KR100945458B1 - Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP. - Google Patents

Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP. Download PDF

Info

Publication number
KR100945458B1
KR100945458B1 KR1020070095670A KR20070095670A KR100945458B1 KR 100945458 B1 KR100945458 B1 KR 100945458B1 KR 1020070095670 A KR1020070095670 A KR 1020070095670A KR 20070095670 A KR20070095670 A KR 20070095670A KR 100945458 B1 KR100945458 B1 KR 100945458B1
Authority
KR
South Korea
Prior art keywords
tank
concentration
phosphorus
nitrogen
aerobic denitrification
Prior art date
Application number
KR1020070095670A
Other languages
Korean (ko)
Other versions
KR20090030397A (en
Inventor
엄태경
Original Assignee
(주)범한엔지니어링 종합건축사 사무소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)범한엔지니어링 종합건축사 사무소 filed Critical (주)범한엔지니어링 종합건축사 사무소
Priority to KR1020070095670A priority Critical patent/KR100945458B1/en
Publication of KR20090030397A publication Critical patent/KR20090030397A/en
Application granted granted Critical
Publication of KR100945458B1 publication Critical patent/KR100945458B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1215Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1221Particular type of activated sludge processes comprising treatment of the recirculated sludge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

본 발명은 하수처리장이나 폐수처리장에서 질소와 인을 고율로 제거하기위한 고도처리에 관한 것으로서, 더욱 상세하게는 완전자동 운전으로 호기탈질에 의하여 질소를 고율로 제거하고, 응집제를 이용하여 인을 고율로 제거하는는 고도처리장치에 관한 것이다.The present invention relates to a high-treatment for removing nitrogen and phosphorus at a high rate in a sewage treatment plant or a wastewater treatment plant, and more specifically, to remove nitrogen at a high rate by aerobic denitrification in a fully automatic operation, and high rate of phosphorus using a flocculant. Removal is directed to an advanced treatment apparatus.

이를 위하여 본 발명은 유량 조정조로부터 이송된 유입하수와 반송슬러지를 혼합하는 혼합조, 인 방출을 위한 혐기조, 질산화와 탈질을 동시에 하는 호기 탈질조, 용존산소 농도를 높이는 호기조, 경사판식 중력식 침전지, 응집 여과기를 연속으로 설치하고, 유량 조정조에는 총질소농도계를 설치하고, 호기탈질조에는 용존 산소 농도계와 산화 환원전위계(ORP) 및 총질소농도계, 암모니성 질소 농도계, 질산성 질소 농도계, 혼합액 농도계를 설치하고, 유량조정조와 호기탈질조의 총질소농도차이가 일정하게 유지되도록 잉여 슬러지량과 반송 슬러지량을 자동 조절하게 하고, 호기탈질조용 송풍기와 산화환원 전위계를 자동연동운전하게 하여, 산화 환원 전위가 미리 정한 값으로 일정하게 유지될 수 있도록 하되, 호기탈질조의 암모니아성 질소 농도 값이 증가하거나 감소하면 그에 상응하여 공기공급량을 자동조절 하여, 이상적인 호기 탈질을 유지하여 질소를 낮은 농도까지 제거하고, 경사판 침전지를 통과한 상등수는 응집제와 혼합하여 응집지에서 커다란 플록으로 성장시켜서 섬유상 여과기에서, 플록을 제거함으로서 수중의 인을 낮은 농도가 되게 처리하는 것에 특징이 있다.To this end, the present invention is a mixing tank for mixing the influent sewage and conveying sludge transferred from the flow control tank, an anaerobic tank for phosphorus release, an aerobic denitrification tank for simultaneous nitrification and denitrification, an aerobic tank to increase the dissolved oxygen concentration, gradient plate type sedimentation basin, flocculation Filters are installed continuously, total nitrogen concentration meter is installed in the flow rate adjustment tank, dissolved oxygen concentration meter, redox potential meter (ORP), total nitrogen concentration meter, ammonia nitrogen concentration meter, nitrate nitrogen concentration meter, and mixed liquid concentration meter are installed in the aerobic denitrification tank. The excess sludge amount and the return sludge amount are automatically adjusted so that the total nitrogen concentration difference between the flow regulating tank and the aerobic denitrification tank is kept constant.The blower and the redox potentiometer for the aerobic denitrification tank are automatically interlocked, and the redox potential is previously determined. Ammonia nitrogen concentration value in aerobic denitrification tank can be maintained at a fixed value. When increasing or decreasing, the air supply is automatically adjusted accordingly, maintaining ideal aerobic denitrification to remove nitrogen to low concentrations, and the supernatant passing through the swash plate settles with coagulant and grows into large flocs in the coagulant, This method is characterized by treating the phosphorus in water at a low concentration by removing the floc.

호기탈질, 총질소, 암모니아성질소 , 질산성질소 , 고도처리. TMS Aerobic denitrification, total nitrogen, ammonia nitrogen, nitrate nitrogen, advanced treatment. TMS

Description

하/폐수처리장의 질소 및 인 고율 제거장치{Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP.}Apparatus for high rate removal of nitrogen and phosphorus from SWTP / WWTP.

본 발명은 하/폐수처리장에서 유입수중의 질소와 인을 제거하는 고도처리에 관한 것으로서, 특히 호기탈질공정을 완전 자동화하여 생물학적으로 질소를 고율로 제거하고, 응집제를 이용하여 인을 고율로 제거하는 기술이다.The present invention relates to a high-level treatment for removing nitrogen and phosphorus from influent water in sewage / wastewater treatment plants. Particularly, the present invention relates to a highly automated removal of aerobic denitrification process to biologically remove nitrogen at a high rate, and to remove phosphorus at a high rate using a flocculant. Technology.

본 발명은 하/폐수중의 질소 및 인을 고율로 제거하는 고도처리에 관한 기술이다.The present invention relates to an advanced treatment for removing nitrogen and phosphorus in sewage / waste water at high rates.

하/폐수(이하 "하수"라 통칭한다)중의 질소와 인을 생물학적으로 제거하는 기술로서는 A2/0 공정, 혐기호기 SBR공정 등이 대표적인 것이지만 어느 것이나 질소제거율을 80%이하이기 때문에 방류수중의 잔류질소 농도가 높고, 생물학적 질소 공정은 슬러지의 체류시간(SRT)이 길어서 생물학적으로 인을 제거하는 데는 부정적 요인이 된다.And / effluent (the "sewer" referred to collectively) are and the like in the Examples of A 2/0 process, anaerobic aerobic SBR process technology for the biological removal of nitrogen and a typical but because whichever is the nitrogen removal rate of 80% or less in the discharged water The high residual nitrogen concentration and the biological nitrogen process have long residence time (SRT) of sludge, which is a negative factor for biological removal of phosphorus.

