JP2000051892A - Method and apparatus for nitrating waste water and activity detector - Google Patents

Method and apparatus for nitrating waste water and activity detector

Info

Publication number
JP2000051892A
JP2000051892A JP10226219A JP22621998A JP2000051892A JP 2000051892 A JP2000051892 A JP 2000051892A JP 10226219 A JP10226219 A JP 10226219A JP 22621998 A JP22621998 A JP 22621998A JP 2000051892 A JP2000051892 A JP 2000051892A
Authority
JP
Japan
Prior art keywords
nitrification
tank
concentration
carrier
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10226219A
Other languages
Japanese (ja)
Other versions
JP3704697B2 (en
Inventor
Takako Ogasawara
多佳子 小笠原
Hironori Nakamura
裕紀 中村
Hitoshi Yoshikawa
均 吉川
Keisuke Nakamura
啓介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP22621998A priority Critical patent/JP3704697B2/en
Publication of JP2000051892A publication Critical patent/JP2000051892A/en
Application granted granted Critical
Publication of JP3704697B2 publication Critical patent/JP3704697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide the subject method and apparatus capable of obtaining proper nitration capacity in nitration treatment in a nitration tank and capable of ensuring proper aeration quantity and achieving the conservation of energy and an activity detector capable of reducing the damage of a carrier to the most. SOLUTION: The NH4-N concn. in a nitration tank 16 and the nitration speed of a carrier 11 are measured and, when the measured NH4-N concn. is 0.3 mg/l or more, the aeration quantity from a blower 18 is increased to adjust the concn. of dissolved oxygen in the nitration tank 16 to maximize a nitration speed. When the NH4-N concn. is less than 0.3 mg/l, the aeration quantity is reduced so as to return the NH4-N concn. in the nitration tank to 0.3 mg/l and the nitration speed is again controlled based on DO concn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃水の硝化方法及
び装置並びに活性検出装置に係り、特に、下水等の廃水
中のアンモニア性窒素を除去する際の硝化処理の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for nitrifying wastewater and an activity detector, and more particularly to an improvement in nitrification treatment for removing ammonia nitrogen in wastewater such as sewage.

【0002】[0002]

【従来の技術】脱窒槽と硝化槽とを備えた廃水の窒素除
去装置では、硝化槽において硝化細菌の働きにより、ア
ンモニア性窒素(NH4-N)を亜硝酸性窒素や硝酸性窒
素に酸化する硝化処理を行う。そして、下水等の実際の
廃水処理において、廃水原水のアンモニア性窒素負荷の
変動や水温の年間変動或いは日間変動に対して、安定し
て高い窒素除去率を維持するためには、硝化槽での硝化
処理を略完全に終了させることが必要である。
2. Description of the Related Art In a nitrogen removal apparatus for wastewater provided with a denitrification tank and a nitrification tank, nitrifying bacteria oxidize ammonia nitrogen (NH 4 -N) to nitrite nitrogen or nitrate nitrogen in the nitrification tank. Is performed. Then, in actual wastewater treatment such as sewage, in order to maintain a stable high nitrogen removal rate against fluctuations in the ammonia nitrogen load of the wastewater raw water and annual fluctuations or daily fluctuations in the water temperature, it is necessary to use a nitrification tank. It is necessary to complete the nitrification treatment almost completely.

【0003】しかし、硝化細菌は独立栄養細菌であり、
脱窒細菌等の一般の従属栄養細菌に比べると増殖反応が
極めて遅い。従って、浮遊汚泥による硝化反応では、浮
遊汚泥中に硝化細菌を保持して高い硝化性能を得るため
には、浮遊汚泥の滞留時間(以下「SRT」という)を
厳密に管理することが重要になる。また、硝化性能は、
硝化槽内の廃水に溶存する溶存酸素濃度(以下「DO濃
度」という)の影響を比較的受けやすく、DO濃度の適
切な管理も必要である。
[0003] However, nitrifying bacteria are autotrophic bacteria,
The growth reaction is extremely slow compared to general heterotrophic bacteria such as denitrifying bacteria. Therefore, in the nitrification reaction using suspended sludge, it is important to strictly control the residence time (hereinafter referred to as “SRT”) of the suspended sludge in order to retain nitrifying bacteria in the suspended sludge and obtain high nitrification performance. . The nitrification performance is
It is relatively susceptible to the concentration of dissolved oxygen (hereinafter referred to as "DO concentration") dissolved in the wastewater in the nitrification tank, and appropriate management of the DO concentration is required.

【0004】このことから、活性汚泥循環変法などのよ
うに浮遊汚泥のみを硝化槽に浮遊させて硝化処理を行う
廃水の窒素除去装置の場合、廃水原水の硝化槽における
滞留時間を7〜9時間程度と長くし、冬期でも浮遊汚泥
中に硝化細菌を保持するための長いSRTを確保する条
件を整えた上で、SRTとDO濃度の2つの因子を対象
とした制御が必要である。また、廃水原水量や汚泥濃度
(MLSS)などの多くの項目を測定し、これら測定し
たデータに動力学式等を駆使して、SRTのDO濃度を
管理する上での直接の因子である汚泥引抜量や硝化槽の
曝気装置の曝気量の目標値を演算する必要があった。こ
のように、浮遊汚泥型の窒素除去装置の場合、SRTと
DO濃度の2つの因子を同時に制御対象とするため、制
御システムが複雑になると共に高精度の制御を行うこと
が困難であった。
For this reason, in the case of a wastewater nitrogen removal apparatus in which only suspended sludge is floated in a nitrification tank for nitrification treatment as in the activated sludge circulation modified method, the residence time of wastewater raw water in the nitrification tank is 7 to 9 times. It is necessary to control the two factors of SRT and DO concentration after preparing conditions for ensuring a long SRT for keeping nitrifying bacteria in suspended sludge even in the winter period. In addition, many items such as the amount of raw wastewater and the sludge concentration (MLSS) are measured, and the sludge which is a direct factor in controlling the DO concentration of the SRT by making full use of the kinetic equation and the like on the measured data. It was necessary to calculate the target values of the amount of extraction and the amount of aeration of the aerator of the nitrification tank. As described above, in the case of the suspended sludge type nitrogen removing apparatus, since the two factors of SRT and DO concentration are simultaneously controlled, the control system becomes complicated and it is difficult to perform high-precision control.

【0005】このような背景から、浮遊汚泥型の窒素除
去装置の最大の課題であった、装置の系内に高い濃度の
硝化細菌を安定して保持することのできる窒素除去装置
として、硝化細菌を固定した微生物固定化担体(以下、
「担体」という)を硝化槽内に添加した硝化促進型の窒
素除去装置(通称、硝化促進型循環変法という)が開発
された。この硝化促進型の窒素除去装置は、冬期の低水
温時でも硝化反応が促進されるため、硝化槽の廃水原水
の滞留時間を3時間程度まで短縮できる。更に、硝化槽
に共存する担体と浮遊汚泥のうち、硝化反応の多くを担
体で負担し、且つ担体の硝化槽からの流出がないため
に、担体等の固形物のSRTである固形物滞留時間を厳
密に管理する必要がない。これにより、SRTとDO濃
度のうちのDO濃度のみを管理すればよいという大きな
メリットがある。このことから、硝化促進型の廃水の窒
素除去装置では、従来、硝化槽内への曝気量を一定に維
持して硝化を行う硝化方法が行われていた。
[0005] From such a background, a nitrifying bacterium which can stably retain a high concentration of nitrifying bacteria in the system of the apparatus, which is the biggest problem of the suspended sludge type nitrogen removing apparatus, has been proposed. A microorganism-immobilized carrier having immobilized
A nitrification-promoting type nitrogen removal device (commonly referred to as a nitrification-promoting modified circulation method) in which a "carrier" is added into a nitrification tank has been developed. In this nitrification-promoting type nitrogen removal device, the nitrification reaction is promoted even at a low water temperature in winter, so that the residence time of the raw wastewater in the nitrification tank can be reduced to about 3 hours. In addition, among the carrier and suspended sludge coexisting in the nitrification tank, most of the nitrification reaction is borne by the carrier, and there is no outflow of the carrier from the nitrification tank. Need not be strictly managed. Thus, there is a great merit that only the DO concentration of the SRT and the DO concentration needs to be managed. For this reason, in the nitrification-promoting type wastewater nitrogen removing apparatus, a nitrification method of performing nitrification while maintaining a constant amount of aeration in the nitrification tank has been performed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
曝気量を一定にして硝化を行う硝化方法は、日間変動す
るアンモニア性窒素濃度に対して適切な曝気量で制御す
ることが難しく、曝気量の過不足が生じやすい。これに
より、曝気が不足すると処理水の水質が悪化し、曝気が
過剰になると曝気のためのブロア動力費の無駄になると
いう欠点がある。
However, according to the conventional nitrification method for performing nitrification with a constant aeration amount, it is difficult to control the ammonia nitrogen concentration which fluctuates daily with an appropriate aeration amount. It is easy for excess or deficiency to occur. As a result, if the aeration is insufficient, the quality of the treated water is deteriorated, and if the aeration is excessive, there is a disadvantage that the blower power cost for the aeration is wasted.

【0007】ちなみに、図10は、硝化槽の曝気量を年
間を通して一定として実際に下水を処理した場合の例で
ある。この結果から分かるように、高水温時に廃水原水
のアンモニア性窒素濃度が低くなると、硝化槽のアンモ
ニア性窒素濃度は、例えば0.1mg/L程度まで下が
るが、この時の硝化槽のDO濃度が6mg/Lは上回っ
た。このことは、明らかに曝気量が過剰傾向にあること
を示している。
FIG. 10 shows an example in which sewage is actually treated while the aeration amount of the nitrification tank is kept constant throughout the year. As can be seen from this result, when the ammonia nitrogen concentration in the wastewater raw water decreases at a high water temperature, the ammonia nitrogen concentration in the nitrification tank falls to, for example, about 0.1 mg / L, but the DO concentration in the nitrification tank at this time becomes lower. 6 mg / L was exceeded. This clearly indicates that the aeration amount tends to be excessive.

【0008】この対策として、硝化槽内のDO濃度を一
定に維持して硝化する硝化方法が試みられている。しか
し、この硝化方法は、アンモニア性窒素濃度が極端に上
昇したり、廃水の水温が低下した場合には硝化速度を大
きくすることが必要であるが、DO濃度を一定にすると
十分な硝化速度を得ることが困難になる。この結果、処
理水のアンモニア性窒素濃度が高くなってしまう。逆
に、アンモニア性窒素濃度が極端に低下したり、廃水の
水温が高くなった場合には、硝化性能に余裕ができるの
で、アンモニア性窒素濃度の対してDO濃度が高くなり
過ぎ、過剰に曝気していることになる。この結果、ブロ
ア動力費の無駄になるだけでなく、浮遊汚泥のフロック
解体による最終沈殿槽での汚泥の沈降性の悪化による処
理水水質の低下や、硝化液の循環により脱窒槽に持ち込
まれる溶存酸素量の増加により嫌気性条件を必要とする
脱窒反応を阻害する。特に、ブロア動力費は、窒素除去
装置の動力費全体のかなりの比率を占めるものであり、
省エネの観点からも好ましくない。
As a countermeasure, a nitrification method for nitrifying while maintaining a constant DO concentration in a nitrification tank has been attempted. However, in this nitrification method, it is necessary to increase the nitrification rate when the ammonia nitrogen concentration rises extremely or when the temperature of the wastewater decreases, but when the DO concentration is kept constant, a sufficient nitrification rate is obtained. It becomes difficult to obtain. As a result, the ammonia nitrogen concentration of the treated water increases. Conversely, if the ammonia nitrogen concentration is extremely low or the temperature of the wastewater is high, the nitrification performance can have a margin, so that the DO concentration becomes too high with respect to the ammonia nitrogen concentration, resulting in excessive aeration. You are doing. As a result, not only will the blower power cost be wasted, but also the sludge sedimentation in the final sedimentation tank due to the disintegration of the floc from the suspended sludge will lower the quality of the treated water, and the dissolved water will be introduced into the denitrification tank due to the circulation of nitrification liquid. Increased oxygen content inhibits denitrification reactions that require anaerobic conditions. In particular, blower power costs account for a significant proportion of the total power cost of nitrogen removal equipment,
It is not preferable from the viewpoint of energy saving.

