JP6893546B2 - Sewage treatment system and sewage treatment method - Google Patents

Sewage treatment system and sewage treatment method Download PDF

Info

Publication number
JP6893546B2
JP6893546B2 JP2019195256A JP2019195256A JP6893546B2 JP 6893546 B2 JP6893546 B2 JP 6893546B2 JP 2019195256 A JP2019195256 A JP 2019195256A JP 2019195256 A JP2019195256 A JP 2019195256A JP 6893546 B2 JP6893546 B2 JP 6893546B2
Authority
JP
Japan
Prior art keywords
dissolved oxygen
oxygen concentration
unit
treatment
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019195256A
Other languages
Japanese (ja)
Other versions
JP2021065867A (en
Inventor
明 石山
明 石山
浩英 熊田
浩英 熊田
島田 光重
光重 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2019195256A priority Critical patent/JP6893546B2/en
Publication of JP2021065867A publication Critical patent/JP2021065867A/en
Application granted granted Critical
Publication of JP6893546B2 publication Critical patent/JP6893546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、下水処理システムおよび下水処理方法に関する。 The present invention relates to a sewage treatment system and a sewage treatment method.

近年の下水処理においては、活性汚泥法による有機物の除去(酸化)に加えて、アンモニア性窒素の処理も行われている。アンモニア性窒素は、例えば好気槽で硝化菌を作用させて硝化(硝酸態窒素に酸化)する。硝酸態窒素は、更に脱窒菌を作用させて脱窒(窒素ガスに還元)する場合がある。 In recent sewage treatment, in addition to the removal (oxidation) of organic substances by the activated sludge method, the treatment of ammoniacal nitrogen is also performed. Ammonia nitrogen is nitrified (oxidized to nitrate nitrogen) by the action of nitrifying bacteria in, for example, an aerobic tank. Nitrate nitrogen may further denitrify (reduce to nitrogen gas) by causing denitrifying bacteria to act.

特許文献1には、同じ処理方式の複数系列の下水処理プロセスを備える下水処理場の曝気風量制御装置が記載されている。この下水処理場では、嫌気−無酸素−好気法により有機物、リン化合物、および窒素化合物を除去する処理が行われる。それぞれの系列には、最初沈殿池から順に嫌気槽、無酸素槽、好気槽、および最終沈殿池が連結されている。それぞれの好気槽では曝気処理が行われ、有機物の酸化とアンモニア性窒素の硝化を行う。それぞれの好気槽は、曝気風量目標値に従って動作する曝気装置を有する。曝気風量制御装置は、全ての系列に流入する下水の流量が等しくなるように制御する流入ポンプと、複数系列のうち、いずれか1つの系列の好気槽のアンモニア性窒素濃度を計測するアンモニア計と、複数系列の全ての系列の好気槽の溶存酸素濃度を計測する溶存酸素濃度計と、処理水のアンモニア性窒素濃度目標値を設定する一号制御目標値設定機と、アンモニア計が設置されている系列の好気槽の溶存酸素濃度計による溶存酸素濃度計測値に基づいて、アンモニア計が設置されていない他の系列の好気槽の溶存酸素濃度目標値をそれぞれ設定する二号制御目標値設定機と、を備えている。また、アンモニア計が設置されている系列の好気槽の曝気装置は、アンモニア性窒素濃度の計測値をアンモニア性窒素濃度目標値に近づける曝気風量目標値を演算する1号アンモニアコントローラを、アンモニア計が設置されていない好気槽の曝気装置は、それぞれ溶存酸素濃度の計測値を溶存酸素濃度目標値に近づける曝気風量目標値を演算する2号DOコントローラを備えている。この曝気風量制御装置は、高価なアンモニア計を多数用いることなく、好気槽のアンモニア性窒素濃度に基づいた曝気制御を行う。 Patent Document 1 describes an aeration air volume control device for a sewage treatment plant including a plurality of series of sewage treatment processes of the same treatment method. At this sewage treatment plant, organic matter, phosphorus compounds, and nitrogen compounds are removed by an anaerobic-anoxic-aerobic method. In each series, an anaerobic tank, an oxygen-free tank, an aerobic tank, and a final settling basin are connected in order from the first settling basin. Aeration treatment is performed in each aerobic tank to oxidize organic matter and nitrify ammoniacal nitrogen. Each aeration tank has an aeration device that operates according to an aeration air volume target value. The aeration air volume control device includes an inflow pump that controls the flow of sewage flowing into all series so that the flow rates are equal, and an ammonia meter that measures the ammonia nitrogen concentration in the aerobic tank of any one of the multiple series. A dissolved oxygen concentration meter that measures the dissolved oxygen concentration of all the aerobic tanks of multiple series, a No. 1 control target value setting machine that sets the ammonia nitrogen concentration target value of the treated water, and an ammonia meter are installed. No. 2 control that sets the target value of the dissolved oxygen concentration of the other series of aerobic tanks without an ammonia meter based on the measured value of the dissolved oxygen concentration of the aerobic tank of the series It is equipped with a target value setting machine. In addition, the aeration device of the aerobic tank of the series in which the ammonia meter is installed uses the No. 1 ammonia controller that calculates the aeration air volume target value that brings the measured value of the ammonia nitrogen concentration closer to the ammonia nitrogen concentration target value. Each aeration device in the aerobic tank in which is not installed is equipped with a No. 2 DO controller that calculates an aeration air volume target value that brings the measured value of the dissolved oxygen concentration closer to the dissolved oxygen concentration target value. This aeration air volume control device performs aeration control based on the ammonia nitrogen concentration in the aerobic tank without using a large number of expensive ammonia meters.

特開2005−199115号公報Japanese Unexamined Patent Publication No. 2005-199115

特許文献1に記載された曝気風量制御装置によれば、アンモニア計が設置されていない系列の好気槽の曝気装置の曝気風量目標値は、アンモニア計が設置されている系列の好気槽の溶存酸素濃度計による溶存酸素濃度計測値に基づいて定められる。すなわち、アンモニア計が設置されている系列の好気槽の溶存酸素濃度がアンモニア性窒素濃度目標値に基づいた曝気処理により変動した後に、当該変動に追従して溶存酸素濃度計測値が変動するので、アンモニア計が設置されていない系列の好気槽の溶存酸素濃度も変動する。この変動により、アンモニア計が設置されていない系列の好気槽の溶存酸素濃度がハンチングして溶存酸素濃度が不足し、有機物の酸化やアンモニア性窒素の硝化などの下水浄化が十分に行えない場合がある。これを防止するためには、アンモニア計が設置されている系列の好気槽の溶存酸素濃度が安定した後に、アンモニア計が設置されていない系列の好気槽の曝気風量目標値を設定する必要がある。その結果、アンモニア計が設置されていない系列の好気槽の溶存酸素濃度の制御が、アンモニア計が設置されている系列の好気槽の溶存酸素濃度の制御に比べて遅延する問題があった。溶存酸素濃度の制御が遅延すると、曝気風量が過剰になりエネルギーの無駄が生じる。そこで、複数系列の下水処理プロセスにおけるそれぞれの曝気槽の曝気風量を適切に制御し、溶存酸素濃度を適切に制御可能な下水処理システムおよび下水処理方法の提供が望まれる。 According to the aeration air volume control device described in Patent Document 1, the aeration air volume target value of the aeration device of the aeration tank in which the ammonia meter is not installed is set in the aeration tank of the series in which the ammonia meter is installed. It is determined based on the dissolved oxygen concentration measured by the dissolved oxygen concentration meter. That is, after the dissolved oxygen concentration in the aerobic tank in which the ammonia meter is installed fluctuates due to the aeration treatment based on the ammonia nitrogen concentration target value, the dissolved oxygen concentration measurement value fluctuates according to the fluctuation. , The dissolved oxygen concentration in the aerobic tank of the series without an ammonia meter also fluctuates. When the dissolved oxygen concentration in the aerobic tank without an ammonia meter is hunted due to this fluctuation and the dissolved oxygen concentration is insufficient, and sewage purification such as oxidation of organic substances and nitrification of ammonia nitrogen cannot be performed sufficiently. There is. In order to prevent this, it is necessary to set the aeration air volume target value of the aeration tank of the series without the ammonia meter after the dissolved oxygen concentration of the aerobic tank of the series with the ammonia meter is stable. There is. As a result, there was a problem that the control of the dissolved oxygen concentration in the aerobic tank of the series in which the ammonia meter was not installed was delayed as compared with the control of the dissolved oxygen concentration in the aerobic tank of the series in which the ammonia meter was installed. .. If the control of the dissolved oxygen concentration is delayed, the amount of aerated air becomes excessive and energy is wasted. Therefore, it is desired to provide a sewage treatment system and a sewage treatment method capable of appropriately controlling the aeration air volume of each aeration tank in a plurality of series of sewage treatment processes and appropriately controlling the dissolved oxygen concentration.

本発明は、かかる実状に鑑みて為されたものであって、その目的は、溶存酸素濃度を適切に制御可能な下水処理システムおよび下水処理方法を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a sewage treatment system and a sewage treatment method capable of appropriately controlling the dissolved oxygen concentration.

上記目的を達成するための本発明に係る下水処理システムの特徴構成は、流入する下水を曝気する好気処理部を有する複数の処理系列と、少なくともいずれか1つの前記処理系列に設けられたアンモニア計を有し、前記処理系列のアンモニア性窒素濃度を取得するアンモニア計測部と、複数の前記処理系列におけるそれぞれの前記好気処理部に設けられた溶存酸素濃度計を有し、それぞれの当該好気処理部の溶存酸素濃度を取得する溶存酸素濃度計測部と、それぞれの前記好気処理部の曝気を制御する制御部と、を備え、前記制御部は、前記好気処理部の溶存酸素濃度目標値を設定する第一制御部と、前記好気処理部の曝気風量を制御する第二制御部と、を有し、前記第一制御部は、前記アンモニア性窒素濃度に基づいて、それぞれの前記好気処理部の前記溶存酸素濃度目標値を設定し、前記第二制御部は、前記溶存酸素濃度目標値と、前記溶存酸素濃度計測部が取得したそれぞれの溶存酸素濃度とに基づいて、それぞれの前記好気処理部の曝気風量を制御する点にある。 The characteristic configuration of the sewage treatment system according to the present invention for achieving the above object is a plurality of treatment series having an aerobic treatment unit that aerates the inflowing sewage, and ammonia provided in at least one of the treatment series. It has an ammonia measuring unit that has a meter and acquires the ammoniacal nitrogen concentration of the treatment series, and a dissolved oxygen concentration meter provided in each of the aerobic treatment units in the plurality of the treatment series. The control unit includes a dissolved oxygen concentration measuring unit that acquires the dissolved oxygen concentration of the air treatment unit and a control unit that controls the aeration of each of the aeration treatment units. The control unit is the dissolved oxygen concentration of the aerobic treatment unit. It has a first control unit that sets a target value and a second control unit that controls the aeration air volume of the aerobic treatment unit, and the first control unit has each based on the ammoniacal nitrogen concentration. The dissolved oxygen concentration target value of the aerobic treatment unit is set, and the second control unit is based on the dissolved oxygen concentration target value and each dissolved oxygen concentration acquired by the dissolved oxygen concentration measuring unit. The point is to control the aeration air volume of each of the aerobic treatment units.

上記構成によれば、同じ処理方式の処理系列を複数系列有する下水処理システムにおいて高価なアンモニア計を多数用いることなく、アンモニア計が設置されている特定の処理系列においてアンモニア計測部が取得したアンモニア性窒素濃度に基づいて好気処理部の溶存酸素濃度目標値を第一制御部が設定し、当該溶存酸素濃度目標値とそれぞれの好気処理部の溶存酸素濃度とに基づいて第二制御部が曝気風量を制御可能である。例えば、少なくともいずれか1つの処理系列にアンモニア計を設け、少なくともいずれか1つの他の処理系列にはアンモニア計を設けず、アンモニア計を設けた処理系列のアンモニア性窒素濃度に基づいて、第一制御部はそれぞれの好気処理部の溶存酸素濃度目標値を設定することができる。更に第二制御部は、それぞれの好気処理部の曝気風量を、溶存酸素濃度目標値とそれぞれの好気処理部の溶存酸素濃度とに基づいて制御可能である。 According to the above configuration, in a sewage treatment system having a plurality of treatment series of the same treatment method, the ammonia property acquired by the ammonia measurement unit in a specific treatment series in which the ammonia meter is installed without using many expensive ammonia meters. The first control unit sets the dissolved oxygen concentration target value of the aerobic treatment unit based on the nitrogen concentration, and the second control unit sets the dissolved oxygen concentration target value of the aerobic treatment unit and the dissolved oxygen concentration of each aerobic treatment unit. The aeration air volume can be controlled. For example, the first treatment series is based on the ammonia nitrogen concentration of the treatment series in which at least one of the treatment series is provided with an ammonia meter and at least one of the other treatment series is not provided with an ammonia meter. The control unit can set the dissolved oxygen concentration target value of each aerobic treatment unit. Further, the second control unit can control the aeration air volume of each aerobic treatment unit based on the dissolved oxygen concentration target value and the dissolved oxygen concentration of each aerobic treatment unit.

