JP2017202473A - Water treatment method and system - Google Patents

Water treatment method and system Download PDF

Info

Publication number
JP2017202473A
JP2017202473A JP2016097182A JP2016097182A JP2017202473A JP 2017202473 A JP2017202473 A JP 2017202473A JP 2016097182 A JP2016097182 A JP 2016097182A JP 2016097182 A JP2016097182 A JP 2016097182A JP 2017202473 A JP2017202473 A JP 2017202473A
Authority
JP
Japan
Prior art keywords
water
nitrification tank
treated
nitrifying bacteria
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016097182A
Other languages
Japanese (ja)
Other versions
JP6796948B2 (en
Inventor
澤田 繁樹
Shigeki Sawada
繁樹 澤田
中原 禎仁
Sadahito Nakahara
禎仁 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Wellthy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wellthy Corp filed Critical Wellthy Corp
Priority to JP2016097182A priority Critical patent/JP6796948B2/en
Publication of JP2017202473A publication Critical patent/JP2017202473A/en
Application granted granted Critical
Publication of JP6796948B2 publication Critical patent/JP6796948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method and system capable of drawing a nitrifying bacteria carrying carrier from a nitrification tank while sufficiently suppressing a decrease in nitrification efficiency.SOLUTION: In a water treatment method, ammonia nitrogen-containing water to be treated is treated to obtain first treated water in a first nitrification tank 10 into which a nitrifying bacteria carrying carrier 200 has been charged in a drawable state, the first treated water is treated to obtain second treated water in a second nitrification tank 20 into which the nitrifying bacteria carrying carrier 200 has been charged, the concentration of ammonia or ammonia nitrogen in the second treated water is measured, and when drawing the nitrifying bacteria carrying carrier 200 from the first nitrification tank, 50 vol% or less of the nitrifying bacteria carrying carrier 200 charged in the first nitrification tank 10 is drawn from the first nitrification tank 10 and at the same time the first nitrification tank 10 is replenished with a carrier not carrying nitrifying bacteria, in a state where the ammonia concentration or the ammonia nitrogen concentration has been kept at or below a preset threshold value for a preset time or longer.SELECTED DRAWING: Figure 1

Description

本発明は、アンモニア性窒素を含む被処理水の水処理方法および水処理システムに関する。   The present invention relates to a water treatment method and a water treatment system for water to be treated containing ammoniacal nitrogen.

地下水は、アンモニア性窒素を含むことが多い。アンモニア性窒素を含む地下水を飲用化するときには、アンモニア性窒素を低減することが行われる。
アンモニア性窒素を含む被処理水を処理する方法としては、例えば、下記の方法が提案されている。
(1)アンモニア性窒素を含む被処理水に対し、硝化菌担持担体を利用する接触酸化法による硝化処理を行う、水処理方法(特許文献1)。
Groundwater often contains ammoniacal nitrogen. When drinking groundwater containing ammonia nitrogen, the ammonia nitrogen is reduced.
As a method for treating water to be treated containing ammonia nitrogen, for example, the following method has been proposed.
(1) A water treatment method in which water to be treated containing ammoniacal nitrogen is subjected to nitrification by a catalytic oxidation method using a nitrifying bacteria-supporting carrier (Patent Document 1).

硝化菌担持担体を用いて被処理水を処理する場合、硝化菌担持担体を既存の水処理システムの硝化槽から抜き出し、新しい水処理システムの硝化槽に投入する、すなわち硝化菌を移植することが行われる。そのため、硝化菌担持担体を硝化槽から抜き出すことがよく行われる。しかし、(1)の水処理方法においては、幹部から枝部が分岐した樹状構造を有する硝化菌担持担体を硝化槽内に固定しているため、硝化菌担持担体の一部を硝化槽から容易に抜き出せない。   When treating water to be treated using a nitrifying bacteria-supporting carrier, the nitrifying bacteria-supporting carrier can be extracted from the nitrification tank of an existing water treatment system, and placed in the nitrification tank of a new water treatment system, that is, nitrifying bacteria can be transplanted Done. For this reason, the nitrifying bacteria-supporting carrier is often extracted from the nitrification tank. However, in the water treatment method of (1), since the nitrifying bacteria-supporting carrier having a dendritic structure with branches branched from the trunk is fixed in the nitrification tank, a part of the nitrifying bacteria-supporting carrier is removed from the nitrifying tank. It cannot be extracted easily.

一方、微生物担持担体を生物処理槽内に固定しない水処理方法としては、例えば、下記の方法が提案されている。
(2)生物処理槽内に被処理水を導入し、生物処理槽内で流動する微生物担持担体に被処理水を接触させて好気性処理する水処理方法(特許文献2、3)。
On the other hand, as a water treatment method that does not fix the microorganism-supporting carrier in the biological treatment tank, for example, the following method has been proposed.
(2) A water treatment method in which water to be treated is introduced into a biological treatment tank, and the water to be treated is brought into contact with a microorganism-supporting carrier flowing in the biological treatment tank (Patent Documents 2 and 3).

特開2015−226892号公報JP2015-226892A 特開2000−42584号公報JP 2000-42584 A 特開2005−161227号公報JP 2005-161227 A

(2)の水処理方法における微生物担持担体を、(1)の水処理方法における硝化菌担持担体に応用すれば、硝化菌担持担体を硝化槽から抜き出しやすくなる。しかし、硝化菌の担持量が不十分な状態で硝化菌担持担体を硝化槽から抜き出したり、一度に多量の硝化菌担持担体を硝化槽から抜き出したりした場合、硝化槽に残る硝化菌の絶対量が大幅に不足する。硝化菌は増殖速度が低いため、担体の表層および内部で硝化菌が十分に増殖するまでの間、硝化槽における硝化効率が大きく低下してしまう。   If the microorganism-supporting carrier in the water treatment method (2) is applied to the nitrifying bacteria-supporting carrier in the water treatment method (1), the nitrifying bacteria-supporting carrier can be easily extracted from the nitrification tank. However, the absolute amount of nitrifying bacteria remaining in the nitrification tank when the nitrifying bacteria supporting carrier is withdrawn from the nitrification tank in a state where the amount of nitrifying bacteria supported is insufficient, or when a large amount of the nitrifying bacteria supporting carrier is withdrawn from the nitrification tank at once. There is a significant shortage. Since the growth rate of nitrifying bacteria is low, the nitrification efficiency in the nitrification tank is greatly reduced until the nitrifying bacteria sufficiently grow on the surface and inside of the carrier.

本発明は、硝化効率の低下を十分に抑えつつ、硝化菌担持担体を硝化槽から抜き出すことができる水処理方法および水処理システムを提供する。   The present invention provides a water treatment method and a water treatment system capable of extracting a nitrifying bacteria-supporting carrier from a nitrification tank while sufficiently suppressing a decrease in nitrification efficiency.

本発明は、下記の態様を有する。
<1>硝化菌担持担体が抜き出し可能な状態で充填された第1の硝化槽においてアンモニア性窒素を含む被処理水を処理して第1の処理水とし;硝化菌担持担体が充填された第2の硝化槽において前記第1の処理水を処理して第2の処理水とし;前記第2の処理水のアンモニア濃度またはアンモニア性窒素濃度を測定し;前記第1の硝化槽から前記硝化菌担持担体を抜き出すときには、前記アンモニア濃度または前記アンモニア性窒素濃度があらかじめ設定された閾値以下になった状態があらかじめ設定された時間以上持続した状態において、前記第1の硝化槽に充填された前記硝化菌担持担体の50体積%以下を前記第1の硝化槽から抜き出すとともに、前記第1の硝化槽に硝化菌が担持されていない担体を補充する、水処理方法。
<2>前記担体が、スポンジ担体である、前記<1>の水処理方法。
<3>イオン交換樹脂が充填されたイオン交換装置において前記第2の処理水をイオン交換処理して第3の処理水とする、前記<1>または<2>の水処理方法。
<4>前記第1の硝化槽に供給される前記被処理水の水量を測定し;前記アンモニア濃度または前記アンモニア性窒素濃度と、前記被処理水の水量の積算値とから算出されるアンモニア質量があらかじめ設定された閾値以上となったときに、前記イオン交換装置の前記イオン交換樹脂を再生する、前記<3>の水処理方法。
<5>前記第1の硝化槽から前記硝化菌担持担体を、エアリフトポンプを用いて抜き出す、前記<1>〜<4>のいずれかの水処理方法。
<6>硝化菌担持担体が抜き出し可能な状態で充填され、アンモニア性窒素を含む被処理水を処理して第1の処理水とする第1の硝化槽と;硝化菌担持担体が充填され、前記第1の処理水を処理して第2の処理水とする第2の硝化槽と;前記第2の処理水のアンモニア濃度またはアンモニア性窒素濃度を測定する濃度測定装置と;前記第1の硝化槽から前記硝化菌担持担体を抜き出すポンプと;前記濃度測定装置および前記ポンプに電気的に接続された制御装置とを備え;前記制御装置が、前記アンモニア濃度または前記アンモニア性窒素濃度があらかじめ設定された閾値以下になった状態があらかじめ設定された時間以上持続した状態にあるかを判定する判定部と;前記第1の硝化槽に充填された前記硝化菌担持担体の50体積%以下を前記第1の硝化槽から抜き出すように前記ポンプを駆動させる制御部とを有する、水処理システム。
<7>前記担体が、スポンジ担体である、前記<6>の水処理システム。
<8>イオン交換樹脂が充填され、前記第2の処理水をイオン交換処理して第3の処理水とするイオン交換装置をさらに備えた、前記<6>または<7>の水処理システム。
<9>前記第1の硝化槽に供給される前記被処理水の水量を測定する水流量測定装置をさらに備え;前記制御装置における前記判定部が、前記アンモニア濃度または前記アンモニア性窒素濃度と、前記被処理水の水量の積算値とから算出されるアンモニア質量があらかじめ設定された閾値以上となったかを判定し;前記制御装置における前記制御部が、前記イオン交換装置に前記イオン交換樹脂を再生する運転を開始させる、前記<8>の水処理システム。
<10>前記ポンプが、エアリフトポンプである、前記<6>〜<9>のいずれかの水処理システム。
The present invention has the following aspects.
<1> In a first nitrification tank filled with a nitrifying bacteria-supporting carrier that can be extracted, treated water containing ammonia nitrogen is treated as first treated water; In the second nitrification tank, the first treated water is treated as a second treated water; the ammonia concentration or ammoniacal nitrogen concentration of the second treated water is measured; the nitrifying bacteria from the first nitrifying tank When the support carrier is extracted, the nitrification charged in the first nitrification tank in a state where the ammonia concentration or the ammonia nitrogen concentration is lower than a preset threshold value continues for a preset time or longer. A water treatment method wherein 50% by volume or less of the bacterium-supporting carrier is extracted from the first nitrification tank, and the first nitrification tank is supplemented with a carrier on which nitrifying bacteria are not supported.
<2> The water treatment method according to <1>, wherein the carrier is a sponge carrier.
<3> The water treatment method according to <1> or <2>, wherein the second treated water is ion-exchanged into a third treated water in an ion exchange apparatus filled with an ion exchange resin.
<4> Measure the amount of water to be treated supplied to the first nitrification tank; ammonia mass calculated from the ammonia concentration or ammonia nitrogen concentration and the integrated value of the amount of water to be treated <3> The water treatment method according to <3>, wherein the ion exchange resin of the ion exchange device is regenerated when becomes equal to or greater than a preset threshold value.
<5> The water treatment method according to any one of <1> to <4>, wherein the nitrifying bacteria-supporting carrier is extracted from the first nitrification tank using an air lift pump.
<6> a first nitrification tank filled with the nitrifying bacteria-supporting carrier in a state where it can be extracted and treating water to be treated containing ammoniacal nitrogen to form a first treated water; A second nitrification tank that treats the first treated water to form a second treated water; a concentration measuring device that measures an ammonia concentration or an ammoniacal nitrogen concentration of the second treated water; and the first A pump for extracting the nitrifying bacteria-carrying carrier from the nitrification tank; a concentration measuring device and a control device electrically connected to the pump; the control device presets the ammonia concentration or the ammonia nitrogen concentration A determination unit that determines whether or not a state that is equal to or less than a predetermined threshold value is maintained for a preset time; and 50% by volume or less of the nitrifying bacteria-supporting carrier filled in the first nitrification tank And a control unit for driving the pump so as to extract from the first nitrification tank, a water treatment system.
<7> The water treatment system according to <6>, wherein the carrier is a sponge carrier.
<8> The water treatment system according to <6> or <7>, further comprising an ion exchange device that is filled with an ion exchange resin and ion-exchanges the second treated water into a third treated water.
<9> The apparatus further includes a water flow rate measuring device that measures the amount of the water to be treated supplied to the first nitrification tank; the determination unit in the control device includes the ammonia concentration or the ammoniacal nitrogen concentration; It is determined whether the ammonia mass calculated from the integrated value of the amount of water to be treated is equal to or greater than a preset threshold; the control unit in the control device regenerates the ion exchange resin in the ion exchange device The water treatment system according to <8>, wherein the operation is started.
<10> The water treatment system according to any one of <6> to <9>, wherein the pump is an air lift pump.