【0009】ところで、担体を硝化槽に添加した硝化促
進型の窒素除去装置の場合、担体の硝化速度を活性検出
装置で測定して的確に把握し、最大の硝化速度を発揮す
るように運転することが必要である。しかし、従来の活
性検出装置は、硝化槽内の硝化液の一部(被測定液)と
担体の一部を活性検出装置に供給する際に、担体が摩耗
等の損傷をしてしまう欠点がある。担体が摩耗する理由
は、担体を硝化槽から活性検出装置の測定槽に送るため
のポンプを担体が通過するときに担体に損傷を与えるた
めである。また、この損傷を生じる担体の損傷率は、測
定槽に担体を含む被測定液を入れ換える時間が長いほど
大きくなる。担体が損傷されると、測定のたびに硝化槽
に担体を補充しなくてはならず経済的でないと共に、損
傷の大きな担体を硝化槽に戻すと硝化性能を低下させる
要因になる。
Incidentally, in the case of a nitrification-promoting type nitrogen removing apparatus in which a carrier is added to a nitrification tank, the nitrification rate of the carrier is measured by an activity detector to accurately grasp the operation, and operation is performed so as to exhibit the maximum nitrification rate. It is necessary. However, the conventional activity detection device has a drawback that the carrier is damaged by abrasion or the like when a part of the nitrification solution (measurement liquid) in the nitrification tank and a part of the carrier are supplied to the activity detection device. is there. The reason why the carrier is worn is that the carrier is damaged when the carrier passes through a pump for sending the carrier from the nitrification tank to the measurement tank of the activity detecting device. In addition, the damage rate of the carrier that causes this damage increases as the time for replacing the liquid to be measured containing the carrier in the measurement tank increases. If the carrier is damaged, the nitrification tank must be replenished with the carrier every time measurement is performed, which is not economical, and returning a damaged carrier to the nitrification tank is a factor that deteriorates the nitrification performance.

【0010】そして、従来は、アンモニア性窒素濃度の
対する的確な硝化速度を検出する活性検出がなかったこ
とも、曝気量の過不足を生じる原因の一因であった。こ
のことから、担体を損傷することなく、硝化速度を精度
良く検出することのできる活性検出装置が要望されてい
た。本発明は、このような事情に鑑みて成されたもの
で、硝化槽での硝化処理において適切な硝化性能を得る
ことができると共に、曝気量の過不足をなくし省エネを
図ることができる廃水の硝化方法及び装置を提供するこ
とを目的とする。
[0010] Conventionally, there has been no activity detection for detecting an accurate nitrification rate with respect to the ammonia nitrogen concentration, which is one of the causes of the excess or deficiency of the aeration amount. For this reason, there has been a demand for an activity detection device capable of accurately detecting the nitrification rate without damaging the carrier. The present invention has been made in view of such circumstances, and it is possible to obtain appropriate nitrification performance in nitrification treatment in a nitrification tank, and to eliminate waste of excess or insufficient aeration and save energy. It is an object to provide a nitrification method and apparatus.

【0011】また、担体の損傷を極力少なくすることが
できる活性検出装置を提供することを目的とする。
It is another object of the present invention to provide an activity detecting device capable of minimizing damage to a carrier.

【0012】[0012]

【発明を解決するための手段】本発明は、前記目的を達
成するために、硝化槽内の廃水に曝気手段からエアを曝
気して前記硝化槽内に添加された微生物固定化担体と廃
水とを好気性条件下で接触させることにより前記廃水中
のアンモニア性窒素を硝化処理する廃水の硝化方法にお
いて、前記硝化槽内のアンモニア性窒素濃度及び前記微
生物固定化担体の硝化速度を測定し、前記測定したアン
モニア性窒素濃度が所定値以上の場合には、前記曝気手
段からの曝気量を制御して前記硝化速度が最大硝化速度
になるように前記硝化槽内の溶存酸素濃度を調整し、前
記アンモニア性窒素濃度が前記所定値を下回った場合に
は、前記曝気手段からの曝気量を制御して前記硝化槽内
の溶存酸素濃度を調整することにより前記アンモニア性
窒素濃度を前記所定値以上に戻すことを特徴とする。
According to the present invention, in order to achieve the above object, the microorganism immobilizing carrier and waste water added to the nitrification tank by aerating air from aeration means to the waste water in the nitrification tank. In the wastewater nitrification method of nitrifying ammonia nitrogen in the wastewater by contacting under aerobic conditions, the nitrification rate of the ammonia nitrogen concentration in the nitrification tank and the microorganism immobilization carrier was measured, If the measured ammonia nitrogen concentration is equal to or higher than a predetermined value, the dissolved oxygen concentration in the nitrification tank is adjusted so that the nitrification rate becomes the maximum nitrification rate by controlling the amount of aeration from the aeration means, When the ammonia nitrogen concentration falls below the predetermined value, the ammonia nitrogen concentration is adjusted to the predetermined value by controlling the amount of aeration from the aeration means and adjusting the dissolved oxygen concentration in the nitrification tank. And returning at least the value.

【0013】また、本発明は、前記目的を達成するため
に、硝化槽内の廃水に曝気手段からエアを曝気して前記
硝化槽内に添加された微生物固定化担体と廃水とを好気
性条件下で接触させることにより前記廃水中のアンモニ
ア性窒素を硝化処理する廃水の硝化装置において、前記
硝化槽内のアンモニア性窒素濃度と前記微生物固定化担
体の硝化速度を測定する活性検出装置と、前記活性検出
装置で測定したアンモニア性窒素濃度と前記微生物固定
化担体の硝化速度に基づいて前記曝気手段の曝気量を、
アンモニア性窒素濃度が所定値以上の場合には増加して
前記硝化槽内の溶存酸素濃度を調整することにより前記
硝化速度が最大になるようにし、アンモニア性窒素濃度
が前記所定値を下回った場合には減少して前記硝化槽内
の溶存酸素濃度を調整することによりアンモニア性窒素
濃度を前記所定値以上に戻すように制御する制御手段
と、を備えていることを特徴とする。
[0013] Further, in order to achieve the above object, the present invention provides a method for aerating a wastewater in a nitrification tank by aerating air from an aeration means to form the microorganism-immobilized carrier and the wastewater added in the nitrification tank under aerobic conditions. In a waste water nitrification device for nitrifying ammonia nitrogen in the waste water by contacting under, an activity detection device for measuring the nitrification rate of the ammonia nitrogen concentration in the nitrification tank and the microorganism immobilizing carrier, The amount of aeration of the aeration means based on the ammonia nitrogen concentration measured by an activity detector and the nitrification rate of the microorganism-immobilized carrier,
When the ammonia nitrogen concentration is equal to or higher than a predetermined value, the nitrification rate is increased by increasing and adjusting the dissolved oxygen concentration in the nitrification tank, and when the ammonia nitrogen concentration falls below the predetermined value. And control means for controlling the concentration of dissolved oxygen in the nitrification tank so as to reduce the concentration of ammonia nitrogen to a value equal to or higher than the predetermined value.

【0014】本発明によれば、硝化槽内のアンモニア性
窒素濃度と微生物固定化担体の硝化速度を測定し、測定
したアンモニア性窒素濃度が所定値以上の場合には、曝
気手段からの曝気量を制御して硝化槽内の溶存酸素濃度
を調整することにより硝化速度が最大になるようにす
る。即ち、硝化槽内のアンモニア性窒素濃度が所定値以
上であれば、硝化速度はアンモニア性窒素濃度の影響を
受けずにDO濃度に支配されるので、硝化速度をDO濃
度で正確に制御することができる。従って、最大の硝化
速度を得るDO濃度になるように曝気量を制御してやれ
ば、硝化処理における適切な硝化性能を得ることがで
き、しかも曝気量が過不足になることもない。また、ア
ンモニア性窒素濃度が所定値を下回った場合には、硝化
速度はDO濃度の他にアンモニア性窒素濃度の影響を受
けるので、硝化速度をDO濃度で正確に制御することが
できない。この為、最大の硝化速度を得るDO濃度にな
るように曝気量を制御しても、曝気量が多過ぎて脱窒槽
に悪影響を与えたりする。従って、この場合には、硝化
槽のアンモニア性窒素濃度が所定値に戻るように曝気量
を減少させた後、再び硝化速度をDO濃度で制御する。
According to the present invention, the ammonia nitrogen concentration in the nitrification tank and the nitrification rate of the microorganism-immobilized carrier are measured, and when the measured ammonia nitrogen concentration is a predetermined value or more, the amount of aeration from the aeration means is measured. Is controlled to adjust the dissolved oxygen concentration in the nitrification tank so that the nitrification rate is maximized. That is, if the ammonia nitrogen concentration in the nitrification tank is equal to or higher than a predetermined value, the nitrification speed is controlled by the DO concentration without being affected by the ammonia nitrogen concentration. Can be. Therefore, by controlling the amount of aeration so that the DO concentration attains the maximum nitrification rate, appropriate nitrification performance in the nitrification treatment can be obtained, and the amount of aeration does not become excessive or insufficient. Further, when the ammonia nitrogen concentration falls below a predetermined value, the nitrification speed is affected by the ammonia nitrogen concentration in addition to the DO concentration, so that the nitrification speed cannot be accurately controlled by the DO concentration. For this reason, even if the amount of aeration is controlled so that the DO concentration attains the maximum nitrification rate, the amount of aeration is too large and adversely affects the denitrification tank. Therefore, in this case, after reducing the amount of aeration so that the ammonia nitrogen concentration in the nitrification tank returns to the predetermined value, the nitrification rate is controlled again with the DO concentration.

【0015】また、前記目的を達成するために、硝化槽
内の被測定液と微生物固定化担体とが供給される測定槽
と、該測定槽内にエアを曝気する測定用曝気手段と、前
記測定槽内の溶存酸素濃度を測定するDO測定手段とを
備え、前記硝化槽内のアンモニア性窒素濃度と前記硝化
槽内に添加された微生物固定化担体の硝化速度を測定す
る活性検出装置であって、前記硝化槽内を、前記微生物
固定化担体を含む反応部と、前記微生物固定化担体を含
まない分離部とに前記被測定液が往来可能に区画する区
画手段と、前記反応部から前記測定槽に前記微生物固定
化担体を含む被測定液を送給する第1の送給手段と、前
記分離部から前記測定槽に前記被測定液のみを送給する
第2の送給手段と、前記第1の送給手段と前記第2の送
給手段とを切り換える切換手段と、を備えたことを特徴
とする。
In order to achieve the above object, a measuring tank to which a liquid to be measured and a microorganism-immobilized carrier in a nitrification tank are supplied, an aeration means for measurement for aerating air into the measuring tank, A DO measuring means for measuring the concentration of dissolved oxygen in the measuring tank; and an activity detecting device for measuring the concentration of ammoniacal nitrogen in the nitrifying tank and the nitrification rate of the microorganism-immobilized carrier added to the nitrifying tank. The inside of the nitrification tank, a reaction unit containing the microorganism-immobilized carrier, a separation unit that divides the liquid to be measured into and out of a separation unit that does not contain the microorganism-immobilized carrier, A first feeding means for feeding the liquid to be measured containing the microorganism-immobilized carrier to the measuring tank, and a second feeding means for feeding only the liquid to be measured from the separating section to the measuring tank, Switching between the first feeding means and the second feeding means And switching means that, characterized by comprising a.