また上記構成によれば、アンモニア計測部が取得したアンモニア性窒素濃度に基づいて溶存酸素濃度目標値が設定されてそれぞれの好気処理部の曝気風量を制御する。そのため、第二制御部はそれぞれの好気処理部における曝気風量の制御を適切かつ迅速に行える。これにより、溶存酸素濃度を適切に制御可能である。例えばアンモニア性窒素濃度に基づいて第一の制御(例えば、アンモニア計を設けた処理系列の好気処理部の溶存酸素濃度の制御)を行い、当該制御結果(アンモニア計を設けた処理系列の好気処理部における、制御された後の溶存酸素濃度)に基づいて第二の制御(例えば、アンモニア計を設けていない好気処理部の溶存酸素濃度の制御)を行うような場合に比べて、制御の遅延やハンチングを回避可能である。 Further, according to the above configuration, the dissolved oxygen concentration target value is set based on the ammonia nitrogen concentration acquired by the ammonia measuring unit, and the aeration air volume of each aerobic treatment unit is controlled. Therefore, the second control unit can appropriately and quickly control the aeration air volume in each aerobic treatment unit. Thereby, the dissolved oxygen concentration can be appropriately controlled. For example, the first control (for example, the control of the dissolved oxygen concentration of the aerobic treatment section of the treatment series provided with the ammonia meter) is performed based on the ammonia nitrogen concentration, and the control result (the favor of the treatment series provided with the ammonia meter) is performed. Compared to the case where the second control (for example, the control of the dissolved oxygen concentration in the aerobic treatment unit without an ammonia meter) is performed based on the controlled dissolved oxygen concentration in the air treatment unit. Control delays and hunting can be avoided.

本発明に係る下水処理システムの更なる特徴構成は、前記アンモニア計は、前記好気処理部に設けられている点にある。 A further characteristic configuration of the sewage treatment system according to the present invention is that the ammonia meter is provided in the aerobic treatment section.

上記構成によれば、アンモニア計が設置されている特定の処理系列における好気処理部においてアンモニア計測部が取得したアンモニア性窒素濃度に基づいて好気処理部の溶存酸素濃度目標値を第一制御部が設定し、当該溶存酸素濃度目標値とそれぞれの好気処理部の溶存酸素濃度とに基づいて第二制御部が曝気風量を制御可能である。例えば、少なくともいずれか1つの処理系列における好気処理部にアンモニア計を設け、少なくともいずれか1つの他の処理系列にはアンモニア計を設けず、アンモニア計を設けた処理系列の好気処理部のアンモニア性窒素濃度に基づいて、第一制御部はそれぞれの好気処理部の溶存酸素濃度目標値を設定することができる。更に第二制御部は、それぞれの好気処理部の曝気風量を、溶存酸素濃度目標値とそれぞれの好気処理部の溶存酸素濃度とに基づいて制御可能である。なお好気処理部には、曝気により酸素の供給を受けている処理槽(いわゆる好気槽)や、処理槽における酸素の供給を受けている処理区分の概念を含む。 According to the above configuration, the dissolved oxygen concentration target value of the aerobic treatment unit is first controlled based on the ammonia nitrogen concentration acquired by the ammonia measurement unit in the aerobic treatment unit in the specific treatment series in which the ammonia meter is installed. The unit sets, and the second control unit can control the aeration air volume based on the dissolved oxygen concentration target value and the dissolved oxygen concentration of each aerobic treatment unit. For example, an aerobic treatment unit of a treatment series in which an ammonia meter is provided in an aerobic treatment unit in at least one of the treatment series, an ammonia meter is not provided in at least one of the other treatment series, and an ammonia meter is provided. Based on the ammoniacal nitrogen concentration, the first control unit can set the dissolved oxygen concentration target value of each aerobic treatment unit. Further, the second control unit can control the aeration air volume of each aerobic treatment unit based on the dissolved oxygen concentration target value and the dissolved oxygen concentration of each aerobic treatment unit. The aerobic treatment unit includes the concept of a treatment tank (so-called aerobic tank) in which oxygen is supplied by aeration and a treatment category in which oxygen is supplied in the treatment tank.

本発明に係る下水処理システムの更なる特徴構成は、前記好気処理部の上流に嫌気処理部または無酸素処理部を更に有し、前記アンモニア計は、前記嫌気処理部または前記無酸素処理部に設けられている点にある。 A further characteristic configuration of the sewage treatment system according to the present invention further includes an anaerobic treatment unit or an oxygen treatment unit upstream of the aerobic treatment unit, and the ammonia meter is the anaerobic treatment unit or the oxygen treatment unit. It is in the point provided in.

上記構成によれば、それぞれの処理系列に嫌気処理部または無酸素処理部が設けられている場合、アンモニア計が設置されている特定の処理系列における嫌気処理部または無酸素処理部においてアンモニア計測部が取得したアンモニア性窒素濃度に基づいて好気処理部の溶存酸素濃度目標値を第一制御部が設定し、当該溶存酸素濃度目標値とそれぞれの好気処理部の溶存酸素濃度とに基づいて第二制御部が曝気風量を制御可能である。例えば、少なくともいずれか1つの処理系列における嫌気処理部または無酸素処理部にアンモニア計を設け、少なくともいずれか1つの他の処理系列にはアンモニア計を設けず、アンモニア計を設けた処理系列の嫌気処理部または無酸素処理部のアンモニア性窒素濃度に基づいて、第一制御部はそれぞれの好気処理部の溶存酸素濃度目標値を設定することができる。更に第二制御部は、それぞれの好気処理部の曝気風量を、溶存酸素濃度目標値とそれぞれの好気処理部の溶存酸素濃度とに基づいて制御可能である。 According to the above configuration, when an anaerobic treatment unit or an oxygen-free treatment unit is provided in each treatment series, an ammonia measurement unit is provided in the anaerobic treatment unit or the oxygen-free treatment unit in a specific treatment series in which an ammonia meter is installed. The first control unit sets the dissolved oxygen concentration target value of the aerobic treatment unit based on the ammonia nitrogen concentration acquired by the first control unit, and based on the dissolved oxygen concentration target value and the dissolved oxygen concentration of each aerobic treatment unit. The second control unit can control the aerated air volume. For example, an ammonia meter is provided in an anaerobic treatment unit or an oxygen-free treatment unit in at least one of the treatment series, and an ammonia meter is not provided in at least one of the other treatment series, and an ammonia meter is provided in the treatment series. Based on the ammoniacal nitrogen concentration of the treatment unit or the anoxic treatment unit, the first control unit can set the dissolved oxygen concentration target value of each aerobic treatment unit. Further, the second control unit can control the aeration air volume of each aerobic treatment unit based on the dissolved oxygen concentration target value and the dissolved oxygen concentration of each aerobic treatment unit.

本発明に係る下水処理システムの更なる特徴構成は、アンモニア性窒素濃度目標値を記憶した記憶部と、前記アンモニア性窒素濃度と前記アンモニア性窒素濃度目標値に基づいた制御情報を送出する第三制御部と、を更に備え、前記第一制御部は、前記制御情報に基づいて、それぞれの前記好気処理部の前記溶存酸素濃度目標値を設定する点にある。 A further characteristic configuration of the sewage treatment system according to the present invention is a storage unit that stores an ammoniacal nitrogen concentration target value, and sends out control information based on the ammoniacal nitrogen concentration and the ammoniacal nitrogen concentration target value. A control unit is further provided, and the first control unit sets a target value of the dissolved oxygen concentration of each of the aerobic treatment units based on the control information.

上記構成によれば、第三制御部は、アンモニア計測部が取得したアンモニア性窒素濃度と記憶部に記憶されているアンモニア性窒素濃度目標値とに基づいた制御情報を送出する。第一制御部は、この制御情報に基づいて溶存酸素濃度目標値を設定することで、アンモニア計測部が取得したアンモニア性窒素濃度とアンモニア性窒素濃度目標値とに基づいて溶存酸素濃度目標値を設定することができる。 According to the above configuration, the third control unit sends out control information based on the ammonia nitrogen concentration acquired by the ammonia measurement unit and the ammonia nitrogen concentration target value stored in the storage unit. The first control unit sets the dissolved oxygen concentration target value based on this control information, and sets the dissolved oxygen concentration target value based on the ammoniacal nitrogen concentration and the ammoniacal nitrogen concentration target value acquired by the ammonia measurement unit. Can be set.

制御情報としては、アンモニア性窒素濃度とアンモニア性窒素濃度目標値とが乖離している程度に対応する情報(以下では乖離度と記載する)や、アンモニア性窒素濃度から導出した所定の信号などが挙げられる。例えば、アンモニア性窒素濃度がアンモニア性窒素濃度目標値よりも所定範囲内で乖離していれば、第三制御部は乖離度を制御信号として送出する。乖離度として例えばアンモニア性窒素濃度とアンモニア性窒素濃度目標値との差を用いた場合、第一制御部はこの乖離度の正負およびその大小関係に基づいて溶存酸素濃度目標値を設定する。第一制御部は、乖離度が正であれば、乖離度が正に大きくなるほど大きな溶存酸素濃度目標値を設定する。第一制御部は、乖離度が負であれば、乖離度が負に大きくなるほど小さな溶存酸素濃度目標値を設定する。これにより、適切にアンモニア性窒素濃度を制御可能な溶存酸素濃度目標値を設定可能である。また例えば、時間帯、天候や季節の変化に伴う下水の水量や水質などの変動により、アンモニア性窒素濃度がアンモニア性窒素濃度目標値よりも所定範囲を超えて小さければ、上記所定の信号として、アンモニア性窒素濃度を無視する指示信号を送出したり、上記乖離度に代えて所定の補正を加えた補正乖離度を送出したりする。第一制御部はこの所定の信号に基づいて、有機物の酸化のための酸素消費量を考慮した(優先した)適切な溶存酸素濃度目標値を設定できる。このように、上記構成によれば、アンモニア性窒素濃度の制御を優先して考慮した溶存酸素濃度目標値の設定と、有機物の酸化のための酸素消費量を優先して考慮した溶存酸素濃度目標値の設定とを行える。 The control information includes information corresponding to the degree of deviation between the ammoniacal nitrogen concentration and the ammoniacal nitrogen concentration target value (hereinafter referred to as the degree of deviation), a predetermined signal derived from the ammoniacal nitrogen concentration, and the like. Can be mentioned. For example, if the ammoniacal nitrogen concentration deviates within a predetermined range from the ammoniacal nitrogen concentration target value, the third control unit sends out the degree of dissociation as a control signal. When, for example, the difference between the ammoniacal nitrogen concentration and the ammoniacal nitrogen concentration target value is used as the degree of deviation, the first control unit sets the dissolved oxygen concentration target value based on the positive / negative of the degree of deviation and the magnitude relationship thereof. If the degree of deviation is positive, the first control unit sets a larger dissolved oxygen concentration target value as the degree of deviation becomes positive. If the degree of divergence is negative, the first control unit sets a smaller dissolved oxygen concentration target value as the degree of divergence becomes negative. This makes it possible to set a dissolved oxygen concentration target value at which the ammoniacal nitrogen concentration can be appropriately controlled. Further, for example, if the ammoniacal nitrogen concentration exceeds the predetermined range and is smaller than the ammoniacal nitrogen concentration target value due to changes in the amount and quality of sewage due to changes in the time zone, weather, and season, the above-mentioned predetermined signal can be used. An instruction signal that ignores the ammoniacal nitrogen concentration is sent, or a corrected deviation degree with a predetermined correction is sent instead of the above deviation degree. Based on this predetermined signal, the first control unit can set an appropriate dissolved oxygen concentration target value in consideration of (priority) oxygen consumption for oxidation of organic matter. As described above, according to the above configuration, the dissolved oxygen concentration target value is set in consideration of the control of the ammoniacal nitrogen concentration, and the dissolved oxygen concentration target is considered in consideration of the oxygen consumption for oxidation of organic substances. You can set the value.

本発明に係る下水処理システムの更なる特徴構成は、前記記憶部は、前記好気処理部における前記アンモニア性窒素濃度目標値を記憶する点にある。 A further characteristic configuration of the sewage treatment system according to the present invention is that the storage unit stores the ammoniacal nitrogen concentration target value in the aerobic treatment unit.