최근에 방류수역 및 수계보호를 위하여 환경오염물질 배출 총량규제가 강화됨에 따라 방류수의 질소 농도 및 인 농도가 매우 낮아야만하게 되었다.Recently, as the regulation of total discharge of environmental pollutants is strengthened for protection of discharged waters and water systems, the concentration of nitrogen and phosphorus in discharged water has to be very low.

널리 알려지지는 않았지만 질산화 동시 탈질공정( 호기탈질 공정 이라고도 함, 본 발명에서는 "호기탈질" 이라 칭한다)이 있는데 이 공정은 슬러지의 내부순환 없이 질소제거율을 높일 수 있고, 이론적으로는 방류수의 질소 농도를 1mg/L까지 낮출 수 있다.Although not widely known, there is a nitrification simultaneous denitrification process (also referred to as an aerobic denitrification process, referred to as "aerobic denitrification" in the present invention), which can increase the nitrogen removal rate without internal sludge circulation and theoretically increase the nitrogen concentration of the effluent. Can be lowered to 1 mg / L.

그러나 이 공정은 운전의 기준이 되는 ORP값이 일부 알려져 있을 뿐으로 효과적이고 안정적인 고도처리를 위한 조건들은 개발되어 있지 않다.However, this process has only some known ORP values as a standard of operation, and conditions for effective and stable altitude treatment have not been developed.

그리고 이 공정 역시 긴 슬러지 체류시간을 필요로 하기 때문에 생물학적으로 인을 제거하는 데는 한계가 있어 낮은 인 농도의 방류수를 얻을 수 없었다.In addition, this process also requires a long sludge residence time, so there is a limit to the removal of phosphorus biologically, it was not possible to obtain a low phosphorus effluent.

본 발명의 과제는 호기탈질 공정의 운전에, 각종 계측기와 자동제어 장치를 이용하여 최적의 상태로 공정을 자동운전 하여, 질소 제거율을 극대화함과 동시에 안정적으로 유지하고, 경사판식 중력침전지로 정화한 상등수에 응집제를 투여하여 응집, 여과하여 방류수중의 인 농도를 매우 낮게 유지하는 것이다.An object of the present invention is to automatically operate the process in an optimal state using various measuring instruments and automatic control devices in the operation of the aerobic denitrification process, to maximize the nitrogen removal rate while maintaining a stable, and purified by a gradient plate type settler A coagulant is administered to the supernatant to coagulate and filter to keep the phosphorus concentration in the effluent very low.

본 발명은 유량조정조에 총질소 농도계를 설치하고 호기탈질조에는 총질소농도계, 암모니아성 질소 농도계, 질산성 질소 농도계, DO 농도계, 산화환원전위계, MLSS농도계를 설치하고, 경사판 침전지와 응집여과기를 설치하고, 최종 방류구에는 TMS를 설치하여 총질소농도차, 암모니아성 질소 농도값, 질산성 질소 농도값, 산화환원전위값 및 인 농도에 따라 미리 정한 공정조절이 자동적으로 이루어지도록 하여 하수중의 질소 및 인을 고율로 제거하도록 하였다.In the present invention, a total nitrogen concentration meter is installed in a flow control tank, and a total nitrogen concentration meter, an ammonia nitrogen concentration meter, a nitrate nitrogen concentration meter, a DO concentration meter, a redox potential meter, and an MLSS concentration meter are installed in an aerobic denitrification tank, and a gradient plate settler and a coagulation filter are installed. In the final outlet, TMS is installed so that predetermined process control is automatically performed according to the total nitrogen concentration difference, ammonia nitrogen concentration value, nitrate nitrogen concentration value, redox potential value and phosphorus concentration. Phosphorus was removed at a high rate.

본 발명은, 각종 계측기와 자동제어 장치를 이용한 완전 자동운전으로, 고도처리공정인 호기탈질 공정의 처리효율을 높이고, 응집여과를 이용하여 하수중의 질소 및 인을 고율로 제거함으로서, 방류수중의 질소 및 인의 농도를 매우 낮게 유지하고, 방류수역의 수질과 생태계를 보전하는 효과가 있으며, 공정구성이 단순하여 경제적이고 유지관리가 용이한 효과가 있다.The present invention is a fully automatic operation using various measuring instruments and automatic control devices to improve the treatment efficiency of the aerobic denitrification process, which is a high-treatment process, and to remove nitrogen and phosphorus in sewage at a high rate by using coagulation filtration. It maintains very low concentrations of nitrogen and phosphorus, conserves water quality and ecosystems in the effluent, and has a simple process configuration that is economical and easy to maintain.

본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

하수는 전처리 시설(1)로 유입되어 협잡물을 제거한 다음 유량조정조(2)로 유입되고, 유입펌프(4)에 의하여 혼합조(5)로 이송하고, 혼합조(5)에서 혼합교반기(6)의 교반 작용으로 반송 슬러지와 균등하게 혼합된다.The sewage flows into the pretreatment facility 1 to remove contaminants and then flows into the flow adjusting tank 2, and is transferred to the mixing tank 5 by the inflow pump 4, and the mixing stirrer 6 in the mixing tank 5. By the stirring action of, it is mixed with the conveying sludge evenly.

혼합조(5)을 통과한 하수는 혐기성으로 유지되는 인 방출조(7)로 이송되어, 혐기상태에서 교반기(8)로 서서히 교반되면서 세포내에 축적하였던 인을 방출하고, 호기탈질조(9)로 이송된다.The sewage having passed through the mixing tank 5 is transferred to the phosphorus discharge tank 7 which is maintained anaerobicly, releasing phosphorus accumulated in the cell while being slowly stirred by the stirrer 8 in the anaerobic state, and the aerobic denitrification tank 9 Is transferred to.