【0016】[0016]

【発明の実施の形態】以下、添付図面により本発明の廃
水の硝化方法及び装置並びに活性検出装置の好ましい実
施の形態について詳説する。先ず、本発明の硝化方法に
おける理論的根拠を説明する。発明者等は、硝化槽に微
生物を固定化した担体を添加した場合の管理指標を見い
出すために硝化速度に影響を及ぼす諸因子の影響を調べ
た。 先ず、アンモニア性窒素濃度(以下「NH4-N濃度」
という)が硝化速度に及ぼす影響について検討した結果
を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method and apparatus for nitrifying waste water and the activity detecting apparatus according to the present invention will be described below in detail with reference to the accompanying drawings. First, the theoretical basis in the nitrification method of the present invention will be described. The inventors investigated the influence of various factors affecting the nitrification rate in order to find a control index when a carrier having microorganisms immobilized thereon was added to a nitrification tank. First, the ammonia nitrogen concentration (hereinafter referred to as “NH 4 -N concentration”)
) Will be described.

【0017】硝化槽内に担体を添加して、廃水として実
際の下水を連続処理した場合において、硝化速度に及ぼ
すNH4-N濃度の影響について調べた。試験を行った窒
素除去装置としては、反応槽を脱窒槽と硝化槽の各1槽
で構成し、硝化槽比率(反応槽全体に対する硝化槽容積
の比率)を0.4とした。また、担体添加量(硝化槽容
積当たりの担体の容積比)は7.5体積%とした。廃水
原水の反応槽内の滞留時間は、約6〜8時間になるよう
に設定した。硝化槽から担体と浮遊汚泥を採取して、各
々の硝化速度を測定した。
The effect of NH 4 —N concentration on the nitrification rate was investigated when a carrier was added to the nitrification tank and the actual sewage was continuously treated as wastewater. As a nitrogen removing apparatus for the test, the reaction tank was composed of a denitrification tank and a nitrification tank, and the nitrification tank ratio (the ratio of the nitrification tank volume to the entire reaction tank) was 0.4. The carrier addition amount (volume ratio of carrier per nitrification tank volume) was 7.5% by volume. The residence time of the raw wastewater in the reaction tank was set to be about 6 to 8 hours. The carrier and suspended sludge were collected from the nitrification tank, and the respective nitrification rates were measured.

【0018】連続処理における硝化槽内のNH4-N濃度
と担体の硝化速度との関係を図1に、NH4-N濃度と浮
遊汚泥の硝化速度との関係を図2に示した。尚、いずれ
の場合も硝化速度は、経験的に得られる温度係数を用い
て水温が20°Cでの値に換算したものである。図1及
び図2から明らかなように、担体と浮遊汚泥の何れの場
合にも、硝化速度はNH4-N濃度の大きく影響を受け
た。即ち、担体の場合は、NH4-N濃度が0.3mg/
L以上であれば、硝化速度が最大値で一定になる。ま
た、NH4-N濃度が0.3mg/Lを下回ると、硝化速
度が急激に低下し、硝化槽の総窒素(T−N)負荷量に
よって、硝化速度は概ね100〜550mg−O2 /L
−担体・hの範囲で大きく変化した。
FIG. 1 shows the relationship between the NH 4 —N concentration in the nitrification tank and the nitrification rate of the carrier in the continuous treatment, and FIG. 2 shows the relationship between the NH 4 —N concentration and the nitrification rate of the suspended sludge. In each case, the nitrification rate was converted into a value at a water temperature of 20 ° C. using a temperature coefficient obtained empirically. As is clear from FIGS. 1 and 2, the nitrification rate was greatly affected by the NH 4 —N concentration in both the carrier and the suspended sludge. That is, in the case of a carrier, the NH 4 —N concentration is 0.3 mg /
If L or more, the nitrification rate becomes constant at the maximum value. When the NH 4 —N concentration falls below 0.3 mg / L, the nitrification rate sharply decreases. Depending on the total nitrogen (TN) load of the nitrification tank, the nitrification rate is approximately 100 to 550 mg-O 2 / L. L
-It changed greatly in the range of the carrier.h.

【0019】一方、浮遊汚泥の場合は、NH4-N濃度が
担体の場合よりもやや低い0.2mg/L以上で硝化速
度が最大値で一定になった。また、0.2mg/Lを下
回ると急激に低下した。しかし、硝化槽の総窒素(T−
N)負荷量による硝化速度の変化は、概ね2〜5.5m
g−O2 /g・SS・hの範囲であり、担体に比べてか
なり小さかった。
On the other hand, in the case of suspended sludge, the nitrification rate became constant at the maximum value when the NH 4 -N concentration was 0.2 mg / L or more, which was slightly lower than that in the case of the carrier. In addition, when the amount was less than 0.2 mg / L, the amount rapidly decreased. However, the total nitrogen in the nitrification tank (T-
N) The change in the nitrification rate depending on the load amount is approximately 2 to 5.5 m.
The range was g-O 2 / g · SS · h, which was considerably smaller than that of the carrier.

【0020】以上の結果から、担体と浮遊汚泥では、硝
化速度に及ぼすNH4-N濃度の影響が異なり、NH4-N
濃度が0.3mg/Lを下回ると、担体は浮遊汚泥と比
較して硝化速度の低下が著しい。これは、担体の場合
は、硝化細菌が担体の表面や内部に固定されているた
め、アンモニア性窒素に対する親和性が浮遊汚泥よりも
低いものと考察される。また、浮遊汚泥は、脱窒槽や硝
化槽、更に最終沈殿槽同士の間を循環するのに対し、担
体は硝化槽に保持され、常に好気性条件下にあるため
に、低いNH4-N濃度下では、硝化細菌の自己分解が進
み易いものと考察される。
[0020] From the above results, the carrier and the floating sludge, unlike the effect of NH 4 -N concentration on the nitrification rate, NH 4 -N
When the concentration is lower than 0.3 mg / L, the nitrification rate of the carrier is remarkably reduced as compared with the suspended sludge. This is considered to be because the nitrifying bacteria are fixed on the surface or inside of the carrier in the case of the carrier, and therefore have lower affinity for ammonia nitrogen than the suspended sludge. In addition, the suspended sludge circulates between the denitrification tank, the nitrification tank, and the final sedimentation tank, while the carrier is held in the nitrification tank and is always under aerobic conditions, so the low NH 4 -N concentration is low. Below, it is considered that the autolysis of nitrifying bacteria is likely to proceed.

【0021】このの結果から、発明者等は、硝化槽内
のNH4-N濃度が0.3mg/Lを下回らなければ、硝
化速度はNH4-N濃度の影響を受けることがないという
知見を得た。 次に、硝化槽全体の硝化速度に占める担体の硝化分担
比について説明する。担体と浮遊汚泥の各々の硝化速度
から、連続処理での硝化槽全体の硝化速度に占める担体
の分担比率を求めた。硝化槽全体での硝化速度は次の
(1)式から算出した。
From these results, the inventors have found that the nitrification rate is not affected by the NH 4 —N concentration unless the NH 4 —N concentration in the nitrification tank is lower than 0.3 mg / L. I got Next, the nitrification sharing ratio of the carrier in the nitrification rate of the entire nitrification tank will be described. From the nitrification rates of the carrier and suspended sludge, the ratio of the carrier to the nitrification rate of the entire nitrification tank in the continuous treatment was determined. The nitrification rate in the entire nitrification tank was calculated from the following equation (1).

【0022】[0022]

【数1】 〔N−Kr〕T=〔N−Kr〕P・η+〔N−Kr〕S・X・(1−η)…(1) ここで、〔N−Kr〕T :硝化槽の硝化に係る硝化速度
(mg−O2 /L・槽・h) 〔N−Kr〕P :担体の硝化速度 〔N−Kr〕S :浮遊汚泥の硝化速度 η:担体添加量(硝化槽容積当たりの担体容積比) X:浮遊汚泥濃度(g−SS/L) また、硝化槽全体に占める担体の硝化分担比〔PN 〕を
硝化速度をもとにした次の(2)式で定義した。
[N−Kr] T = [N−Kr] P · η + [N−Kr] S · X · (1−η) (1) where [N−Kr] T is the nitrification tank Nitrification rate related to nitrification (mg-O 2 / L · tank / h) [N-Kr] P : nitrification rate of carrier [N-Kr] S : nitrification speed of suspended sludge η: amount of carrier added (per nitrification tank volume) X: Suspended sludge concentration (g-SS / L) Further, the nitrification sharing ratio [P N ] of the carrier in the entire nitrification tank was defined by the following equation (2) based on the nitrification rate. .

【0023】[0023]

【数2】 実際の下水処理の場合(η=0.075)について、担
体の硝化分担比〔PN〕と硝化槽のNH4-N濃度の関係
を示すと、図3のようになる。
(Equation 2) FIG. 3 shows the relationship between the nitrification sharing ratio [P N ] of the carrier and the NH 4 —N concentration in the nitrification tank in the case of actual sewage treatment (η = 0.075).

【0024】図3から分かるように、NH4-N濃度が
0.2mg/L近傍では、担体の硝化分担比〔PN 〕が
0.5程度であるが、NH4-N濃度が0.3mg/L以
上になると、担体の硝化分担比〔PN 〕は安定して0.
9程度の高い値を維持する。これは、NH4-N濃度が
0.3mg/Lを下回ると、上述したように担体は浮遊
汚泥よりもアンモニア性窒素に対する親和性が低いため
に、担体の硝化分担比〔P N 〕が小さくなり、相対的に
浮遊汚泥の分担比が大きくなるものと考察される。一
方、NH4-N濃度が0.3mg/L以上では、担体の硝
化分担比が浮遊汚泥に比べて顕著に高くなり、硝化槽全
体の硝化速度の90%程度を支配する。
As can be seen from FIG.Four-N concentration
In the vicinity of 0.2 mg / L, the nitrification sharing ratio of the carrier [PN〕But
About 0.5, but NHFour-N concentration 0.3mg / L or less
On the top, the nitrification sharing ratio of the carrier [PNIs stable.
Maintain a high value of about 9. This is NHFour-N concentration
If it is less than 0.3 mg / L, the carrier will float as described above.
Less affinity for ammonia nitrogen than sludge
The nitrification sharing ratio of the carrier [P N] Is relatively small
It is considered that the share ratio of suspended sludge increases. one
One, NHFourWhen the -N concentration is 0.3 mg / L or more,
The nitrification share ratio is significantly higher than that of suspended sludge,
It governs about 90% of the body's nitrification rate.

【0025】このの結果から、発明者等は、硝化槽の
NH4-N濃度が0.3mg/Lを下回らない場合には、
硝化槽全体の硝化速度を担体が略支配するという知見を
得た。 次に、硝化速度に及ぼすDO濃度の影響について説明
する。試験を行った窒素除去装置としては、と同様に
反応槽を脱窒槽と硝化槽の各1槽から構成したものを用
い、試験に供した廃水として合成の下水を用いた。
From these results, the inventors have found that if the NH 4 —N concentration in the nitrification tank does not fall below 0.3 mg / L,
It has been found that the carrier substantially controls the nitrification rate of the entire nitrification tank. Next, the effect of the DO concentration on the nitrification rate will be described. As the nitrogen removal apparatus used for the test, a reaction tank composed of a denitrification tank and a nitrification tank was used in the same manner as described above, and synthetic sewage was used as the wastewater used for the test.