本発明の水処理方法および水処理システムによれば、硝化効率の低下を十分に抑えつつ、硝化菌担持担体を硝化槽から抜き出すことができる。   According to the water treatment method and the water treatment system of the present invention, the nitrifying bacteria-supporting carrier can be extracted from the nitrification tank while sufficiently suppressing the decrease in nitrification efficiency.

本発明の水処理システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the water treatment system of this invention. 実施例1において硝化菌担持担体を第1の硝化槽から抜き出した後の被処理水および処理水のアンモニア性窒素濃度の時間変化を示すグラフである。It is a graph which shows the time change of the ammonia nitrogen density | concentration of the to-be-processed water and treated water after extracting the nitrifying bacteria support | carrier in Example 1 from the 1st nitrification tank. 比較例1において硝化菌担持担体を第1の硝化槽から抜き出した後の被処理水および処理水のアンモニア性窒素濃度の時間変化を示すグラフである。It is a graph which shows the time change of the ammonia nitrogen concentration of to-be-processed water and treated water after extracting the nitrifying bacteria support | carrier in the comparative example 1 from the 1st nitrification tank.

以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「アンモニア性窒素」とは、水中にアンモニウム塩として含まれている窒素をいう。アンモニア態窒素ともいう。
「安定状態」とは、アンモニア濃度またはアンモニア性窒素濃度があらかじめ設定された閾値以下になった状態が、あらかじめ設定された時間以上持続した状態をいう。
The following definitions of terms apply throughout this specification and the claims.
“Ammonia nitrogen” refers to nitrogen contained in water as an ammonium salt. Also called ammonia nitrogen.
The “stable state” refers to a state where the state where the ammonia concentration or the ammoniacal nitrogen concentration is equal to or lower than a preset threshold value continues for a preset time.

<水処理システムの一実施形態>
図1は、本発明の水処理システムの一例を示す概略構成図である。
水処理システム1は、被処理水供給流路100を通って原水槽(図示略)から供給されたアンモニア性窒素を含む被処理水を処理して第1の処理水とする第1の硝化槽10と;第1の処理水移送流路101を通って第1の硝化槽10から移送された第1の処理水を処理して第2の処理水とする第2の硝化槽20と;第2の処理水移送流路102を通って第2の硝化槽20から移送された第2の処理水をイオン交換処理して第3の処理水とするイオン交換装置30と;被処理水供給流路100の途中に設けられた移送ポンプ(図示略)と;被処理水供給流路100の途中に設けられ、第1の硝化槽10に供給される被処理水の水量を測定する水流量測定装置40と;第2の処理水移送流路102の途中に設けられ、第2の処理水のアンモニア濃度またはアンモニア性窒素濃度を測定する濃度測定装置50と;第1の硝化槽10内に浸漬され、第1の硝化槽10からを抜き出すエアリフトポンプ60と;後述する散気装置のブロアおよび空気量調整手段、移送ポンプ、イオン交換装置30、水流量測定装置40、濃度測定装置50およびエアリフトポンプ60に電気的に接続された制御装置(図示略)とを備える。
<One Embodiment of Water Treatment System>
FIG. 1 is a schematic configuration diagram showing an example of a water treatment system of the present invention.
The water treatment system 1 is a first nitrification tank that treats water to be treated containing ammoniacal nitrogen supplied from a raw water tank (not shown) through the water to be treated water supply channel 100 to obtain first treated water. 10; a second nitrification tank 20 that treats the first treated water transferred from the first nitrification tank 10 through the first treated water transfer flow path 101 into a second treated water; An ion exchange device 30 that performs ion exchange treatment of the second treated water transferred from the second nitrification tank 20 through the second treated water transfer flow path 102 to form third treated water; A transfer pump (not shown) provided in the middle of the channel 100; a water flow measurement for measuring the amount of water to be treated provided in the middle of the treated water supply channel 100 and supplied to the first nitrification tank 10 An ammonia concentration of the second treated water, which is provided in the middle of the second treated water transfer channel 102; Or a concentration measuring device 50 for measuring the ammonia nitrogen concentration; an air lift pump 60 that is immersed in the first nitrification tank 10 and withdraws it from the first nitrification tank 10; Means, a transfer pump, an ion exchange device 30, a water flow rate measuring device 40, a concentration measuring device 50, and a control device (not shown) electrically connected to the air lift pump 60.

(第1の硝化槽)
第1の硝化槽10は、硝化菌担持担体200が抜き出し可能な状態で充填された容器状の槽本体11と;槽本体11に第1の処理水移送流路101が接続する箇所に設けられた、硝化菌担持担体200と第1の処理水とを分離するための固液分離装置12と;槽本体11の底部に挿入された散気装置13とを備える、いわゆる流動床型好気生物反応槽である。
(First nitrification tank)
The first nitrification tank 10 is provided in a container-shaped tank body 11 filled with a nitrifying bacteria support carrier 200 in a state where it can be extracted; and at a location where the first treated water transfer channel 101 is connected to the tank body 11. Furthermore, a so-called fluidized bed aerobic organism comprising a solid-liquid separation device 12 for separating the nitrifying bacteria-supporting carrier 200 and the first treated water; and an aeration device 13 inserted in the bottom of the tank body 11. It is a reaction tank.

固液分離装置12としては、スクリーン等が挙げられる。
散気装置13は、槽本体11の底部に位置する散気部14と;散気部14に空気を供給する空気供給管15と;空気供給管15の途中に設けられたブロア16と;散気部14とブロア16との間の空気供給管15の途中に設けられた空気量調整手段17とを備える。
散気部14としては、散気孔(図示略)が形成された、散気管、散気球等が挙げられる。
空気量調整手段17としては、ゲート弁、バタフライ弁等が挙げられる。
Examples of the solid-liquid separation device 12 include a screen.
The air diffuser 13 includes an air diffuser 14 located at the bottom of the tank body 11; an air supply pipe 15 that supplies air to the air diffuser 14; a blower 16 provided in the air supply pipe 15; An air amount adjusting means 17 provided in the middle of the air supply pipe 15 between the air section 14 and the blower 16 is provided.
Examples of the air diffuser 14 include an air diffuser tube, an air diffuser bulb, and the like in which air diffuser holes (not shown) are formed.
Examples of the air amount adjusting means 17 include a gate valve and a butterfly valve.

(第2の硝化槽)
第2の硝化槽20は、硝化菌担持担体200が抜き出し可能な状態で充填された容器状の槽本体21と;槽本体21に第2の処理水移送流路102が接続する箇所に設けられた、硝化菌担持担体200と第2の処理水とを分離するための固液分離装置22と;槽本体21の底部に挿入された散気装置23とを備える、いわゆる流動床型好気生物反応槽である。
(Second nitrification tank)
The second nitrification tank 20 is provided in a container-like tank main body 21 filled with a nitrifying bacteria-supporting carrier 200 in a state where it can be extracted; and a place where the second treated water transfer channel 102 is connected to the tank main body 21. In addition, a so-called fluidized bed aerobic organism comprising a solid-liquid separation device 22 for separating the nitrifying bacteria-supporting carrier 200 and the second treated water; and an air diffuser 23 inserted at the bottom of the tank body 21. It is a reaction tank.

