR100870964B1 (en) | Sewage and wastewater treating system | |
KR101044826B1 (en) | An operation method to increase advanced treatment efficiency in membrane bio reacter and an advanced treatment appartus there of | |
KR20070018192A (en) | Processing method of high thickness organic sewage by sequencing and Batch type AB SAcksang-Busick-System | |
KR100769997B1 (en) | Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System) | |
KR101489134B1 (en) | Advanced treatment method for purifying wastewater | |
JP3456022B2 (en) | Sewage treatment equipment | |
KR100702194B1 (en) | Advanced wasterwater treatment system by a combination of membrane bio-reactor and sulfur denitrification and method thereof | |
KR100327545B1 (en) | Municipal wastewater treatment system | |
JP5612005B2 (en) | Water treatment system and water treatment method | |
JPH08281284A (en) | Combined septic tank | |
JP3588047B2 (en) | Biological phosphorus removal method in oxidation ditch | |
CN113415955A (en) | Method for treating sulfur-containing hot spring bath sewage | |
KR100882228B1 (en) | Waste-water treatment apparatus comprising perchlorate, and treatment method thereof | |
KR100397168B1 (en) | Apparatus and Method For Animal Waste water Treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130108 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20140109 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20150109 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20160107 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20170109 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20180110 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20190108 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20200102 Year of fee payment: 11 |