【0026】反応槽全体に占める硝化槽比率を0.2、
担体添加量を20容積%とし、硝化槽のDO濃度を5〜
10日ごとに1.5、3.0、5.0mg/Lの3段階
に変化させ、硝化速度へのDO濃度の影響を調べた。硝
化槽比率を0.4、担体添加量を10容積%とし、硝化
槽のDO濃度を時間単位で変化させ、硝化速度に対する
DO濃度の影響を調べた。反応槽の廃水の滞留時間は
8.5時間で一定とし、硝化液循環比(原水量に対する
硝化液循環量の比で返送汚泥比を含む)は3.5とし
た。
The nitrification tank ratio in the whole reaction tank is 0.2,
The carrier addition amount was 20% by volume, and the DO concentration in the nitrification tank was 5 to 5.
The concentration was changed to three stages of 1.5, 3.0, and 5.0 mg / L every 10 days, and the effect of the DO concentration on the nitrification rate was examined. The nitrification tank ratio was set to 0.4, the carrier addition amount was set to 10% by volume, and the DO concentration in the nitrification tank was changed in units of time, and the effect of the DO concentration on the nitrification rate was examined. The residence time of the wastewater in the reaction tank was fixed at 8.5 hours, and the nitrification liquid circulation ratio (the ratio of the nitrification liquid circulation amount to the raw water amount, including the returned sludge ratio) was 3.5.

【0027】そして、硝化速度がNH4-N濃度に影響を
受けないとみなせるNH4-N濃度0.3mg/L以上を
満足する1.5mg/L以上のNH4-N濃度条件におい
て、硝化速度とDO濃度との関係を調べた。図5は、D
O濃度を5〜10日ごとに変化させた場合であり、図6
はDO濃度を時間単位で変化させた場合である。
[0027] Then, in the NH 4 -N concentration 0.3 mg / L satisfies more 1.5 mg / L or more NH 4 -N concentration conditions that can be regarded as nitrification speed is not affected by the NH 4 -N concentration, nitrification The relationship between speed and DO concentration was investigated. FIG.
FIG. 6 shows the case where the O concentration was changed every 5 to 10 days.
Is a case where the DO concentration is changed in units of time.

【0028】図5及び図6から分かるように、いずれの
場合にも、硝化速度は硝化槽内のDO濃度の影響を大き
く受け、DO濃度に関する半飽和定数〔KS 〕が9.1
〜9.2mg/LのMonod型の次式(3)が得られ
た。
As can be seen from FIGS. 5 and 6, in each case, the nitrification rate is greatly affected by the DO concentration in the nitrification tank, and the half-saturation constant [K S ] for the DO concentration is 9.1.
The following formula (3) of a Monod type of 99.2 mg / L was obtained.

【0029】[0029]

【数3】 ここで、KN max :硝化速度がアンモニア濃度に影響を
受けない条件における最大硝化速度 DO:硝化槽のDO濃度 k:定数 KS :DO濃度に関する半飽和定数(mg/L) この半飽和定数〔KS 〕は、浮遊汚泥による硝化では
0.4〜2mg/L程度の低い値が報告されているのに
対し、担体を使用した硝化槽の場合には、上記結果から
も分かるように、9mg/L以上の高い値が得られた。
このことは、担体による硝化速度は、浮遊汚泥に比べて
DO濃度の影響を大きく受けることを意味している。
(Equation 3) Here, K N max: the maximum nitrification rate under conditions where the nitrification rate is not affected by the ammonia concentration DO: the DO concentration in the nitrification tank k: the constant K S : the half-saturation constant relating to the DO concentration (mg / L) This half-saturation constant [K S ] is reported to be as low as about 0.4 to 2 mg / L in nitrification by suspended sludge, whereas in the case of a nitrification tank using a carrier, as can be seen from the above results, A high value of 9 mg / L or more was obtained.
This means that the nitrification rate by the carrier is greatly affected by the DO concentration as compared with the suspended sludge.

【0030】このの結果から、発明者等は、担体を硝
化槽に添加して硝化反応を行う場合、廃水のNH4-N濃
度に見合った最大硝化速度〔KN max 〕を得るために、
硝化槽内のDO濃度、即ち曝気量を制御することにより
正確に行えるという知見を得た。このことを換言する
と、担体を硝化槽に添加して硝化反応を行う場合には、
曝気量1因子を適切に制御すれば、最大の硝化性能を得
ることができることを意味する。
From these results, the inventors have found that when a nitrification reaction is carried out by adding a carrier to a nitrification tank, in order to obtain a maximum nitrification rate [K N max] commensurate with the NH 4 —N concentration of the wastewater,
It has been found that accurate control can be achieved by controlling the DO concentration in the nitrification tank, that is, the amount of aeration. In other words, when the carrier is added to the nitrification tank to perform the nitrification reaction,
It means that the maximum nitrification performance can be obtained by properly controlling the aeration amount 1 factor.

【0031】以上の、及びによる結果から、硝化
槽に微生物を固定化した担体を添加した場合の管理指標
として以下の知見を得ることができた。即ち、 (1) 硝化槽内のNH4-N濃度が0.3mg/Lを下回ら
なければ、アンモニア性窒素濃度が担体の硝化速度に影
響を及ぼさない。
From the results described above and above, the following findings could be obtained as a control index when a carrier in which microorganisms were immobilized was added to the nitrification tank. (1) If the NH 4 —N concentration in the nitrification tank does not fall below 0.3 mg / L, the ammonia nitrogen concentration does not affect the nitrification rate of the carrier.

【0032】(2) 硝化槽内のNH4-N濃度が0.3mg
/Lを下回らなければ、硝化槽全体の硝化速度(担体及
び浮遊汚泥の硝化速度の合計)は担体の硝化速度に支配
される。 (3) 担体の硝化速度は硝化槽内のDO濃度に大きく影響
を受け、廃水のNH4-N濃度に見合った最大硝化速度
〔KN max 〕を得るために、硝化槽内のDO濃度、即ち
曝気量の制御することにより正確に行うことができる。
(2) The NH 4 —N concentration in the nitrification tank is 0.3 mg
If it is not less than / L, the nitrification rate of the entire nitrification tank (total nitrification rate of the carrier and suspended sludge) is governed by the nitrification rate of the carrier. (3) The nitrification rate of the carrier is greatly affected by the DO concentration in the nitrification tank, and in order to obtain a maximum nitrification rate [K N max] corresponding to the NH 4 -N concentration of the wastewater, the DO concentration in the nitrification tank is That is, it can be performed accurately by controlling the amount of aeration.

【0033】本発明は、以上(1) 〜(3) の知見に基づい
て、硝化槽内の廃水に曝気手段からエアを曝気して前記
硝化槽内に添加された微生物固定化担体と廃水とを好気
性条件下で接触させることにより前記廃水中のアンモニ
ア性窒素を硝化処理する廃水の硝化方法において、硝化
槽内のアンモニア性窒素濃度及び前記微生物固定化担体
の硝化速度を測定し、前記測定したアンモニア性窒素濃
度が所定値以上の場合には、前記曝気手段からの曝気量
を制御して前記硝化速度が最大硝化速度になるように前
記硝化槽内の溶存酸素濃度を調整し、前記アンモニア性
窒素濃度が前記所定値を下回った場合には、前記曝気手
段からの曝気量を制御して前記硝化槽内の溶存酸素濃度
を調整することにより前記アンモニア性窒素濃度を前記
所定値以上に戻すように構成したものである。
The present invention is based on the findings of the above (1) to (3), and based on the findings of the above (1) to (3), air is aerated from the aeration means to the wastewater in the nitrification tank, and the microorganism-immobilized carrier and wastewater added to the nitrification tank are combined with the wastewater. In the wastewater nitrification method of nitrifying the ammonia nitrogen in the waste water by contacting it under aerobic conditions, the ammonia nitrogen concentration in the nitrification tank and the nitrification rate of the microorganism-immobilized carrier are measured, and the measurement is performed. When the ammonia nitrogen concentration obtained is equal to or higher than a predetermined value, the dissolved oxygen concentration in the nitrification tank is adjusted so that the nitrification rate becomes the maximum nitrification rate by controlling the amount of aeration from the aeration means, and the ammonia When the nitrogen concentration falls below the predetermined value, the ammonia nitrogen concentration is returned to the predetermined value or more by controlling the amount of aeration from the aeration unit and adjusting the dissolved oxygen concentration in the nitrification tank. Yo It is those that you have configured.

【0034】図6は、本発明の硝化装置10を組み込ん
だ窒素除去装置40であり、反応槽15として脱窒槽1
4と硝化槽16の各1槽で構成したもである。原水供給
管12から脱窒槽14に供給された廃水は、脱窒槽14
において浮遊汚泥と混合された後、担体が添加された硝
化槽16に流入する。硝化槽16に流入した廃水中のア
ンモニア性窒素は、ブロア装置18からの曝気による好
気性条件下で担体及び浮遊汚泥により硝化されて硝化液
となる。そして、浮遊汚泥を含む一部の硝化液は、硝化
液循環路20を介して脱窒槽14に循環されて脱窒処理
されて窒素ガスとして放出される。残りの硝化液は、最
終沈殿槽22に送られ、汚泥が沈降分離されて処理水と
なる。最終沈殿槽22で沈殿した沈殿汚泥の一部は汚泥
返送路24を介して脱窒槽14に返送され、残りは余剰
汚泥として引抜管25から系外に引き抜かれる。
FIG. 6 shows a nitrogen removal apparatus 40 incorporating the nitrification apparatus 10 of the present invention.
4 and one nitrification tank 16. The wastewater supplied from the raw water supply pipe 12 to the denitrification tank 14 is
After being mixed with the suspended sludge, the mixture flows into the nitrification tank 16 to which the carrier has been added. The ammonia nitrogen in the wastewater flowing into the nitrification tank 16 is nitrified by the carrier and suspended sludge under aerobic conditions by aeration from the blower device 18 to become a nitrification liquid. Then, a part of the nitrification liquid including the suspended sludge is circulated to the denitrification tank 14 through the nitrification liquid circulation path 20, is subjected to the denitrification treatment, and is released as nitrogen gas. The remaining nitrification liquid is sent to the final sedimentation tank 22, where the sludge is settled and separated to become treated water. A part of the settled sludge settled in the final settling tank 22 is returned to the denitrification tank 14 through a sludge return path 24, and the rest is drawn out of the system as a surplus sludge from a drawing pipe 25.

【0035】また、硝化装置10には、硝化槽16内の
NH4-N濃度と硝化速度を検出する活性検出装置26
と、硝化槽内のDO濃度を検出するDO検出器28と、
活性検出装置26とDO検出器28の検出結果に基づい
てブロア装置18から硝化槽16内に曝気する曝気量を
制御するコントローラ30から成る制御系統が設けられ
る。また、原水供給管12には原水量検出器32が配設
されて、脱窒槽14に流入する廃水原水量のデータがコ
ントローラ30に送られる。
The nitrification apparatus 10 has an activity detector 26 for detecting the concentration of NH 4 —N in the nitrification tank 16 and the nitrification rate.
A DO detector 28 for detecting a DO concentration in the nitrification tank;
A control system including a controller 30 for controlling the amount of aeration for aerating the nitrification tank 16 from the blower device 18 based on the detection results of the activity detection device 26 and the DO detector 28 is provided. A raw water amount detector 32 is provided in the raw water supply pipe 12, and data on the amount of raw waste water flowing into the denitrification tank 14 is sent to the controller 30.