固液分離装置22としては、スクリーン等が挙げられる。
散気装置23は、槽本体21の底部に位置する散気部24と;散気部24に空気を供給する空気供給管25と;空気供給管25の途中に設けられたブロア26と;散気部24とブロア26との間の空気供給管25の途中に設けられた空気量調整手段27とを備える。
散気部24としては、散気孔(図示略)が形成された、散気管、散気球等が挙げられる。
空気量調整手段27としては、ゲート弁、バタフライ弁等が挙げられる。
Examples of the solid-liquid separator 22 include a screen.
The air diffuser 23 includes an air diffuser 24 located at the bottom of the tank body 21; an air supply pipe 25 that supplies air to the air diffuser 24; a blower 26 provided in the air supply pipe 25; An air amount adjusting means 27 provided in the middle of the air supply pipe 25 between the air section 24 and the blower 26 is provided.
Examples of the air diffuser 24 include an air diffuser tube, an air diffuser bulb, and the like in which air diffuser holes (not shown) are formed.
Examples of the air amount adjusting means 27 include a gate valve and a butterfly valve.

(イオン交換装置)
イオン交換装置30は、イオン交換カラム(図示略)と;イオン交換カラムに充填されたイオン交換樹脂(図示略)とを備える。
イオン交換樹脂としては、硝化菌担持担体200を第1の硝化槽10から抜き出した後に一時的に硝化菌の減量により生じる硝化効率の低下をさらに抑制できる点からは、強酸性陽イオン交換樹脂が好ましい。
(Ion exchange device)
The ion exchange device 30 includes an ion exchange column (not shown); and an ion exchange resin (not shown) filled in the ion exchange column.
As an ion exchange resin, a strong acid cation exchange resin is used from the standpoint of further suppressing a decrease in nitrification efficiency caused by a reduction in the amount of nitrifying bacteria after the nitrifying bacteria supporting carrier 200 is extracted from the first nitrification tank 10. preferable.

(水流量測定装置)
水流量測定装置40としては、ローターメータ、電磁流量計等が挙げられる。
(Water flow measurement device)
Examples of the water flow rate measuring device 40 include a rotor meter and an electromagnetic flow meter.

(濃度測定装置)
濃度測定装置50としては、イオン選択性センサ等が挙げられる。
(Concentration measuring device)
Examples of the concentration measuring device 50 include an ion selective sensor.

(エアリフトポンプ)
エアリフトポンプ60は、送気手段(図示略)と;下端が下方に開放した吸引口とされた揚水管61と;上端が送気手段に接続し、下端が揚水管61の下端近傍に接続する送気管62と;揚水管61の上端近傍から側方に延びる吐出管63とを備える。
(Air lift pump)
The air lift pump 60 includes an air supply means (not shown); a pumping pipe 61 having a lower end opened as a suction port; an upper end connected to the air supply means, and a lower end connected to the vicinity of the lower end of the pumping pipe 61. An air supply pipe 62; and a discharge pipe 63 extending laterally from the vicinity of the upper end of the pumping pipe 61.

(制御装置)
制御装置は、インターフェイス部(図示略)、記憶部(図示略)、処理部(図示略)、判定部(図示略)、制御部(図示略)等を備える。
(Control device)
The control device includes an interface unit (not shown), a storage unit (not shown), a processing unit (not shown), a determination unit (not shown), a control unit (not shown), and the like.

インターフェイス部は、散気装置のブロアおよび空気量調整手段、移送ポンプ、イオン交換装置30、水流量測定装置40、濃度測定装置50、エアリフトポンプ60等と制御部との間を電気的に接続するものである。   The interface unit electrically connects the blower and air amount adjusting means of the air diffuser, the transfer pump, the ion exchange device 30, the water flow rate measuring device 40, the concentration measuring device 50, the air lift pump 60 and the like to the control unit. Is.

記憶部は、第2の処理水のアンモニア濃度またはアンモニア性窒素濃度の安定状態を判定するための閾値および時間、イオン交換装置30のイオン交換樹脂の再生を判定するためのアンモニア質量の閾値、水処理システム1の運転条件等を記憶するものである。   The storage unit includes a threshold value and time for determining a stable state of the ammonia concentration or ammonia nitrogen concentration of the second treated water, an ammonia mass threshold value for determining regeneration of the ion exchange resin of the ion exchange device 30, water The operating conditions of the processing system 1 are stored.

処理部は、水流量測定装置40で測定された被処理水の水量の積算;濃度測定装置50で測定されたアンモニア濃度またはアンモニア性窒素濃度と被処理水の水量の積算値とからのアンモニア質量の算出等の演算を行うものである。   The treatment unit integrates the amount of water to be treated measured by the water flow measuring device 40; the mass of ammonia from the ammonia concentration or ammonia nitrogen concentration measured by the concentration measuring device 50 and the integrated value of the amount of water to be treated. The calculation such as calculation is performed.

判定部は、濃度測定装置50で測定されたアンモニア濃度またはアンモニア性窒素濃度があらかじめ設定されかつ記憶部に記憶された閾値以下になった状態が、あらかじめ設定されかつ記憶部に記憶された時間以上持続した状態、すなわち安定状態にあるかの判定;処理部で算出されたアンモニア質量があらかじめ設定されかつ記憶部に記憶された閾値以上となったかの判定等を行うものである。   The determination unit is configured so that the state in which the ammonia concentration or ammonia nitrogen concentration measured by the concentration measuring device 50 is preset and less than or equal to the threshold value stored in the storage unit is longer than the preset time and stored in the storage unit. Determination of whether it is in a sustained state, that is, a stable state; determination of whether or not the ammonia mass calculated by the processing unit is greater than or equal to a threshold value set in advance and stored in the storage unit.

制御部は、判定部における判定結果、記憶部に記憶された水処理システム1の運転条件等に基づいて、水処理システム1の制御を行うものである。例えば、判定部において安定状態にあると判定された状態において、第1の硝化槽10に充填された硝化菌担持担体200の50体積%以下を第1の硝化槽10から抜き出すようにエアリフトポンプ60を駆動させたり;判定部においてアンモニア質量があらかじめ設定された閾値以上となった判定されたときに、イオン交換装置30にイオン交換樹脂を再生する運転を開始させたり;あらかじめ設定されかつ記憶部に記憶された被処理水の水量に基づいて移送ポンプを制御したり;あらかじめ設定されかつ記憶部に記憶された空気量に基づいて散気装置のブロアおよび空気量調整手段を制御したりするものである。   The control unit controls the water treatment system 1 based on the determination result in the determination unit, the operation conditions of the water treatment system 1 stored in the storage unit, and the like. For example, in a state where the determination unit determines that it is in a stable state, the air lift pump 60 so that 50% by volume or less of the nitrifying bacteria-supporting carrier 200 filled in the first nitrification tank 10 is extracted from the first nitrification tank 10. When the determination unit determines that the ammonia mass is equal to or greater than a preset threshold value, causes the ion exchange device 30 to start an operation of regenerating the ion exchange resin; The transfer pump is controlled based on the stored amount of water to be treated; the blower of the air diffuser and the air amount adjusting means are controlled based on the air amount set in advance and stored in the storage unit. is there.

処理部、判定部および制御部は、専用のハードウエアによって実現されるものであってもよく、メモリおよび中央演算装置(CPU)によって構成され、処理部、判定部および制御部の機能を実現するためのプログラムをメモリにロードして実行することによってその機能を実現させるものであってもよい。
制御装置には、周辺機器として、入力装置、表示装置等が接続されていてもよい。入力装置としては、ディスプレイタッチパネル、スイッチパネル、キーボード等の入力デバイスが挙げられ、表示装置としては、液晶表示装置、CRT等が挙げられる。
The processing unit, the determination unit, and the control unit may be realized by dedicated hardware, and are configured by a memory and a central processing unit (CPU) to realize functions of the processing unit, the determination unit, and the control unit. The function may be realized by loading the program for loading into the memory and executing the program.
An input device, a display device, or the like may be connected to the control device as a peripheral device. Examples of the input device include input devices such as a display touch panel, a switch panel, and a keyboard. Examples of the display device include a liquid crystal display device and a CRT.

(硝化菌担持担体)
硝化菌担持担体200は、担体の表面に硝化菌が担持されたものである。担体が多孔質の場合は、担体の内部に硝化菌が担持されていてもよい。
(Nitrifying carrier support)
The nitrifying bacteria-supporting carrier 200 has nitrifying bacteria supported on the surface of the carrier. When the carrier is porous, nitrifying bacteria may be carried inside the carrier.

担体の形状としては、直方体、球体、筒体、糸状体等が挙げられる。
担体としては、担体の表面および内部に硝化菌を担持できる、すなわち多くの硝化菌を担持でき、硝化効率が向上する点から、多孔質のものが好ましく、硝化菌の担持を良好に維持でき、かつポンプや配管の損傷を最小限に抑制できる点から、スポンジ担体がより好ましい。
スポンジ担体の材料としては、ポリビニールアルコール、ポリエチレングリコール、ポリウレタン等が挙げられる。
Examples of the shape of the carrier include a rectangular parallelepiped, a sphere, a cylinder, and a filament.
As the carrier, it is possible to carry nitrifying bacteria on the surface and inside of the carrier, that is, from the point that many nitrifying bacteria can be carried and nitrification efficiency is improved, porous ones are preferable, and the carrying of nitrifying bacteria can be maintained well. In addition, a sponge carrier is more preferable because damage to the pump and piping can be minimized.
Examples of the material for the sponge carrier include polyvinyl alcohol, polyethylene glycol, and polyurethane.