上記構成によれば、第三制御部は、アンモニア計測部が取得したアンモニア性窒素濃度と好気処理部におけるアンモニア性窒素濃度目標値とに基づいた制御情報を送出する。第一制御部は、この制御情報に基づいて溶存酸素濃度目標値を設定することで、アンモニア計測部が取得したアンモニア性窒素濃度と好気処理部におけるアンモニア性窒素濃度目標値とに基づいて溶存酸素濃度目標値を設定することができる。 According to the above configuration, the third control unit sends out control information based on the ammonia nitrogen concentration acquired by the ammonia measurement unit and the ammonia nitrogen concentration target value in the aerobic treatment unit. The first control unit sets the dissolved oxygen concentration target value based on this control information, and dissolves based on the ammonia nitrogen concentration acquired by the ammonia measurement unit and the ammonia nitrogen concentration target value in the aerobic treatment unit. Oxygen concentration target value can be set.

本発明に係る下水処理システムの更なる特徴構成は、前記第二制御部は前記曝気風量をPID制御する点にある。 A further characteristic configuration of the sewage treatment system according to the present invention is that the second control unit PID controls the aeration air volume.

上記構成によれば、第二制御部は、溶存酸素濃度目標値と溶存酸素濃度計測部が取得したそれぞれの溶存酸素濃度とに基づいて曝気風量をPID制御することができる。これにより、溶存酸素濃度を溶存酸素濃度目標値に適切に維持できる。 According to the above configuration, the second control unit can PID control the aerated air volume based on the dissolved oxygen concentration target value and each dissolved oxygen concentration acquired by the dissolved oxygen concentration measuring unit. As a result, the dissolved oxygen concentration can be appropriately maintained at the dissolved oxygen concentration target value.

本発明に係る下水処理システムの更なる特徴構成は、前記第一制御部は前記溶存酸素濃度目標値をPID制御により設定する点にある。 A further characteristic configuration of the sewage treatment system according to the present invention is that the first control unit sets the dissolved oxygen concentration target value by PID control.

上記構成によれば、アンモニア性窒素濃度に基づいて、第一制御部がPID制御により溶存酸素濃度目標値を設定するので、時間帯、天候や季節の変化に伴う下水の水量や水質などの変動に対応した溶存酸素濃度目標値を設定することができる。 According to the above configuration, the first control unit sets the dissolved oxygen concentration target value by PID control based on the ammonia nitrogen concentration, so that the amount and quality of sewage change due to changes in time zone, weather and season. It is possible to set a dissolved oxygen concentration target value corresponding to.

本発明に係る下水処理システムの更なる特徴構成は、それぞれの前記処理系列に流入する前記下水の当該処理系列での滞留時間が等しくなるように当該下水を分配する分配部を有する点にある。 A further characteristic configuration of the sewage treatment system according to the present invention is that it has a distribution unit for distributing the sewage so that the residence time of the sewage flowing into the treatment series in the treatment series is equal.

上記構成によれば、それぞれの好気槽に流入する下水の滞留時間が各好気槽間で等しくなるように分配部により下水を分配することで、それぞれの好気槽を互いに均等な状態とせしめることができる。これにより、アンモニア計が設置されている特定の好気槽のアンモニア性窒素濃度に基づいて、それぞれの好気槽の溶存酸素濃度目標値を設定して曝気風量を制御した場合において、それぞれの好気槽の溶存酸素濃度をより適切に溶存酸素濃度目標値に制御することができる。 According to the above configuration, the sewage is distributed by the distribution unit so that the residence time of the sewage flowing into each aerobic tank is equal among the aerobic tanks, so that each aerobic tank is in an even state. Can be squeezed. As a result, when the dissolved oxygen concentration target value of each aerobic tank is set and the aeration air volume is controlled based on the ammonia nitrogen concentration of the specific aerobic tank in which the ammonia meter is installed, each favor is obtained. The dissolved oxygen concentration in the air tank can be controlled more appropriately to the dissolved oxygen concentration target value.

上記目的を達成するための本発明に係る下水処理方法の特徴構成は、流入する下水を複数の処理系列に分配してそれぞれの好気処理部で曝気する曝気ステップと、少なくともいずれか1つの前記処理系列のアンモニア性窒素濃度を取得するアンモニア計測ステップと、それぞれの前記好気処理部の溶存酸素濃度を取得する溶存酸素濃度計測ステップと、前記アンモニア性窒素濃度に基づいて、それぞれの前記好気処理部の溶存酸素濃度目標値を設定する第一制御ステップと、前記溶存酸素濃度目標値と、それぞれの前記好気処理部の溶存酸素濃度とに基づいて、それぞれの前記好気処理部の曝気風量を制御する第二制御ステップとを有する点にある。 The characteristic configuration of the sewage treatment method according to the present invention for achieving the above object is an aeration step in which the inflowing sewage is distributed to a plurality of treatment series and aerated in each aerobic treatment unit, and at least one of the above. An ammonia measurement step for acquiring the aeration nitrogen concentration of the treatment series, a dissolved oxygen concentration measurement step for acquiring the dissolved oxygen concentration of each of the aeration treatment units, and each of the aeration based on the aeration nitrogen concentration. Aeration of each of the aerobic treatment units based on the first control step of setting the dissolved oxygen concentration target value of the treatment unit, the dissolved oxygen concentration target value, and the dissolved oxygen concentration of each of the aerobic treatment units. It has a second control step for controlling the air volume.

上記構成によれば、上述の下水処理システムと同等の作用効果を得ることができる。 According to the above configuration, the same effect as that of the above-mentioned sewage treatment system can be obtained.

第一実施形態の下水処理システムの説明図Explanatory drawing of sewage treatment system of 1st Embodiment 第一実施形態における風量の制御方法の説明図Explanatory drawing of air volume control method in 1st Embodiment 第一実施形態の変形例の説明図Explanatory drawing of modification of 1st Embodiment

図1から図3に基づいて、本発明の実施形態に係る下水処理システムおよび下水処理方法について説明する。 The sewage treatment system and the sewage treatment method according to the embodiment of the present invention will be described with reference to FIGS. 1 to 3.

〔第一実施形態〕
〔全体構成の説明〕
図1には、下水処理システム100が、流入する下水に対して並列の三系列(複数系列)の処理系列(系列A、系列B、および系列C)を有する場合を例示して図示している。系列A、系列B、および系列Cの各系列は、それぞれ同じ処理方式である。系列A、系列B、および系列Cの各系列は、好気槽1(好気処理部の一例)としてそれぞれ好気槽1a、好気槽1bおよび好気槽1cを有する。これら複数の好気槽1は、流入する下水に対して並列に設けられている。以下では、好気槽1内の下水と活性汚泥との混合液を単に混合液と記載する。
[First Embodiment]
[Explanation of overall configuration]
FIG. 1 illustrates a case where the sewage treatment system 100 has three series (plural series) of treatment series (series A, series B, and series C) parallel to the inflowing sewage. .. Each series of series A, series B, and series C has the same processing method. Each series of series A, series B, and series C has an aerobic tank 1a, an aerobic tank 1b, and an aerobic tank 1c as an aerobic tank 1 (an example of an aerobic treatment unit). These plurality of aerobic tanks 1 are provided in parallel with the inflowing sewage. In the following, the mixed solution of the sewage and activated sludge in the aerobic tank 1 will be simply referred to as the mixed solution.

系列Aと、系列Bおよび系列Cとは、系列Aの好気槽1aには槽内のアンモニア性窒素濃度を計測するためのアンモニア計20が取り付けられており、系列Bおよび系列Cの好気槽1bおよび好気槽1cにはアンモニア計20が取り付けられていない点で異なり、他の構成は同じである。系列Bと系列Cとは同じ構成である。 In the series A, the series B, and the series C, an ammonia meter 20 for measuring the ammoniacal nitrogen concentration in the tank is attached to the aerobic tank 1a of the series A, and the aerobic tanks of the series B and the series C are attached. The tank 1b and the aerobic tank 1c are different in that the ammonia meter 20 is not attached, and the other configurations are the same. Series B and series C have the same configuration.

図1に示すように、下水処理システム100は、それぞれの好気槽1の溶存酸素濃度を溶存酸素濃度計30により取得する(溶存酸素濃度計測ステップの一例)溶存酸素濃度計測部3と、好気槽1aのアンモニア性窒素濃度をアンモニア計20により取得するアンモニア計測部2と、を有する下水の処理設備である。下水処理システム100の各動作は、記憶部8に記憶されたアンモニア性窒素濃度目標値や制御部9の指令に基づいて行われる。 As shown in FIG. 1, the sewage treatment system 100 obtains the dissolved oxygen concentration of each aerobic tank 1 by the dissolved oxygen concentration meter 30 (an example of the dissolved oxygen concentration measuring step), and the dissolved oxygen concentration measuring unit 3 is favorable. This is a sewage treatment facility having an ammonia measuring unit 2 for acquiring the ammonia-dissolved nitrogen concentration in the air tank 1a with an ammonia meter 20. Each operation of the sewage treatment system 100 is performed based on the ammoniacal nitrogen concentration target value stored in the storage unit 8 and the command of the control unit 9.

下水処理システム100は、系列A、系列B、および系列Cに下水を均等に分配する分配部5の下流の各系列に、下水が流入する上流側から順に、最初沈殿池51、好気槽1、最終沈殿池59を有する。最終沈殿池59からは浄化水が下水処理システム100の外部に排出される。最初沈殿池51や好気槽1などは上流から順に水路などにより接続されている。なお、分配部5による下水の均等分配により、系列A、系列B、および系列Cで浄化される下水の系列ごとの滞留時間はそれぞれ等しくなる。また、各系列の好気槽1での滞留時間もそれぞれ等しくなる。 In the sewage treatment system 100, the first settling basin 51 and the aerobic tank 1 are arranged in order from the upstream side where the sewage flows into each series downstream of the distribution unit 5 which evenly distributes the sewage to the series A, the series B, and the series C. , Has a final settling basin 59. Purified water is discharged from the final settling basin 59 to the outside of the sewage treatment system 100. Initially, the settling basin 51 and the aerobic tank 1 are connected by waterways in order from the upstream. By the equal distribution of sewage by the distribution unit 5, the residence time of each series of sewage purified by series A, series B, and series C becomes equal. In addition, the residence time in the aerobic tank 1 of each series is also the same.

以下では、系列A、系列B、および系列Cの共通部分については系列Aを例示して説明し、他の系列についての説明は省略する。特に系列Bについて説明する事項は系列Cの場合も同等であるため系列Cについての説明は省略する。また、系列A、系列B、および系列Cの共通部分については、例えば系列Aの好気槽1を好気槽1aと表し、系列Bの好気槽1を好気槽1bと表すように、それぞれの共通する部分の符号表記に対して系列A、系列B、および系列Cに対応する符号a、bおよびcを付加して表記するものとし、系列ごとの説明は省略する場合がある。 In the following, the common parts of the series A, the series B, and the series C will be described by exemplifying the series A, and the description of the other series will be omitted. In particular, since the matters described for the series B are the same for the series C, the description for the series C will be omitted. Regarding the intersections of the series A, the series B, and the series C, for example, the aerobic tank 1 of the series A is represented by the aerobic tank 1a, and the aerobic tank 1 of the series B is represented by the aerobic tank 1b. The symbols a, b and c corresponding to the series A, the series B, and the series C shall be added to the code notation of the common parts, and the description for each series may be omitted.

〔各部の説明〕
分配部5は、下水処理システム100へ流入する下水を、系列A、系列B、および系列Cに均等に分配する流路装置である。本実施形態の分配部5は、下水処理システム100へ下水を導く流路に設けられた開度調整可能な可動堰である。系列A、系列B、および系列Cに接続される流路5a、流路5bおよび流路5cの各流路は分配部5から分岐している。各流路には、分配部5の堰の高さの調整などにより下水が均等に配分される。
[Explanation of each part]
The distribution unit 5 is a flow path device that evenly distributes the sewage flowing into the sewage treatment system 100 to the series A, the series B, and the series C. The distribution unit 5 of the present embodiment is a movable weir with an adjustable opening degree provided in a flow path for guiding sewage to the sewage treatment system 100. Each flow path of the flow path 5a, the flow path 5b, and the flow path 5c connected to the series A, the series B, and the series C is branched from the distribution unit 5. Sewage is evenly distributed to each flow path by adjusting the height of the weir of the distribution unit 5.

最初沈殿池51は、流入した下水に含まれる汚泥の一部を沈降させて除去するための槽である。最初沈殿池51で沈降および除去できなかった汚泥を含んだ下水が好気槽1へ流入する。 The first settling basin 51 is a tank for settling and removing a part of sludge contained in the inflowing sewage. The sewage containing sludge that could not be settled and removed in the first settling basin 51 flows into the aerobic tank 1.