【0036】次に、上記の如く構成された硝化装置10
において硝化槽16の曝気量を制御する方法について説
明する。硝化槽16内の担体を含む硝化液が、活性検出
装置26に定期的に供給されて硝化槽16内のNH4-N
濃度〔Ne mea 〕と担体の硝化速度〔KN mea ] が検出
される。また、DO検出器28では硝化槽16内のDO
濃度〔DOmea 〕が検出され、原水量検出器32では廃
水原水量〔Q〕が検出される。そして、これらの検出デ
ータがコントローラ30に送られる。コントローラ30
には、硝化槽16内のNH4-N濃度の下限を0.3mg
/Lとすると共に、上限を例えば1.5mg/Lとした
設定範囲〔Ne SET 〕が設定されている。設定範囲〔N
e SET 〕の上限として0.3mg/Lを下回らない限度
でなるべく低い方が良いが、NH4-N濃度の設定範囲
〔Ne SET 〕が狭すぎると管理が難しくなり、0.3m
g/Lを下回る頻度が多くなるので、かえって問題があ
る。コントローラ30では、活性検出装置26で検出さ
れたNH4-N濃度が設定範囲〔Ne SET 〕の範囲内であ
れば、当初設定してある硝化槽が最大硝化速度になるた
めのDO濃度設定値を維持する。担体11の硝化速度が
支配する硝化槽16の最大硝化速度は、上記(3)式に
より求められる。
Next, the nitrification apparatus 10 constructed as described above
A method for controlling the amount of aeration of the nitrification tank 16 will be described. The nitrification solution containing the carrier in the nitrification tank 16 is periodically supplied to the activity detection device 26, and the NH 4 —N in the nitrification tank 16 is
The concentration [ Nemea ] and the nitrification rate of the carrier [ KNmea ] are detected. Further, the DO detector 28 detects the DO in the nitrification tank 16.
The concentration [DO mea ] is detected, and the raw water amount detector 32 detects the raw waste water amount [Q]. Then, these detection data are sent to the controller 30. Controller 30
The lower limit of the NH 4 —N concentration in the nitrification tank 16 is 0.3 mg
/ L and a setting range [Ne SET ] in which the upper limit is, for example, 1.5 mg / L. Setting range [N
It is preferable that the upper limit of [e SET ] is not less than 0.3 mg / L, but the lower the better, the more difficult it is to control the NH 4 -N concentration if the setting range [Ne SET ] is too narrow.
Since the frequency below g / L increases, there is a problem on the contrary. In the controller 30, if the NH 4 -N concentration detected by the activity detecting device 26 is within the set range [Ne SET ], the DO concentration set value at which the nitrification tank initially set reaches the maximum nitrification rate is set. To maintain. The maximum nitrification rate of the nitrification tank 16, which is governed by the nitrification rate of the carrier 11, is obtained by the above equation (3).

【0037】また、NH4-N濃度が設定範囲の下限また
は上限から外れている場合には、以下の演算により新し
い目標DO濃度設定値〔DOSET 〕を算出する。即ち、
活性検出装置26で検出されたNH4-N濃度〔Ne
mea 〕と設定NH4-N濃度〔Ne SET 〕の偏差に基づ
き目標硝化速度〔KN SET ] を、次の(4)式から算出
する。
If the NH 4 -N concentration is outside the lower or upper limit of the set range, a new target DO concentration set value [DO SET ] is calculated by the following calculation. That is,
The NH 4 —N concentration detected by the activity detector 26 [Ne
The target nitrification rate [KN SET ] is calculated from the following equation (4) based on the difference between the mea ] and the set NH 4 -N concentration [Ne SET ].

【0038】[0038]

【数4】 ここで、Vnは硝化槽容積であり、Qは廃水原水量であ
る。尚、Ne SET の値としては、例えばNH4-N濃度の
設定値である0.3〜1.5mg/Lのほぼ真ん中の値
である1mg/Lを用いる。そして、硝化速度式に計測
値、目標値を代入した次の(5)式及び(6)式に基づ
いて硝化槽16のDO濃度〔DOmea 〕及び目標DO濃
度設定値〔DOSET 〕を算出する。
(Equation 4) Here, Vn is the nitrification tank volume, and Q is the amount of raw wastewater. As the value of Ne SET , for example, 1 mg / L, which is a substantially middle value of 0.3 to 1.5 mg / L, which is the set value of the NH 4 -N concentration, is used. Then, the DO concentration [DO mea ] and the target DO concentration set value [DO SET ] of the nitrification tank 16 are calculated based on the following equations (5) and (6) in which the measured value and the target value are substituted into the nitrification rate equation. I do.

【0039】[0039]

【数5】 (Equation 5)

【0040】[0040]

【数6】 k′は定数である。(Equation 6) k 'is a constant.

【0041】そして、上記(5)式及び(6)式から、
DOmea がDOSET なるように、ブロア装置18から硝
化槽16内に曝気する曝気量を制御する。即ち、活性検
出装置26で検出されたNH4-N濃度〔Ne mea 〕が設
定NH4-N濃度〔Ne SET 〕の下限である0.3mg/
Lを下回った場合には、担体11の硝化速度がNH4-N
濃度の影響を受けて、DO濃度で正確に制御できなくな
る。従って、測定されたNH4-N濃度〔Ne mea 〕を設
定NH4-N濃度〔Ne SET 〕に戻すための目標DO濃度
設定値〔DOSET 〕を算出し、DOmea がDOSET なる
ように、ブロア装置18から硝化槽16内に曝気する曝
気量を減少して硝化速度を意図的に小さくする。また、
活性検出装置26で検出されたNH4-N濃度〔Ne
mea 〕が設定NH4-N濃度〔Ne SET 〕の上限である
1.5mg/Lを上回った場合には、硝化槽内の硝化速
度が最大になっていない可能性がある。従って、測定さ
れたNH 4-N濃度〔Ne mea 〕を設定NH4-N濃度〔N
e SET 〕に戻すための目標DO濃度設定値、即ち、最大
硝化速度を得られるための〔DOSET 〕を算出してDO
me a がDOSET なるように、ブロア装置18から硝化槽
16内に曝気する曝気量を多くする。
Then, from the above equations (5) and (6),
DOmeaIs DOSETAs shown in FIG.
The aeration amount for aerating the inside of the gasification tank 16 is controlled. That is, activity detection
NH detected by the discharge device 26Four-N concentration [NemeaIs set
Constant NHFour-N concentration [NeSET0.3 mg /
L, the nitrification rate of the carrier 11 becomes NHFour-N
Due to the influence of the concentration, the DO concentration cannot be controlled accurately.
You. Therefore, the measured NHFour-N concentration [Nemea]
Constant NHFour-N concentration [NeSETTarget DO concentration for returning to
Set value [DOSET] And calculate DOmeaIs DOSETBecome
As described above, the aeration from the blower device 18 into the nitrification tank 16
The nitrification rate is intentionally reduced by reducing the air volume. Also,
NH detected by the activity detector 26Four-N concentration [Ne
 mea] Is the setting NHFour-N concentration [NeSETIs the upper limit of
If it exceeds 1.5 mg / L, the nitrification speed in the nitrification tank
The degree may not be at the maximum. Therefore, measured
NH Four-N concentration [Nemea] Set NHFour-N concentration [N
eSET], The target DO concentration set value for returning to
[DO for obtaining nitrification rate]SET] And calculate DO
me aIs DOSETSo that the nitrification tank
The amount of aeration to be aerated in the inside 16 is increased.

【0042】ここで、(5)式から算出されたDOmea
の代わりにDO検出器28での検出値をそのまま使用し
てもよいが、DO検出器28で検出されたDO濃度の1
00%が硝化速度に寄与するわけではない。従って、活
性検出装置26で測定した硝化速度〔KN mea 〕から算
出したDO濃度〔DOmea 〕、即ち硝化速度に実質的に
寄与するDO濃度を使用した方がよい。DO検出器28
で検出したDO濃度は、あくまでも硝化速度を制御する
指標として使用する。
Here, DO mea calculated from equation (5)
Instead of using the value detected by the DO detector 28, the value of the DO concentration detected by the DO detector 28 may be used.
00% does not contribute to the nitrification rate. Therefore, it is better to use the DO concentration [DO mea ] calculated from the nitrification rate [KN mea ] measured by the activity detector 26, that is, the DO concentration substantially contributing to the nitrification rate. DO detector 28
The DO concentration detected in is used as an index for controlling the nitrification rate.

【0043】尚、DOmea がDOSET なるように、ブロ
ア装置18から硝化槽16内に曝気する曝気量を制御す
る方法としては、例えば、DOmea がDOSET の偏差に
基づいた比例制御を行うことが可能であり、ブロア装置
18の曝気量の変更は例えばインバータにより行うこと
ができる。次に、本発明の硝化方法で硝化処理した場合
の効果を、従来の硝化方法と比較して説明する。 〔1〕条件 〔窒素除去装置の構成〕 (1) 反応槽:脱窒槽(押し出し流れ)と硝化槽(完全混
合槽)の各1槽 (2) 硝化液循環比:3(返送汚泥量も含む) (3) 担体添加量:10% 〔廃水原水〕 (1) 滞留時間:脱窒槽4.8時間(h)、硝化槽3.2
時間(h)で合計8時間(h)とし、原水量は一定とし
た。
Incidentally, as DO mea becomes DO SET, as a method for controlling the aeration amount of aeration to the nitrification tank 16 from the blower unit 18, for example, DO mea performs proportional control based on the deviation of the DO SET The aeration amount of the blower device 18 can be changed by, for example, an inverter. Next, the effect of the nitrification treatment according to the nitrification method of the present invention will be described in comparison with a conventional nitrification method. [1] Conditions [Configuration of nitrogen removal equipment] (1) Reaction tank: 1 tank each of denitrification tank (push flow) and nitrification tank (complete mixing tank) (2) Nitrification liquid circulation ratio: 3 (including returned sludge amount) (3) Carrier addition amount: 10% [wastewater raw water] (1) Residence time: denitrification tank 4.8 hours (h), nitrification tank 3.2
The time (h) was 8 hours (h) in total, and the amount of raw water was constant.

【0044】(2) NH4-N濃度:20〜40mg/Lで
変動し、濃度ピークが日に2回(廃水の窒素成分は全て
NH4-Nの合成廃水を使用した)あった。 (3) BOD/N比:3 〔酸素の供給・消費〕 (1) 曝気の酸素利用効率:23.5% (2) NH4-Nの硝化量に対するDO消費量:4.57m
g−O2 /mg−NH 4-N) (3) BODの酸素量に対するDO消費量:1mg−O2
/mg−BOD (但し、BOD50%が酸化され、残りは酸素を消費し
ない脱窒や汚泥引き抜きにより消費される) 〔硝化速度〕前記した(5)式及び(6)式の硝化速度
式(定数k′=35、廃水の水温を15°Cとした)に
基づいて算出する。但し、NH4-Nは硝化反応によって
のみ除去されるとした。 〔2〕以上の条件において、次の3通りの硝化方法で硝
化槽の硝化方法を行った。
(2) NHFour-N concentration: 20 to 40 mg / L
Fluctuates and the concentration peaks twice a day.
NHFour-N synthetic wastewater was used). (3) BOD / N ratio: 3 [Supply and consumption of oxygen] (1) Oxygen utilization efficiency of aeration: 23.5% (2) NHFourDO consumption with respect to nitrification amount of -N: 4.57 m
g-OTwo/ Mg-NH Four-N) (3) DO consumption to BOD oxygen: 1 mg-OTwo
/ Mg-BOD (However, 50% of the BOD is oxidized and the rest consumes oxygen.
(It is consumed by denitrification and sludge extraction)
Equation (constant k '= 35, water temperature of wastewater was 15 ° C)
Calculated based on However, NHFour-N by nitrification reaction
Only removed. [2] Under the above conditions, the following three nitrification methods
The nitrification method of the chemical tank was performed.

【0045】硝化槽内への曝気量を1.5m3 /m3
−硝化槽・hで一定にする従来の硝化方法 硝化槽内のDO濃度を4.2mg/Lで一定になるよ
うに曝気量を制御する従来の硝化方法 本発明の硝化方法 (3)結果 、、の各硝化方法における曝気量(Gs)、硝化
槽のDO濃度(DO)及び硝化槽のNH4-N(Ne)等
の日間変動の結果を図7に示す。
The amount of aeration into the nitrification tank was 1.5 m 3 / m 3
-Conventional nitrification method to keep constant in nitrification tank-h Conventional nitrification method in which the aeration amount is controlled so that the DO concentration in the nitrification tank becomes constant at 4.2 mg / L Nitrification method of the present invention (3) Results FIG. 7 shows the results of daily variations in the aeration amount (Gs), the nitrification tank DO concentration (DO), and the nitrification tank NH 4 —N (Ne) in each of the nitrification methods.