硝化菌としては、アンモニア性窒素の生物硝化に用いられる公知の硝化菌が挙げられる。Nitrosobactorを代表とする硝化菌は、独立栄養であり、基本的には炭酸ガスを唯一の炭素源としており、有機物基質を必要とせずアンモニアの存在下で生育できるが、その増殖速度は極めて小さい。したがって、生物硝化反応を高く保持するためには、硝化菌を硝化槽内に大量に保持する操作が必要となる。よって、硝化菌を、浮遊菌体ではなく担体に担体した状態で保持することが好ましい。
硝化菌の担体への担持方法としては、例えば、既存の水処理システムの硝化槽に担体を投入して担体の表面等に硝化菌を増殖させる方法等が挙げられる。
Examples of nitrifying bacteria include known nitrifying bacteria used for biological nitrification of ammoniacal nitrogen. A nitrifying bacterium represented by Nitrobacter is autotrophic and basically uses carbon dioxide as the sole carbon source and can grow in the presence of ammonia without the need for an organic substrate, but its growth rate is extremely low. Therefore, in order to keep the biological nitrification reaction high, an operation for holding a large amount of nitrifying bacteria in the nitrification tank is required. Therefore, it is preferable to hold the nitrifying bacteria in a state where they are supported on a carrier instead of suspended cells.
Examples of the method for supporting the nitrifying bacteria on the carrier include a method of introducing the carrier into a nitrifying tank of an existing water treatment system and growing the nitrifying bacteria on the surface of the carrier.

<水処理方法の一実施形態>
以下、水処理システム1を用いた水処理方法の一例について説明する。
<One Embodiment of Water Treatment Method>
Hereinafter, an example of the water treatment method using the water treatment system 1 will be described.

(アンモニア性窒素の低減)
被処理水供給流路100の途中に設けられた移送ポンプを駆動させて、アンモニア性窒素を含む被処理水を、原水槽(図示略)から被処理水供給流路100を通って第1の硝化槽10に供給し、被処理水を第1の硝化槽10に貯める。さらに、第1の硝化槽10の被処理水を、第1の処理水移送流路101を通って第2の硝化槽20に移送し、被処理水を第2の硝化槽20に貯める。
被処理水としては、地下水、河川水、湖沼水等が挙げられ、地下水が好ましい。
(Ammonia nitrogen reduction)
The transfer pump provided in the middle of the to-be-processed water supply flow path 100 is driven, and the to-be-processed water containing ammonia nitrogen is passed through the to-be-treated water supply flow path 100 from the raw water tank (not shown). Supplied to the nitrification tank 10 and the water to be treated is stored in the first nitrification tank 10. Further, the water to be treated in the first nitrification tank 10 is transferred to the second nitrification tank 20 through the first treated water transfer channel 101, and the water to be treated is stored in the second nitrification tank 20.
Examples of water to be treated include groundwater, river water, lake water, and the like, and groundwater is preferable.

既存の水処理システムの硝化槽から抜き出された硝化菌担持担体200を、水処理システム1の第1の硝化槽10および第2の硝化槽20に投入する。
硝化菌担持担体200の充填率は、第1の硝化槽10または第2の硝化槽20の有効水量に対して、20〜50体積%が好ましい。
The nitrifying bacteria support carrier 200 extracted from the nitrification tank of the existing water treatment system is put into the first nitrification tank 10 and the second nitrification tank 20 of the water treatment system 1.
The filling rate of the nitrifying bacteria-supporting carrier 200 is preferably 20 to 50% by volume with respect to the effective water amount of the first nitrifying tank 10 or the second nitrifying tank 20.

第1の硝化槽10に被処理水をあらかじめ設定された水量で供給しつつ、散気装置13を駆動させて、散気部14から第1の硝化槽10内に空気をあらかじめ設定された空気量で散気する。
第1の硝化槽10の底部から空気を散気すると、第1の硝化槽10内に上昇流および下降流からなる旋回流が生じ、第1の硝化槽10の被処理水内で硝化菌担持担体200が自由に流動する。
旋回流における上昇流の流速は、0.1〜0.5m/sが好ましい。
散気装置13の散気部14から散気される空気量は、空気量調整手段17によって任意の空気量に調整できる。
While supplying the water to be treated to the first nitrification tank 10 with a predetermined amount of water, the air diffuser 13 is driven, and air is preset from the air diffuser 14 into the first nitrification tank 10. Aerate by volume.
When air is diffused from the bottom of the first nitrification tank 10, a swirl flow consisting of an upward flow and a downward flow is generated in the first nitrification tank 10, and nitrifying bacteria are supported in the water to be treated in the first nitrification tank 10. The carrier 200 flows freely.
The flow rate of the upward flow in the swirling flow is preferably 0.1 to 0.5 m / s.
The amount of air diffused from the diffuser 14 of the diffuser 13 can be adjusted to an arbitrary amount of air by the air amount adjusting means 17.

第1の硝化槽10から固液分離装置12を通って排出された第1の処理水を、第1の処理水移送流路101を通って第2の硝化槽20に移送しつつ、散気装置23を駆動させて、散気部24から第2の硝化槽20内に空気をあらかじめ設定された空気量で散気する。
第2の硝化槽20の底部から空気を散気すると、第2の硝化槽20内に上昇流および下降流からなる旋回流が生じ、第2の硝化槽20の第1の処理水内で硝化菌担持担体200が自由に流動する。
旋回流における上昇流の流速は、0.1〜0.5m/sが好ましい。
散気装置23の散気部24から散気される空気量は、空気量調整手段27によって任意の空気量に調整できる。
The first treated water discharged from the first nitrification tank 10 through the solid-liquid separation device 12 is diffused while being transferred to the second nitrification tank 20 through the first treated water transfer channel 101. The device 23 is driven, and air is diffused from the air diffuser 24 into the second nitrification tank 20 with a preset amount of air.
When air is diffused from the bottom of the second nitrification tank 20, a swirl flow consisting of an upward flow and a downward flow is generated in the second nitrification tank 20, and nitrification is performed in the first treated water of the second nitrification tank 20. The fungus carrier 200 flows freely.
The flow rate of the upward flow in the swirling flow is preferably 0.1 to 0.5 m / s.
The air amount diffused from the air diffuser 24 of the air diffuser 23 can be adjusted to an arbitrary air amount by the air amount adjusting means 27.

第1の硝化槽10においては、酸素を含む空気が散気装置13の散気部14から供給される。第1の硝化槽10内に酸素が供給されると、被処理水中のアンモニア性窒素は、第1の硝化槽10内で硝化菌担持担体200の硝化菌によってアンモニア酸化(硝化)されて硝酸になる。このようにして、アンモニア性窒素を含む被処理水を第1の硝化槽10で処理して第1の処理水とする。
第2の硝化槽20においては、酸素を含む空気が散気装置23の散気部24から供給される。第2の硝化槽20内に酸素が供給されると、第1の処理水中に残存するアンモニア性窒素は、第2の硝化槽20内で硝化菌担持担体200の硝化菌によってアンモニア酸化(硝化)されて硝酸になる。このようにして、アンモニア性窒素を含む第1の処理水を第2の硝化槽20で処理して第2の処理水とする。
アンモニア酸化は、下記式で表される。
NH + 2O + HCO → HNO + HCO + H
In the first nitrification tank 10, oxygen-containing air is supplied from the air diffuser 14 of the air diffuser 13. When oxygen is supplied into the first nitrification tank 10, the ammoniacal nitrogen in the water to be treated is ammonia oxidized (nitrified) by the nitrifying bacteria of the nitrifying bacteria-supporting carrier 200 in the first nitrification tank 10 and converted into nitric acid. Become. Thus, the to-be-processed water containing ammonia nitrogen is processed in the 1st nitrification tank 10, and it is set as 1st treated water.
In the second nitrification tank 20, oxygen-containing air is supplied from the air diffuser 24 of the air diffuser 23. When oxygen is supplied into the second nitrification tank 20, ammonia nitrogen remaining in the first treated water is oxidized with ammonia (nitrification) by the nitrifying bacteria of the nitrifying bacteria-supporting carrier 200 in the second nitrification tank 20. To nitric acid. Thus, the 1st treated water containing ammonia nitrogen is processed with the 2nd nitrification tank 20, and it is set as the 2nd treated water.
Ammonia oxidation is represented by the following formula.
NH 4 + + 2O 2 + HCO 3 → HNO 3 + H 2 CO 3 + H 2 O

第2の硝化槽20から固液分離装置22を通って排出された第2の処理水の全量または一部は、第2の処理水移送流路102を通ってイオン交換樹脂が充填されたイオン交換装置30に移送される。イオン交換装置30において第2の処理水はイオン交換処理されてアンモニア性窒素がさらに低減された第3の処理水となる。イオン交換装置30から排出されれた第3の処理水は、第3の処理水移送流路103を通って水処理システム1の外部に排出される。イオン交換装置30を通さなかった第2の処理水は、迂回流路104を通ってイオン交換装置30を迂回した後、第3の処理水移送流路103を通って水処理システム1の外部に排出される。   The whole or part of the second treated water discharged from the second nitrification tank 20 through the solid-liquid separation device 22 passes through the second treated water transfer channel 102 and is filled with ion exchange resin. It is transferred to the exchange device 30. In the ion exchange device 30, the second treated water is ion-exchanged to become third treated water in which ammonia nitrogen is further reduced. The third treated water discharged from the ion exchange device 30 is discharged to the outside of the water treatment system 1 through the third treated water transfer channel 103. The second treated water that has not passed through the ion exchange device 30 bypasses the ion exchange device 30 through the detour channel 104 and then passes through the third treated water transfer channel 103 to the outside of the water treatment system 1. Discharged.

(硝化菌担持担体の抜き出し)
第2の硝化槽20から固液分離装置22を通って排出された第2の処理水は、第2の処理水移送流路102を通ってイオン交換装置30に移送される際に、濃度測定装置50を通過する。第2の処理水が濃度測定装置50を通過する際に、第2の処理水のアンモニア濃度またはアンモニア性窒素濃度が測定される。
第2の処理水のアンモニア濃度またはアンモニア性窒素濃度の測定は、連続的に行うことが好ましい。第2の処理水のアンモニア濃度およびアンモニア性窒素濃度は、いずれか一方のみを測定してもよいし、両方を測定していもよい。
(Extraction of nitrifying bacteria carrier)
When the second treated water discharged from the second nitrification tank 20 through the solid-liquid separator 22 is transferred to the ion exchange device 30 through the second treated water transfer channel 102, the concentration is measured. Pass through device 50. When the second treated water passes through the concentration measuring device 50, the ammonia concentration or ammonia nitrogen concentration of the second treated water is measured.
It is preferable to continuously measure the ammonia concentration or ammonia nitrogen concentration of the second treated water. Only one of the ammonia concentration and the ammonia nitrogen concentration of the second treated water may be measured, or both may be measured.