호기탈질조(9)에는 산화환원 전위계(14), 총질소 농도계(15), MLSS농도계(16), 암모니아성질소 농도계(17), 질산성질소 농도계(18), DO농도계(19)를 설치하고, 바닥에는 산기관1(10)을 설치하고, 산기관1은 배관을 통하여 공기량 제어밸브1(11)에 연결하고 공기량 제어밸브1은 풍량가변 송풍기(13)에 연결하였다.The aerobic denitrification tank 9 is provided with a redox potentiometer 14, total nitrogen concentration meter 15, MLSS concentration meter 16, ammonia nitrogen concentration meter 17, nitrogen nitrate concentration meter 18, and DO concentration meter 19. And, the diffuser 1 (10) was installed at the bottom, the diffuser 1 was connected to the air flow control valve 1 (11) through the pipe and the air flow control valve 1 was connected to the air flow variable blower (13).

상기 각종 계측기는 신호선으로 연결하여 제어반(36)에 연결하였고, 제어반 (36)에서는 필요한 연산 및 제어 신호를 발생하며, 제어 신호는 대응하는 각종 기계장치에 연결하였다.The various measuring instruments were connected to the control panel 36 by a signal line, and the control panel 36 generated necessary calculation and control signals, and the control signals were connected to the corresponding various mechanical devices.

호기탈질조(9)에서는 산화환원전위를 +300mV( 수소전극 기준, 백금전극으로는 + 125mV)로 유지하면, 아질산균인 니트로소모나스가 작용하여, 아질산화( 암모니아성 질소를 아질산(NO2)으로 산화)함과 동시에 아질산을 질소가스(N2)로 변환시켜 공기 중으로 방출하면서 하수중의 질소를 제거한다.In the aerobic denitrification tank (9), if the redox potential is maintained at +300 mV (based on hydrogen electrode, +125 mV for platinum electrode), nitrosomonas, which is a nitrite bacterium, acts to provide nitrous oxide (ammonia nitrogen to nitrite (NO 2). At the same time, nitrous acid is converted into nitrogen gas (N 2 ) and released into the air to remove nitrogen from the sewage.

이때 호기탈질조(9)의 DO농도는 유입수 성상에 따라 다르나 0.2∼0.7mg/L범위로 유지된다.At this time, the DO concentration of the aerobic denitrification tank (9) is maintained in the range 0.2 ~ 0.7mg / L, depending on the influent properties.

호기탈질조(9)에서 산화환원전위가 적정치보다 높으면( 더 호기적인 상태)처리수중에 질산성 질소가 증가하고, 산화환원전위가 적정치보다 낮으면 암모니아성 질소가 증가한다.In the aerobic denitrification tank 9, if the redox potential is higher than the optimum value (more aerobic state), the nitrate nitrogen is increased in the treated water, and if the redox potential is lower than the optimum value, the ammonia nitrogen is increased.

두 경우 모두 질소제거율이 나빠지기 때문에 호기탈질조(9)의 유출부 수질에서 암모니아성 질소가 적정치 이상으로 증가하면 산화환원 전위를 높여야 하고, 산화환원 전위를 높이려면 호기탈질조(9)에 공급하는 공기량을 증가시켜야 한다.In both cases, since the nitrogen removal rate becomes worse, if the ammonia nitrogen in the outflow water quality of the aerobic denitrification tank (9) increases above an appropriate value, the redox potential should be increased, and to increase the redox potential, the aerobic denitrification tank (9) is required. The amount of air supplied must be increased.

질산성 질소가 적정치 이상으로 증가하면 산화환원전위를 낮게 하여야 하는데 산화환원전위를 낮게 하려면 호기탈질조(9)에 공급하는 공기량을 감소시켜야 한다.When the nitrate nitrogen increases above the optimum value, the redox potential should be lowered. To lower the redox potential, the amount of air supplied to the aerobic denitrification tank 9 should be reduced.

이러한 작용을 사람이 수동으로 조절할 수는 없으므로, 호기탈질조(9)에 설치한 질산성 질소 농도계(18)과 암모니아성 질소 농도계(17) 및 산화환원 전위계 (14)와 DO농도계(19)의 신호를 이용하여 제어반(36)에 내장된 연산제어장치에서 [도면4] 와 [도면5] 의 연산 및 제어 신호를 발생하여, 공기량 제어밸브1(11)과 풍량가변 송풍기(13)의 운전조건을 자동적으로 변화하게 하여 조절한다.Since such a function cannot be manually controlled by a person, the nitrate nitrogen concentration meter 18, the ammonia nitrogen concentration meter 17, the redox potentiometer 14, and the DO concentration meter 19 installed in the aerobic denitrification tank 9 By using the signal to generate the calculation and control signals of [Fig. 4] and [Fig. 5] in the operation control device built in the control panel 36, the operating conditions of the air flow control valve 1 (11) and the air flow variable blower (13) To change automatically.

유입 하수량이 증가하거나 농도가 높아지거나 할 때에는 그 상태로 운전을 계속하면 MLSS부족으로 총질소 제거율이 저하하며, 이때 총 질소 제거율을 이상적으로 유지하려면 호기탈질조(9)내의 MLSS량을 증가시켜야 한다.If the inflow sewage is increased or the concentration is increased, the total nitrogen removal rate decreases due to the lack of MLSS, and the amount of MLSS in the aerobic denitrification tank (9) should be increased to maintain the total nitrogen removal rate ideally. .

이를 위하여 유량 조정조(2)에 설치한 총질소농도계(3)와 호기탈질조(9)의 유출부에 설치한 총질소농도계(15)의 총질소 농도값 차이가 적정치를 초과하거나 호기탈질조(9)내의 총질소 농도가 미리 정한 적정치를 초과하는 경우에는 [도면3] 의 연산 및 제어 신호를 발생하여, 잉여 슬러지펌프(38)의 운전시간을 줄이거나 펌프의 회전수를 감소시키도록 자동적으로 제어하여, 호기 탈질조(9)내의 MLSS농도를 증가시킴으로서 총 질소 제거율을 적정한 상태로 유지하고, 제어반(36)에서는 [도면3] ∼ [도면5] 의 연산 및 제어를 동시에 수행하여 호기탈질조(9)에서 총질소를 효과적으로 제거한다.To this end, the difference between the total nitrogen concentration values of the total nitrogen concentration meter 3 installed in the flow rate adjustment tank 2 and the total nitrogen concentration meter 15 installed in the outlet of the aerobic denitrification tank 9 exceeds an appropriate value or the aerobic denitrification tank. If the total nitrogen concentration in (9) exceeds a predetermined value, generate the calculation and control signals shown in [Fig. 3] to reduce the operating time of the excess sludge pump 38 or to reduce the rotational speed of the pump. By automatically controlling, increasing the MLSS concentration in the exhalation denitrification tank 9 maintains the total nitrogen removal rate at an appropriate state, and the control panel 36 simultaneously performs calculation and control of [Fig. 3] to [Fig. 5]. Total nitrogen is effectively removed from the denitrification tank (9).