【0046】その結果、の硝化方法は、曝気量を一定
にしたため、廃水原水のNH4-N濃度がピーク時に硝化
槽内のDO濃度が低下した。これにより、硝化槽のNH
4-Nが3mg/L程度まで増加し、処理水の水質が悪化
した。の硝化方法は、DO濃度を一定に維持するた
め、硝化槽のNH4-N濃度のピークがに比べてやや低
下したが、依然として2mg/Lを越える値を示した。
As a result, in the nitrification method, since the aeration amount was kept constant, the concentration of DO in the nitrification tank decreased when the concentration of NH 4 —N in the wastewater was peaked. Thereby, the NH of the nitrification tank
4- N increased to about 3 mg / L, and the quality of treated water deteriorated. In the nitrification method, the NH 4 -N concentration peak in the nitrification tank was slightly lowered in order to keep the DO concentration constant, but still showed a value exceeding 2 mg / L.

【0047】これに対し、の本発明の硝化方法は、廃
水原水のNH4-N濃度ピーク時にはDO濃度が高くなる
ように、曝気量を増加して最大硝化速度になるようにす
る。これにより、硝化処理を効果的に行うことができ、
硝化槽内のNH4-N濃度を安定化させることができる。
また、廃水原水のNH4-N濃度が低い場合には、DO濃
度と曝気量が低下して硝化槽内のNH4-N濃度が0.3
mg/Lを下回らないようにし、0.3〜1.5mg/
Lの範囲に入るようにしてから、硝化速度をDO濃度で
制御する。これにより、硝化速度はDO濃度に正確に支
配されるので、曝気量の過不足が発生しない。
On the other hand, in the nitrification method of the present invention, the aeration amount is increased so that the maximum nitrification rate is obtained so that the DO concentration becomes high at the time of the NH 4 -N concentration peak of the raw wastewater. Thereby, the nitrification treatment can be effectively performed,
The NH 4 —N concentration in the nitrification tank can be stabilized.
When the NH 4 —N concentration of the raw wastewater is low, the DO concentration and the aeration amount are reduced, and the NH 4 —N concentration in the nitrification tank is reduced to 0.3.
mg / L, 0.3-1.5 mg / L
After being in the range of L, the nitrification rate is controlled by the DO concentration. As a result, the nitrification rate is accurately controlled by the DO concentration, so that the amount of aeration does not become excessive or insufficient.

【0048】また、図7に示したように、曝気量の日間
変動から、1日に必要な曝気量を測定した結果、の硝
化方法を100%とした場合、の硝化方法では84
%、の本発明の硝化方法では、77.3%まで低減さ
れた。以上の結果から、の本発明の硝化方法は、及
びの従来の硝化方法に比べて硝化槽16内のNH4-N
濃度を安定化することができ、しかも硝化速度をDO濃
度で正確に制御できるので曝気量の過不足が発生しな
い。従って、曝気量をの硝化方法よりも20%以上節
約でき、の硝化方法よりも約7%節約できるので、ブ
ロア装置の動力費が安価になる。
As shown in FIG. 7, when the required amount of aeration per day was measured based on the daily variation of the aeration amount, and the nitrification method was set to 100%, the nitrification method was 84%.
%, The nitrification method of the present invention reduced to 77.3%. From the above results, the nitrification method of the present invention is different from the conventional nitrification method in that the NH 4 —N
Since the concentration can be stabilized and the nitrification rate can be accurately controlled by the DO concentration, there is no excess or deficiency of the aeration amount. Therefore, the amount of aeration can be reduced by 20% or more compared to the nitrification method, and about 7% can be reduced compared to the nitrification method, so that the power cost of the blower device is reduced.

【0049】図8は、本発明の硝化装置10を組み込ん
だ別の窒素除去装置41の構成図であり、図6の窒素除
去装置40と同じ部材や装置には同符号を付して説明す
る。この窒素除去装置41は、図6で説明した窒素除去
装置40を更に改良したものであり、硝化槽16の後段
に好気槽34が1段設けられる。そして、好気槽34の
浮遊汚泥混合液の一部が脱窒槽14に循環されると共
に、残りの液が最終沈殿槽22に送られる。尚、図8の
硝化槽16には図6で示した制御系統と同じものが装備
されているが、図中には一部を示している。また、硝化
槽16には、担体11が好気槽34に流出しないよう
に、分離スクリーン42が設けられている。
FIG. 8 is a block diagram of another nitrogen removing device 41 incorporating the nitrification device 10 of the present invention. The same members and devices as those of the nitrogen removing device 40 of FIG. . This nitrogen removal device 41 is a further improvement of the nitrogen removal device 40 described with reference to FIG. 6, and a single aerobic tank 34 is provided downstream of the nitrification tank 16. Then, a part of the suspended sludge mixed liquid in the aerobic tank 34 is circulated to the denitrification tank 14, and the remaining liquid is sent to the final settling tank 22. The nitrification tank 16 shown in FIG. 8 is equipped with the same control system as that shown in FIG. 6, but is partially shown in the figure. In the nitrification tank 16, a separation screen 42 is provided so that the carrier 11 does not flow out to the aerobic tank 34.

【0050】硝化槽16には、活性検出装置26、DO
検出器28、コントローラ30等の制御系統が設定され
図6で説明したと同様の制御によりブロア装置18の曝
気量が調整される。この硝化槽16のの制御系統とは別
に、好気槽34では別のDO検出器36を用いて好気槽
34内のDO濃度が2mg/L以下になるように好気槽
用ブロア装置38の曝気量が調節される。
In the nitrification tank 16, an activity detector 26, DO
A control system such as the detector 28 and the controller 30 is set, and the aeration amount of the blower device 18 is adjusted by the same control as described with reference to FIG. Apart from the control system of the nitrification tank 16, the aerobic tank 34 uses another DO detector 36 so that the DO concentration in the aerobic tank 34 becomes 2 mg / L or less. The aeration amount is adjusted.

【0051】次に、このように構成された窒素除去装置
40、41の作用について説明する。図6の窒素除去装
置40の場合、硝化槽16に供給される廃水のNH4-N
濃度に見合う最大硝化速度を得るためのDO濃度に設定
される。従って、廃水原水のNH4-N濃度がピーク時に
は曝気量が大幅に増加するので、浮遊汚泥のフロック解
体して最終沈殿槽22での沈降を阻害したり、残存エア
が脱窒槽14まで持ち込まれる危険性がある。
Next, the operation of the nitrogen removing devices 40 and 41 configured as described above will be described. In the case of the nitrogen removing device 40 of FIG. 6, NH 4 —N of wastewater supplied to the nitrification tank 16 is used.
The DO concentration is set to obtain the maximum nitrification rate commensurate with the concentration. Therefore, when the concentration of NH 4 —N in the wastewater raw water is at its peak, the amount of aeration increases significantly. There is a risk.

【0052】そこで、図8の窒素除去装置41では、硝
化槽16の後段にDO濃度が2mg/Lと低い好気槽3
4を設け、この好気槽34から硝化液の一部を脱窒槽1
4に戻したり、残りの硝化液を最終沈殿槽22に送るよ
うにした。これにより、浮遊汚泥のフロック解体して最
終沈殿槽22での沈降を阻害したり、残存エアが脱窒槽
14まで持ち込まれる危険性を確実に防止することがで
きる。
Therefore, in the nitrogen removing apparatus 41 shown in FIG. 8, the aerobic tank 3 having a low DO concentration of 2 mg / L is provided downstream of the nitrification tank 16.
4 is provided, and a part of the nitrification liquid is supplied from the aerobic tank 34 to the denitrification tank 1.
4 or the remaining nitrification liquid was sent to the final sedimentation tank 22. This makes it possible to prevent the suspended sludge from being disintegrated by flocking to prevent sedimentation in the final sedimentation tank 22 and to reliably prevent the risk of remaining air being brought into the denitrification tank 14.

【0053】更に、浮遊汚泥が浮遊する好気槽34は、
担体11が添加された硝化槽16に比べて、好気槽34
内のNH4-N濃度が0.3mg/Lを下回っても硝化性
能が極端に低下することがないので、硝化槽16で残存
した残存NH4-Nを好気槽34で更に硝化処理すること
ができる。これにより、処理水の水質をより向上させる
ことができる。尚、浮遊汚泥の硝化速度のDO濃度に関
する半飽和定数としては、前記したように0.4〜2m
g/L程度であり、好気槽34のDO濃度は2mg/L
あれば十分である。
Further, the aerobic tank 34 in which the suspended sludge floats,
Compared with the nitrification tank 16 to which the carrier 11 is added, the aerobic tank 34
Even if the NH 4 -N concentration in the inside is less than 0.3 mg / L, the nitrification performance does not extremely decrease. Therefore, the remaining NH 4 -N remaining in the nitrification tank 16 is further nitrified in the aerobic tank 34. be able to. Thereby, the quality of the treated water can be further improved. The half-saturation constant of the nitrification rate of the suspended sludge with respect to the DO concentration is 0.4 to 2 m as described above.
g / L, and the DO concentration of the aerobic tank 34 is 2 mg / L.
It is enough.

【0054】ところで、担体11を硝化槽16に添加し
た硝化促進型の窒素除去装置の場合、担体11の硝化速
度を活性検出装置26で測定して的確に把握し、最大の
硝化速度を発揮するように運転することが必要である。
図9は、担体11が損傷することなく硝化槽16内のN
4-N濃度及び担体11の硝化速度を検出することので
きる本発明の活性検出装置26の構成を説明する構成図
である。尚、図6と同じ部材や装置は同符号を付して説
明する。
By the way, in the case of a nitrification-promoting type nitrogen removing apparatus in which the carrier 11 is added to the nitrification tank 16, the nitrification rate of the carrier 11 is measured by the activity detector 26 to accurately grasp the nitrification rate, and the maximum nitrification rate is exhibited. It is necessary to drive like that.
FIG. 9 shows the N in the nitrification tank 16 without damaging the carrier 11.
FIG. 2 is a configuration diagram illustrating a configuration of an activity detection device 26 of the present invention that can detect the H 4 —N concentration and the nitrification rate of a carrier 11. The same members and devices as those in FIG. 6 are described with the same reference numerals.

【0055】図9に示すように、硝化槽16は、その内
部に設けられたスクリーン42により、担体11を含む
硝化液の領域である反応部16Aと、担体11を含まな
い硝化液のみの領域である分離部16Bとに区画され
る。そして、反応部16Aに取込口44Aを有する第1
の送給管44は、三方切換弁46及び1軸偏心ポンプ4
8を介して測定槽50に接続される。一方、分離部16
Bに取込口52Aを有する第2の送給管52は、前記三
方切換弁46に接続される。これにより、1軸偏心ポン
プ48を作動させて三方切換弁46を切り換えると、分
離部16Bから測定槽50への供給と、反応部16Aか
ら測定槽50への供給とに切り換えることができる。従
って、分離部16Bからは硝化槽16内の硝化液の一部
である被測定液のみが測定槽50に供給され、反応部1
6Aからは担体11を含む被測定液が測定槽50に供給
される。三方切換弁46は、信号ケーブル54を介して
タイマー機構部56に接続され、三方切換弁46の切換
タイミングの時間制御が行われる。
As shown in FIG. 9, the nitrification tank 16 has a screen 42 provided therein, and a reaction section 16A, which is a region of the nitrification liquid containing the carrier 11, and a region of only the nitrification liquid not containing the carrier 11. And a separation unit 16B. And the first having the intake port 44A in the reaction section 16A
Of the three-way switching valve 46 and the one-axis eccentric pump 4
8 is connected to the measuring tank 50. On the other hand, the separation unit 16
A second supply pipe 52 having an inlet 52A at B is connected to the three-way switching valve 46. Thereby, when the three-way switching valve 46 is switched by operating the one-axis eccentric pump 48, it is possible to switch between supply from the separation unit 16B to the measurement tank 50 and supply from the reaction unit 16A to the measurement tank 50. Therefore, only the liquid to be measured that is a part of the nitrification liquid in the nitrification tank 16 is supplied from the separation unit 16B to the measurement tank 50, and the reaction unit 1
From 6A, the liquid to be measured including the carrier 11 is supplied to the measuring tank 50. The three-way switching valve 46 is connected to a timer mechanism 56 via a signal cable 54, and time control of the switching timing of the three-way switching valve 46 is performed.