好気槽1は、混合液に空気を供給する曝気を行う(曝気ステップの一例)ための曝気装置6を有し、槽内の溶存酸素濃度を計測する溶存酸素濃度計30が取り付けられている槽である。好気槽1は、活性汚泥法による有機物の微生物分解(酸化)処理と、微生物処理によるアンモニア性窒素の硝化とを行う曝気槽である。系列A、系列B、および系列Cは、好気槽1としてそれぞれ、好気槽1a、好気槽1bおよび好気槽1cを有する。好気槽1aには、槽内のアンモニア性窒素濃度を計測する(アンモニア計測ステップの一例)ためのアンモニア計20が取り付けられている。 The aerobic tank 1 has an aeration device 6 for performing aeration to supply air to the mixed solution (an example of an aeration step), and is equipped with a dissolved oxygen concentration meter 30 for measuring the dissolved oxygen concentration in the tank. It is a tank. The aerobic tank 1 is an aeration tank that performs microbial decomposition (oxidation) treatment of organic matter by an activated sludge method and nitrification of ammoniacal nitrogen by microbial treatment. Series A, Series B, and Series C have an aerobic tank 1a, an aerobic tank 1b, and an aerobic tank 1c, respectively, as the aerobic tank 1. An ammonia meter 20 for measuring the concentration of ammoniacal nitrogen in the tank (an example of the ammonia measurement step) is attached to the aerobic tank 1a.

曝気装置6は、ファンやブロワなどの送風機60などを有し、外気を吸引して好気槽1の混合液に空気を供給する空気供給装置である。以下では、曝気装置6が好気槽1の槽内に供給する単位時間あたりの空気量を風量(曝気風量の一例)と記載する。以下では、有機物の酸化処理とアンモニア性窒素の硝化とを包括して、単に処理と記載する。曝気装置6は、制御部9の動作指令に基づく送風機60の回転数調整などにより所定の風量を維持する。 The aeration device 6 is an air supply device that includes a blower 60 such as a fan or a blower, sucks outside air, and supplies air to the mixed liquid of the aerobic tank 1. In the following, the amount of air per unit time supplied by the aeration device 6 into the aeration tank 1 will be referred to as an air volume (an example of the aeration air volume). In the following, the oxidation treatment of organic substances and the nitrification of ammoniacal nitrogen are collectively referred to as treatment. The aeration device 6 maintains a predetermined air volume by adjusting the rotation speed of the blower 60 based on the operation command of the control unit 9.

好気槽1では、有機物の酸化およびアンモニア性窒素の硝化により、曝気装置6から供給される空気中の酸素が消費される。好気槽1では、有機物は酸化により、二酸化炭素と水に分解される。好気槽1では、アンモニア性窒素は硝化されて硝酸態窒素に変換される。 In the aerobic tank 1, oxygen in the air supplied from the aeration device 6 is consumed by the oxidation of organic matter and the nitrification of ammoniacal nitrogen. In the aerobic tank 1, organic matter is decomposed into carbon dioxide and water by oxidation. In the aerobic tank 1, ammoniacal nitrogen is nitrified and converted to nitrate nitrogen.

好気槽1において、曝気装置6から供給される風量が不足すると、処理に要する酸素が不足して、適切(十分)な処理を行えない。この場合、未分解の有機物やアンモニア性窒素が下水処理システム100の外部に流出してしまう。曝気装置6から供給される風量が過剰であると、送風機60などで消費する電力などのエネルギーが無駄になる。 In the aerobic tank 1, if the amount of air supplied from the aeration device 6 is insufficient, the oxygen required for the treatment is insufficient, and an appropriate (sufficient) treatment cannot be performed. In this case, undecomposed organic matter and ammoniacal nitrogen flow out to the outside of the sewage treatment system 100. If the amount of air supplied from the aeration device 6 is excessive, energy such as electric power consumed by the blower 60 or the like is wasted.

最終沈殿池59は、好気槽1から流出した混合液を受け入れて、好気槽1の活性汚泥などを沈降させる沈降槽である。最終沈殿池59で沈降させた活性汚泥は、排出機(図示せず)などにより下水処理システム100の外部へ排出される。最終沈殿池59で沈降させた活性汚泥の一部を、好気槽1に返送する場合もある(いわゆる返送汚泥)。 The final settling basin 59 is a settling basin that receives the mixed liquid flowing out of the aerobic tank 1 and setstles the activated sludge and the like in the aerobic tank 1. The activated sludge settled in the final settling basin 59 is discharged to the outside of the sewage treatment system 100 by a discharger (not shown) or the like. A part of the activated sludge settled in the final settling basin 59 may be returned to the aerobic tank 1 (so-called returned sludge).

アンモニア計測部2は、アンモニア計20を含み、アンモニア計20により取得したアンモニア性窒素濃度の計測値を制御部9へ送信する処理回路である。 The ammonia measuring unit 2 is a processing circuit including an ammonia meter 20 and transmitting the measured value of the ammoniacal nitrogen concentration acquired by the ammonia meter 20 to the control unit 9.

溶存酸素濃度計測部3は、それぞれの好気槽1に取り付けられた溶存酸素濃度計30を含み、取得したそれぞれの好気槽1ごとの溶存酸素濃度の計測値を制御部9へ送信する処理回路である。 The dissolved oxygen concentration measuring unit 3 includes a dissolved oxygen concentration meter 30 attached to each aerobic tank 1, and transmits the acquired measured value of the dissolved oxygen concentration for each aerobic tank 1 to the control unit 9. It is a circuit.

制御部9は、図1、図2に示すように、下水処理システム100の各動作を制御する中央制御機構である。制御部9は、アンモニア計測部2から受信したアンモニア性窒素濃度に基づいてそれぞれの好気槽1における曝気風量を制御する。制御部9は、記憶部8に記憶されたソフトウェアプログラムの実行により実現される機能部である第一制御部91、第二制御部92、および第三制御部93を有する。 As shown in FIGS. 1 and 2, the control unit 9 is a central control mechanism that controls each operation of the sewage treatment system 100. The control unit 9 controls the aeration air volume in each aerobic tank 1 based on the ammonia nitrogen concentration received from the ammonia measurement unit 2. The control unit 9 includes a first control unit 91, a second control unit 92, and a third control unit 93, which are functional units realized by executing a software program stored in the storage unit 8.

第三制御部93は、図2に示すように、アンモニア計測部2から受信したアンモニア性窒素濃度と、記憶部8に構築したデータベース(いわゆる、DB)であるアンモニア性窒素濃度目標値DB83にあらかじめ記憶されたアンモニア性窒素濃度目標値とに基づいて制御情報を第一制御部91に送出する機能部である。本実施形態において記憶部8は、アンモニア性窒素濃度目標値として、好気槽1aにおける目標値を記憶している。 As shown in FIG. 2, the third control unit 93 sets the ammonia nitrogen concentration received from the ammonia measurement unit 2 and the ammonia nitrogen concentration target value DB 83, which is a database (so-called DB) constructed in the storage unit 8, in advance. This is a functional unit that sends control information to the first control unit 91 based on the stored ammoniacal nitrogen concentration target value. In the present embodiment, the storage unit 8 stores the target value in the aerobic tank 1a as the target value of the ammoniacal nitrogen concentration.

第三制御部93は、制御情報として、アンモニア性窒素濃度とアンモニア性窒素濃度目標値との乖離度を含む信号(以下では乖離度信号と記載する)と、アンモニア性窒素濃度を無視する指示を含む信号(以下では無視信号と記載する)とを送出可能である。本実施形態において第三制御部93は、アンモニア性窒素濃度がアンモニア性窒素濃度目標値よりも所定範囲内で乖離している場合、乖離度信号を送出する。所定範囲内とは例えば、アンモニア性窒素濃度目標値よりも小さい所定の下限値を超える範囲である。また、第三制御部93は、アンモニア性窒素濃度が所定の下限値以下の場合、無視信号を送出する。 As control information, the third control unit 93 gives a signal including the degree of deviation between the ammoniacal nitrogen concentration and the ammoniacal nitrogen concentration target value (hereinafter referred to as a deviation degree signal) and an instruction to ignore the ammoniacal nitrogen concentration. A signal including the signal (hereinafter referred to as an ignore signal) can be transmitted. In the present embodiment, the third control unit 93 sends a dissociation degree signal when the ammoniacal nitrogen concentration deviates within a predetermined range from the ammoniacal nitrogen concentration target value. The predetermined range is, for example, a range exceeding a predetermined lower limit value smaller than the target value of ammoniacal nitrogen concentration. Further, the third control unit 93 sends an ignore signal when the ammoniacal nitrogen concentration is equal to or less than a predetermined lower limit value.

本実施形態において第三制御部93は、アンモニア計測部2からアンモニア性窒素濃度をリアルタイムに受信し、当該アンモニア性窒素濃度の変動に対応して、リアルタイムに制御情報を出力している。 In the present embodiment, the third control unit 93 receives the ammoniacal nitrogen concentration from the ammonia measurement unit 2 in real time, and outputs control information in real time in response to the fluctuation of the ammoniacal nitrogen concentration.

第一制御部91は、第三制御部93から受信した制御情報に基づいてそれぞれの好気槽1における槽内の溶存酸素濃度目標値を個別に決定もしくは更新する(第一制御ステップの一例)機能部である。以下では、決定、および決定された値を更新する動作の双方を包括して単に設定と記載する。第一制御部91は、好気槽1a、好気槽1bおよび好気槽1cのそれぞれの溶存酸素濃度目標値を設定する機能部であるDO設定部91a〜DO設定部91cを有する。 The first control unit 91 individually determines or updates the dissolved oxygen concentration target value in each aerobic tank 1 based on the control information received from the third control unit 93 (an example of the first control step). It is a functional part. In the following, both the determination and the operation of updating the determined value are collectively referred to as a setting. The first control unit 91 has DO setting units 91a to DO setting units 91c, which are functional units for setting the dissolved oxygen concentration target values of the aerobic tank 1a, the aerobic tank 1b, and the aerobic tank 1c, respectively.

第一制御部91は、溶存酸素濃度目標値を設定すると、当該溶存酸素濃度目標値を記憶部8におけるDO目標値DB81(DO目標値DB81a〜DO目標値DB81c)に記憶する。本実施形態において第一制御部91は、第三制御部93が送出する制御情報に対応して、リアルタイムに溶存酸素濃度目標値を更新している。なお、個別に設定される当該溶存酸素濃度目標値は、同一の値であってもよいし、各系列の配置や機器構成や酸素溶解効率のばらつき等を考慮してそれぞれの好気槽1ごとに異なる値であってもよい。 When the dissolved oxygen concentration target value is set, the first control unit 91 stores the dissolved oxygen concentration target value in the DO target value DB81 (DO target value DB81a to DO target value DB81c) in the storage unit 8. In the present embodiment, the first control unit 91 updates the dissolved oxygen concentration target value in real time in response to the control information transmitted by the third control unit 93. The dissolved oxygen concentration target value set individually may be the same value, or for each aerobic tank 1 in consideration of the arrangement of each series, the equipment configuration, the variation in oxygen dissolution efficiency, and the like. May be different values.

第一制御部91は、制御情報として乖離度情報を受信した場合、当該乖離度がゼロになるようにPID制御により溶存酸素濃度目標値を設定する。第一制御部91は、制御情報として無視信号を受信した場合、あらかじめ定められた溶存酸素濃度目標値を設定する。これにより第一制御部91は、アンモニア性窒素濃度の制御を優先して考慮した溶存酸素濃度目標値の設定と、有機物の酸化のための酸素消費量を優先して考慮した溶存酸素濃度目標値の設定とを適切に切替えて行える。 When the first control unit 91 receives the deviation degree information as the control information, the first control unit 91 sets the dissolved oxygen concentration target value by PID control so that the deviation degree becomes zero. When the first control unit 91 receives the ignore signal as control information, the first control unit 91 sets a predetermined dissolved oxygen concentration target value. As a result, the first control unit 91 sets the dissolved oxygen concentration target value in consideration of the control of the ammoniacal nitrogen concentration, and the dissolved oxygen concentration target value in consideration of the oxygen consumption for oxidation of the organic substance. It can be switched appropriately with the setting of.

第二制御部92は、記憶部8のDO目標値DB81に記憶されたそれぞれの好気槽1ごとの溶存酸素濃度目標値と、溶存酸素濃度計測部3から受信したそれぞれの好気槽1ごとの溶存酸素濃度とに基づいて、それぞれの好気槽1における曝気風量を制御する(第二制御ステップの一例)機能部である。本実施形態では、第二制御部92は、曝気風量の制御として曝気装置6の送風機60の回転数制御を行う。第二制御部92は、好気槽1a、好気槽1bおよび好気槽1cのそれぞれの送風機60a〜送風機60cの回転数制御を行う機能部である曝気装置コントローラ92a〜曝気装置コントローラ92cを有する。 The second control unit 92 has the dissolved oxygen concentration target value for each aerobic tank 1 stored in the DO target value DB 81 of the storage unit 8 and each aerobic tank 1 received from the dissolved oxygen concentration measuring unit 3. It is a functional unit that controls the aeration air volume in each aerobic tank 1 based on the dissolved oxygen concentration of (an example of the second control step). In the present embodiment, the second control unit 92 controls the rotation speed of the blower 60 of the aeration device 6 as the control of the aeration air volume. The second control unit 92 includes an aeration device controller 92a to an aeration device controller 92c, which are functional units that control the rotation speeds of the blowers 60a to 60c of the aerobic tank 1a, the aerobic tank 1b, and the aerobic tank 1c, respectively. ..

第二制御部92は、例えば、溶存酸素濃度が溶存酸素濃度目標値よりも小さい場合に送風機60の回転数を増大させて風量を増加させる。これにより混合液の溶存酸素濃度が増大する。溶存酸素濃度が溶存酸素濃度目標値を超える場合は送風機60の回転数を減少させて風量を減少させる。これにより混合液の溶存酸素濃度が減少する。溶存酸素濃度が溶存酸素濃度目標値に等しい場合には送風機60の回転数を維持する回転数制御を行う。当該回転数制御は例えばPID制御によって行う。このように、第一制御部91が制御情報に基づいて設定した溶存酸素濃度目標値に基づいて第二制御部92が曝気風量を制御することで、好気槽1のアンモニア性窒素の硝化と有機物の酸化との双方に適切な曝気操作(風量制御)を実現する。 The second control unit 92 increases the rotation speed of the blower 60 to increase the air volume, for example, when the dissolved oxygen concentration is smaller than the dissolved oxygen concentration target value. This increases the dissolved oxygen concentration of the mixture. When the dissolved oxygen concentration exceeds the dissolved oxygen concentration target value, the rotation speed of the blower 60 is reduced to reduce the air volume. This reduces the dissolved oxygen concentration in the mixture. When the dissolved oxygen concentration is equal to the dissolved oxygen concentration target value, the rotation speed control for maintaining the rotation speed of the blower 60 is performed. The rotation speed control is performed by, for example, PID control. In this way, the second control unit 92 controls the aeration air volume based on the dissolved oxygen concentration target value set by the first control unit 91 based on the control information, thereby nitrifying the ammoniacal nitrogen in the aerobic tank 1. Aeration operation (air volume control) suitable for both oxidation of organic matter is realized.

〔第一実施形態の変形例〕
第一実施形態では下水処理システム100の各系列が、下水が流入する上流側から順に、最初沈殿池51、好気槽1、最終沈殿池59を配置されて有する場合を説明した。しかしながら、下水処理システム100の各系列が、図3に示すように、最初沈殿池51、好気槽1、最終沈殿池59に加えて、活性汚泥の脱リンを行う嫌気槽52(嫌気処理部の一例)、活性汚泥により硝酸態窒素を還元して窒素に変換する無酸素槽53(無酸素処理部の一例)を有し、下水処理システム100が嫌気−無酸素−好気法を実行する下水の処理設備であってもよい。この場合において、好気槽1や制御部9などの動作は第一実施形態と同じであるため以下の説明では省略する。なお、嫌気槽52や無酸素槽53は、槽である。
[Modified example of the first embodiment]
In the first embodiment, the case where each series of the sewage treatment system 100 has the first settling basin 51, the aerobic tank 1, and the final settling basin 59 arranged in order from the upstream side where the sewage flows in has been described. However, as shown in FIG. 3, each series of the sewage treatment system 100 has an anaerobic tank 52 (anaerobic treatment unit) that dephosphorizes activated sludge in addition to the first settling basin 51, the aerobic tank 1, and the final settling basin 59. An example), the sewage treatment system 100 executes an anaerobic-anoxic-aerobic method having an anoxic tank 53 (an example of an anoxic treatment unit) that reduces nitrate nitrogen to nitrogen by activated sludge. It may be a sewage treatment facility. In this case, since the operations of the aerobic tank 1 and the control unit 9 are the same as those in the first embodiment, they will be omitted in the following description. The anaerobic tank 52 and the oxygen-free tank 53 are tanks.

下水処理システム100が嫌気槽52および無酸素槽53を有する場合、下水処理システム100の各系列は、下水が流入する上流側から順に、最初沈殿池51、嫌気槽52、無酸素槽53、好気槽1、最終沈殿池59の順に配置されてなる。 When the sewage treatment system 100 has an anaerobic tank 52 and an anoxic tank 53, each series of the sewage treatment system 100 has the first settling basin 51, the anaerobic tank 52, the anoxic tank 53, and the like, in order from the upstream side where the sewage flows. The air tank 1 and the final settling basin 59 are arranged in this order.

嫌気槽52には、最終沈殿池59で沈殿させた活性汚泥の一部を返送する。当該返送された活性汚泥を嫌気槽52で酸素欠乏状態に置くことでリンを放出(脱リン)する。脱リンした後に好気槽1へ移送された活性汚泥は、好気槽1の好気性状態下において、嫌気槽52で放出したリンに対して過剰に多量のリンを吸収する。これにより、下水処理システム100は下水からリンを除去する。 A part of the activated sludge settled in the final settling basin 59 is returned to the anaerobic tank 52. Phosphorus is released (dephosphorus) by placing the returned activated sludge in an oxygen-deficient state in the anaerobic tank 52. The activated sludge transferred to the aerobic tank 1 after dephosphorization absorbs an excessively large amount of phosphorus with respect to the phosphorus released in the anaerobic tank 52 under the aerobic state of the aerobic tank 1. As a result, the sewage treatment system 100 removes phosphorus from the sewage.

無酸素槽53には、好気槽1から混合液の一部を返送する。脱窒菌の硝酸呼吸、あるいは亜硝酸呼吸を利用して、好気槽1から返送された混合液に含まれる硝酸態窒素を窒素に還元する。脱窒菌は、硝酸呼吸、あるいは亜硝酸呼吸を行う際に、下水に含まれる有機物を併せて消費する。これにより、下水処理システム100は下水から硝酸態窒素を除去する。また、硝酸態窒素の除去に伴い、下水に含まれる有機物を除去する。 A part of the mixed solution is returned from the aerobic tank 1 to the oxygen-free tank 53. Nitrite nitrogen contained in the mixed solution returned from the aerobic tank 1 is reduced to nitrogen by utilizing nitric acid respiration or nitrite respiration of the denitrifying bacterium. Denitrifying bacteria also consume organic matter contained in sewage when performing nitrate respiration or nitrite respiration. As a result, the sewage treatment system 100 removes nitrate nitrogen from the sewage. In addition, organic matter contained in sewage is removed along with the removal of nitrate nitrogen.

以上のようにして、下水処理システムおよび下水処理方法は、溶存酸素濃度を適切に制御することができる。 As described above, the sewage treatment system and the sewage treatment method can appropriately control the dissolved oxygen concentration.

〔別実施形態〕
(1)上記実施形態では、下水処理システム100の各系列が、下水が流入する上流側から順に、最初沈殿池51、好気槽1、最終沈殿池59を配置されて有する場合、および、下水が流入する上流側から順に、最初沈殿池51、嫌気槽52、無酸素槽53、好気槽1、最終沈殿池59の順に配置されて有する場合を説明した。しかしながら、下水処理システム100の各系列は、嫌気槽52および無酸素槽53のいずれも有しない場合、もしくは、嫌気槽52と無酸素槽53との両方を有する場合に限られない。下水処理システム100の各系列が、嫌気槽52もしくは無酸素槽53のいずれか一方を有する場合もある。また、これら無酸素槽53と好気槽1との組み合わせを二段ないし三段、あるいは四段以上直列に繋いだいわゆるステップ流入式多段硝化脱窒法などの場合もある。この場合は、最終段の好気槽1にアンモニア計20および溶存酸素濃度計30を取り付ける。
[Another Embodiment]
(1) In the above embodiment, each series of the sewage treatment system 100 has a first settling basin 51, an aerobic tank 1, and a final settling basin 59 arranged in this order from the upstream side where the sewage flows in, and sewage. The case where the first settling basin 51, the anaerobic tank 52, the anoxic tank 53, the aerobic tank 1, and the final settling basin 59 are arranged in this order from the upstream side into which the sewage flows in has been described. However, each series of the sewage treatment system 100 is not limited to the case where neither the anaerobic tank 52 nor the anoxic tank 53 is provided, or the case where both the anaerobic tank 52 and the anoxic tank 53 are provided. Each series of the sewage treatment system 100 may have either an anaerobic tank 52 or an oxygen-free tank 53. Further, there is also a case of a so-called step inflow type multi-stage nitrification denitrification method in which a combination of the oxygen-free tank 53 and the aerobic tank 1 is connected in series in two or three stages or four or more stages. In this case, the ammonia meter 20 and the dissolved oxygen concentration meter 30 are attached to the aerobic tank 1 in the final stage.

下水処理システム100の各系列が、下水が流入する上流側から順に、最初沈殿池51、嫌気槽52、好気槽1、最終沈殿池59の順に配置されて有する場合、下水処理システム100は、いわゆる嫌気−好気法により、有機物とリンの除去を行える。 When each series of the sewage treatment system 100 has the first settling basin 51, the anaerobic tank 52, the aerobic tank 1, and the final settling basin 59 in this order from the upstream side where the sewage flows in, the sewage treatment system 100 has. The so-called anaerobic-aerobic method can remove organic matter and phosphorus.

下水処理システム100の各系列が、下水が流入する上流側から順に、最初沈殿池51、無酸素槽53、好気槽1、最終沈殿池59の順に配置されて有する場合、下水処理システム100は、いわゆる無酸素−好気法により、窒素の除去を行える。 When each series of the sewage treatment system 100 has the first settling basin 51, the oxygen-free tank 53, the aerobic tank 1, and the final settling basin 59 in this order from the upstream side where the sewage flows in, the sewage treatment system 100 Nitrogen can be removed by the so-called anoxic-aerobic method.

(2)上記実施形態では、制御部9が第一制御部91と第三制御部93とを有し、第三制御部93がアンモニア計測部2から受信したアンモニア性窒素濃度と、記憶部8におけるアンモニア性窒素濃度目標値DB83にあらかじめ記憶されたアンモニア性窒素濃度目標値とに基づいて制御情報を第一制御部91に送出する場合を説明した。また、第一制御部91が、第三制御部93が送出する制御情報に基づいて、好気槽1a、好気槽1bおよび好気槽1cのそれぞれの溶存酸素濃度目標値を設定し、当該溶存酸素濃度目標値を記憶部8のDO目標値DB81に記憶する場合を説明した。しかしながら、制御部9が第三制御部93を有さない場合もある。この場合、例えば、第一制御部91がアンモニア計測部2から受信したアンモニア性窒素濃度とアンモニア性窒素濃度目標値DB83にあらかじめ記憶されたアンモニア性窒素濃度目標値とに基づいて好気槽1a、好気槽1bおよび好気槽1cのそれぞれの溶存酸素濃度目標値を設定し、当該溶存酸素濃度目標値を記憶部8のDO目標値DB81に記憶してもよい。この場合、アンモニア性窒素濃度がアンモニア性窒素濃度目標値に近付くように、第一制御部91がPID制御により溶存酸素濃度目標値を設定しても良い。 (2) In the above embodiment, the control unit 9 has a first control unit 91 and a third control unit 93, and the third control unit 93 has the ammoniacal nitrogen concentration received from the ammonia measurement unit 2 and the storage unit 8. The case where the control information is transmitted to the first control unit 91 based on the ammoniacal nitrogen concentration target value stored in advance in the ammoniacal nitrogen concentration target value DB83 in the above has been described. Further, the first control unit 91 sets the dissolved oxygen concentration target values of the aerobic tank 1a, the aerobic tank 1b, and the aerobic tank 1c based on the control information transmitted by the third control unit 93, and sets the dissolved oxygen concentration target value. The case where the dissolved oxygen concentration target value is stored in the DO target value DB 81 of the storage unit 8 has been described. However, the control unit 9 may not have the third control unit 93. In this case, for example, the aerobic tank 1a, based on the ammonia nitrogen concentration received from the ammonia measurement unit 2 by the first control unit 91 and the ammonia nitrogen concentration target value stored in advance in the ammonia nitrogen concentration target value DB83, The dissolved oxygen concentration target values of the aerobic tank 1b and the aerobic tank 1c may be set, and the dissolved oxygen concentration target value may be stored in the DO target value DB 81 of the storage unit 8. In this case, the first control unit 91 may set the dissolved oxygen concentration target value by PID control so that the ammoniacal nitrogen concentration approaches the ammoniacal nitrogen concentration target value.

(3)上記実施形態では、アンモニア性窒素濃度目標値が記憶部8のアンモニア性窒素濃度目標値DB83にあらかじめ記憶されている場合を説明した。しかしながら、アンモニア性窒素濃度目標値は、単純に数値として記憶されている場合に限られない。 (3) In the above embodiment, the case where the ammoniacal nitrogen concentration target value is stored in advance in the ammoniacal nitrogen concentration target value DB83 of the storage unit 8 has been described. However, the ammoniacal nitrogen concentration target value is not limited to the case where it is simply stored as a numerical value.

例えば、アンモニア性窒素濃度の値に対応するアンモニア性窒素濃度目標値を参照可能な関係情報(以下では第一関係情報と称する)を関係情報データベースや所定の関数などとして記憶部8に記憶しておく。そして、例えば第三制御部93が、アンモニア性窒素濃度と当該第一関係情報とに基づいてアンモニア性窒素濃度目標値を選択もしくは決定することもできる。 For example, the relational information (hereinafter referred to as the first relational information) that can refer to the ammoniacal nitrogen concentration target value corresponding to the value of the ammoniacal nitrogen concentration is stored in the storage unit 8 as a relational information database or a predetermined function. deep. Then, for example, the third control unit 93 can select or determine the ammoniacal nitrogen concentration target value based on the ammoniacal nitrogen concentration and the first relational information.

上記第一関係情報は、時間帯、天候や季節の変化に伴う下水の水量や水質などの変動があった場合のアンモニア性窒素濃度の値に対応するアンモニア性窒素濃度目標値を、あらかじめ学習させたものを記憶して用いることができる。この場合、下水処理システム100に、時間帯、天候や季節の変化に伴う下水の水量や水質などの変化情報の入力部(図示せず)を更に設け、第三制御部93は、当該変化情報と、アンモニア計測部2から受信したアンモニア性窒素濃度と、アンモニア性窒素濃度目標値に基づいて設定された溶存酸素濃度目標値と、溶存酸素濃度計測部3から受信した溶存酸素濃度と、に基づいて、溶存酸素濃度が速やかに溶存酸素濃度目標値に収束する第一関係情報を学習し、アンモニア性窒素濃度の値に対応するアンモニア性窒素濃度目標値に関する関係情報データベースなどを更新することもできる。 The above first-related information is used to learn in advance the target value of ammonia nitrogen concentration corresponding to the value of ammonia nitrogen concentration when there is a change in the amount or quality of sewage due to changes in time zone, weather or season. Can be memorized and used. In this case, the sewage treatment system 100 is further provided with an input unit (not shown) for change information such as the amount and quality of sewage due to changes in time zone, weather and season, and the third control unit 93 provides the change information. Based on the ammonia nitrogen concentration received from the ammonia measuring unit 2, the dissolved oxygen concentration target value set based on the ammonia nitrogen concentration target value, and the dissolved oxygen concentration received from the dissolved oxygen concentration measuring unit 3. It is also possible to learn the first relational information that the dissolved oxygen concentration quickly converges to the dissolved oxygen concentration target value, and to update the relational information database related to the ammoniacal nitrogen concentration target value corresponding to the ammoniacal nitrogen concentration value. ..

(4)上記実施形態では、第一制御部91は、第三制御部93が更新するアンモニア性窒素濃度目標値の変動に対応して、PID制御によりリアルタイムに溶存酸素濃度目標値を設定(更新)する場合を説明した。しかしながら、アンモニア性窒素濃度目標値は、PID制御により設定する場合に限られない。 (4) In the above embodiment, the first control unit 91 sets (updates) the dissolved oxygen concentration target value in real time by PID control in response to the fluctuation of the ammoniacal nitrogen concentration target value updated by the third control unit 93. ) Was explained. However, the ammoniacal nitrogen concentration target value is not limited to the case where it is set by PID control.

例えば、アンモニア性窒素濃度目標値の値に対応する溶存酸素濃度目標値を参照可能な関係情報(以下では第二関係情報と称する)を関係情報データベースや所定の関数などとして記憶部8に記憶しておく。そして、第三制御部93は、アンモニア性窒素濃度と当該第二関係情報とに基づいて溶存酸素濃度目標値を設定することもできる。 For example, the relational information (hereinafter referred to as the second relational information) that can refer to the dissolved oxygen concentration target value corresponding to the value of the ammoniacal nitrogen concentration target value is stored in the storage unit 8 as a relational information database or a predetermined function. Keep it. Then, the third control unit 93 can also set the dissolved oxygen concentration target value based on the ammoniacal nitrogen concentration and the second relational information.

上記第二関係情報は、時間帯、天候や季節の変化に伴う下水の水量や水質などの変動があった場合の溶存酸素濃度目標値を、あらかじめ学習させたものを用いることができる。この場合、下水処理システム100に、時間帯、天候や季節の変化に伴う下水の水量や水質などの変化情報の入力部(図示せず)を更に設け、第一制御部91は、当該変化情報と、アンモニア性窒素濃度目標値と、溶存酸素濃度目標値と、溶存酸素濃度計測部3から受信した溶存酸素濃度と、に基づいて、溶存酸素濃度が速やかに溶存酸素濃度目標値に収束する第二関係情報を学習し、関係情報データベースなどを更新することもできる。 As the second relational information, it is possible to use information in which the dissolved oxygen concentration target value when there is a change in the amount or quality of sewage due to a change in time zone, weather or season is learned in advance. In this case, the sewage treatment system 100 is further provided with an input unit (not shown) for change information such as the amount and quality of sewage due to changes in time zone, weather, and season, and the first control unit 91 is provided with the change information. Based on the ammonia nitrogen concentration target value, the dissolved oxygen concentration target value, and the dissolved oxygen concentration received from the dissolved oxygen concentration measuring unit 3, the dissolved oxygen concentration quickly converges to the dissolved oxygen concentration target value. (Ii) It is also possible to learn relational information and update the relational information database.

(5)上記実施形態では、第三制御部93は、アンモニア性窒素濃度がアンモニア性窒素濃度目標値よりも所定範囲内で乖離している場合、制御情報としてアンモニア性窒素濃度とアンモニア性窒素濃度目標値との乖離度を含む乖離度信号を送出し、アンモニア性窒素濃度が所定の下限値以下の場合にアンモニア性窒素濃度を無視する指示を含む無視信号を制御情報として送出する場合を説明した。また、第一制御部91は、制御情報として乖離度情報を受信した場合、当該乖離度情報に基づいて溶存酸素濃度目標値を設定し、制御情報として無視信号を受信した場合、あらかじめ定められた溶存酸素濃度目標値を設定する場合を説明した。しかしながら、第三制御部93は、無視信号に代えて、制御情報としてアンモニア性窒素濃度とアンモニア性窒素濃度目標値との乖離度に所定の補正を加えた補正乖離度を含む補正乖離度信号を送出することもできる。補正乖離度は、例えばアンモニア性窒素濃度が所定の値(ただし、アンモニア性窒素濃度目標値よりも小さく、上述の所定の下限値以上の値)である場合の乖離度を採用することができる。 (5) In the above embodiment, when the ammoniacal nitrogen concentration deviates within a predetermined range from the ammoniacal nitrogen concentration target value, the third control unit 93 provides control information of the ammoniacal nitrogen concentration and the ammoniacal nitrogen concentration. The case where a deviation degree signal including the deviation degree from the target value is transmitted and an ignore signal including an instruction to ignore the ammoniacal nitrogen concentration is transmitted as control information when the ammoniacal nitrogen concentration is equal to or less than a predetermined lower limit value has been described. .. Further, when the first control unit 91 receives the deviation degree information as the control information, the dissolved oxygen concentration target value is set based on the deviation degree information, and when the ignore signal is received as the control information, it is predetermined. The case of setting the dissolved oxygen concentration target value has been described. However, instead of the ignore signal, the third control unit 93 uses, as control information, a correction deviation degree signal including a correction deviation degree obtained by adding a predetermined correction to the deviation degree between the ammoniacal nitrogen concentration and the ammoniacal nitrogen concentration target value. It can also be sent. As the correction degree of divergence, for example, the degree of divergence when the ammoniacal nitrogen concentration is a predetermined value (however, the value is smaller than the ammoniacal nitrogen concentration target value and equal to or more than the above-mentioned predetermined lower limit value) can be adopted.

この場合、第一制御部91は、制御情報として受信した乖離度情報もしくは補正乖離度情報に基づいて溶存酸素濃度目標値を設定する。 In this case, the first control unit 91 sets the dissolved oxygen concentration target value based on the deviation degree information or the correction deviation degree information received as the control information.

(6)上記実施形態では、分配部5が、下水処理システム100へ下水を導く流路に設けられた開度調整可能な可動堰である場合を説明したが、分配部5は可動堰に限られない。分配部5は、可動堰以外にも、弁やポンプ、もしくはこれらの組み合わせなどでもよい。例えば、分配部5を、下水処理システム100へ下水を導く流路から流路5a、流路5bおよび流路5cの各流路へ分岐する分岐流路と、これら各流路に設けられた弁やポンプ、もしくはポンプと弁との組み合わせであってもよい。弁であれば、流路ごとに弁の開度調整をして下水を均等配分すればよい。ポンプであれば、流路ごとにポンプの出力を調整してもよいし、ポンプの下流側流路に弁を設け、ポンプの出力は一定として弁の開度調整をして下水を均等配分してもよい。 (6) In the above embodiment, the case where the distribution unit 5 is a movable weir with an adjustable opening degree provided in the flow path for guiding the sewage to the sewage treatment system 100 has been described, but the distribution unit 5 is limited to the movable weir. I can't. The distribution unit 5 may be a valve, a pump, or a combination thereof, in addition to the movable weir. For example, a branch flow path that branches the distribution unit 5 from a flow path that guides sewage to the sewage treatment system 100 to each flow path of the flow path 5a, the flow path 5b, and the flow path 5c, and a valve provided in each of these flow paths. Or a pump, or a combination of a pump and a valve. If it is a valve, the opening degree of the valve may be adjusted for each flow path to evenly distribute the sewage. If it is a pump, the output of the pump may be adjusted for each flow path, or a valve is provided in the flow path on the downstream side of the pump, and the opening of the valve is adjusted so that the output of the pump is constant to evenly distribute the sewage. You may.

(7)上記実施形態では、好気槽1ごとの曝気装置6は送風機60(送風機60aなど)を有し、第二制御部92(曝気装置コントローラ92aなど)は、曝気風量の制御として好気槽1ごとの送風機60の回転数制御を行う場合を説明した。しかしながら、送風機60や第二制御部92の構成や制御はこの例示に限られない。好気槽1ごとに送風機60を設ける代わりに、複数の好気槽1に対してひとつの送風装置を設けてもよい。そして、当該一つの送風装置から送風配管などを分岐させてそれぞれの好気槽1に送風してもよい。なお、上述の送風装置は、一つ以上のブロワなどを有する装置である。この場合、それぞれの配管ごとに風量調整弁を設けて好気槽1ごとの送風量を調整することができ、第二制御部92(曝気装置コントローラ92aなど)は、送風機60の回転数制御を行う代わりに、当該風量調整弁の開度調整を行えばよい。 (7) In the above embodiment, the aeration device 6 for each aeration tank 1 has a blower 60 (blower 60a, etc.), and the second control unit 92 (aeration device controller 92a, etc.) is aerobic for controlling the aeration air volume. The case where the rotation speed of the blower 60 is controlled for each tank 1 has been described. However, the configuration and control of the blower 60 and the second control unit 92 are not limited to this example. Instead of providing a blower 60 for each aerobic tank 1, one blower may be provided for a plurality of aerobic tanks 1. Then, the blower pipe or the like may be branched from the one blower to blow air into each aerobic tank 1. The above-mentioned blower is a device having one or more blowers and the like. In this case, an air volume adjusting valve can be provided for each pipe to adjust the air volume for each aerobic tank 1, and the second control unit 92 (aeration device controller 92a, etc.) controls the rotation speed of the blower 60. Instead, the opening degree of the air volume adjusting valve may be adjusted.

(8)上記実施形態では、好気処理部の一例として、槽である好気槽1を例示して説明した。また、特に第一実施形態の変形例の説明では、嫌気処理部の一例として、槽である嫌気槽52を例示し、また、無酸素処理部の一例として槽である無酸素槽53を例示した。しかし、好気処理部、嫌気処理部、もしくは無酸素処理部は、好気槽1、嫌気槽52もしくは無酸素槽53のように、かならずしも単一の槽である場合に限られない。たとえば、一つの槽を、嫌気処理部に対応する嫌気区分、無酸素処理部に対応する無酸素区分、好気処理部に対応する好気区分として、槽内に堰などを設けて区分けする場合もある。また、最初沈殿池51や最終沈殿池59についても同様である。 (8) In the above embodiment, the aerobic tank 1 which is a tank has been illustrated and described as an example of the aerobic treatment unit. Further, in particular, in the description of the modified example of the first embodiment, the anaerobic tank 52, which is a tank, is exemplified as an example of the anaerobic treatment unit, and the oxygen-free tank 53, which is a tank, is exemplified as an example of the oxygen-free treatment unit. .. However, the aerobic treatment unit, the anaerobic treatment unit, or the anoxic treatment unit is not always limited to a single tank such as the aerobic tank 1, the anaerobic tank 52, or the oxygen-free tank 53. For example, when one tank is divided by providing a weir or the like in the tank as an anaerobic classification corresponding to the anaerobic treatment unit, an oxygen-free classification corresponding to the anoxic treatment unit, and an aerobic classification corresponding to the aerobic treatment unit. There is also. The same applies to the first settling basin 51 and the final settling basin 59.

(9)上記第一実施形態の変形例の説明では、系列Aの好気槽1aに、槽内のアンモニア性窒素濃度を計測するためのアンモニア計20が取り付けられている場合を例示した。また、制御部9が、アンモニア計20を有するアンモニア計測部2から受信したアンモニア性窒素濃度に基づいてそれぞれの好気槽1における曝気風量を制御する場合を説明した。また、記憶部8は、アンモニア性窒素濃度目標値として、好気槽1aにおける目標値を記憶している場合を説明した。また、制御部9は、第一制御部91、第二制御部92、および第三制御部93を有し、アンモニア性窒素濃度とアンモニア性窒素濃度目標値とに基づいて制御情報を第一制御部91に送出する場合を説明した。しかし、系列Aの嫌気槽52や、無酸素槽53に、これら槽内のアンモニア性窒素濃度を計測するためのアンモニア計20を取り付ける場合もある。この場合も、制御部9は、アンモニア計測部2から受信したアンモニア性窒素濃度とアンモニア性窒素濃度目標値とに基づいてそれぞれの好気槽1における曝気風量を制御してよい。 (9) In the description of the modified example of the first embodiment, the case where the ammonia meter 20 for measuring the ammonia nitrogen concentration in the tank is attached to the aerobic tank 1a of the series A is illustrated. Further, the case where the control unit 9 controls the aeration air volume in each aerobic tank 1 based on the ammonia nitrogen concentration received from the ammonia measurement unit 2 having the ammonia meter 20 has been described. Further, the storage unit 8 has described the case where the target value in the aerobic tank 1a is stored as the target value for the ammonia nitrogen concentration. Further, the control unit 9 has a first control unit 91, a second control unit 92, and a third control unit 93, and first controls control information based on the ammoniacal nitrogen concentration and the ammoniacal nitrogen concentration target value. The case of sending to the unit 91 has been described. However, in some cases, an ammonia meter 20 for measuring the concentration of ammoniacal nitrogen in these tanks may be attached to the anaerobic tank 52 or the oxygen-free tank 53 of the series A. In this case as well, the control unit 9 may control the aeration air volume in each aerobic tank 1 based on the ammonia nitrogen concentration and the ammonia nitrogen concentration target value received from the ammonia measurement unit 2.

なおこの場合は、記憶部8に、アンモニア計測部2から受信したアンモニア性窒素濃度に基づいて好気槽1におけるアンモニア性窒素濃度を予測するための関係情報(たとえば、嫌気槽52や無酸素槽53におけるアンモニア性窒素濃度を入力変数とし、好気槽1におけるアンモニア性窒素濃度の予測値を出力する関数。以下では予測情報と記載する)を更に記憶するとよい。このように予測情報を用いることで、制御部9は、嫌気槽52や無酸素槽53におけるアンモニア性窒素濃度に基づいて好気槽1aにおけるアンモニア性窒素濃度を予測し、当該予測されたアンモニア性窒素濃度と好気槽1aにおけるアンモニア性窒素濃度目標値とに基づいてそれぞれの好気槽1における曝気風量を制御することができる。 In this case, the storage unit 8 has related information (for example, an anaerobic tank 52 or an oxygen-free tank) for predicting the ammonia nitrogen concentration in the aerobic tank 1 based on the ammonia nitrogen concentration received from the ammonia measuring unit 2. It is preferable to further store the function that outputs the predicted value of the ammoniacal nitrogen concentration in the aerobic tank 1 with the ammoniacal nitrogen concentration in 53 as an input variable (hereinafter referred to as prediction information). By using the prediction information in this way, the control unit 9 predicts the ammoniacal nitrogen concentration in the aerobic tank 1a based on the ammoniacal nitrogen concentration in the anaerobic tank 52 and the anoxic tank 53, and the predicted ammoniacality. The amount of exposed air in each aerobic tank 1 can be controlled based on the nitrogen concentration and the target value of the ammoniacal nitrogen concentration in the aerobic tank 1a.

なお、アンモニア計20は、好気槽1の直前の無酸素槽53に取り付けることが好ましい。 The ammonia meter 20 is preferably attached to the oxygen-free tank 53 immediately before the aerobic tank 1.

(10)上記第一実施形態の変形例の説明では、系列Aの好気槽1aに、槽内のアンモニア性窒素濃度を計測するためのアンモニア計20が取り付けられている場合を例示した。また、制御部9が、アンモニア計20を有するアンモニア計測部2から受信したアンモニア性窒素濃度に基づいてそれぞれの好気槽1における曝気風量を制御する場合を説明した。また、記憶部8は、アンモニア性窒素濃度目標値として、好気槽1aにおける目標値を記憶している場合を説明した。また、制御部9は、第一制御部91、第二制御部92、および第三制御部93を有し、アンモニア性窒素濃度とアンモニア性窒素濃度目標値とに基づいて制御情報を第一制御部91に送出する場合を説明した。しかし、嫌気槽52や、無酸素槽53に、これら槽内のアンモニア性窒素濃度を計測するためのアンモニア計20を取り付ける場合もある。そして記憶部8に、アンモニア性窒素濃度目標値として、嫌気槽52や無酸素槽53における目標値を記憶する場合もある。 (10) In the description of the modified example of the first embodiment, the case where the ammonia meter 20 for measuring the ammonia nitrogen concentration in the tank is attached to the aerobic tank 1a of the series A is illustrated. Further, the case where the control unit 9 controls the aeration air volume in each aerobic tank 1 based on the ammonia nitrogen concentration received from the ammonia measurement unit 2 having the ammonia meter 20 has been described. Further, the storage unit 8 has described the case where the target value in the aerobic tank 1a is stored as the target value for the ammonia nitrogen concentration. Further, the control unit 9 has a first control unit 91, a second control unit 92, and a third control unit 93, and first controls control information based on the ammoniacal nitrogen concentration and the ammoniacal nitrogen concentration target value. The case of sending to the unit 91 has been described. However, the anaerobic tank 52 or the oxygen-free tank 53 may be provided with an ammonia meter 20 for measuring the concentration of ammoniacal nitrogen in these tanks. Then, the storage unit 8 may store the target value in the anaerobic tank 52 or the anoxic tank 53 as the target value for the ammonia nitrogen concentration.

なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in other embodiments as long as there is no contradiction. The embodiments disclosed in the present specification are examples, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.

本発明は、溶存酸素濃度を適切に制御可能な下水処理システムおよび下水処理方法に適用できる。 The present invention can be applied to sewage treatment systems and sewage treatment methods in which the dissolved oxygen concentration can be appropriately controlled.

1 :好気槽(好気処理部)
1a :好気槽(好気処理部)
1b :好気槽(好気処理部)
1c :好気槽(好気処理部)
2 :アンモニア計測部
3 :溶存酸素濃度計測部
5 :分配部
6 :曝気装置
9 :制御部
20 :アンモニア計
30 :溶存酸素濃度計
52 :嫌気槽(嫌気処理部)
53 :無酸素槽(無酸素処理部)
81 :DO目標値DB(溶存酸素濃度目標値)
83 :アンモニア性窒素濃度目標値DB(アンモニア性窒素濃度目標値)
91 :第一制御部
92 :第二制御部
93 :第三制御部
100 :下水処理システム
A :系列(処理系列)
B :系列(処理系列)
C :系列(処理系列)
1: Aerobic tank (aerobic treatment unit)
1a: Aerobic tank (aerobic treatment unit)
1b: Aerobic tank (aerobic treatment unit)
1c: Aerobic tank (aerobic treatment unit)
2: Ammonia measuring unit 3: Dissolved oxygen concentration measuring unit 5: Distributing unit 6: Aeration device 9: Control unit 20: Ammonia meter 30: Dissolved oxygen concentration meter 52: Anaerobic tank (anaerobic treatment unit)
53: Anoxic tank (anoxic treatment section)
81: DO target value DB (dissolved oxygen concentration target value)
83: Ammonia nitrogen concentration target value DB (ammonia nitrogen concentration target value)
91: First control unit 92: Second control unit 93: Third control unit 100: Sewage treatment system A: Series (treatment series)
B: Series (processing series)
C: Series (processing series)

Claims (9)

流入する下水を曝気する好気処理部と、前記好気処理部の上流に嫌気処理部または無酸素処理部とを有する複数の処理系列と、
少なくともいずれか1つの前記処理系列における前記嫌気処理部または前記無酸素処理部に設けられたアンモニア計を有し、前記嫌気処理部または前記無酸素処理部のアンモニア性窒素濃度を取得するアンモニア計測部と、
複数の前記処理系列におけるそれぞれの前記好気処理部に設けられた溶存酸素濃度計を有し、それぞれの当該好気処理部の溶存酸素濃度を取得する溶存酸素濃度計測部と、
それぞれの前記好気処理部の曝気を制御する制御部と、を備え、
前記制御部は、
前記好気処理部の溶存酸素濃度目標値を設定する第一制御部と、
前記好気処理部の曝気風量を制御する第二制御部と、を有し、
前記第一制御部は、前記アンモニア性窒素濃度に基づいて、それぞれの前記好気処理部の前記溶存酸素濃度目標値を設定し、
前記第二制御部は、前記溶存酸素濃度目標値と、前記溶存酸素濃度計測部が取得したそれぞれの溶存酸素濃度とに基づいて、それぞれの前記好気処理部の曝気風量を制御する下水処理システム。
A plurality of treatment sequences having an aerobic treatment unit that aerates the inflowing sewage and an anaerobic treatment unit or an oxygen-free treatment unit upstream of the aerobic treatment unit.
An ammonia measuring unit having an ammonia meter provided in the anaerobic treatment unit or the anoxic treatment unit in at least one of the treatment series and acquiring the ammoniacal nitrogen concentration of the anaerobic treatment unit or the anoxic treatment unit. When,
A dissolved oxygen concentration measuring unit having a dissolved oxygen concentration meter provided in each of the aerobic treatment units in the plurality of processing series and acquiring the dissolved oxygen concentration of each of the aerobic treatment units.
A control unit that controls the aeration of each of the aerobic treatment units is provided.
The control unit
The first control unit that sets the dissolved oxygen concentration target value of the aerobic treatment unit, and
It has a second control unit that controls the aeration air volume of the aerobic treatment unit.
The first control unit sets the dissolved oxygen concentration target value of each of the aerobic treatment units based on the ammoniacal nitrogen concentration.
The second control unit is a sewage treatment system that controls the aeration air volume of each of the aerobic treatment units based on the dissolved oxygen concentration target value and the respective dissolved oxygen concentrations acquired by the dissolved oxygen concentration measurement unit. ..
流入する下水を曝気する好気処理部を有する複数の処理系列と、 A plurality of treatment sequences having an aerobic treatment unit that aerates the inflowing sewage,
少なくともいずれか1つの前記処理系列に設けられたアンモニア計を有し、前記処理系列のアンモニア性窒素濃度を取得するアンモニア計測部と、 An ammonia measuring unit having an ammonia meter provided in at least one of the treatment series and acquiring the ammonia nitrogen concentration of the treatment series.
複数の前記処理系列におけるそれぞれの前記好気処理部に設けられた溶存酸素濃度計を有し、それぞれの当該好気処理部の溶存酸素濃度を取得する溶存酸素濃度計測部と、 A dissolved oxygen concentration measuring unit having a dissolved oxygen concentration meter provided in each of the aerobic treatment units in the plurality of processing series and acquiring the dissolved oxygen concentration of each of the aerobic treatment units.
それぞれの前記好気処理部の曝気を制御する制御部と、 A control unit that controls the aeration of each of the aerobic treatment units,
アンモニア性窒素濃度目標値を記憶した記憶部と、を備え、 It is equipped with a storage unit that stores the target value of ammonia nitrogen concentration.
前記制御部は、 The control unit
前記好気処理部の溶存酸素濃度目標値を設定する第一制御部と、 The first control unit that sets the dissolved oxygen concentration target value of the aerobic treatment unit, and
前記好気処理部の曝気風量を制御する第二制御部と、 A second control unit that controls the aeration air volume of the aerobic treatment unit, and
前記アンモニア性窒素濃度と前記アンモニア性窒素濃度目標値との乖離度を含む制御情報を送出する第三制御部と、を有し、 It has a third control unit that sends out control information including the degree of deviation between the ammoniacal nitrogen concentration and the ammoniacal nitrogen concentration target value.
前記第一制御部は、前記アンモニア性窒素濃度が所定の下限値を超える場合、それぞれの前記好気処理部の前記溶存酸素濃度目標値を前記制御情報に基づくPID制御により設定し、前記アンモニア性窒素濃度が前記下限値以下の場合、予め定められた値を前記溶存酸素濃度目標値とし、 When the ammoniacal nitrogen concentration exceeds a predetermined lower limit value, the first control unit sets the dissolved oxygen concentration target value of each of the aerobic treatment units by PID control based on the control information, and the ammoniacality. When the nitrogen concentration is equal to or less than the lower limit value, a predetermined value is set as the dissolved oxygen concentration target value.
前記第二制御部は、前記溶存酸素濃度目標値と、前記溶存酸素濃度計測部が取得したそれぞれの溶存酸素濃度とに基づいて、それぞれの前記好気処理部の曝気風量を制御する下水処理システム。 The second control unit is a sewage treatment system that controls the aeration air volume of each of the aerobic treatment units based on the dissolved oxygen concentration target value and the respective dissolved oxygen concentrations acquired by the dissolved oxygen concentration measurement unit. ..
流入する下水を曝気する好気処理部を有する複数の処理系列と、 A plurality of treatment sequences having an aerobic treatment unit that aerates the inflowing sewage,
少なくともいずれか1つの前記処理系列に設けられたアンモニア計を有し、前記処理系列のアンモニア性窒素濃度を取得するアンモニア計測部と、 An ammonia measuring unit having an ammonia meter provided in at least one of the treatment series and acquiring the ammonia nitrogen concentration of the treatment series.
複数の前記処理系列におけるそれぞれの前記好気処理部に設けられた溶存酸素濃度計を有し、それぞれの当該好気処理部の溶存酸素濃度を取得する溶存酸素濃度計測部と、 A dissolved oxygen concentration measuring unit having a dissolved oxygen concentration meter provided in each of the aerobic treatment units in the plurality of processing series and acquiring the dissolved oxygen concentration of each of the aerobic treatment units.
それぞれの前記好気処理部の曝気を制御する制御部と、 A control unit that controls the aeration of each of the aerobic treatment units,
前記下水の水量又は水質の変化を含む変化情報を取得する入力部と、を備え、 It is provided with an input unit for acquiring change information including a change in the amount or quality of the sewage.
前記制御部は、 The control unit
前記好気処理部の溶存酸素濃度目標値を設定する第一制御部と、 The first control unit that sets the dissolved oxygen concentration target value of the aerobic treatment unit, and
前記好気処理部の曝気風量を制御する第二制御部と、を有し、 It has a second control unit that controls the aeration air volume of the aerobic treatment unit.
前記第一制御部は、前記アンモニア性窒素濃度及び前記変化情報に基づいて、それぞれの前記好気処理部の前記溶存酸素濃度目標値を設定し、 The first control unit sets the dissolved oxygen concentration target value of each of the aerobic treatment units based on the ammoniacal nitrogen concentration and the change information.
前記第二制御部は、前記溶存酸素濃度目標値と、前記溶存酸素濃度計測部が取得したそれぞれの溶存酸素濃度とに基づいて、それぞれの前記好気処理部の曝気風量を制御する下水処理システム。 The second control unit is a sewage treatment system that controls the aeration air volume of each of the aerobic treatment units based on the dissolved oxygen concentration target value and the respective dissolved oxygen concentrations acquired by the dissolved oxygen concentration measurement unit. ..
前記アンモニア計は、前記好気処理部に設けられている請求項2又は3に記載の下水処理システム。 The sewage treatment system according to claim 2 or 3 , wherein the ammonia meter is provided in the aerobic treatment unit. 前記第二制御部は前記曝気風量をPID制御する請求項1からのいずれか一項に記載の下水処理システム。 The sewage treatment system according to any one of claims 1 to 4 , wherein the second control unit controls the aeration air volume by PID. それぞれの前記処理系列に流入する前記下水の当該処理系列での滞留時間が等しくなるように当該下水を分配する分配部を有する請求項1からのいずれか一項に記載の下水処理システム。 The sewage treatment system according to any one of claims 1 to 5 , further comprising a distribution unit that distributes the sewage so that the residence time of the sewage flowing into the treatment series in the treatment series is equal. 流入する下水を複数の処理系列に分配してそれぞれの好気処理部で曝気する曝気ステップと、
少なくともいずれか1つの前記処理系列において、前記好気処理部の上流に設けられた嫌気処理部または無酸素処理部のアンモニア性窒素濃度を取得するアンモニア計測ステップと、
それぞれの前記好気処理部の溶存酸素濃度を取得する溶存酸素濃度計測ステップと、
前記アンモニア性窒素濃度に基づいて、それぞれの前記好気処理部の溶存酸素濃度目標値を設定する第一制御ステップと、
前記溶存酸素濃度目標値と、それぞれの前記好気処理部の溶存酸素濃度とに基づいて、それぞれの前記好気処理部の曝気風量を制御する第二制御ステップとを有する下水処理方法。
An aeration step in which the inflowing sewage is distributed to multiple treatment series and aerated in each aerobic treatment unit.
In at least one of the treatment series, an ammonia measurement step for acquiring the ammoniacal nitrogen concentration of the anaerobic treatment section or the anoxic treatment section provided upstream of the aerobic treatment section, and
A dissolved oxygen concentration measurement step for acquiring the dissolved oxygen concentration of each of the aerobic treatment units, and
The first control step of setting the dissolved oxygen concentration target value of each of the aerobic treatment units based on the ammoniacal nitrogen concentration,
A sewage treatment method having a second control step of controlling the aeration air volume of each of the aerobic treatment units based on the dissolved oxygen concentration target value and the dissolved oxygen concentration of each of the aerobic treatment units.
流入する下水を複数の処理系列に分配してそれぞれの好気処理部で曝気する曝気ステップと、 An aeration step in which the inflowing sewage is distributed to multiple treatment series and aerated in each aerobic treatment unit.
少なくともいずれか1つの前記処理系列のアンモニア性窒素濃度を取得するアンモニア計測ステップと、 Ammonia measurement step to obtain the ammoniacal nitrogen concentration of at least one of the above treatment series, and
アンモニア性窒素濃度目標値を記憶する記憶ステップと、 A memory step to memorize the ammonia nitrogen concentration target value,
それぞれの前記好気処理部の溶存酸素濃度を取得する溶存酸素濃度計測ステップと、 A dissolved oxygen concentration measurement step for acquiring the dissolved oxygen concentration of each of the aerobic treatment units, and
前記アンモニア性窒素濃度と前記アンモニア性窒素濃度目標値との乖離度を含む制御情報を送出する送出ステップと、 A transmission step for transmitting control information including the degree of deviation between the ammoniacal nitrogen concentration and the ammoniacal nitrogen concentration target value, and a transmission step.
前記アンモニア性窒素濃度が所定の下限値を超える場合、それぞれの前記好気処理部の溶存酸素濃度目標値を前記制御情報に基づくPID制御により設定し、前記アンモニア性窒素濃度が前記下限値以下の場合、予め定められた値を前記溶存酸素濃度目標値とする第一制御ステップと、 When the ammoniacal nitrogen concentration exceeds a predetermined lower limit value, the dissolved oxygen concentration target value of each of the aerobic treatment units is set by PID control based on the control information, and the ammoniacal nitrogen concentration is equal to or less than the lower limit value. In the case, the first control step in which a predetermined value is set as the dissolved oxygen concentration target value, and
前記溶存酸素濃度目標値と、それぞれの前記好気処理部の溶存酸素濃度とに基づいて、それぞれの前記好気処理部の曝気風量を制御する第二制御ステップとを有する下水処理方法。 A sewage treatment method having a second control step of controlling the aeration air volume of each of the aerobic treatment units based on the dissolved oxygen concentration target value and the dissolved oxygen concentration of each of the aerobic treatment units.
流入する下水を複数の処理系列に分配してそれぞれの好気処理部で曝気する曝気ステップと、 An aeration step in which the inflowing sewage is distributed to multiple treatment series and aerated in each aerobic treatment unit.
少なくともいずれか1つの前記処理系列のアンモニア性窒素濃度を取得するアンモニア計測ステップと、 Ammonia measurement step to obtain the ammoniacal nitrogen concentration of at least one of the above treatment series, and
それぞれの前記好気処理部の溶存酸素濃度を取得する溶存酸素濃度計測ステップと、 A dissolved oxygen concentration measurement step for acquiring the dissolved oxygen concentration of each of the aerobic treatment units, and
前記下水の水量又は水質の変化を含む変化情報を取得する取得ステップと、 The acquisition step of acquiring change information including the change in the amount or quality of the sewage, and
前記アンモニア性窒素濃度及び前記変化情報に基づいて、それぞれの前記好気処理部の溶存酸素濃度目標値を設定する第一制御ステップと、 A first control step for setting a dissolved oxygen concentration target value for each of the aerobic treatment units based on the ammoniacal nitrogen concentration and the change information.
前記溶存酸素濃度目標値と、それぞれの前記好気処理部の溶存酸素濃度とに基づいて、それぞれの前記好気処理部の曝気風量を制御する第二制御ステップとを有する下水処理方法。 A sewage treatment method having a second control step of controlling the aeration air volume of each of the aerobic treatment units based on the dissolved oxygen concentration target value and the dissolved oxygen concentration of each of the aerobic treatment units.
JP2019195256A 2019-10-28 2019-10-28 Sewage treatment system and sewage treatment method Active JP6893546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019195256A JP6893546B2 (en) 2019-10-28 2019-10-28 Sewage treatment system and sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019195256A JP6893546B2 (en) 2019-10-28 2019-10-28 Sewage treatment system and sewage treatment method

Publications (2)

Publication Number Publication Date
JP2021065867A JP2021065867A (en) 2021-04-30
JP6893546B2 true JP6893546B2 (en) 2021-06-23

Family

ID=75637822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019195256A Active JP6893546B2 (en) 2019-10-28 2019-10-28 Sewage treatment system and sewage treatment method

Country Status (1)

Country Link
JP (1) JP6893546B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199525A1 (en) * 2022-04-15 2023-10-19 三菱電機株式会社 Water treatment system

Also Published As

Publication number Publication date
JP2021065867A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
RU2671729C2 (en) Method and apparatus for nitrogen removal from wastewater
JP5608027B2 (en) Water treatment system and aeration air volume control method thereof
JP2012200705A5 (en)
KR20050039546A (en) Sewage treatment system
KR102041326B1 (en) Oxygen control system for activated sludge process using harmony search algorithm
JP6532723B2 (en) Method and system for treating organic wastewater
JP2021176638A (en) Wastewater treatment system, air supply amount control equipment and air supply amount control method
JP4229999B2 (en) Biological nitrogen removal equipment
JP6893546B2 (en) Sewage treatment system and sewage treatment method
JP2006055683A (en) Activated sludge type wastewater treatment method and activated sludge type wastewater treatment apparatus
KR20220024245A (en) Integrated control system for sewage treatment plant
JP3487092B2 (en) Method of controlling biological water treatment equipment
JP7194628B2 (en) Wastewater treatment equipment and wastewater treatment method
JP3823863B2 (en) Operation support system and control system for water treatment process
JP2004171531A (en) Plant-wide optimum process control apparatus
JP6375257B2 (en) Water treatment equipment
JP7158912B2 (en) Regulation compartment control device, regulation compartment control method, computer program and organic wastewater treatment system
KR100481885B1 (en) Advanced treatment apparaters and method of sewage water by flow distribution ratio use of NO3 and NH4-N.
JPH07136687A (en) Operation control method for modified active sludge circulation process in low water temperature period
KR102250418B1 (en) Annamox reactor and water treatment method using the same
JP3023921B2 (en) Activated sludge treatment equipment
JPH01242198A (en) Controlling device for stepped nitration denitrification process
KR100467336B1 (en) Advanced treatment apparaters and method of sewage water by flow distribution ratio.
JP2001009497A (en) Biological water treatment and equipment therefor
JP2004000986A (en) Method for controlling biological water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210601

R150 Certificate of patent or registration of utility model

Ref document number: 6893546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150