호기탈질조(9)를 통과한 하수는 호기조(20)에서 DO농도가 1∼2mg/L이 되도록 포기를 하여 호기탈질조에서 미처리될 수도 있는 미량의 암모니아성 질소를 질산성 질소로 산화하고, 호기성미생물의 활성을 높인다.The sewage passing through the aerobic denitrification tank (9) gives up so that the DO concentration is 1 to 2 mg / L in the aerobic tank (20) to oxidize a small amount of ammonia nitrogen which may be untreated in the aerobic denitrification tank to nitrate nitrogen, Increase the activity of aerobic microorganisms.

호기탈질조에서 탈질이 효과적으로 일어나기 위해서는 체류시간 8시간에 MLSS농도는 3,000mg/L로 운전한 실험 결과로부터, 본 발명에서는 기존의 활성 슬러지공정의 체류시간인 5∼6시간에서 호기탈질이 일어나도록 MLSS농도를 4,500mg/L로 유지하게 하였다.In order to effectively perform denitrification in the aerobic denitrification tank, the MLSS concentration was 8 hours and the experimental result of operating at 3000 mg / L. In the present invention, the aerobic denitrification occurred at 5 to 6 hours, which is the residence time of the existing activated sludge process. The MLSS concentration was maintained at 4,500 mg / L.

MLSS농도가 이렇게 높아지면 침전성이 나빠져서 기존의 중력식 침전지에서는 안정적으로 침전이 일어나기 어렵기 때문에 본 발명에서는, 침전지를 침전속도가 빠른 경사판 침전지(24)로 계획하였다.As the MLSS concentration is so high, the sedimentation properties deteriorate, so that it is difficult to stably occur in the existing gravity sedimentation basin. In the present invention, the sedimentation basin is designed as a gradient plate sedimentation basin 24 having a high sedimentation rate.

인의 제거는 인 방출조(7)에서 인을 방출하였던 인 제거 미생물이 호기 탈질조(9)의 호기성상태에서 인을 재 흡수하는데 이 재 흡수량은 정상적인 세포의 인 성분량보다 3~5배 더 많이 흡수하여 미생물의 세포내에 축적하고 이 미생물이 호기조(20)을 거쳐 경사판 침전지(24)에서 잉여 슬러지로 제거되면서 인도 함께 제거 된다.Phosphorus removal re-absorbs phosphorus in the aerobic state of the aerobic denitrification tank (9), which releases phosphorus from the phosphorus discharge tank (7), which absorbs 3 to 5 times more than that of normal cells. The microorganisms accumulate in the cells of the microorganisms, and the microorganisms are removed together with the excess sludge in the slant plate settling basin 24 through the aerobic tank 20.

이때의 인 제거율은 활성 슬러지공정보다는 높지만 호기탈질조(9) 미생물의 슬러지 체류시간(SRT)이 길어서, 인 제거율이 약간 저하되어 실제적인 제거율은 60%대 정도이다.At this time, the phosphorus removal rate is higher than that of the activated sludge process, but the sludge residence time (SRT) of the aerobic denitrification tank 9 microorganism is long, so that the phosphorus removal rate is slightly lowered and the actual removal rate is about 60%.

따라서 환경오염물질배출 총량제에 대응하는 수준인 0.2∼0.5mg/L수준으로 낮추기 위해서는 알루미늄 염(alum)이나 염화 제2철 등의 응집제를 사용하여 추가적으로 인을 제거하여야 한다.Therefore, in order to lower the level corresponding to the total amount of environmental pollutant emissions, 0.2 to 0.5 mg / L, phosphorus should be additionally removed by using an aluminum salt (alum) or ferric chloride such as ferric chloride.

하수처리장의 인 유입농도는 통상적으로 5mg/L정도이므로 생물학적으로 60%가 제거되었다면 남은 농도는 2.0mg/L이며 이를 0.5mg/L이하로 낮추기 위해서는 인 1 mole에 대하여 약 3∼5mole의 응집제를 공급하여야 한다.Phosphorus inflow concentration in sewage treatment plant is usually about 5mg / L, so if 60% is removed biologically, the remaining concentration is 2.0mg / L. To lower it below 0.5mg / L, about 3 ~ 5mole of flocculant is added per mole of phosphorus. Must be supplied.

응집제 주입량은 제어반(36)과 응집제 주입 조절기(30)에서 [도면6] 의 프로그램을 수행하여 총인 농도계(25)와 TMS의 인농도를 이용하여 결정하되, 주입량은 총인 농도계(25)의 농도값과 방류수기준 인농도의 차이에 유량과 응집제 주입 몰(mole) 비를 곱하여 구하여, 자동적으로 주입량을 조절한다.Coagulant injection amount is determined using the phosphorus concentration of the total phosphorus concentration meter 25 and TMS by performing the program of [Fig. 6] in the control panel 36 and the coagulant injection controller 30, but the injection amount is the concentration value of the total phosphorus concentration meter 25 The difference between the phosphorus concentration and the discharged water standard is calculated by multiplying the flow rate and the molar ratio of the coagulant injection, and automatically adjust the injection amount.

인 제거를 위하여, 경사판 침전지의 상등수는 혼화지(26)에서 약 1∼5초의 짧은 시간동안에 응집제 주입기(28)에서 공급된 응집제와 교반에 의하여 접촉하면서, 침전성의 인 화합물의 플록을 형성한다.For phosphorus removal, the supernatant of the swash plate sedimentation basin is in contact with the flocculant supplied from the flocculant injector 28 for a short time of about 1 to 5 seconds in the blended paper 26, thereby forming a floc of precipitated phosphorus compound.

이 플록은 응집지(27)에서 약 5∼10분간 응집되어 커다란 플록으로 성장한 다음 섬유상 여과기(31)에서 여과되어, 걸러진 고형물은 세척수 이송펌프(32)에 의하여 슬러지 저류조(39)로 이송된다.This floc is agglomerated in the flocculation paper 27 for about 5 to 10 minutes to grow into a large floc, and then filtered in a fibrous filter 31, and the filtered solids are transferred to the sludge storage tank 39 by the washing water transfer pump 32.

섬유상 여과기(31)에서는 유입된 플록의 약 85%가 제거되므로 방류수중의 인 농도는 0.3mg/L이하가 되고 섬유상 여과기는 손실수두가 300mm수두 이하이므로 자연유하 상태를 유지할 수 있다.Since the fibrous filter 31 removes about 85% of the flocs introduced, the phosphorus concentration in the discharged water is 0.3 mg / L or less, and the fibrous filter can maintain its natural state because the loss head is 300 mm or less.

섬유상 여과기(31)을 통과한 상등수는 소독장치(33)에서 세균이 제거된 상태의 깨끗한 물이 되어 방류된다.The supernatant that has passed through the fibrous filter 31 is discharged as clean water in which bacteria are removed from the disinfecting apparatus 33.

최종 방류구에는 TMS가 설치되어 유량 및 각종 수질항목을 측정하여 제어반(36)으로 전송함과 동시에 외부(환경관리공단)로 전송한다.TMS is installed in the final outlet, and measures the flow rate and various water quality items and transmits them to the control panel 36 and to the outside (Environmental Management Corporation).

본 발명의 다른 실시 예는 유입하수의 농도 변화가 매우 큰 경우에 대응하기 위한 것으로 [도면2] 와 같이 공정을 구성하였다.Another embodiment of the present invention is to cope with the case where the change in the concentration of the influent sewage is very large, as shown in [Fig. 2].

[도면2] 의 공정은 상기 [도면1] 의 공정에 슬러지 보충조(41)와 슬러지 보충펌프(34-1)이 추가된 것으로서, 유입하수의 농도가 급격히 증가하는 경우에는 잉여슬러지 배출량 조정만으로는 유출수의 농도를 기준치 이하로 안정적으로 유지하는 것이 어렵기 때문에, 이때에는 슬러지 보충조(41)에 저장되었던 활성슬러지를 슬러지 보충펌프(34-1)로 양수하여 혼합조(5)를 통하여 상기 호기탈질조 등의 생물반응조에 신속하게 공급하여, 생물반응조의 혼합액 농도를 적정한 수준으로 높게 하여 급격히 증가한 하수의 오염물질을 분해처리 한다.The process shown in [Fig. 2] is a sludge replenishment tank 41 and a sludge replenishment pump 34-1 added to the process of [Fig. 1]. When the concentration of the influent sewage is rapidly increased, only the excess sludge discharge is adjusted. Since it is difficult to stably maintain the concentration of the effluent below the reference value, at this time, the activated sludge stored in the sludge replenishment tank 41 is pumped into the sludge replenishment pump 34-1, and the exhalation through the mixing tank 5 is performed. It is rapidly supplied to bioreactors such as denitrification tanks, and the concentration of mixed liquor in the bioreactors is raised to an appropriate level to decompose rapidly increased sewage contaminants.

유입하수의 농도가 낮아지면 경사판 침전지에서 침전된 슬러지를 우선 슬러지 보충조(41)에 만수위가 되도록 충전하고, 나머지 초과 슬러지는 잉여 슬러지펌프(38)을 통하여 슬러지 저류조로 이송하여 제거한 다음, 농축 탈수기(40)으로 탈수하여 탈수케이크를 장외로 반출하여 처분한다.When the concentration of the influent sewage is lowered, the sludge precipitated in the inclined plate settling basin is first charged to the sludge replenishment tank 41 to the full water level, and the remaining excess sludge is transferred to the sludge storage tank through the excess sludge pump 38 and removed, and then concentrated condenser Dehydrate in (40) and take out the dehydrated cake to the outside for disposal.

본 발명의 공정구성은 기본적으로는 활성 슬러지 공법과 유사하며 단지 운전조건과 구조물내 설비 일부가 다를뿐이므로 기존의 활성슬러지 공정을 개량 또는 일부 보완하면, 그대로 적용이 가능한 것을 알 수 있다.The process configuration of the present invention is basically similar to the activated sludge method, and only the operating conditions and some of the facilities in the structure are different. Therefore, if the existing activated sludge process is improved or partially supplemented, it can be seen that it can be applied as it is.

도면 1 은 본 발명의 구성을 표시한 공정도.1 is a process chart showing the configuration of the present invention.

도면 2 는 본 발명의 다른 실시 예를 나타낸 공정도.2 is a process chart showing another embodiment of the present invention.

도면 3 은 본 발명의 최적공정 유지를 위한 총질소 제거 프로그램 설명도.Figure 3 is an explanatory diagram of a total nitrogen removal program for maintaining the optimum process of the present invention.

도면 4 는 본 발명의 최적 공정유지를 위한 암모니아성 질소 제어 프로그램 설명도.4 is an explanatory diagram of the ammonia nitrogen control program for maintaining the optimum process of the present invention.

도면 5 는 본 발명의 최적 공정유지를 위한 질산성 질소 제어 프로그램 설명도.5 is an explanatory diagram of a nitrate nitrogen control program for maintaining an optimal process of the present invention.

도면 6 은 본 발명의 최적 공정유지를 위한 총인 제어 프로그램 설명도.6 is an explanatory view of a total phosphorus control program for optimal process maintenance of the present invention.

Claims (7)