第1の硝化槽10から硝化菌担持担体200を抜き出す必要が生じたときには、濃度測定装置50で測定されたアンモニア濃度またはアンモニア性窒素濃度があらかじめ設定された閾値以下になった状態があらかじめ設定された時間以上持続した状態、すなわち安定状態になっているかを、制御装置の判定部にて判定する。
アンモニア濃度またはアンモニア性窒素濃度の閾値は、処理水の用途(飲用、工業用等)等に応じて適宜決定される。
When it is necessary to extract the nitrifying bacteria carrier 200 from the first nitrification tank 10, a state in which the ammonia concentration or the ammonia nitrogen concentration measured by the concentration measuring device 50 is equal to or lower than a preset threshold is preset. The determination unit of the control device determines whether or not the state has been maintained for more than a predetermined time, that is, whether the state is stable.
The threshold value of ammonia concentration or ammonia nitrogen concentration is appropriately determined according to the use of treated water (drinking, industrial use, etc.).

制御装置の判定部にてアンモニア濃度またはアンモニア性窒素濃度が安定状態になっていると判定された場合には、作業者が手動にて、または制御装置によって自動にて、エアリフトポンプ60を駆動させ、第1の硝化槽10に充填された硝化菌担持担体200の50体積%以下を第1の硝化槽10から抜き出す。また、第1の硝化槽10から抜き出した硝化菌担持担体200とほぼ同量の、硝化菌が担持されていない担体を、第1の硝化槽10に補充する。   When the determination unit of the control device determines that the ammonia concentration or ammonia nitrogen concentration is in a stable state, the operator drives the air lift pump 60 manually or automatically by the control device. 50% by volume or less of the nitrifying bacteria-supporting carrier 200 filled in the first nitrification tank 10 is extracted from the first nitrification tank 10. Further, the first nitrification tank 10 is replenished with approximately the same amount of the nitrifying bacteria-supporting carrier 200 extracted from the first nitrification tank 10 and not supporting the nitrifying bacteria.

エアリフトポンプ60においては、送気手段から供給された空気が、送気管62を通って揚水管61の下端近傍から揚水管61に供給され、揚水管61内を上昇する。この際、揚水管61の下端の吸引口から、硝化菌担持担体200を含む水が吸い上げられ、揚水管61内を上昇する空気と混合しながら上昇する。揚水管61内を上昇した硝化菌担持担体200を含む水と空気との混合物は、揚水管61の上端近傍から側方に延びる吐出管63から吐出される。このようにして、第1の硝化槽10から硝化菌担持担体200が抜き出される。あらかじめ設定された量の硝化菌担持担体200を抜き出したら、エアリフトポンプ60を停止、すなわち送気手段からの空気の供給を停止することによって、第1の硝化槽10からの硝化菌担持担体200の抜き出しを停止する。   In the air lift pump 60, the air supplied from the air supply means passes through the air supply pipe 62 and is supplied from the vicinity of the lower end of the pumping pipe 61 to the pumping pipe 61 and rises in the pumping pipe 61. At this time, water containing the nitrifying bacteria supporting carrier 200 is sucked up from the suction port at the lower end of the pumping pipe 61 and rises while mixing with the air rising in the pumping pipe 61. A mixture of water and air containing the nitrifying bacteria carrier 200 rising in the pumping pipe 61 is discharged from a discharge pipe 63 extending laterally from the vicinity of the upper end of the pumping pipe 61. In this manner, the nitrifying bacteria-supporting carrier 200 is extracted from the first nitrification tank 10. When a predetermined amount of the nitrifying bacteria carrier 200 is extracted, the air lift pump 60 is stopped, that is, the supply of air from the air supply means is stopped, whereby the nitrifying bacteria carrier 200 from the first nitrification tank 10 is stopped. Stop extraction.

制御装置の判定部にてアンモニア濃度またはアンモニア性窒素濃度が安定状態になっていないと判定された場合には、第2の処理水のアンモニア濃度またはアンモニア性窒素濃度が安定状態になるまで、第1の硝化槽10からの硝化菌担持担体200の抜き出しを保留する。   When the determination unit of the control device determines that the ammonia concentration or the ammonia nitrogen concentration is not in a stable state, the control unit determines whether the ammonia concentration or the ammonia nitrogen concentration in the second treated water is in a stable state. The extraction of the nitrifying bacteria-supporting carrier 200 from one nitrification tank 10 is suspended.

(イオン交換樹脂の再生)
原水槽から被処理水供給流路100を通って第1の硝化槽10に供給される被処理水は、被処理水供給流路100の途中に設けられた水流量測定装置40を通過する。被処理水が水流量測定装置40を通過する際に、被処理水の水量が測定される。
(Regeneration of ion exchange resin)
The treated water supplied from the raw water tank through the treated water supply channel 100 to the first nitrification tank 10 passes through the water flow rate measuring device 40 provided in the middle of the treated water supply channel 100. When the water to be treated passes through the water flow measuring device 40, the amount of water to be treated is measured.

制御装置の処理部にて、濃度測定装置50で測定されたアンモニア濃度またはアンモニア性窒素濃度と、水流量測定装置40で測定された被処理水の水量の積算値とからアンモニア質量を算出する。
制御装置の判定部にて、処理部にて算出されたアンモニア質量があらかじめ設定された閾値以上となったかを判定する。
アンモニア質量の閾値は、イオン交換装置30のイオン交換樹脂の種類、充填量等に応じて適宜決定される。
In the processing unit of the control device, the ammonia mass is calculated from the ammonia concentration or ammonia nitrogen concentration measured by the concentration measuring device 50 and the integrated value of the amount of water to be treated measured by the water flow measuring device 40.
The determination unit of the control device determines whether the ammonia mass calculated by the processing unit is equal to or greater than a preset threshold value.
The ammonia mass threshold value is appropriately determined according to the type of ion exchange resin of the ion exchange device 30, the filling amount, and the like.

制御装置の判定部にてアンモニア質量があらかじめ設定された閾値以上になっていると判定された場合には、作業者が手動にて、または制御装置によって自動にて、イオン交換装置30のイオン交換樹脂を再生する。
イオン交換装置30のイオン交換樹脂の再生は、制御装置の判定部にてアンモニア濃度またはアンモニア性窒素濃度が安定状態になっていると判定された場合に行うことが好ましい。
イオン交換装置30のイオン交換樹脂を再生する間は、第2の硝化槽20から排出された第2の処理水の全量は、迂回流路104を通ってイオン交換装置30を迂回した後、第3の処理水移送流路103を通って水処理システム1の外部に排出される。
When it is determined by the determination unit of the control device that the ammonia mass is equal to or greater than a preset threshold value, the ion exchange of the ion exchange device 30 is performed manually by the operator or automatically by the control device. Recycle the resin.
The regeneration of the ion exchange resin in the ion exchange device 30 is preferably performed when the determination unit of the control device determines that the ammonia concentration or the ammoniacal nitrogen concentration is in a stable state.
During the regeneration of the ion exchange resin of the ion exchange device 30, the entire amount of the second treated water discharged from the second nitrification tank 20 passes through the bypass channel 104 and then bypasses the ion exchange device 30. 3 is discharged to the outside of the water treatment system 1 through the treated water transfer passage 103.

<作用機序>
(α)以上説明した水処理方法にあっては、以下の(i)〜(iii)の理由から、硝化効率の低下を十分に抑えつつ、硝化菌担持担体を硝化槽から抜き出すことができる。
(i)第1の硝化槽10と第2の硝化槽20との直列二段処理を行い、かつ硝化菌担持担体200の抜き出しを第1の硝化槽10から行っているため、硝化菌担持担体200を第1の硝化槽10から抜き出しても、第1の硝化槽10における硝化効率の低下を、後段の第2の硝化槽20によって補うことができる。
(ii)第1の硝化槽10から抜き出す硝化菌担持担体200の量を、第1の硝化槽10に充填された硝化菌担持担体200の50体積%以下に制限しているため、硝化菌担持担体200を抜き出した後に第1の硝化槽10に残る硝化菌の絶対量が大幅に不足することがなく、第1の硝化槽10における硝化効率の低下ができるだけ抑えられる。
(iii)第1の硝化槽10からの硝化菌担持担体200の抜き出しは、第2の処理水のアンモニア濃度またはアンモニア性窒素濃度があらかじめ設定された閾値以下になった状態があらかじめ設定された時間以上持続した状態、すなわち第1の硝化槽10に硝化菌が十分に存在する状態において行っているため、硝化菌担持担体200を抜き出した後に第1の硝化槽10に残る硝化菌の絶対量が大幅に不足することがなく、第1の硝化槽10における硝化効率の低下ができるだけ抑えられる。
<Action mechanism>
(Α) In the water treatment method described above, for the following reasons (i) to (iii), the nitrifying bacteria-supporting carrier can be extracted from the nitrification tank while sufficiently suppressing a decrease in nitrification efficiency.
(I) Since the first two-stage treatment of the first nitrification tank 10 and the second nitrification tank 20 is performed and the nitrification bacteria support carrier 200 is extracted from the first nitrification tank 10, the nitrification bacteria support carrier Even if 200 is extracted from the first nitrification tank 10, the lowering of the nitrification efficiency in the first nitrification tank 10 can be compensated by the second nitrification tank 20 in the subsequent stage.
(Ii) Since the amount of the nitrifying bacteria supporting carrier 200 extracted from the first nitrifying tank 10 is limited to 50% by volume or less of the nitrifying bacteria supporting carrier 200 filled in the first nitrifying tank 10, the nitrifying bacteria supporting The absolute amount of nitrifying bacteria remaining in the first nitrification tank 10 after the carrier 200 is extracted is not greatly deficient, and a decrease in nitrification efficiency in the first nitrification tank 10 is suppressed as much as possible.
(Iii) Extraction of the nitrifying bacteria-supporting carrier 200 from the first nitrification tank 10 is performed for a preset time when the ammonia concentration or ammoniacal nitrogen concentration of the second treated water is equal to or lower than a preset threshold value. Since the nitrification bacteria are sufficiently present in the first nitrification tank 10, the absolute amount of nitrification bacteria remaining in the first nitrification tank 10 after the nitrification bacteria-supporting carrier 200 is extracted is determined. A decrease in nitrification efficiency in the first nitrification tank 10 can be suppressed as much as possible without a significant shortage.