【0056】また、測定槽50の上部から硝化槽16の
反応部16Aに戻し配管58が配設され、測定槽50内
の被測定液のオーバフローした分が戻し配管58から硝
化槽に戻される。測定槽50には、測定槽50内にエア
を曝気するエアポンプ60と、測定槽50内のDO濃度
を測定するDO濃度計62が設けられる。そして、硝化
槽16内の被測定液と担体11の一定量が前記第1の送
給管44及び第2の送給管52を介して測定槽50にサ
ンプリングされ、被測定液のDO濃度値が変化しなくな
るまでエアポンプ60から曝気し、その間の被測定液の
変化量からNH4-N濃度と硝化速度を求める。この測定
操作を定期的に行うことにより、硝化槽16の硝化性能
を把握する。一般的に、測定終了後の測定槽50内のD
O濃度値は、7〜8mg/Lであるが、次の測定を開始
するまでに、測定槽50内のDO濃度値を硝化槽16内
のDO濃度値(通常、2〜3mg/L)まで下げる必要
がある。硝化槽16内の担体及び被測定液を測定槽50
に採取するサンプリング時間は、測定槽50内の被測定
液が次に測定する被測定液に入れ代わるまでの時間、通
常30秒程度であるが、DO濃度計62が測定終了後の
DO濃度値から硝化槽16のDO濃度値まで下がるまで
の応答時間は通常3分と長い。従って、硝化槽16から
は3分間担体11を含む被測定液を測定槽50に供給し
続け、測定槽50でオーバフローした被測定液は戻し配
管58で硝化槽16に戻される。このDO濃度計62の
応答時間が長いことが担体11の損傷率を高くしてい
る。
A return pipe 58 is provided from the upper part of the measurement tank 50 to the reaction section 16A of the nitrification tank 16, and an overflow of the liquid to be measured in the measurement tank 50 is returned from the return pipe 58 to the nitrification tank. The measuring tank 50 is provided with an air pump 60 for aerating air into the measuring tank 50 and a DO concentration meter 62 for measuring the DO concentration in the measuring tank 50. Then, a certain amount of the liquid to be measured in the nitrification tank 16 and a certain amount of the carrier 11 are sampled in the measurement tank 50 via the first supply pipe 44 and the second supply pipe 52, and the DO concentration value of the liquid to be measured is measured. The air is pumped from the air pump 60 until the value no longer changes, and the NH 4 —N concentration and the nitrification rate are determined from the amount of change in the liquid to be measured during that time. By performing this measurement operation periodically, the nitrification performance of the nitrification tank 16 is grasped. Generally, D in the measuring tank 50 after the measurement is completed.
Although the O concentration value is 7 to 8 mg / L, the DO concentration value in the measurement tank 50 is reduced to the DO concentration value (normally, 2 to 3 mg / L) in the nitrification tank 16 before the next measurement is started. I need to lower it. The carrier and the liquid to be measured in the nitrification tank 16 are transferred to the measurement tank 50.
Sampling time is usually about 30 seconds until the liquid to be measured in the measuring tank 50 is replaced with the liquid to be measured next, but the DO concentration meter 62 determines the DO concentration value after the measurement. The response time until the DO concentration in the nitrification tank 16 drops to a DO concentration value is usually as long as 3 minutes. Therefore, the liquid to be measured including the carrier 11 is continuously supplied from the nitrification tank 16 to the measurement tank 50 for 3 minutes, and the liquid to be measured that has overflowed in the measurement tank 50 is returned to the nitrification tank 16 via the return pipe 58. The long response time of the DO densitometer 62 increases the damage rate of the carrier 11.

【0057】上記の如く構成された活性検出装置の作用
について、測定槽50で最初の測定が終了した後、次の
測定をするために測定槽50内の被測定液を入れ換える
場合で説明する。測定槽50での最初の測定が終了する
と、測定槽50内のDO濃度値7〜8mg/Lから硝化
槽16内のDO濃度値2〜3mg/Lになるまでの約2
分30秒間は、三方切換弁46を第2の送給管52に切
り換えて分離部16Bから被測定液のみを測定槽50に
送給する。次に、三方切換弁46を第2の送給管52か
ら第1の送給管44に切り換えて、DO濃度計62の応
答時間である3分のうちの残り30秒で担体11を含む
被測定液を測定槽50に送給する。
The operation of the activity detecting device constructed as described above will be described with reference to a case where after the first measurement is completed in the measuring tank 50, the liquid to be measured in the measuring tank 50 is replaced for the next measurement. When the first measurement in the measuring tank 50 is completed, the DO concentration in the measuring tank 50 is reduced from 7 to 8 mg / L to the DO concentration in the nitrifying tank 16 by about 2 to 3 mg / L.
For 30 minutes, the three-way switching valve 46 is switched to the second supply pipe 52, and only the liquid to be measured is supplied to the measurement tank 50 from the separation unit 16B. Next, the three-way switching valve 46 is switched from the second feed pipe 52 to the first feed pipe 44, and the carrier containing the carrier 11 is left in the remaining 30 seconds of 3 minutes which is the response time of the DO concentration meter 62. The measurement liquid is sent to the measurement tank 50.

【0058】これにより、担体11を含む被測定液が1
軸偏心ポンプ48を通過する時間は30秒だけである。
従って、本発明の活性検出装置は、担体11を含む被測
定液を3分間1軸偏心ポンプ48を通過させていた従来
の活性検出装置に比べて担体11の損傷率を大幅に減少
させることができる。これにより、担体11の硝化速度
を正確に測定することができると共に、測定に使用した
担体11を硝化槽16に戻しても、測定により硝化槽1
6の硝化速度が低下することが殆どない。更には、担体
11が損傷しにくいので担体の寿命を延ばすことができ
る。
Thus, the liquid to be measured containing the carrier 11 is 1
The time to pass through the shaft eccentric pump 48 is only 30 seconds.
Therefore, the activity detecting device of the present invention can greatly reduce the damage rate of the carrier 11 as compared with the conventional activity detecting device in which the liquid to be measured including the carrier 11 is passed through the uniaxial eccentric pump 48 for 3 minutes. it can. Thereby, the nitrification rate of the carrier 11 can be accurately measured, and even if the carrier 11 used for the measurement is returned to the nitrification tank 16, the nitrification tank 1 is measured by the measurement.
The nitrification rate of No. 6 hardly decreases. Furthermore, since the carrier 11 is hardly damaged, the life of the carrier can be extended.

【0059】実際に本発明の活性検出装置と従来の活性
検出装置での損傷率を比較したところ、本発明は従来よ
りも1軸偏心ポンプ48を通過する時間が1/5になっ
た分、損傷率も1/5に減少した。
When the damage rate of the activity detecting device of the present invention was compared with that of the conventional activity detecting device, it was found that the time required for passing through the single-axis eccentric pump 48 was 1/5 that of the conventional one. The damage rate was also reduced to 1/5.

【0060】[0060]

【発明の効果】以上説明したように、本発明の廃水の硝
化方法及び装置によれば、硝化槽内のアンモニア性窒素
濃度を低い値で安定化することができ、しかも硝化速度
を溶存酸素濃度で正確に制御できるので曝気量の過不足
が発生しない。従って、曝気量を従来の硝化方法よりも
大幅に削減でき、ブロア装置の動力費が安価になる。
As described above, according to the method and apparatus for nitrifying wastewater of the present invention, the concentration of ammonia nitrogen in a nitrification tank can be stabilized at a low value, and the nitrification rate can be reduced by the concentration of dissolved oxygen. The aeration amount can be controlled accurately, so that the amount of aeration does not become excessive or insufficient. Therefore, the amount of aeration can be significantly reduced as compared with the conventional nitrification method, and the power cost of the blower device is reduced.

【0061】また、本発明の活性検出装置によれば、担
体を損傷率を大幅に低減することができ、硝化速度を正
確に測定できるので、硝化槽の硝化速度を的確に把握す
るこができる。また、担体が損傷しにくいので、担体の
寿命を延ばすことができる。
Further, according to the activity detecting device of the present invention, the rate of damage to the carrier can be greatly reduced, and the nitrification rate can be accurately measured, so that the nitrification rate of the nitrification tank can be accurately grasped. . In addition, since the carrier is not easily damaged, the life of the carrier can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】担体の硝化速度に対するアンモニア性窒素濃度
の影響を説明するグラフ
FIG. 1 is a graph illustrating the effect of ammonia nitrogen concentration on the nitrification rate of a carrier.

【図2】浮遊汚泥の硝化速度に対するアンモニア性窒素
濃度の影響を説明するグラフ
FIG. 2 is a graph for explaining the effect of ammonia nitrogen concentration on the nitrification rate of suspended sludge.

【図3】担体と浮遊汚泥が共存する硝化において担体の
硝化分担比を説明するグラフ
FIG. 3 is a graph illustrating the nitrification sharing ratio of a carrier in nitrification in which a carrier and suspended sludge coexist.

【図4】担体の硝化速度に対するDO濃度の影響を説明
するグラフ
FIG. 4 is a graph illustrating the effect of DO concentration on the nitrification rate of a carrier.

【図5】浮遊汚泥の硝化速度に対するDO濃度の影響を
説明するグラフ
FIG. 5 is a graph illustrating the effect of DO concentration on the nitrification rate of suspended sludge.

【図6】本発明の硝化装置を組み込んだ窒素除去装置の
構成図
FIG. 6 is a configuration diagram of a nitrogen removal device incorporating the nitrification device of the present invention.

【図7】本発明の硝化装置を組み込んだ窒素除去装置と
従来の窒素除去装置の効果を比較するグラフ
FIG. 7 is a graph comparing the effects of a nitrogen removal device incorporating a nitrification device of the present invention and a conventional nitrogen removal device.

【図8】本発明の硝化装置を組み込んだ窒素除去装置の
別の態様を示す構成図
FIG. 8 is a configuration diagram showing another embodiment of the nitrogen removal device incorporating the nitrification device of the present invention.

【図9】本発明の活性検出装置の構成を説明する構成図FIG. 9 is a configuration diagram illustrating a configuration of an activity detection device of the present invention.

【図10】硝化槽内のアンモニア性窒素濃度の推移を示
した説明図
FIG. 10 is an explanatory diagram showing a change in the concentration of ammonia nitrogen in a nitrification tank.