삭제delete 삭제delete 전처리시설을 가진 하수처리장에 있어서, 유량을 조정하기 위한 유량조정조(2)와; 상기 유량조정조(2)로부터 유입된 하수를 반송 슬러지와 혼합하는 혼합조(5)와; 상기 혼합조(5)로부터의 하수를 혐기상태에서 교반하여 인을 방출하도록 하는 인 방출조(7)와; 상기 인 방출조(7)를 통과한 하수에 산화환원전위를 인가하여 질소를 공기중으로 방출하도록 하여 질소를 제거하는 호기탈질조(9)와; 상기 호기탈질조(9)를 통과한 하수에 대하여 DO농도가 1∼2mg/L이 되도록 포기를 하여 호기탈질조에서 미처리된 미량의 암모니아성 질소를 질산성 질소로 산화하고 호기성미생물의 활성을 높이는 호기조(20)와; 상기 호기조(20)를 통과한 하수에 포함된 미생물를 잉여 슬러지로 제거하는 경사판 침전지(24)와; 상기 경사판 침전지(24)를 통과한 상등수를 응집제와 교반하여 침전성의 인 화합물의 플록이 형성되도록 하는 혼화지(26)와; 상기 형성된 인 화합물의 플록을 응집하여 커다란 플록으로 성장시키는 응집지(27)와; 상기 응집된 플럭을 여과하는 섬유상 여과기(31)와; 상기 섬유상 여과기를 통과하는 상등수에서 세균을 제거하는 소독장치(33)를 순차적으로 설치하고, A sewage treatment plant having a pretreatment facility, comprising: a flow rate adjusting tank (2) for adjusting a flow rate; A mixing tank 5 for mixing the sewage introduced from the flow rate adjusting tank 2 with the conveying sludge; A phosphorus discharge tank 7 for releasing phosphorus by stirring the sewage from the mixing tank 5 in an anaerobic state; An aerobic denitrification tank 9 for removing nitrogen by applying a redox potential to the sewage passing through the phosphorus discharge tank 7 to release nitrogen into the air; Abandoning the DO concentration to 1 to 2mg / L for the sewage passing through the aerobic denitrification tank (9) to oxidize the untreated small amount of ammonia nitrogen with nitrate nitrogen to increase the activity of aerobic microorganisms An aerobic tank 20; An inclined plate settling basin 24 for removing the microorganisms contained in the sewage passing through the exhalation tank 20 with excess sludge; A mixed paper 26 for stirring the supernatant water passing through the inclined plate settling paper 24 with a flocculant to form flocs of precipitated phosphorus compounds; Agglomeration paper 27 for agglomerating the flocs of the formed phosphorus compound and growing them into large flocs; A fibrous filter (31) for filtering the flocculated floc; Sequentially install a disinfection device 33 for removing bacteria from the supernatant passing through the fibrous filter, 상기 유량조정조(2)에는 총질소 농도계(3)를 설치하고, 호기탈질조(9)에는 산화환원전위계(14), 총질소농도계(15), MLSS농도계(16), 암모니아성질소 농도계(17), 질산성질소 농도계(18), DO농도계(19)를 설치하고, 경사판 침전지(24)의 상등수 유출부에 총인 농도계(25)를 설치하며,The flow rate adjusting tank 2 is provided with a total nitrogen concentration meter 3, and the aerobic denitrification tank 9 has a redox potentiometer 14, a total nitrogen concentration meter 15, an MLSS concentration meter 16, and an ammonia nitrogen concentration meter 17. ), A nitrogen nitrate concentration meter (18) and a DO concentration meter (19) are installed, and a total phosphorus concentration meter (25) is installed at the top water outlet of the inclined plate sedimentation basin (24), 제어반(36)에서,In the control panel 36, 유입수와 상기 호기탈질조(9)의 총질소 농도차이가 설정한 값을 초과하는지를 판단하는 제1단계와;A first step of determining whether a difference in total nitrogen concentration between the influent water and the aerobic denitrification tank 9 exceeds a set value; 상기 제1단계에서 초과하지 않는 것으로 판단된 경우, 상기 호기탈질조(9)의 총질소 농도가 기준을 초과하는지를 판단하는 제2단계와;A second step of determining whether the total nitrogen concentration of the aerobic denitrification tank (9) exceeds a reference value when it is determined not to exceed in the first step; 상기 제2단계에서 초과하지 않는 것으로 판단된 경우, 잉여 슬러지펌프의 현재 운전상태를 유지하도록 제어하고 제6단계로 진행하도록 제어하는 제3단계와;A third step of controlling to maintain the current operating state of the excess sludge pump and determining to proceed to the sixth step when it is determined that the second step is not exceeded; 상기 제1단계 및 제2단계에서 초과하는 것으로 판단된 경우, 잉여 슬러지펌프의 운전을 감소시키고, 상기 호기탈질조(9)의 MLSS농도가 증가하는지를 판단하는 제4단계와;A fourth step of reducing the operation of the excess sludge pump and determining whether the MLSS concentration of the aerobic denitrification tank 9 increases when it is determined that the first and second steps are exceeded; 상기 제4단계에서 MLSS농도가 증가하지 않는 것으로 판단되는 경우, 유입수의 급격한 증가여부와, 잉여 슬러지 펌프, 유량계 및 MLSS계를 점검하도록 제어하는 제5단계와;If it is determined that the MLSS concentration does not increase in the fourth step, a fifth step of controlling to check whether the influent is rapidly increased, the excess sludge pump, the flow meter, and the MLSS system; 상기 제4단계에서 MLSS농도가 증가하는 것으로 판단되거나 상기 제3단계를 수행한 후에, 유입수와 상기 호기탈질조(9)의 총질소 농도를 측정하도록 제어하는 제6단계로 이루어진 제어프로그램The control program comprising a sixth step of controlling to measure the influent and the total nitrogen concentration of the aerobic denitrification tank 9 after determining that the MLSS concentration is increased in the fourth step or after performing the third step. 을 수행하여, 총질소농도계(3)과 총질소농도계(15)와의 총질소 농도차를 측정하여, 그 차이가 미리 정한 범위내로 유지되도록 잉여 슬러지 제거량을 자동적으로 조절하여, 탈지에 필요한 MLSS농도를 유지하도록 한 것을 특징으로 하는 하/폐수처리장의 질소 및 인 고율 제거장치.By measuring the total nitrogen concentration difference between the total nitrogen concentration meter (3) and the total nitrogen concentration meter (15), and automatically adjusts the amount of excess sludge removal so that the difference is kept within a predetermined range, the MLSS concentration required for degreasing Nitrogen and phosphorus high removal rate device of the sewage / wastewater treatment plant, characterized in that to maintain. 청구항3에 있어서, 제어반(36)에서,The control panel 36, according to claim 3, 상기 호기탈질조(9)의 암모니아성 질소 농도가 미리 정한 기준을 초과하는지를 판단하는 제7단계와, 상기 제7단계에서 기준을 초과하지 않는 것으로 판단되면 현재 ORP값을 유지하고 제15단계로 진행하도록 제어하는 제8단계와, 상기 제7단계에서 기준을 초과하는 것으로 판단되면 ORP설정값을 비례적으로 증가시키고 상기 호기탈질조의 풍량이 증가하는지를 판단하는 제9단계와, 상기 제9단계에서 증가하지 않는 것으로 판단되면 송풍기와 제어밸브 및 유량계를 점검하도록 제어하는 제10단계와, 상기 제9단계에서 증가하는 것으로 판단되면 상기 호기탈질조의 DO농도가 증가하는지를 판단하는 제11단계와, 상기 제11단계에서 증가하지 않는 것으로 판단되면 산기관과 유량계 및 DO농도계를 점검하도록 제어하는 제12단계와, 상기 제11단계에서 증가하는 것으로 판단되면 ORP값이 증가하는지를 판단하는 제13단계와, 상기 제13단계에서 증가하지 않는 것으로 판단되면 ORP계와 DO농도계를 점검하도록 제어하는 제14단계와, 상기 제13단계에서 증가하는 것으로 판단되거나 상기 제8단계를 수행한 후에 상기 호기탈질조(9)의 암모니아성 질소농도를 측정하도록 제어하는 제15단계로 이루어진 제어 프로그램과;A seventh step of determining whether the ammonia nitrogen concentration of the aerobic denitrification tank exceeds a predetermined criterion; and if it is determined that the criterion does not exceed the criterion in the seventh step, the current ORP value is maintained and the process proceeds to the fifteenth step. An eighth step of controlling the control unit; and a ninth step of determining whether the air volume of the aerobic denitrification tank increases if the ORP set value is increased proportionally if it is determined that the reference is exceeded in the seventh step, and the ninth step is increased. A tenth step of controlling to check the blower, the control valve and the flow meter if it is determined not to be performed; an eleventh step of determining whether the DO concentration of the exhalation denitrification tank is increased if it is determined to increase in the ninth step, and the eleventh step; If it is determined that the increase does not occur in the step 12 and the control step to check the diffuser, the flow meter and the DO concentration meter, and to increase in the eleventh step In step 13, if it is determined that the ORP value is increased, and if it is determined that it is not increased in step 13, step 14 for controlling to check the ORP system and the DO concentration meter, and in step 13, are determined to increase. Or a fifteenth step of controlling to measure the ammonia nitrogen concentration in the aerobic denitrification tank 9 after performing the eighth step; 상기 호기탈질조(9)의 암모니아성 질소 농도가 미리 정한 기준을 초과하는지를 판단하는 제16단계와, 상기 제16단계에서 기준을 초과하지 않는 것으로 판단되면 현재 ORP값을 유지하고 제24단계로 진행하도록 제어하는 제17단계와, 상기 제16단계에서 기준을 초과하는 것으로 판단되면 ORP설정값을 비례적으로 감소시키고 상기 호기탈질조의 풍량이 감소하는지를 판단하는 제18단계와, 상기 제18단계에서 감소하지 않는 것으로 판단되면 송풍기와 제어밸브 및 유량계를 점검하도록 제어하는 제19단계와, 상기 제18단계에서 감소하는 것으로 판단되면 상기 호기탈질조의 DO농도가 감소하는지를 판단하는 제20단계와, 상기 제20단계에서 감소하지 않는 것으로 판단되면 DO농도계와 유량계를 점검하도록 제어하는 제21단계와, 상기 제20단계에서 감소하는 것으로 판단되면 ORP값이 감소하는지를 판단하는 제22단계와, 상기 제22단계에서 감소하지 않는 것으로 판단되면 ORP계와 DO농도계를 점검하도록 제어하는 제23단계와, 상기 제22단계에서 감소하는 것으로 판단되거나 상기 제17단계를 수행한 후에 상기 호기탈질조(9)의 암모니아성 질소농도를 측정하도록 제어하는 제24단계로 이루어진 제어 프로그램A sixteenth step of determining whether the ammonia nitrogen concentration of the aerobic denitrification tank exceeds a predetermined criterion; and if it is determined not to exceed the criterion in the sixteenth step, the current ORP value is maintained and the procedure proceeds to the twenty-fourth step A seventeenth step of controlling the control unit; and if it is determined that the reference is exceeded in the sixteenth step, an eighteenth step of proportionally decreasing the ORP set value and determining whether the air volume of the aerobic denitrification tank is reduced; A nineteenth step of controlling to check the blower, the control valve and the flowmeter if it is determined not to be performed; and a twentyth step of determining whether the DO concentration of the aerobic denitrification tank is reduced if it is determined to decrease in the eighteenth step; If it is determined that the reduction does not occur in the step 21, the control is performed to check the DO densitometer and the flow meter, and in step 20, If it is determined that the ORP value is reduced in step 22, and if it is determined that the step is not decreased in step 22, the step 23 of controlling to check the ORP system and the DO concentration meter is determined to decrease in the step 22 or Control program comprising a twenty-fourth step of controlling to measure the ammonia nitrogen concentration of the aerobic denitrification tank (9) after performing the seventeenth step 을 수행하여 호기탈질조내의 질산성질소 농도와 암모니아성 질소 농도가 미리 정한 기준 이내로 유지되도록 호기탈질조에 공급하는 공기량을 자동적으로 조절하게 한 것을 특징으로 하는 하/폐수처리장의 질소 및 인 고율 제거장치.A device for removing nitrogen and phosphorus in the wastewater / wastewater treatment plant, characterized in that it automatically adjusts the amount of air supplied to the aerobic denitrification tank so that the nitrate nitrogen concentration and the ammonia nitrogen concentration in the aerobic denitrification tank are kept within a predetermined standard. . 청구항3에 있어서, 제어반(36)과 응집제주입조절기(30)에서,The method according to claim 3, in the control panel 36 and the coagulant injection regulator 30, 상등수 중의 총인농도를 측정하도록 제어하는 제25단계와;A twenty-fifth step of controlling to measure the total phosphorus concentration in the supernatant; 총인 제거량을 [총인 제거랑 = 유량×(총인 농도 - 방류수 기준 총인 농도)]에 의하여 산출하는 제26단계와;A twenty-sixth step of calculating the total phosphorus removal amount by [total phosphorus removal = flow rate x (total phosphorus concentration-total phosphorus concentration based on discharged water)]; 응집제 주입량을 [응집제 주입량 = 총인 제거량 × 응집제 몰(mole)비]에 의하여 산출하는 제27단계와;A twenty-seventh step of calculating the coagulant injection amount by [coagulant injection amount = total phosphorus removal amount × coagulant mole ratio]; 상기 제27단계에 의하여 산출된 응집제 주입량에 대응하는 응집제 주입기 운전속도 제어신호를 발생시켜 응집제 주입기에 인가하는 제28단계와;A twenty-eighth step of generating a coagulant injector operation speed control signal corresponding to the coagulant infusion amount calculated by the twenty-seventh step and applying it to the coagulant injector; 상기 제28단계 후에 TMS의 총인 농도가 방류수질 기준치 이내인지를 확인하고, 기준치 이내이면 상기한 제25단계로 진행하는 한편, 기준치 이내가 아니면 응집제 몰(mole)비를 증가시킨 후에 상기한 단계 S27로 진행하도록 제어하는 제29단계로 이루어진 제어프로그램After the 28th step, check whether the total phosphorus concentration of TMS is within the discharge water quality standard value, and if it is within the standard value, proceed to the above 25th step, and if not within the standard value, increase the molar ratio of the coagulant after the above step S27. Control program consisting of the 29th step of controlling to proceed to 을 수행하여, 총인 농도에 따라 응집제 주입량을 자동 조절하여 방류수중의 총인 농도가 기준치 이내로 유지되도록 한 것을 특징으로 하는 하/폐수처리장의 질소 및 인 고율 제거장치.By performing the adjustment, the coagulant injection amount is automatically adjusted according to the total phosphorus concentration so that the total phosphorus concentration in the effluent is maintained within the standard value, nitrogen and phosphorus removal rate of the wastewater treatment plant. 청구항3에 있어서, 산기관1(10)과 공기량 제어밸브1(11) 및 풍량가변송풍기(13)으로 공기량 공급장치를 구성한 것을 특징으로 하는 하/폐수처리장의 질소 및 인 고율 제거장치.The apparatus for removing nitrogen and phosphorus in the sewage / wastewater treatment plant according to claim 3, wherein the air quantity supply device is constituted by the diffuser 1 (10), the air volume control valve 1 (11), and the air volume variable blower (13). 청구항3에 있어서, 호기탈질조에 반송슬러지량을 추가적으로 공급할 수 있도록 슬러지 슬러지보충 조(41)과 슬러지 보충펌프(34-1)을 설치한 것을 특징으로 하는 하/폐수처리장의 질소 및 인 고율 제거장치.The apparatus for removing nitrogen and phosphorus in the sewage / wastewater treatment plant according to claim 3, wherein a sludge sludge supplementary tank 41 and a sludge supplementary pump 34-1 are installed to additionally supply the return sludge to the aerobic denitrification tank. .
KR1020070095670A 2007-09-20 2007-09-20 Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP. KR100945458B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070095670A KR100945458B1 (en) 2007-09-20 2007-09-20 Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070095670A KR100945458B1 (en) 2007-09-20 2007-09-20 Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP.

Publications (2)

Publication Number Publication Date
KR20090030397A KR20090030397A (en) 2009-03-25
KR100945458B1 true KR100945458B1 (en) 2010-03-05

Family

ID=40696697

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070095670A KR100945458B1 (en) 2007-09-20 2007-09-20 Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP.

Country Status (1)

Country Link
KR (1) KR100945458B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101272273B1 (en) * 2012-10-30 2013-06-13 황상철 Water purifing system for management of sludge blanket level
KR101817471B1 (en) * 2016-06-20 2018-02-21 김승제 Wastewater Treatment System

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101106471B1 (en) * 2011-03-31 2012-01-25 이경섭 A biochemical waste water disposal plant
KR101312584B1 (en) * 2011-07-27 2013-10-07 (주) 상원이엔씨 total phosphorous removal system and the total phosphorous removal mehtod using both coagulating sedimentation device and filtering device
KR20150000481A (en) 2012-03-09 2015-01-02 메타워터 가부시키가이샤 Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program
CN106115916A (en) * 2016-08-04 2016-11-16 安徽华骐环保科技股份有限公司 One is put aerobic nitrification, two ends anoxic denitrification filter tank technique and device thereof
KR102052163B1 (en) * 2017-02-13 2020-01-09 바이오메카 주식회사 Wastewater treatment apparatus and method
KR101880619B1 (en) * 2017-07-31 2018-08-16 (주)티에스케이워터 Method for treating wastewater from biogas plant using food waste

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040031359A (en) * 2002-10-04 2004-04-13 엄태경 Advanced treatment apparaters and method for removal of nitrogen and phosphorus inf sewage water
KR100759847B1 (en) * 2006-10-17 2007-09-18 (주)범한엔지니어링 종합건축사 사무소 Advanced swage and waste water treatment method and apparatus with improved anaerobic basin and recirculation part.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040031359A (en) * 2002-10-04 2004-04-13 엄태경 Advanced treatment apparaters and method for removal of nitrogen and phosphorus inf sewage water
KR100759847B1 (en) * 2006-10-17 2007-09-18 (주)범한엔지니어링 종합건축사 사무소 Advanced swage and waste water treatment method and apparatus with improved anaerobic basin and recirculation part.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101272273B1 (en) * 2012-10-30 2013-06-13 황상철 Water purifing system for management of sludge blanket level
KR101817471B1 (en) * 2016-06-20 2018-02-21 김승제 Wastewater Treatment System

Also Published As

Publication number Publication date
KR20090030397A (en) 2009-03-25

Similar Documents

Publication Publication Date Title
KR100945458B1 (en) Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP.
JP4931495B2 (en) Method and apparatus for removing phosphorus and nitrogen from sewage
JP3434438B2 (en) Wastewater treatment method and wastewater treatment device
CN103402926A (en) Methods and systems for treating wastewater
KR100873416B1 (en) Sewage processing apparatus and method using activated sludge of a sequencing batch reactor
CA2199517C (en) Installation for biological water treatment for the production of drinkable water
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
KR20130118682A (en) Optimized coagulant feeding devices based on the prediction of phosphorus concentrations
JP4409415B2 (en) Method for removing phosphorus and / or nitrogen from sewage
JP2001054792A (en) Method and apparatus for treating wastewater
KR20090055160A (en) Wastewater treatment system and method using an equalization tank as a biological reactor
KR100870964B1 (en) Sewage and wastewater treating system
KR101044826B1 (en) An operation method to increase advanced treatment efficiency in membrane bio reacter and an advanced treatment appartus there of
KR20070018192A (en) Processing method of high thickness organic sewage by sequencing and Batch type AB SAcksang-Busick-System
KR100769997B1 (en) Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System)
KR101489134B1 (en) Advanced treatment method for purifying wastewater
JP3456022B2 (en) Sewage treatment equipment
KR100702194B1 (en) Advanced wasterwater treatment system by a combination of membrane bio-reactor and sulfur denitrification and method thereof
KR100327545B1 (en) Municipal wastewater treatment system
JP5612005B2 (en) Water treatment system and water treatment method
JPH08281284A (en) Combined septic tank
JP3588047B2 (en) Biological phosphorus removal method in oxidation ditch
CN113415955A (en) Method for treating sulfur-containing hot spring bath sewage
KR100882228B1 (en) Waste-water treatment apparatus comprising perchlorate, and treatment method thereof
KR100397168B1 (en) Apparatus and Method For Animal Waste water Treatment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130108

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140109

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150109

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160107

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170109

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180110

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190108

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 11