(β)また、以上説明した水処理方法にあっては、硝化菌担持担体200の担体がスポンジ担体であれば、多くの硝化菌を担持できることから硝化効率が向上し、また、硝化菌の担持を良好に維持でき、かつポンプや配管の損傷を最小限に抑制できる。
(γ)また、以上説明した水処理方法にあっては、イオン交換樹脂が充填されたイオン交換装置30において第2の処理水をイオン交換処理して第3の処理水とすれば、処理水中のアンモニア性窒素がさらに低減される。
(δ)また、以上説明した水処理方法にあっては、第1の硝化槽10に供給される被処理水の水量を測定し;第2の処理水のアンモニア濃度またはアンモニア性窒素濃度と、被処理水の水量の積算値とから算出されるアンモニア質量があらかじめ設定された閾値以上となったときに、イオン交換装置30のイオン交換樹脂を再生すれば、アンモニア性窒素が低減された処理水を安定して得ることができる。
(Β) In the water treatment method described above, if the carrier of the nitrifying bacteria supporting carrier 200 is a sponge carrier, nitrifying efficiency can be improved because a large number of nitrifying bacteria can be supported. Can be maintained well, and damage to the pump and piping can be minimized.
(Γ) Moreover, in the water treatment method described above, if the second treated water is ion-exchanged into the third treated water in the ion exchange device 30 filled with the ion exchange resin, the treated water is treated. The ammoniacal nitrogen is further reduced.
(Δ) In the water treatment method described above, the amount of water to be treated supplied to the first nitrification tank 10 is measured; the ammonia concentration or ammonia nitrogen concentration of the second treated water; Treated water in which ammonia nitrogen is reduced by regenerating the ion exchange resin of the ion exchange device 30 when the ammonia mass calculated from the integrated value of the amount of water to be treated is equal to or greater than a preset threshold value. Can be obtained stably.

また、以上説明した水処理システム1にあっては、上述したような構成とされているため、水処理システム1を用いることによって上述した水処理方法の一実施形態を実施することができ、その結果、前記(α)〜(δ)の作用機序を発揮できる。   Moreover, in the water treatment system 1 demonstrated above, since it is set as the structure mentioned above, one Embodiment of the water treatment method mentioned above can be implemented by using the water treatment system 1, As a result, the action mechanisms (α) to (δ) can be exhibited.

<他の実施形態>
本発明の水処理方法は、硝化菌担持担体が抜き出し可能な状態で充填された第1の硝化槽においてアンモニア性窒素を含む被処理水を処理して第1の処理水とし;硝化菌担持担体が充填された第2の硝化槽において第1の処理水を処理して第2の処理水とし;第2の処理水のアンモニア濃度またはアンモニア性窒素濃度を測定し;第1の硝化槽から硝化菌担持担体を抜き出すときには、アンモニア濃度またはアンモニア性窒素濃度があらかじめ設定された閾値以下になった状態があらかじめ設定された時間以上持続した状態において、第1の硝化槽に充填された硝化菌担持担体の50体積%以下を第1の硝化槽から抜き出すとともに、第1の硝化槽に硝化菌が担持されていない担体を補充する方法であればよく、上述した一実施形態に限定されない。
<Other embodiments>
In the water treatment method of the present invention, the water to be treated containing ammoniacal nitrogen is treated in the first nitrification tank filled with the nitrifying bacteria-supporting carrier so that it can be extracted to form the first treated water; The first treated water is treated in the second nitrification tank filled with the second treated water; the ammonia concentration or the ammonia nitrogen concentration of the second treated water is measured; nitrification from the first nitrification tank When the fungus-carrying carrier is extracted, the nitrifying bacteria-carrying carrier filled in the first nitrification tank in a state where the ammonia concentration or the ammoniacal nitrogen concentration is lower than a preset threshold value continues for a preset time or longer. Of 50% by volume or less of the first nitrification tank and a method of replenishing the first nitrification tank with a carrier on which no nitrifying bacteria are supported, and is limited to the above-described embodiment. No.

また、本発明の水処理システムは、硝化菌担持担体が抜き出し可能な状態で充填され、アンモニア性窒素を含む被処理水を処理して第1の処理水とする第1の硝化槽と;硝化菌担持担体が充填され、第1の処理水を処理して第2の処理水とする第2の硝化槽と;第2の処理水のアンモニア濃度またはアンモニア性窒素濃度を測定する濃度測定装置と;第1の硝化槽から硝化菌担持担体を抜き出すポンプと;濃度測定装置およびポンプに電気的に接続された制御装置とを備え;制御装置が、アンモニア濃度またはアンモニア性窒素濃度があらかじめ設定された閾値以下になった状態があらかじめ設定された時間以上持続した状態にあるかを判定する判定部と;第1の硝化槽に充填された硝化菌担持担体の50体積%以下を第1の硝化槽から抜き出すようにポンプを駆動させる制御部とを有するものであればよく、図示例の水処理システム1に限定されない。   In addition, the water treatment system of the present invention includes a first nitrification tank in which a nitrifying bacteria-supporting carrier is filled in a state where it can be extracted and treated water containing ammoniacal nitrogen is treated as first treated water; A second nitrification tank filled with a fungus-carrying carrier and treating the first treated water to form a second treated water; a concentration measuring device for measuring the ammonia concentration or ammonia nitrogen concentration of the second treated water; A pump for extracting the nitrifying bacteria carrier from the first nitrification tank; a concentration measuring device and a control device electrically connected to the pump; the control device is preset with an ammonia concentration or ammonia nitrogen concentration A determination unit for determining whether or not the state of being equal to or less than the threshold value has been maintained for a preset time or longer; and 50% by volume or less of the nitrifying bacteria-supporting carrier filled in the first nitrification tank in the first nitrification tank Unplug Suyo as long as it has a control unit for driving the pump, but is not limited to the water treatment system 1 of the illustrated embodiment.

例えば、硝化槽の数は、2つに限定されず、3つ以上であってもよい。
散気装置は、図示例のものに限定されず、公知のものを採用できる。
濃度測定装置の設置箇所は、第2の処理水移送流路の途中に限定されず、第2の硝化槽に直接浸漬されていてもよい。濃度測定装置を第2の硝化槽に直接浸漬することによって、測定効率を向上できる。
アンモニア濃度またはアンモニア性窒素濃度の測定は、第1の処理水について行ってもよく、第3の処理水について行ってもよい。
第1の硝化槽から硝化菌担持担体を抜き出すポンプは、エアリフトポンプに限定されない。ポンプとしては、エネルギー効率が高く、装置を小型化できる点からは、エアリフトポンプが好ましい。
イオン交換装置は、硝化槽によって処理水中のアンモニア性窒素が十分に低減される場合は、必ずしも設ける必要はない。
For example, the number of nitrification tanks is not limited to two and may be three or more.
The air diffuser is not limited to the illustrated example, and a known device can be adopted.
The installation location of the concentration measuring device is not limited to the middle of the second treated water transfer channel, and may be directly immersed in the second nitrification tank. Measurement efficiency can be improved by immersing the concentration measuring device directly in the second nitrification tank.
The measurement of the ammonia concentration or ammonia nitrogen concentration may be performed for the first treated water or the third treated water.
The pump for extracting the nitrifying bacteria-supporting carrier from the first nitrification tank is not limited to the air lift pump. As the pump, an air lift pump is preferable from the viewpoint of high energy efficiency and miniaturization of the apparatus.
The ion exchange device is not necessarily provided when ammoniacal nitrogen in the treated water is sufficiently reduced by the nitrification tank.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

(実施例1)
水処理システムとして、濃度測定装置の設置箇所が異なる以外は図1に示す水処理システム1と同様のものを用意した。
硝化槽の槽本体としては、完全混合槽型の透明アクリル製水槽を用いた。該水槽は、幅:120mm、奥行き:60mm、高さ:270mm、有効水量:1.75Lの片側旋回流角型水槽である。水槽の底部には、散気球を設けた。
Example 1
A water treatment system similar to the water treatment system 1 shown in FIG. 1 was prepared except that the installation location of the concentration measuring device was different.
As the tank body of the nitrification tank, a complete mixing tank type transparent acrylic water tank was used. The water tank is a one-sided swirl flow square water tank having a width of 120 mm, a depth of 60 mm, a height of 270 mm, and an effective water volume of 1.75 L. An air balloon was provided at the bottom of the water tank.

地下水に塩化アンモニウムおよび重炭酸水素ナトリウムを加え、アンモニア性窒素濃度:4.4mg/L、アルカリ度:70mg/Lの被処理水を調製した。
水温:18℃の被処理水を第1の硝化槽および第2の硝化槽に供給し、被処理水を第1の硝化槽および第2の硝化槽に貯めた。
Ammonium chloride and sodium bicarbonate were added to the ground water to prepare water to be treated having an ammoniacal nitrogen concentration: 4.4 mg / L and alkalinity: 70 mg / L.
Water temperature: treated water at 18 ° C. was supplied to the first nitrification tank and the second nitrification tank, and the treated water was stored in the first nitrification tank and the second nitrification tank.

既存の水処理システムの硝化槽から抜き出された硝化菌担持担体を、第1の硝化槽および第2の硝化槽に投入した。硝化菌担持担体の充填率は、各硝化槽の有効水量に対して、30体積%とした。担体としては、発泡ポリウレタン製スポンジ担体(イノアックコーポレーション社製、ウォターフレックス、5mm角型、品番:AQ−14)を用いた。   The nitrifying bacteria supporting carrier extracted from the nitrification tank of the existing water treatment system was put into the first nitrification tank and the second nitrification tank. The filling rate of the nitrifying bacteria-supporting carrier was 30% by volume with respect to the effective amount of water in each nitrifying tank. As the carrier, a foamed polyurethane sponge carrier (Inoac Corporation, Waterflex, 5 mm square, product number: AQ-14) was used.

第1の硝化槽に被処理水を供給しつつ、散気球から第1の硝化槽内に空気を散気した。また、第1の硝化槽から排出された第1の処理水を第2の硝化槽に移送しつつ、散気球から第2の硝化槽内に空気を散気した。被処理水は、水滞留時間(HRT)が0.43時間となるように供給した。アンモニア性窒素負荷は、0.25kg−N/m/dであった。各硝化槽の溶存酸素が飽和状態となるように過剰に空気を散気した。 While supplying the water to be treated to the first nitrification tank, air was diffused from the air balloon into the first nitrification tank. In addition, air was diffused from the air balloon into the second nitrification tank while the first treated water discharged from the first nitrification tank was transferred to the second nitrification tank. The water to be treated was supplied so that the water retention time (HRT) was 0.43 hours. The ammoniacal nitrogen load was 0.25 kg-N / m 3 / d. Excess air was diffused so that the dissolved oxygen in each nitrification tank was saturated.

イオン選択性センサ(エンドレスハウザージャパン社製、ISEmax CAS40D)を第2の硝化槽に投入し、第2の処理水のアンモニア性窒素濃度を測定した。約1か月経過後に安定状態、すなわち第2の硝化槽の第2の処理水のアンモニア性窒素濃度が0.1mg/L以下を7日連続で示すようになった。   An ion selective sensor (Endless Hauser Japan, ISEmax CAS40D) was introduced into the second nitrification tank, and the ammonia nitrogen concentration of the second treated water was measured. After about one month, the stable state, that is, the ammonia nitrogen concentration of the second treated water in the second nitrification tank showed 0.1 mg / L or less for 7 consecutive days.

このように安定状態となったことを確認した上で、第1の硝化槽から50体積%の硝化菌担持担体を抜き出し、同量の新品のスポンジ担体を投入し、被処理水の供給を再開した。再開直後から3日目までの被処理水および処理水のアンモニア性窒素濃度の推移を図2に示す。この結果、再開直後の第2の硝化槽の第2の処理水のアンモニア性窒素濃度は2mg/L程度を示し、2日目になって硝化菌担持担体を抜き出す前の0.1mg/Lを示すようになり、硝化効率の低下を十分に抑えることができた。   After confirming that it was in this stable state, 50% by volume of the nitrifying bacteria carrier was extracted from the first nitrification tank, the same amount of a new sponge carrier was introduced, and the supply of water to be treated was resumed. did. FIG. 2 shows changes in the ammoniacal nitrogen concentration of the water to be treated and the treated water from immediately after the restart to the third day. As a result, the ammoniacal nitrogen concentration of the second treated water in the second nitrification tank immediately after resumption is about 2 mg / L, and 0.1 mg / L before extracting the nitrifying bacteria-supporting carrier on the second day. As shown, the decrease in nitrification efficiency was sufficiently suppressed.

ついで、第2の硝化槽から排出された第2の処理水を、強酸性陽イオン交換樹脂(ダウ・ケミカル社製、デュオライトIMAC HP 1220を飽和食塩水で再生したもの)がイオン交換カラムに充填されたイオン交換装置に、SV:10h−1にて通水できるようにした。 Then, the second treated water discharged from the second nitrification tank is converted into a strongly acidic cation exchange resin (manufactured by Dow Chemical Co., Ltd., Duolite IMAC HP 1220 regenerated with saturated saline) on the ion exchange column. Water was allowed to pass through the filled ion exchanger at SV: 10 h −1 .

再度、第1の硝化槽から50体積%の硝化菌担持担体を抜き出し、同量の新品のスポンジ担体を投入し、被処理水の供給を再開した。第2の硝化槽から排出された第2の処理水をイオン交換装置に通水した。
通水1時間後の第2の硝化槽の第2の処理水およびイオン交換装置の出口の第3の処理水のアンモニア性窒素濃度は、それぞれ0.8mg/Lおよび0.1mg/Lを示した。硝化菌担持担体を抜き出した直後であっても、第2の処理水をイオン交換装置に通水することによってアンモニア性窒素を低減できることが確認された。
Again, 50% by volume of the nitrifying bacteria carrier was extracted from the first nitrification tank, the same amount of a new sponge carrier was added, and the supply of water to be treated was resumed. The second treated water discharged from the second nitrification tank was passed through the ion exchange device.
The ammoniacal nitrogen concentrations of the second treated water in the second nitrification tank and the third treated water at the outlet of the ion exchange apparatus after 1 hour of water flow were 0.8 mg / L and 0.1 mg / L, respectively. It was. It was confirmed that ammonia nitrogen could be reduced by passing the second treated water through the ion exchanger even immediately after the nitrifying bacteria-supporting carrier was extracted.

(比較例1)
第1の硝化槽からの硝化菌担持担体の抜き出し量を75体積%に変更した以外は、実施例1と同様に水処理を行った。
硝化菌担持担体を第1の硝化槽から抜き出し、被処理水の供給を再開した直後から4日目までの被処理水および処理水のアンモニア性窒素濃度の推移を図3に示す。再開後、4日目になっても第2の硝化槽の第2の処理水のアンモニア性窒素濃度は1mg/L以下となることはなく、硝化効率の低下を十分に抑えることができなかった。
(Comparative Example 1)
Water treatment was performed in the same manner as in Example 1 except that the amount of the nitrifying bacteria-supporting carrier extracted from the first nitrification tank was changed to 75% by volume.
FIG. 3 shows the transition of ammonia nitrogen concentration in the water to be treated and the treated water from the first day after the nitrifying bacteria supporting carrier was extracted from the first nitrification tank and the supply of the water to be treated was resumed. Even after 4 days of restart, the ammonia nitrogen concentration of the second treated water in the second nitrification tank never became 1 mg / L or less, and the decrease in nitrification efficiency could not be sufficiently suppressed. .

本発明の水処理方法および水処理システムは、アンモニア性窒素を多く含む被処理水、特に地下水を生物硝化反応によって処理してアンモニア性窒素を低減する水処理方法および水処理システムに有用である。   INDUSTRIAL APPLICABILITY The water treatment method and the water treatment system of the present invention are useful for a water treatment method and a water treatment system that reduce ammoniacal nitrogen by treating water to be treated containing a large amount of ammonia nitrogen, in particular, groundwater by a bionitrification reaction.

1 水処理システム、10 第1の硝化槽、11 槽本体、12 固液分離装置、13 散気装置、14 散気部、15 空気供給管、16 ブロア、17 空気量調整手段、20 第2の硝化槽、21 槽本体、22 固液分離装置、23 散気装置、24 散気部、25 空気供給管、26 ブロア、27 空気量調整手段、30 イオン交換装置、40 水流量測定装置、50 濃度測定装置、60 エアリフトポンプ、61 揚水管、62 送気管、63 吐出管、100 被処理水供給流路、101 第1の処理水移送流路、102 第2の処理水移送流路、103 第3の処理水移送流路、104 迂回流路、200 硝化菌担持担体。   DESCRIPTION OF SYMBOLS 1 Water treatment system, 10 1st nitrification tank, 11 tank main body, 12 solid-liquid separator, 13 air diffuser, 14 air diffuser, 15 air supply pipe, 16 blower, 17 air quantity adjustment means, 20 2nd Nitrification tank, 21 tank body, 22 solid-liquid separator, 23 air diffuser, 24 air diffuser, 25 air supply pipe, 26 blower, 27 air amount adjusting means, 30 ion exchange device, 40 water flow measuring device, 50 concentration Measuring device, 60 air lift pump, 61 pumping pipe, 62 air supply pipe, 63 discharge pipe, 100 treated water supply flow path, 101 first treated water transfer flow path, 102 second treated water transfer flow path, 103 third Treated water transfer channel, 104 bypass channel, 200 nitrifying bacteria support carrier.

Claims (10)

硝化菌担持担体が抜き出し可能な状態で充填された第1の硝化槽においてアンモニア性窒素を含む被処理水を処理して第1の処理水とし、
硝化菌担持担体が充填された第2の硝化槽において前記第1の処理水を処理して第2の処理水とし、
前記第2の処理水のアンモニア濃度またはアンモニア性窒素濃度を測定し、
前記第1の硝化槽から前記硝化菌担持担体を抜き出すときには、前記アンモニア濃度または前記アンモニア性窒素濃度があらかじめ設定された閾値以下になった状態があらかじめ設定された時間以上持続した状態において、前記第1の硝化槽に充填された前記硝化菌担持担体の50体積%以下を前記第1の硝化槽から抜き出すとともに、前記第1の硝化槽に硝化菌が担持されていない担体を補充する、水処理方法。
Treating water to be treated containing ammoniacal nitrogen in the first nitrification tank filled with the nitrifying bacteria-supporting carrier in a state where it can be extracted,
Treating the first treated water in a second nitrification tank filled with a nitrifying bacteria-supporting carrier to form second treated water;
Measuring the ammonia concentration or ammoniacal nitrogen concentration of the second treated water;
When extracting the nitrifying bacteria-supporting carrier from the first nitrification tank, the state in which the ammonia concentration or the ammoniacal nitrogen concentration is lower than a preset threshold value continues for a preset time or longer. A water treatment in which 50% by volume or less of the nitrifying bacteria-supporting carrier filled in one nitrification tank is extracted from the first nitrification tank, and the first nitrification tank is supplemented with a carrier not supporting nitrifying bacteria. Method.
前記担体が、スポンジ担体である、請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the carrier is a sponge carrier. イオン交換樹脂が充填されたイオン交換装置において前記第2の処理水をイオン交換処理して第3の処理水とする、請求項1または2に記載の水処理方法。   The water treatment method according to claim 1 or 2, wherein the second treated water is ion-exchanged into a third treated water in an ion exchange apparatus filled with an ion exchange resin. 前記第1の硝化槽に供給される前記被処理水の水量を測定し、
前記アンモニア濃度または前記アンモニア性窒素濃度と、前記被処理水の水量の積算値とから算出されるアンモニア質量があらかじめ設定された閾値以上となったときに、前記イオン交換装置の前記イオン交換樹脂を再生する、請求項3に記載の水処理方法。
Measuring the amount of water to be treated supplied to the first nitrification tank;
When the ammonia mass calculated from the ammonia concentration or the ammoniacal nitrogen concentration and the integrated value of the amount of water to be treated exceeds a preset threshold value, the ion exchange resin of the ion exchange device is The water treatment method according to claim 3, which is regenerated.
前記第1の硝化槽から前記硝化菌担持担体を、エアリフトポンプを用いて抜き出す、請求項1〜4のいずれか一項に記載の水処理方法。   The water treatment method according to any one of claims 1 to 4, wherein the nitrifying bacteria-supporting carrier is extracted from the first nitrification tank using an air lift pump. 硝化菌担持担体が抜き出し可能な状態で充填され、アンモニア性窒素を含む被処理水を処理して第1の処理水とする第1の硝化槽と、
硝化菌担持担体が充填され、前記第1の処理水を処理して第2の処理水とする第2の硝化槽と、
前記第2の処理水のアンモニア濃度またはアンモニア性窒素濃度を測定する濃度測定装置と、
前記第1の硝化槽から前記硝化菌担持担体を抜き出すポンプと、
前記濃度測定装置および前記ポンプに電気的に接続された制御装置と
を備え、
前記制御装置が、
前記アンモニア濃度または前記アンモニア性窒素濃度があらかじめ設定された閾値以下になった状態があらかじめ設定された時間以上持続した状態にあるかを判定する判定部と、
前記第1の硝化槽に充填された前記硝化菌担持担体の50体積%以下を前記第1の硝化槽から抜き出すように前記ポンプを駆動させる制御部とを有する、水処理システム。
A first nitrification tank filled with a nitrifying bacteria-supporting carrier in a state where it can be withdrawn and treating water to be treated containing ammoniacal nitrogen to form first treated water;
A second nitrification tank filled with a nitrifying bacteria-supporting carrier and treating the first treated water into a second treated water;
A concentration measuring device for measuring an ammonia concentration or ammonia nitrogen concentration in the second treated water;
A pump for extracting the nitrifying bacteria-supporting carrier from the first nitrification tank;
A control device electrically connected to the concentration measuring device and the pump;
The control device is
A determination unit for determining whether the state in which the ammonia concentration or the ammoniacal nitrogen concentration is equal to or lower than a preset threshold value is in a state in which the ammonia concentration or the ammonia nitrogen concentration is maintained for a preset time;
A water treatment system, comprising: a controller that drives the pump so that 50% by volume or less of the nitrifying bacteria-supporting carrier filled in the first nitrification tank is extracted from the first nitrification tank.
前記担体が、スポンジ担体である、請求項6に記載の水処理システム。   The water treatment system according to claim 6, wherein the carrier is a sponge carrier. イオン交換樹脂が充填され、前記第2の処理水をイオン交換処理して第3の処理水とするイオン交換装置をさらに備えた、請求項6または7に記載の水処理システム。   The water treatment system according to claim 6 or 7, further comprising an ion exchange device that is filled with an ion exchange resin and ion-exchanges the second treated water into a third treated water. 前記第1の硝化槽に供給される前記被処理水の水量を測定する水流量測定装置をさらに備え、
前記制御装置における前記判定部が、前記アンモニア濃度または前記アンモニア性窒素濃度と、前記被処理水の水量の積算値とから算出されるアンモニア質量があらかじめ設定された閾値以上となったかを判定し;前記制御装置における前記制御部が、前記イオン交換装置に前記イオン交換樹脂を再生する運転を開始させる、請求項8に記載の水処理システム。
A water flow rate measuring device for measuring the amount of water to be treated supplied to the first nitrification tank;
The determination unit in the control device determines whether the ammonia mass calculated from the ammonia concentration or the ammoniacal nitrogen concentration and an integrated value of the amount of water to be treated is equal to or greater than a preset threshold; The water treatment system according to claim 8, wherein the control unit in the control device causes the ion exchange device to start an operation of regenerating the ion exchange resin.
前記ポンプが、エアリフトポンプである、請求項6〜9のいずれか一項に記載の水処理システム。   The water treatment system according to any one of claims 6 to 9, wherein the pump is an air lift pump.
JP2016097182A 2016-05-13 2016-05-13 Water treatment method and water treatment system Active JP6796948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016097182A JP6796948B2 (en) 2016-05-13 2016-05-13 Water treatment method and water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016097182A JP6796948B2 (en) 2016-05-13 2016-05-13 Water treatment method and water treatment system

Publications (2)

Publication Number Publication Date
JP2017202473A true JP2017202473A (en) 2017-11-16
JP6796948B2 JP6796948B2 (en) 2020-12-09

Family

ID=60321807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016097182A Active JP6796948B2 (en) 2016-05-13 2016-05-13 Water treatment method and water treatment system

Country Status (1)

Country Link
JP (1) JP6796948B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004662A1 (en) 2018-06-29 2020-01-02 株式会社クラレ Water treatment method
JP7553289B2 (en) 2020-08-31 2024-09-18 三菱ケミカルアクア・ソリューションズ株式会社 Water Treatment Methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130364A (en) * 1973-04-19 1974-12-13
JPS50103164A (en) * 1974-01-21 1975-08-14
JPS5142351A (en) * 1974-10-08 1976-04-09 Tadao Hoshino
JPS5939382A (en) * 1982-08-27 1984-03-03 オート トロール コーポレーシヨン Demand/schedule type water softening device through micro-computer control
JPH0947788A (en) * 1995-08-10 1997-02-18 Hitachi Plant Eng & Constr Co Ltd Method for biologically oxidizing ammoniacal nitrogen and device therefor
JP2001179251A (en) * 1999-12-27 2001-07-03 Miura Co Ltd Water softener and method for controlling regeneration thereof
JP2003190950A (en) * 2001-12-25 2003-07-08 Ishikawajima Harima Heavy Ind Co Ltd Changeover method for ion exchange tank and water treatment apparatus
JP2003326297A (en) * 2002-05-09 2003-11-18 Hitachi Plant Eng & Constr Co Ltd Nitrification method for waste water
JP2006122865A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Water treatment and carrier acclimatization method and its device
JP2011212670A (en) * 2010-03-19 2011-10-27 Swing Corp Wastewater treatment apparatus and wastewater treatment method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130364A (en) * 1973-04-19 1974-12-13
JPS50103164A (en) * 1974-01-21 1975-08-14
JPS5142351A (en) * 1974-10-08 1976-04-09 Tadao Hoshino
JPS5939382A (en) * 1982-08-27 1984-03-03 オート トロール コーポレーシヨン Demand/schedule type water softening device through micro-computer control
JPH0947788A (en) * 1995-08-10 1997-02-18 Hitachi Plant Eng & Constr Co Ltd Method for biologically oxidizing ammoniacal nitrogen and device therefor
JP2001179251A (en) * 1999-12-27 2001-07-03 Miura Co Ltd Water softener and method for controlling regeneration thereof
JP2003190950A (en) * 2001-12-25 2003-07-08 Ishikawajima Harima Heavy Ind Co Ltd Changeover method for ion exchange tank and water treatment apparatus
JP2003326297A (en) * 2002-05-09 2003-11-18 Hitachi Plant Eng & Constr Co Ltd Nitrification method for waste water
JP2006122865A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Water treatment and carrier acclimatization method and its device
JP2011212670A (en) * 2010-03-19 2011-10-27 Swing Corp Wastewater treatment apparatus and wastewater treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004662A1 (en) 2018-06-29 2020-01-02 株式会社クラレ Water treatment method
JP7553289B2 (en) 2020-08-31 2024-09-18 三菱ケミカルアクア・ソリューションズ株式会社 Water Treatment Methods

Also Published As

Publication number Publication date
JP6796948B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
CN103382073B (en) Membrane separation and biological process for resourceful treatment of garbage leachate and device thereof
JP5717188B2 (en) Waste water treatment method and waste water treatment equipment
JP2010063987A (en) Waste water treatment device and treatment method
US11053148B2 (en) Device and method for shortcut nitrogen removal and nitrite-oxidizing bacteria activity inhibition
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP2017202473A (en) Water treatment method and system
JP6811031B2 (en) Bio-nitrification method and bio-nitrification system
KR100913728B1 (en) Waste water treatment method maintaining do level by use of pure oxygen gas and system suitable for the same
JP2009247255A (en) Method for cleaning breeding water and apparatus for cleaning breeding water
JP6941439B2 (en) Membrane separation activated sludge treatment equipment, membrane separation activated sludge treatment method and raw water supply equipment
JP2007007557A (en) Waste water treatment apparatus
KR100913726B1 (en) Method of controlling dissolved oxygen level in waste water treatment system
JP5027000B2 (en) Nitrification processing method and nitrification processing apparatus
JP7553289B2 (en) Water Treatment Methods
JP2006122865A (en) Water treatment and carrier acclimatization method and its device
JP4200443B2 (en) Water treatment method and apparatus
JP6461408B1 (en) Water treatment method and water treatment apparatus
JP2017100099A (en) Water treatment system and water treatment method
JP2017104806A (en) Nitrification-denitrification device
JP6211547B2 (en) Batch-type denitrification treatment apparatus, batch tank for denitrification treatment, and batch-type denitrification treatment method
JP2012245479A (en) Wastewater treatment apparatus and wastewater treatment method
JP7121823B2 (en) Membrane separation activated sludge treatment device, membrane separation activated sludge treatment method and raw water supply device
JP7437292B2 (en) Solution processing device and solution processing method
JPWO2019234909A1 (en) Water treatment system and water treatment method
JP2022153861A (en) Biological nitrification method and biological nitrification system

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200915

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200915

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200925

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6796948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150