【符号の説明】[Explanation of symbols]

10…硝化装置 11…担体 12…原水供給管 14…脱窒槽 16…硝化槽 16A…反応部 16B…分離部 18…ブロア装置 20…硝化液循環路 22…最終沈殿槽 24…汚泥返送路 26…活性検出装置 28、36…DO検出器 30…コントローラ 32…原水量検出器 34…好気槽 38…好気槽用ブロア装置 40、41…窒素除去装置 42…スクリーン 44…第1の送給管 46…三方切換弁 48…1軸偏心ポンプ 50…測定槽 52…第2の送給管 56…タイマー機構部 58…戻し配管 60…エアポンプ 62…DO濃度計 DESCRIPTION OF SYMBOLS 10 ... Nitrification apparatus 11 ... Carrier 12 ... Raw water supply pipe 14 ... Denitrification tank 16 ... Nitrification tank 16A ... Reaction part 16B ... Separation part 18 ... Blower apparatus 20 ... Nitrification liquid circulation path 22 ... Final sedimentation tank 24 ... Sludge return path 26 ... Activity detectors 28, 36 DO detector 30 Controller 32 Raw water detector 34 Aerobic tank 38 Blower device for aerobic tank 40, 41 Nitrogen remover 42 Screen 44 First feed pipe 46 ... three-way switching valve 48 ... one-axis eccentric pump 50 ... measuring tank 52 ... second feed pipe 56 ... timer mechanism 58 ... return pipe 60 ... air pump 62 ... DO concentration meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉川 均 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 (72)発明者 中村 啓介 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 Fターム(参考) 4D028 AA08 BB02 CA07 CA09 CC07 4D040 BB02 BB42 BB52 BB82 BB91 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hitoshi Yoshikawa 1-1-14 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Plant Construction Co., Ltd. (72) Keisuke Nakamura 1-1-1, Uchikanda, Chiyoda-ku, Tokyo No. 14 F-term in Hitachi Plant Construction Co., Ltd. (reference) 4D028 AA08 BB02 CA07 CA09 CC07 4D040 BB02 BB42 BB52 BB82 BB91

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】硝化槽内の廃水に曝気手段からエアを曝気
して前記硝化槽内に添加された微生物固定化担体と廃水
とを好気性条件下で接触させることにより前記廃水中の
アンモニア性窒素を硝化処理する廃水の硝化方法におい
て、 前記硝化槽内のアンモニア性窒素濃度及び前記微生物固
定化担体の硝化速度を測定し、 前記測定したアンモニア性窒素濃度が所定値以上の場合
には、前記曝気手段からの曝気量を制御して前記硝化速
度が最大硝化速度になるように前記硝化槽内の溶存酸素
濃度を調整し、 前記アンモニア性窒素濃度が前記所定値を下回った場合
には、前記曝気手段からの曝気量を制御して前記硝化槽
内の溶存酸素濃度を調整することにより前記アンモニア
性窒素濃度を前記所定値以上に戻すことを特徴とする廃
水の硝化方法。
An aerating means for aerating air from waste water in a nitrification tank and contacting the microorganism-immobilized carrier added into the nitrification tank with the waste water under aerobic conditions to thereby reduce the ammonia content in the waste water. In the nitrification method of wastewater for nitrifying nitrogen, the ammonia nitrogen concentration in the nitrification tank and the nitrification rate of the microorganism-immobilized carrier are measured.If the measured ammonia nitrogen concentration is equal to or higher than a predetermined value, By controlling the amount of aeration from the aeration means and adjusting the dissolved oxygen concentration in the nitrification tank so that the nitrification rate becomes the maximum nitrification rate, when the ammonia nitrogen concentration falls below the predetermined value, A nitrification method for wastewater, wherein the concentration of dissolved oxygen in the nitrification tank is adjusted by controlling the amount of aeration from an aeration unit to return the ammonia nitrogen concentration to or above the predetermined value.
【請求項2】前記所定値は、0.3mg/Lであること
を特徴とする請求項1の廃水の硝化方法。
2. The method according to claim 1, wherein the predetermined value is 0.3 mg / L.
【請求項3】硝化槽内の廃水に曝気手段からエアを曝気
して前記硝化槽内に添加された微生物固定化担体と廃水
とを好気性条件下で接触させることにより前記廃水中の
アンモニア性窒素を硝化処理する廃水の硝化装置におい
て、 前記硝化槽内のアンモニア性窒素濃度と前記微生物固定
化担体の硝化速度を測定する活性検出装置と、 前記活性検出装置で測定したアンモニア性窒素濃度と前
記微生物固定化担体の硝化速度に基づいて前記曝気手段
の曝気量を、アンモニア性窒素濃度が所定値以上の場合
には増加して前記硝化槽内の溶存酸素濃度を調整するこ
とにより前記硝化速度が最大になるようにし、アンモニ
ア性窒素濃度が前記所定値を下回った場合には減少して
前記硝化槽内の溶存酸素濃度を調整することによりアン
モニア性窒素濃度を前記所定値以上に戻すように制御す
る制御手段と、を備えていることを特徴とする廃水の硝
化装置。
3. The wastewater in the nitrification tank is aerated with air from aeration means, and the microorganism-immobilized carrier added to the nitrification tank is brought into contact with the wastewater under aerobic conditions, whereby the ammonia in the wastewater is reduced. In a nitrification apparatus for wastewater for nitrifying nitrogen, an activity detector for measuring the ammonia nitrogen concentration in the nitrification tank and the nitrification rate of the microorganism-immobilized carrier, and the ammonia nitrogen concentration measured by the activity detector, The aeration amount of the aeration means based on the nitrification rate of the microorganism-immobilized carrier, if the ammonia nitrogen concentration is equal to or higher than a predetermined value, the nitrification rate is increased by adjusting the dissolved oxygen concentration in the nitrification tank. When the ammonia nitrogen concentration is less than the predetermined value, the concentration is decreased to adjust the dissolved oxygen concentration in the nitrification tank so that the ammonia nitrogen concentration is reduced. Serial nitrification device wastewater characterized by comprising a controller that controls back to the predetermined value or more.
【請求項4】前記所定値は、0.3mg/Lであること
を特徴とする請求項3の廃水の硝化装置。
4. The waste water nitrification apparatus according to claim 3, wherein said predetermined value is 0.3 mg / L.
【請求項5】請求項3の硝化装置の前段に脱窒槽を設け
ると共に、後段に溶存酸素濃度を2mg/L以下に維持
した浮遊汚泥型の好気槽を設け、前記好気槽の処理液を
前記脱窒槽で脱窒処理することにより廃水中のアンモニ
ア性窒素を除去することを特徴とする窒素除去装置。
5. A denitrification tank is provided in the preceding stage of the nitrification apparatus according to claim 3, and a suspended sludge type aerobic tank in which the dissolved oxygen concentration is maintained at 2 mg / L or less is provided in a subsequent stage. A nitrogen removal apparatus for removing nitrogen in wastewater by subjecting the wastewater to a denitrification treatment in the denitrification tank.
【請求項6】硝化槽内の被測定液と微生物固定化担体と
が供給される測定槽と、該測定槽内にエアを曝気する測
定用曝気手段と、前記測定槽内の溶存酸素濃度を測定す
るDO測定手段とを備え、前記硝化槽内のアンモニア性
窒素濃度と前記硝化槽内に添加された微生物固定化担体
の硝化速度を測定する活性検出装置であって、 前記硝化槽内を、前記微生物固定化担体を含む反応部
と、前記微生物固定化担体を含まない分離部とに前記被
測定液が往来可能に区画する区画手段と、 前記反応部から前記測定槽に前記微生物固定化担体を含
む被測定液を送給する第1の送給手段と、 前記分離部から前記測定槽に前記微生物固定化担体を含
まない被測定液を送給する第2の送給手段と、 前記第1の送給手段と前記第2の送給手段とを切り換え
る切換手段と、 を備えたことを特徴とする活性検出装置。
6. A measuring tank in which a liquid to be measured and a microorganism-immobilized carrier in a nitrification tank are supplied, an aeration unit for measuring air in the measuring tank, and a concentration of dissolved oxygen in the measuring tank. A DO measuring means for measuring, the activity detection device for measuring the nitric acid concentration of the ammonia-immobilized nitrogen concentration in the nitrification tank and the microorganism-immobilized carrier added in the nitrification tank, the inside of the nitrification tank, A reaction unit including the microorganism-immobilized carrier, a separation unit that allows the liquid to be measured to flow to and from a separation unit that does not include the microorganism-immobilized carrier, and the microorganism-immobilized carrier from the reaction unit to the measurement tank. A first feeding means for feeding a liquid to be measured containing: a second feeding means for feeding a liquid to be measured not containing the microorganism-immobilized carrier from the separation section to the measuring tank; Switching for switching between the first feeding means and the second feeding means Means for detecting activity.
JP22621998A 1998-08-10 1998-08-10 Waste water nitrification method and apparatus and nitrogen removal apparatus Expired - Fee Related JP3704697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22621998A JP3704697B2 (en) 1998-08-10 1998-08-10 Waste water nitrification method and apparatus and nitrogen removal apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22621998A JP3704697B2 (en) 1998-08-10 1998-08-10 Waste water nitrification method and apparatus and nitrogen removal apparatus

Publications (2)

Publication Number Publication Date
JP2000051892A true JP2000051892A (en) 2000-02-22
JP3704697B2 JP3704697B2 (en) 2005-10-12

Family

ID=16841770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22621998A Expired - Fee Related JP3704697B2 (en) 1998-08-10 1998-08-10 Waste water nitrification method and apparatus and nitrogen removal apparatus

Country Status (1)

Country Link
JP (1) JP3704697B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172400A (en) * 2000-12-06 2002-06-18 Unitika Ltd Method and apparatus for removing nitrogen in sludge return water
JP2003010883A (en) * 2001-07-04 2003-01-14 Kurita Water Ind Ltd Nitration method of ammonia nitrogen-containing water
JP2003053382A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Nitrification-denitrification treatment method
JP2006158996A (en) * 2004-12-02 2006-06-22 Kurita Water Ind Ltd Nitrogen-containing wastewater treatment method and apparatus
JP2016107219A (en) * 2014-12-08 2016-06-20 株式会社日立製作所 Nitrogen treatment method and nitrogen treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172400A (en) * 2000-12-06 2002-06-18 Unitika Ltd Method and apparatus for removing nitrogen in sludge return water
JP4587559B2 (en) * 2000-12-06 2010-11-24 ユニチカ株式会社 Method and apparatus for removing nitrogen from sludge return water
JP2003010883A (en) * 2001-07-04 2003-01-14 Kurita Water Ind Ltd Nitration method of ammonia nitrogen-containing water
JP2003053382A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Nitrification-denitrification treatment method
JP2006158996A (en) * 2004-12-02 2006-06-22 Kurita Water Ind Ltd Nitrogen-containing wastewater treatment method and apparatus
JP2016107219A (en) * 2014-12-08 2016-06-20 株式会社日立製作所 Nitrogen treatment method and nitrogen treatment apparatus

Also Published As

Publication number Publication date
JP3704697B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
US5266200A (en) Sequence continuous reaction in complete mix activated sludge systems
EP1931603B1 (en) Dynamic control of membrane bioreactor system
US7329352B2 (en) Nitrifying method of treating water containing ammonium-nitrogen
Wett et al. pH-controlled reject-water-treatment
Yongzhen et al. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system
HU224163B1 (en) Wastewater treatment by monitoring oxygen utilisation rates and installation for it
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
WO2016203675A1 (en) Method for controlling amount of aeration in activated sludge
CN210595460U (en) Combined device of denitrification-nitrosation-anaerobic ammonia oxidation
CN110078213B (en) Device and method for strengthening stable operation of anaerobic ammonia oxidation treatment of municipal sewage by SBR/anaerobic baffle reactor
JP3351149B2 (en) Simultaneous removal of nitrogen and phosphorus from wastewater.
Soriano et al. A Comparative Pilot‐Scale Study of the Performance of Conventional Activated Sludge and Membrane Bioreactors under Limiting Operating Conditions
JP2000051892A (en) Method and apparatus for nitrating waste water and activity detector
JP3269957B2 (en) How to remove nitrogen from wastewater
US4818407A (en) Nitrification with ammonia enrichment
WO1986003734A1 (en) Nitrification/denitrification of waste material
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JP2841131B2 (en) Activated sludge treatment method for sewage
JPH0780494A (en) Controlling method for operation of activated sludge circulation modification method
WO2000061503A1 (en) Soil water activated sludge treating system and method therefor
JP2001087793A (en) Method and apparatus for treating waste water
JP2000237790A (en) Nitrification method of waste water and device
KR100467336B1 (en) Advanced treatment apparaters and method of sewage water by flow distribution ratio.
KR101136460B1 (en) Advanced treatment system of wastewater and its method
AU2006299746B2 (en) Dynamic control of membrane bioreactor system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees