JP2011212670A - Wastewater treatment apparatus and wastewater treatment method - Google Patents

Wastewater treatment apparatus and wastewater treatment method Download PDF

Info

Publication number
JP2011212670A
JP2011212670A JP2011037992A JP2011037992A JP2011212670A JP 2011212670 A JP2011212670 A JP 2011212670A JP 2011037992 A JP2011037992 A JP 2011037992A JP 2011037992 A JP2011037992 A JP 2011037992A JP 2011212670 A JP2011212670 A JP 2011212670A
Authority
JP
Japan
Prior art keywords
gas
nitrification tank
oxygen
concentration
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011037992A
Other languages
Japanese (ja)
Other versions
JP5698025B2 (en
Inventor
Toshio Tsukamoto
敏男 塚本
Ryosuke Hata
良介 秦
Takeshi Yoshizawa
毅 吉澤
Takeshi Yamakawa
岳志 山川
Masato Nishiwaki
正人 西脇
Tomohiro Sakai
友弘 酒井
Takashi Okouchi
孝 大河内
Tomomi Date
知見 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Kawasaki City
Original Assignee
Swing Corp
Kawasaki City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp, Kawasaki City filed Critical Swing Corp
Priority to JP2011037992A priority Critical patent/JP5698025B2/en
Publication of JP2011212670A publication Critical patent/JP2011212670A/en
Application granted granted Critical
Publication of JP5698025B2 publication Critical patent/JP5698025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wastewater treatment apparatus and a wastewater treatment method which can perform high load nitrification of wastewater containing nitrogen which enables miniaturization of equipment and reducing a total cost.SOLUTION: The wastewater treatment apparatus including a nitrification tank 2 filled up with a carrier 5 to which nitrifying bacteria is made to adhere and which can be sealed, a feed line 10 of high concentration oxygen gas in a gas phase part 12, a discharge line 11 discharging an exhaust gas from the gas phase part 12, and an aeration means 15 having a blower 9 aerating the gas of the gas phase part 12 in the nitrification tank 2 into a liquid phase and an air diffuser 8, which carries out oxidation treatment of NH-N and/or O-N in wastewater to NObiologically, includes a dissolved oxygen detecting means 13 in a liquid phase in the nitrification tank 2, a means 16 controlling the aeration air flow of the aeration means 15 so that the dissolved oxygen concentration is maintained to a set value by a result of the dissolved oxygen detecting means 13, and an oxygen detecting means 14 detecting the oxygen concentration of the gas phase part 12 in the nitrification tank 2, and a means 18 for controlling the amount of the high concentration gas supplied from the feed line 10 so that the oxygen concentration may be maintained to a prescribed range by the detected result of the oxygen detecting means 14.

Description

本発明は、アンモニア性窒素及び有機性窒素を含む排水を生物学的に酸化処理する排水処理装置及び排水処理方法に関する。   The present invention relates to a waste water treatment apparatus and a waste water treatment method for biologically oxidizing waste water containing ammonia nitrogen and organic nitrogen.

アンモニア性窒素を含む排水を生物学的に処理する方法として、硝化菌によってアンモニア性窒素を硝酸性窒素、亜硝酸性窒素に酸化する処理が、一般的に行われている。硝化反応には、酸素が必要であり、酸素源として空気が用いられている(例えば、特許文献1)。
アンモニア性窒素及び有機性窒素の硝化反応において、1kgの窒素を硝化するには、約4.6kgもの酸素が必要であるため、空気を酸素源とした従来の排水処理方法においては、硝化槽に大量の空気を供給しなければならない。さらに、硝化を効率的に進めるには、有機物の酸化分解処理に比べて混合液のDOを高めに維持する必要があり、酸素濃度が21%の空気を用いた場合は、設備の小型化や空気供給設備等の動力コストの低減には限界があった。このような問題点を解決する方法として、空気よりも酸素濃度を高めた酸素富化空気を硝化反応に必要な酸素源として用いる酸素活性汚泥法が採用されている(例えば、特許文献2)。
As a method for biologically treating wastewater containing ammonia nitrogen, a treatment for oxidizing ammonia nitrogen to nitrate nitrogen and nitrite nitrogen by nitrifying bacteria is generally performed. The nitrification reaction requires oxygen, and air is used as an oxygen source (for example, Patent Document 1).
In the nitrification reaction of ammonia nitrogen and organic nitrogen, about 4.6 kg of oxygen is required to nitrify 1 kg of nitrogen. Therefore, in the conventional wastewater treatment method using air as an oxygen source, A large amount of air must be supplied. Furthermore, in order to promote nitrification efficiently, it is necessary to maintain the DO of the mixed solution higher than that of the oxidative decomposition treatment of organic matter. When air with an oxygen concentration of 21% is used, the equipment can be downsized. There has been a limit to reducing the power cost of air supply facilities. As a method for solving such a problem, an oxygen activated sludge method using oxygen-enriched air having an oxygen concentration higher than that of air as an oxygen source necessary for the nitrification reaction is employed (for example, Patent Document 2).

高負荷条件で硝化処理を行うためには、酸素の供給能力を上げると共に、硝化槽内に多量の硝化菌を保持しなければならない。そのためには、DOを高く維持して汚泥中の硝化菌の活性を高めると共に、混合液の汚泥濃度(MLSS濃度)を高くしなければならない。酸素活性汚泥法の場合、DOを高く設定できるメリットはあるものの、MLSS濃度をむやみに上げると、標準的な活性汚泥法と同様に、沈殿池で汚泥と処理水を分離しにくくなるといった問題が生じる。この固液分離に膜を用いても良いが、高額な膜分離システムが必要になると共に、膜のつまりなど解決・改良すべき課題も多い。さらに、MLSS濃度を上げることで曝気槽や沈殿池でのスカム発生を助長し、運転管理が煩雑になるといった問題点もある。これらの問題を解決するために、微生物を固定した担体を用いる方法が、硝化処理では広く普及しているのである。
酸素供給能力に優れた酸素活性汚泥法と、硝化能力が優れた担体硝化法を組み合わせることによって、コンパクトな設備で硝化処理を進めることができ、装置構造や方法が種々検討されている(例えば、特許文献2)。
In order to perform nitrification under high load conditions, it is necessary to increase the supply capacity of oxygen and hold a large amount of nitrifying bacteria in the nitrification tank. For that purpose, DO must be maintained high to increase the activity of nitrifying bacteria in the sludge, and the sludge concentration (MLSS concentration) of the mixed solution must be increased. In the case of the oxygen activated sludge method, there is a merit that the DO can be set high, but if the MLSS concentration is increased unnecessarily, there is a problem that it becomes difficult to separate the sludge and the treated water in the sedimentation basin as with the standard activated sludge method. Arise. A membrane may be used for this solid-liquid separation, but an expensive membrane separation system is required, and there are many problems to be solved and improved such as clogging of the membrane. Furthermore, raising the MLSS concentration promotes the occurrence of scum in the aeration tank and the sedimentation basin, and there is a problem that operation management becomes complicated. In order to solve these problems, a method using a carrier on which microorganisms are fixed is widely used in nitrification treatment.
By combining the oxygen activated sludge method with excellent oxygen supply capability and the carrier nitrification method with excellent nitrification capability, nitrification treatment can proceed with compact equipment, and various device structures and methods have been studied (for example, Patent Document 2).

酸素活性汚泥では、硝化槽の曝気方法として表面曝気法が採用されている。しかし、特許文献2にも記載があるとおり、曝気用の攪拌によって、硝化担体が磨耗したり、崩壊するといった問題が生じる場合があった。
担体の損耗の問題を解決するために、表面曝気法のかわりに循環ブロワを介して高濃度酸素ガスを曝気槽内で循環散記する方法(ガス循環散気法)があり、この方法で硝化を行っている例もある(例えば、非特許文献1)。
しかしながら、ブロワを用いて循環散気する方法は、表面曝気法に比べて実用例も少なく、運転を安定化させたり、効率的に運用するための実施条件の検討が十分なされてこなかった。特に、酸素活性汚泥法では、使用する酸素富化空気や純酸素などの空気よりも酸素濃度が高いガス(以下、高酸素ガス)は、生成するために多大のコストがかかる。そして、酸素活性汚泥法の特徴である小さな曝気槽、すなわち、水理学的滞留時間(hydraulic retention time、HRT)の短い条件で効率良く硝化反応を進めるための処理装置、処理方法も十分確立できていない。
In oxygen activated sludge, the surface aeration method is adopted as the aeration method of the nitrification tank. However, as described in Patent Document 2, there has been a case where the nitrification carrier is worn or collapsed by aeration stirring.
In order to solve the problem of carrier wear, there is a method (gas circulation aeration method) in which high-concentration oxygen gas is circulated and scattered in the aeration tank via a circulation blower instead of the surface aeration method. There is also an example (for example, Non-Patent Document 1).
However, the method of circulating and aeration using a blower has fewer practical examples than the surface aeration method, and the implementation conditions for stabilizing the operation and operating efficiently have not been sufficiently studied. In particular, in the oxygen activated sludge method, a gas having a higher oxygen concentration than the air such as oxygen-enriched air or pure oxygen to be used (hereinafter referred to as high oxygen gas) is expensive to generate. Also, a small aeration tank, which is a feature of the oxygen activated sludge method, that is, a processing apparatus and a processing method for efficiently carrying out the nitrification reaction under conditions with a short hydraulic retention time (HRT) have been sufficiently established. Absent.

特開2000−312898号公報JP 2000-31898 A 特開平8−173983号公報JP-A-8-173983

住山ら、第30回下水道研究発表会講演集,p524(1993)Sumiyama et al., 30th Sewerage Research Conference Lecture, p524 (1993)

本発明は、上記事情に鑑みてなされたものであり、硝化槽を高負荷、小型にすること及び省エネルギー化が可能な窒素含有排水を生物学的に酸化処理する排水処理装置と方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and provides a wastewater treatment apparatus and method for biologically oxidizing nitrogen-containing wastewater capable of reducing the load and size of a nitrification tank and saving energy. This is the issue.

上記課題を解決するために、本発明では、硝化菌を付着させた担体を充填した密閉可能な硝化槽と、該硝化槽の気相部に高濃度酸素ガスを供給する酸素ガス供給ラインと、前記硝化槽の気相部からの排気ガスを排出する排出ラインと、前記硝化槽内の気相部の気体を液相中に導いて曝気させるブロワと散気装置を有する曝気手段とを備えた、排水中のアンモニア性窒素及び/又は有機性窒素を生物学的に硝酸性窒素及び/又は亜硝酸性窒素に酸化処理する排水処理装置であって、前記硝化槽内の液相中の溶存酸素濃度を検出する溶存酸素検出手段と、該溶存酸素検出手段による検出結果に基づいて、前記溶存酸素濃度が設定値に維持されるように前記曝気手段の曝気風量を制御する手段とを備えると共に、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を検出する酸素検出手段と、該酸素検出手段による検出結果に基づいて、前記酸素濃度が所定範囲に維持されるように前記酸素ガス供給ラインの酸素ガス供給量を制御する手段とを備えることを特徴とする排水処理装置としたものである。   In order to solve the above problems, in the present invention, a sealable nitrification tank filled with a carrier to which nitrifying bacteria are attached, an oxygen gas supply line for supplying high-concentration oxygen gas to the gas phase part of the nitrification tank, A discharge line for discharging exhaust gas from the gas phase part of the nitrification tank, a blower for introducing the gas in the gas phase part in the nitrification tank into the liquid phase and aeration, and an aeration means having an air diffuser. A waste water treatment apparatus for biologically oxidizing ammonia nitrogen and / or organic nitrogen in waste water to nitrate nitrogen and / or nitrite nitrogen, and dissolved oxygen in the liquid phase in the nitrification tank Dissolved oxygen detection means for detecting the concentration, and means for controlling the aeration air volume of the aeration means based on the detection result by the dissolved oxygen detection means so that the dissolved oxygen concentration is maintained at a set value; Gas in the gas phase part in the nitrification tank or front Oxygen detection means for detecting the oxygen concentration of the exhaust gas, and means for controlling the oxygen gas supply amount of the oxygen gas supply line so that the oxygen concentration is maintained within a predetermined range based on the detection result by the oxygen detection means The waste water treatment apparatus is characterized by comprising:

また、本発明では、硝化菌を付着させた担体を充填した密閉可能な硝化槽と、該硝化槽の気相部に高濃度酸素ガスを供給する酸素ガス供給ラインと、前記硝化槽の気相部からの排気ガスを排出する排出ラインと、前記硝化槽内の気相部の気体を液相中に導いて曝気させるブロワと散気装置を有する曝気手段とを備えると共に、前記硝化槽の前段に脱窒槽を設け、該脱窒槽に前記硝化槽の液相及び/又は汚泥を返送する返送ラインを設けた、排水中のアンモニア性窒素及び/又は有機性窒素を生物学的に硝酸性窒素及び/又は亜硝酸性窒素に酸化処理して、脱窒処理する排水処理装置であって、前記硝化槽内の液相中の溶存酸素濃度を検出する溶存酸素検出手段と、該溶存酸素検出手段による検出結果に基づいて、前記溶存酸素濃度が設定値に維持されるように前記曝気手段の曝気風量を制御する手段とを備えると共に、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を検出する酸素検出手段と、該酸素検出手段による検出結果に基づいて、前記酸素濃度が所定範囲に維持されるように前記酸素ガス供給ラインの酸素ガス供給量を制御する手段とを備えることを特徴とする排水処理装置としたものである。   Further, in the present invention, a sealable nitrification tank filled with a carrier to which nitrifying bacteria are attached, an oxygen gas supply line for supplying high-concentration oxygen gas to a gas phase part of the nitrification tank, and a gas phase of the nitrification tank A discharge line for discharging exhaust gas from the section, a blower for introducing the gas in the gas phase section in the nitrification tank into the liquid phase and aeration means having a diffuser, and a front stage of the nitrification tank Provided with a denitrification tank, and provided with a return line for returning the liquid phase and / or sludge of the nitrification tank to the denitrification tank, biologically nitrate nitrogen and / or organic nitrogen in the waste water. A wastewater treatment apparatus that oxidizes to nitrite nitrogen and denitrifies, and includes dissolved oxygen detection means that detects the dissolved oxygen concentration in the liquid phase in the nitrification tank, and the dissolved oxygen detection means Based on the detection result, the dissolved oxygen concentration becomes a set value. A means for controlling the amount of aeration air of the aeration means so as to be held, an oxygen detection means for detecting the oxygen concentration of the gas in the gas phase in the nitrification tank or the exhaust gas, and the oxygen detection means And a means for controlling an oxygen gas supply amount of the oxygen gas supply line so that the oxygen concentration is maintained within a predetermined range based on a detection result.

前記排水処理装置において、前記硝化槽が、隔壁によって仕切られた複数の槽からなり、該複数の槽の槽毎に、液相中の溶存酸素濃度を検出する溶存酸素検出手段と、ブロワと散気装置を有する曝気手段と、前記溶存酸素濃度が槽毎に設定値に維持されるように、前記曝気手段の曝気風量を制御する手段とを備えたこととするか、又は、前記硝化槽が、隔壁によって仕切られた複数の槽からなり、該複数の槽の槽毎に、液相中の溶存酸素濃度を検出する溶存酸素検出手段と、散気手段と該散気手段の少なくとも1つに接続している流量調節弁とを有する曝気手段とを備え、該槽毎の曝気手段に接続する1個のインバータ制御されるブロワを有し、該ブロワの風量及び/又は前記散気手段に接続する流量調節弁の開度により前記溶存酸素濃度が槽毎に設定値に維持されるように、前記曝気手段の曝気風量を制御する手段を備えたこととすることができる。   In the wastewater treatment apparatus, the nitrification tank is composed of a plurality of tanks partitioned by a partition wall, and a dissolved oxygen detection means for detecting a dissolved oxygen concentration in the liquid phase, a blower and a dispersion for each tank of the plurality of tanks. An aeration means having an air device, and means for controlling the aeration air volume of the aeration means so that the dissolved oxygen concentration is maintained at a set value for each tank, or the nitrification tank A plurality of tanks partitioned by a partition wall, and each of the tanks of the plurality of tanks includes dissolved oxygen detection means for detecting a dissolved oxygen concentration in the liquid phase, at least one of the aeration means and the aeration means. An aeration means having a flow control valve connected thereto, and having one inverter-controlled blower connected to the aeration means for each tank, and connected to the air volume of the blower and / or the aeration means The dissolved oxygen concentration depends on the opening of the flow control valve. So as to maintain the set value for each, it can be further comprising means for controlling the aeration amount of the aeration unit.

さらに、本発明では、硝化菌を付着させた担体を充填した密閉可能な硝化槽の気相中に、高濃度酸素ガスを供給し、前記硝化槽の気相中から排気ガスを排出させると共に、前記硝化槽内の気相中の気体をブロワと散気装置を介して液相中に曝気させる、排水中のアンモニア性窒素及び有機性窒素を生物学的に硝酸性窒素及び亜硝酸性窒素に酸化処理する排水処理方法において、前記硝化槽内の液相中の溶存酸素濃度を検出し、該検出結果に基づいて前記溶存酸素濃度が設定値に維持されるように、前記液相中に曝気させる曝気風量を制御すると共に、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を検出し、該検出結果に基づいて前記酸素濃度が所定範囲に維持されるように、前記硝化槽の気相部に供給する酸素ガス供給量を制御することを特徴とする排水処理方法としたものである。   Furthermore, in the present invention, a high-concentration oxygen gas is supplied into the gas phase of a sealable nitrification tank filled with a carrier to which nitrifying bacteria are attached, and exhaust gas is discharged from the gas phase of the nitrification tank, A gas in the gas phase in the nitrification tank is aerated in a liquid phase through a blower and a diffuser, and ammonia nitrogen and organic nitrogen in the waste water are biologically converted into nitrate nitrogen and nitrite nitrogen. In the wastewater treatment method for oxidation treatment, the dissolved oxygen concentration in the liquid phase in the nitrification tank is detected, and aeration is performed in the liquid phase so that the dissolved oxygen concentration is maintained at a set value based on the detection result. Controlling the amount of aeration air to be generated, detecting the gas concentration in the gas phase section in the nitrification tank or the oxygen concentration of the exhaust gas, and maintaining the oxygen concentration in a predetermined range based on the detection result Controls the oxygen gas supply amount supplied to the gas phase part of the tank It is obtained by a waste water treatment method characterized by Rukoto.

また、本発明では、硝化菌を付着させた担体を充填した密閉可能な硝化槽の気相中に、高濃度酸素ガスを供給し、前記硝化槽の気相中から排気ガスを排出させ、前記硝化槽内の気相中の気体をブロワと散気装置を介して液相中に曝気させると共に、前記硝化槽の前段に設けた脱窒槽に、前記硝化槽の液相及び/又は汚泥を返送して、排水中のアンモニア性窒素及び有機性窒素を生物学的に硝酸性窒素及び亜硝酸性窒素に酸化処理して、脱窒処理する排水処理方法において、前記硝化槽内の液相中の溶存酸素濃度を検出し、該検出結果に基づいて前記溶存酸素濃度が設定値に維持されるように、前記液相中に曝気させる曝気風量を制御すると共に、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を検出し、該検出結果に基づいて前記酸素濃度が所定範囲に維持されるように、前記硝化槽の気相部に供給する酸素ガス供給量を制御することを特徴とする排水処理方法としたものである。
前記排水処理装置及び方法において、前記液相中の溶存酸素濃度の設定値は、2〜12mg/Lであり、また、前記気相部又は排気ガス中の酸素濃度の所定範囲は、30〜70%(容量)とするのがよい。
In the present invention, a high-concentration oxygen gas is supplied into the gas phase of a sealable nitrification tank filled with a carrier to which nitrifying bacteria are attached, and exhaust gas is discharged from the gas phase of the nitrification tank, The gas in the gas phase in the nitrification tank is aerated into the liquid phase via a blower and a diffuser, and the liquid phase and / or sludge in the nitrification tank is returned to the denitrification tank provided in the previous stage of the nitrification tank. In the wastewater treatment method of biologically oxidizing ammonia nitrogen and organic nitrogen to nitrate nitrogen and nitrite nitrogen and denitrifying, in the liquid phase in the nitrification tank The dissolved oxygen concentration is detected, and the amount of aeration air to be aerated in the liquid phase is controlled so that the dissolved oxygen concentration is maintained at a set value based on the detection result, and the gas phase portion in the nitrification tank is controlled. Detecting the oxygen concentration of the gas or the exhaust gas, and based on the detection result, As oxygen concentration is maintained at a predetermined range, in which the waste water treatment method characterized by controlling the oxygen gas supply amount supplied to the gas phase portion of the nitrification tank.
In the wastewater treatment apparatus and method, the set value of the dissolved oxygen concentration in the liquid phase is 2 to 12 mg / L, and the predetermined range of the oxygen concentration in the gas phase part or the exhaust gas is 30 to 70. % (Capacity) is recommended.

本発明の排水処理装置及び排水処理方法によれば、純酸素又は酸素富化ガスを硝化反応による排水処理に用いることができるので、排水処理の効率化、すなわち硝化槽の高負荷化ないしは小型化が可能である。しかも、必要量のみの純酸素又は酸素富化ガスを供給されるので、ランニングコストも低く抑えることができ、総コストを低減することが可能となる。   According to the wastewater treatment apparatus and wastewater treatment method of the present invention, pure oxygen or oxygen-enriched gas can be used for wastewater treatment by nitrification reaction, so that wastewater treatment is efficient, that is, the nitrification tank is highly loaded or downsized. Is possible. In addition, since only the necessary amount of pure oxygen or oxygen-enriched gas is supplied, the running cost can be kept low, and the total cost can be reduced.

本発明の排水処理装置の一例を示すフロー構成図。The flow block diagram which shows an example of the waste water treatment equipment of this invention. 本発明の排水処理装置の他の例を示すフロー構成図。The flow block diagram which shows the other example of the waste water treatment equipment of this invention. 本発明の排水処理装置の他の例を示すフロー構成図。The flow block diagram which shows the other example of the waste water treatment equipment of this invention. 本発明の排水処理装置の他の例を示すフロー構成図。The flow block diagram which shows the other example of the waste water treatment equipment of this invention. 本発明者の制御動作の一例を示すフローチャート。The flowchart which shows an example of control operation | movement of this inventor. DOと硝化性能の関係を示すグラフ。The graph which shows the relationship between DO and nitrification performance. 従来の排水処理装置の一例を示すフロー構成図。The flow block diagram which shows an example of the conventional waste water treatment equipment.

以下、本発明について詳細に説明する。
本発明では、まず、従来から実績のある表面曝気法の問題点を明らかにするため、磨耗しにくい形状、材質の担体を用いて、表面曝気法とガス循環散気法の比較実験を行った。その結果、表面曝気法では、担体自体の損耗はない場合でも、曝気用の攪拌による硝化菌の担体表面への付着阻害が原因と推定される硝化性能不良が生じることをつきとめた。一方、これと同じ条件で曝気方式のみガス循環散気法にして行った実験では、良好な硝化性能が得られ、さらに、図5に示すとおり、硝化性能が硝化槽混合液のDOに依存することも判明した。これらの知見をもとに、HRTの短い条件で効率良く硝化反応を進めるためには、曝気をガス循環散気で行うと共に、必要な硝化速度に対応したDO値に調整することが必須であること、さらに、この方式を実用化するためには、従来の表面曝気方式と同等以上の高濃度酸素ガスの利用効率(酸素利用効率)を発揮できる処理装置、処理方法の確立が必要不可欠であるという考えに至った。
Hereinafter, the present invention will be described in detail.
In the present invention, first, in order to clarify the problems of the conventional surface aeration method, a comparative experiment between the surface aeration method and the gas circulation aeration method was performed using a carrier having a shape and material that is difficult to wear. . As a result, in the surface aeration method, even when the carrier itself was not worn, it was found that the nitrification performance was estimated to be caused by the inhibition of nitrifying bacteria adhering to the carrier surface by aeration stirring. On the other hand, in an experiment conducted using only the aeration method under the same conditions as this and the gas circulation aeration method, good nitrification performance was obtained. Further, as shown in FIG. 5, the nitrification performance depends on DO of the nitrification tank mixture. It was also found out. Based on these findings, in order to advance the nitrification reaction efficiently under short conditions of HRT, it is essential to perform aeration with gas circulation aeration and adjust the DO value corresponding to the required nitrification rate. In addition, in order to put this method into practical use, it is indispensable to establish a processing apparatus and a processing method that can exhibit the utilization efficiency (oxygen utilization efficiency) of high-concentration oxygen gas equivalent to or higher than that of the conventional surface aeration method. I came up with the idea.

混合液のDOを調整する手法として、標準活性汚泥法等で広く用いられているDO値による散気量の制御方法に着目し、これを酸素活性汚泥法に適用することを考えた。しかしながら、標準活性汚泥法のように単純な制御ではうまくいかなかった。すなわち、DOを安定させるために必要な散気量は、空気を一過性で散気する場合には、排水の負荷変動や水温によって変化するのみであるのに対して、酸素活性汚泥法では、供給する高濃度酸素ガス量によって散気するガスの酸素濃度が変化する。この濃度変化によって必要な散気量が大きく変化する上、ガスを繰り返し循環散気するので、排水の負荷条件、水質条件による変化は一過性の散気とは比べ物にならないほど大きいことが判明した。さらに、密閉可能な硝化槽を用いた酸素活性汚泥法では、最下流の硝化槽の気相部の酸素濃度が変動したり、濃度が上昇すると、排ガスの酸素濃度も安定せず、未使用の酸素を系外に多く排出することにつながり、目的とする酸素利用効率を得ることができなかった。   As a method for adjusting the DO of the mixed liquid, attention was paid to a method for controlling the amount of air diffused by the DO value widely used in the standard activated sludge method, and it was considered to apply this method to the oxygen activated sludge method. However, simple controls such as the standard activated sludge method did not work. In other words, the amount of air diffused to stabilize DO changes only with the load fluctuation of the drainage and the water temperature when the air is diffused temporarily, whereas with the oxygen activated sludge method. The oxygen concentration of the gas diffused varies depending on the amount of high-concentration oxygen gas supplied. The required amount of diffused air changes greatly due to this concentration change, and the gas is repeatedly circulated, so it turns out that changes due to drainage load conditions and water quality conditions are incomparably large compared to transient diffusers. did. Furthermore, in the oxygen activated sludge method using a sealable nitrification tank, if the oxygen concentration in the gas phase part of the most downstream nitrification tank fluctuates or increases, the oxygen concentration in the exhaust gas is not stabilized and is not used. As a result, a large amount of oxygen was discharged out of the system, and the target oxygen utilization efficiency could not be obtained.

そこで、硝化槽気相部の酸素濃度を安定させることと、混合液のDOを安定させることの両方が必須と考えて、循環散気方式の場合は、硝化槽気相部及び排ガスの酸素濃度で高濃度酸素ガスを制御供給することが好適であることを見出した。
本発明には、図1に示すような装置が使用できる。この装置は、硝化菌を表面に固定した硝化担体を投入した密閉型の硝化槽からなり、硝化槽には、酸素供給ライン、排ガスラインが接続されている。硝化槽の曝気は、循環ブロワと散気装置を用いたガス循環方式で行われ、散気量は硝化槽DOで制御供給される。また、高濃度酸素ガス供給量は、硝化槽の気相部もしくは排ガスの酸素濃度で制御供給される。
Therefore, it is considered essential to stabilize the oxygen concentration in the gas phase part of the nitrification tank and to stabilize the DO of the mixed solution. And found that it is preferable to control and supply high concentration oxygen gas.
In the present invention, an apparatus as shown in FIG. 1 can be used. This apparatus comprises a sealed nitrification tank into which a nitrification carrier having nitrifying bacteria fixed on the surface is charged, and an oxygen supply line and an exhaust gas line are connected to the nitrification tank. Aeration of the nitrification tank is performed by a gas circulation system using a circulation blower and an air diffuser, and the amount of air diffused is controlled and supplied by the nitrification tank DO. Further, the supply amount of the high concentration oxygen gas is controlled and supplied by the gas phase portion of the nitrification tank or the oxygen concentration of the exhaust gas.

担体の硝化性能は、硝化槽のDOに大きく依存し、硝化性能を高く維持するのに2mg/L以上のDOが必要であった。一方、DOが高いほど硝化性能は上昇するため、なるべく高めのDOに設定した方が良いのであるが、DOが12mg/Lを超えると硝化性能は頭打ちになる(図6参照)ことから、好ましい硝化槽液相部の混合液のDO条件は、2〜12mg/Lである。また、DOの依存性が高いということは、負荷条件や必要とする処理性能に合わせて最適なDO値に設定することで、硝化性能を任意に調整できることを意味する。特に、負荷変動がある場合には、負荷が低い時間帯にはDO値を低く設定し、逆に、負荷が高い時間帯にはDO値を高く設定することで、低い動力コストで安定した硝化性能を発揮することができる。   The nitrification performance of the carrier greatly depends on the DO of the nitrification tank, and 2 mg / L or more of DO was necessary to maintain high nitrification performance. On the other hand, the higher the DO, the higher the nitrification performance. Therefore, it is better to set the DO as high as possible. However, if the DO exceeds 12 mg / L, the nitrification performance reaches its peak (see FIG. 6), which is preferable. The DO condition of the liquid mixture in the nitrification tank liquid phase is 2 to 12 mg / L. Further, the high dependency of DO means that the nitrification performance can be arbitrarily adjusted by setting the optimal DO value according to the load condition and the required processing performance. In particular, when there is load fluctuation, the DO value is set low during the low load period, and conversely, the DO value is set high during the high load period. Performance can be demonstrated.

このように、アンモニア性窒素あるいは有機性窒素負荷の時間経過に伴う変動パターンに基づいて、予め硝化槽混合液の溶存酸素濃度の上下限設定値を変更すれば良い。負荷は、排水流入量と排水濃度の積、(排水流入量)×(排水の濃度)で計算されるので、排水流入量と排水濃度の双方を指標とするのであるが、排水流入量の変動が小さい場合は排水濃度を指標とすれば良いし、逆に、排水濃度の変動が小さい場合は排水流入量を指標とすれば良い。ここで、指標とする液相は排水に限らない。すなわち、負荷変動に追随して、硝化槽の混合液や沈殿池の水、処理水といった液相のアンモニア性窒素濃度も変化するので、これらの液相の水質の時間経過に伴う変動パターンに基づいて予め硝化槽混合液の溶存酸素濃度の上下限設定値を変更しても良い。   Thus, the upper and lower limit set values of the dissolved oxygen concentration of the nitrification tank mixture may be changed in advance based on the fluctuation pattern of the ammonia nitrogen or organic nitrogen load with time. Since the load is calculated by the product of wastewater inflow and wastewater concentration, (drainage inflow) x (drainage concentration), both wastewater inflow and wastewater concentration are used as indicators. Is small, the drainage concentration may be used as an index, and conversely, when the fluctuation of the drainage concentration is small, the drainage inflow amount may be used as an index. Here, the liquid phase as an index is not limited to waste water. That is, following the load fluctuation, the concentration of ammonia nitrogen in the liquid phase such as the mixed liquid in the nitrification tank, the water in the sedimentation basin, and the treated water also changes. The upper and lower limit set values of the dissolved oxygen concentration of the nitrification tank mixture may be changed in advance.

指標とする液相については、アンモニア性窒素濃度変化が把握できるものであれば制限はないが、負荷変動パターンとの追随をよくするため、流入してくる処理対象の排水や、硝化反応が進行している硝化槽が好ましい。さらには、アンモニア性窒素あるいは有機性窒素負荷、もしくは、液相のアンモニア性窒素濃度を測定する検出結果に基づいて、硝化槽混合液の溶存酸素濃度の上下限設定値を変更する機能を有した制御装置を用いて自動制御しても良い。これらの検出器の例としては、アンモニア濃度計、窒素濃度計などが用いられる。また、負荷変動については、濃度と共に水量の変化が影響するので、これらの濃度計と共に水量計を併用すれば良いし、濃度と水量を各々測定して負荷を計算して示す負荷計などを用いても良い。もちろん、アンモニア性窒素あるいは有機性窒素負荷、もしくは、液相のアンモニア性窒素濃度を把握・予測できる検出手段であれば、これらの検出器に限定されない。   The liquid phase used as an indicator is not limited as long as the change in ammoniacal nitrogen concentration can be grasped. However, in order to better follow the load fluctuation pattern, the wastewater to be treated and the nitrification reaction progress. A nitrification tank is preferred. Furthermore, based on the detection result of measuring ammonia nitrogen or organic nitrogen load or ammonia nitrogen concentration in the liquid phase, it had a function to change the upper and lower limit set values of dissolved oxygen concentration in the nitrification tank mixture You may control automatically using a control apparatus. Examples of these detectors include an ammonia concentration meter and a nitrogen concentration meter. As for load fluctuations, changes in the amount of water affect the concentration, so it is sufficient to use a water meter together with these concentration meters, or use a load meter that measures the concentration and water volume and calculates the load. May be. Of course, the detector is not limited to these detectors as long as it is a detection means capable of grasping and predicting ammonia nitrogen or organic nitrogen load or liquid ammonia ammonia concentration.

酸素活性汚泥法で循環散気を行う場合、硝化槽混合液のDOを調整する手法として主に二つの方法がある。一つは、混合液のDO値で散気量を制御する方法、もう一つは、硝化槽気相部への酸素の供給量を制御する方法である。前者は、単純にDOが低下すると散気量が増え、逆に、DOが上昇すると散気量が減ることによって、DOを調整・安定化する。後者は、酸素の供給量によって硝化槽気相部、すなわち、散気するガスの酸素濃度を変化させることによって、硝化槽DOを調整する。どちらの方法でも、混合液のDOを目的とする値に調整することは可能なのであるが、前者では、酸素濃度低下時に多量の散気が必要となることから、これを見込んで過大なブロワを必要とし、動力コストもかさむ。後者は、必要酸素量が多くなると散気の酸素濃度が上がるため、排ガスの酸素濃度もこれに追随して上昇し、酸素利用効率が低下する。両者ともそれぞれの課題があり、かつ、単独での制御では、ブロワ動力の増加、あるいは、酸素利用効率の低下により、いずれもランニングコストの増加を招いた。これらすべての問題を解決するために、硝化槽気相部の酸素濃度を安定させ、かつ、前者の混合液のDO値で散気量を制御するという方法を編み出し、本発明の方法に至った。   When circulating aeration by the oxygen activated sludge method, there are mainly two methods for adjusting DO of the nitrification tank mixture. One is a method for controlling the amount of air diffused by the DO value of the liquid mixture, and the other is a method for controlling the amount of oxygen supplied to the gas phase part of the nitrification tank. The former adjusts and stabilizes DO by simply decreasing DO and increasing the amount of air diffusion, and conversely decreasing DO when the DO increases. The latter adjusts the nitrification tank DO by changing the gas phase of the nitrification tank, that is, the oxygen concentration of the gas to be diffused according to the supply amount of oxygen. With either method, it is possible to adjust the DO of the mixed solution to the target value, but the former requires a large amount of aeration when the oxygen concentration is lowered. Necessary and high power costs. In the latter, since the oxygen concentration of the aeration increases as the required oxygen amount increases, the oxygen concentration of the exhaust gas also increases accordingly, and the oxygen utilization efficiency decreases. Both have their own problems, and independent control increases the running cost due to an increase in blower power or a decrease in oxygen utilization efficiency. In order to solve all these problems, the method of stabilizing the oxygen concentration in the gas phase part of the nitrification tank and controlling the amount of air diffused by the DO value of the former mixed solution was devised, and the method of the present invention was achieved. .

ブロワの散気量を制御するための、硝化槽の混合液のDO濃度の測定場所は、ブロワの運転や硝化槽DOの安定化が可能であれば制限はないが、硝化槽が多段の場合は、各々の硝化槽にDO計とブロワを設け、個別に、DOでブロワを制御させることが好ましい。これは、硝化を効率よく進めるためには、すべての硝化槽で適切なDOに維持する必要があるためである。ブロワの制御は、DO値の検出結果を基にブロワの回転数をインバータで増減したり、風量調節弁の開度調整によって行われる。
本発明に用いるDO計は、混合液や排水の成分によって測定に影響を受けず、長期間の使用に耐えうるものであれば制限はないが、維持管理性が良い事から蛍光式溶存酸素計が好適である。
There are no restrictions on the location of DO concentration measurement in the nitrification tank mixture to control the amount of air blower blower, as long as the operation of the blower and stabilization of the nitrification tank DO are possible. It is preferable that a DO meter and a blower are provided in each nitrification tank, and the blower is individually controlled by DO. This is because it is necessary to maintain an appropriate DO in all nitrification tanks in order to advance nitrification efficiently. The blower is controlled by increasing or decreasing the number of rotations of the blower with an inverter based on the detection result of the DO value, or by adjusting the opening of the air volume control valve.
The DO meter used in the present invention is not limited as long as it can be used for a long period of time without being affected by the measurement of the mixed liquid and wastewater components. Is preferred.

硝化槽気相部の酸素濃度を安定させるために従来から採用されている一般的な方法は、硝化槽気相部の圧力変化や排ガスの流量変化を基にして、高濃度酸素ガスを供給制御する方法である。これは、硝化槽に供給された酸素は、微生物反応あるいは呼吸によって硝酸性窒素及び亜硝酸性窒素となって液相に移行したり、酸素に比較して水に溶けやすい二酸化炭素となって一部が水に吸収されるために、微生物の作用を受けることによって供給するガスの容積よりも、排出されるガスの容積が減ることを利用したものである。これらの方法は、表面曝気法の装置では一般に適用され、安定して運転されているケースもあるが、水量の変動等、圧力変化に影響する他の因子によって運転が不安定になる場合がある。さらに、循環散気法にこの方法を適用すると、ガスの動きと圧力変化が表面曝気法よりも顕著なために安定した運転ができない。   The conventional method used to stabilize the oxygen concentration in the nitrification gas phase is to control the supply of high-concentration oxygen gas based on the pressure change in the nitrification gas phase and the flow rate of exhaust gas. It is a method to do. This is because oxygen supplied to the nitrification tank becomes nitrate nitrogen and nitrite nitrogen by microbial reaction or respiration and moves to the liquid phase, or becomes carbon dioxide that is more soluble in water than oxygen. Since the portion is absorbed by water, the volume of the discharged gas is reduced rather than the volume of the gas supplied by receiving the action of microorganisms. These methods are generally applied in the surface aeration apparatus, and there are cases where the operation is stable. However, the operation may become unstable due to other factors that affect the pressure change, such as fluctuations in water volume. . Furthermore, when this method is applied to the circulation aeration method, the gas movement and pressure change are more remarkable than the surface aeration method, so that stable operation cannot be performed.

そこで、本発明の方法では、硝化槽気相部もしくは排ガスの酸素濃度の測定結果を基に、高濃度酸素ガスを制御供給している。具体的には、例えば、気相部の酸素濃度が下限値を下回ったら、酸素ガス供給管(図1の10)に設置した流量調節弁(図1の17)を開けるか、または、開度を大きくすることで供給酸素量を増やすことができる。逆に、酸素濃度が上限値を上回ったら、酸素ガス供給管に設置した流量調節弁を閉じるか、又は、開度を小さくすることで供給酸素量を減らすことができる。この方法では、硝化槽気相部の圧力変動の影響を受けないばかりか、気相部の酸素濃度を任意に設定できるため、ブロワの運転や硝化槽DOの安定化に寄与するだけでなく、酸素利用効率も任意に調整し、安定的・効率的な運転ができる。
高濃度酸素ガス供給量を制御するための酸素濃度の測定場所は、ブロワの運転や硝化槽DOの安定化と、酸素利用効率の調整が可能であれば制限はないが、酸素利用効率を調整し易いことから、最下流の硝化槽の気相部もしくは排ガスの酸素濃度で制御するのが好ましい。
Therefore, in the method of the present invention, the high concentration oxygen gas is controlled and supplied based on the measurement result of the oxygen concentration of the nitrification tank gas phase or the exhaust gas. Specifically, for example, when the oxygen concentration in the gas phase part falls below the lower limit value, the flow control valve (17 in FIG. 1) installed in the oxygen gas supply pipe (10 in FIG. 1) is opened, or the opening degree The amount of supplied oxygen can be increased by increasing. Conversely, when the oxygen concentration exceeds the upper limit, the amount of supplied oxygen can be reduced by closing the flow rate control valve installed in the oxygen gas supply pipe or reducing the opening. In this method, not only is not affected by the pressure fluctuation of the nitrification tank gas phase part, but also the oxygen concentration of the gas phase part can be arbitrarily set, not only contributes to the operation of the blower and the stabilization of the nitrification tank DO, Oxygen utilization efficiency can be arbitrarily adjusted to enable stable and efficient operation.
The oxygen concentration measurement location for controlling the high-concentration oxygen gas supply is not limited as long as the operation of the blower, stabilization of the nitrification tank DO, and adjustment of oxygen utilization efficiency are possible, but the oxygen utilization efficiency is adjusted. Therefore, it is preferable to control by the gas phase part of the most downstream nitrification tank or the oxygen concentration of the exhaust gas.

硝化槽気相部ガスもしくは排ガスの酸素濃度を設定することによって、目標とする酸素利用効率を容易に得ることができるが、一般的に酸素活性汚泥法では80〜90%程度の酸素利用効率を要求されるので、最下流の硝化槽気相部ガスもしくは排ガスの酸素濃度を30%〜70%程度、望ましくは40%〜60%程度に制御することで、80%以上の酸素利用効率を得られることが示された。この条件は使用する高濃度酸素ガスの濃度にもよるが、30%以下の場合、少ない散気量で高いDOを維持するという酸素法の利点を発揮することができず、逆に、70%以上の場合、排ガスの酸素濃度が高くなりすぎて酸素利用効率が低下した。
本発明に用いる酸素濃度計は、循環散気するガスや排ガスの成分によって測定に影響を受けることなく、長期間の使用に耐えうるものであれば制限はないが、対象ガスに高濃度で含まれる二酸化炭素の影響を受けにくいジルコニア酸素濃度計、磁気式酸素濃度計、赤外線式酸素濃度計が好適である。
The target oxygen utilization efficiency can be easily obtained by setting the oxygen concentration in the gas phase gas or exhaust gas of the nitrification tank, but generally the oxygen utilization efficiency of about 80 to 90% is obtained in the oxygen activated sludge method. Since it is required, the oxygen utilization efficiency of 80% or more can be obtained by controlling the oxygen concentration of the gas phase gas or exhaust gas in the most downstream to about 30% to 70%, preferably about 40% to 60%. It was shown that This condition depends on the concentration of the high-concentration oxygen gas to be used, but if it is 30% or less, the advantage of the oxygen method of maintaining a high DO with a small amount of aeration cannot be exhibited. In the above case, the oxygen concentration of the exhaust gas became too high and the oxygen utilization efficiency was lowered.
The oxygen concentration meter used in the present invention is not limited as long as it can withstand long-term use without being affected by the measurement of the gas diffused and the components of the exhaust gas, but is included in the target gas at a high concentration. A zirconia oxygen concentration meter, a magnetic oxygen concentration meter, and an infrared oxygen concentration meter that are not easily affected by carbon dioxide are suitable.

本発明の方法に使用する高濃度酸素ガスは、空気よりも酸素濃度を高めた任意の酸素濃度のガスを用いることができる。このようなガスの例としては、酸素富化装置を用いて酸素ガス濃度を高めた酸素富化空気や、酸素濃度が100%に近い純酸素ガスが挙げられる。このような高濃度酸素ガスを硝化槽の気相部や、循環散気配管に直接供給することができる。循環散気配管に供給した場合は、硝化槽気相部の酸素濃度及び混合液のDOの応答性が若干速くなる効果が見られた。
本発明では、混合液に酸素濃度が高いガスを散気するのであるが、散気されて水面から出てきた排ガスも大気に比べて酸素濃度は高いので、この排ガスを大気放出するのではなく、ブロワを介して繰り返して液相に散気することによって酸素の利用効率を上げることができた。したがって、一旦散気されたガスを槽外にそのまま排出するのではなく、排ガスとして排出する分以外の大部分を、再度ブロワに供給して繰り返し散気できるような密閉可能な構造であれば良く、槽の形状、数、配置などに制限はない。槽構造を簡単にする場合は単槽でも良く、また、担体の流動性などを考慮して槽を複槽に分けても良い。槽の分割は原水の流入に対して、並行にしても直列にしても良いが、特に酸素の利用効率を上げる場合は、図2に示すような直列多段の構造とし、原水の流入側の槽の気相部もしくは循環散気のライン(15)に高濃度酸素(10)を供給し、気相の連通部を介して順次上流側の槽から下流側の槽にガスが流れるように配置し、最下流の水槽から排ガス(11)を系外に排出する方法が最も効率的である。
As the high-concentration oxygen gas used in the method of the present invention, a gas having an arbitrary oxygen concentration in which the oxygen concentration is higher than that of air can be used. Examples of such a gas include oxygen-enriched air in which the oxygen gas concentration is increased using an oxygen enricher, and pure oxygen gas whose oxygen concentration is close to 100%. Such a high-concentration oxygen gas can be directly supplied to the gas phase part of the nitrification tank or the circulation aeration pipe. When supplied to the circulating air diffuser piping, the oxygen concentration in the nitrification tank gas phase and the DO responsiveness of the mixed solution were slightly accelerated.
In the present invention, a gas having a high oxygen concentration is diffused into the mixed solution. However, the exhaust gas that has been diffused and has come out of the water surface has a higher oxygen concentration than the atmosphere, so this exhaust gas is not released into the atmosphere. The oxygen utilization efficiency could be increased by repeatedly aeration into the liquid phase through the blower. Therefore, the gas once diffused is not directly discharged to the outside of the tank, but can be sealed so that most of the gas other than the discharged gas can be supplied again to the blower and repeatedly diffused. There are no restrictions on the shape, number, arrangement, etc. of the tank. When the tank structure is simplified, a single tank may be used, or the tank may be divided into multiple tanks in consideration of the fluidity of the carrier. The division of the tank may be parallel or serial with respect to the inflow of raw water. However, in particular, in order to increase the use efficiency of oxygen, a multistage structure as shown in FIG. The high-concentration oxygen (10) is supplied to the gas phase part of the gas or the circulation aeration line (15), and the gas is sequentially flowed from the upstream tank to the downstream tank via the gas phase communication part. The most efficient method is to exhaust the exhaust gas (11) from the most downstream water tank.

本発明に用いる散気装置は、硝化担体の磨耗・破損、硝化菌の付着阻害を生じないもの、そして、硝化槽の水面から出てくるガスを吸引して繰り返し散気することから、汚泥ミストや粉塵等による目詰まりを生じにくいものであれば制限はなく、多孔管、ディスクディフューザ、スパージャなどが用いられる。また、循環ガス中の汚泥ミストや、ほこり、微細なごみなどを除去するためのミストセパレータ、ガスろ過気などをブロワの吸い込み側に設置することによって、より酸素移動効率の高い微細気泡性の散気装置を用いることもできる。このような散気装置の例としては、セラミック製又は合成樹脂製の散気板及び散気筒、メンブレン式の散気装置などが挙げられる。
また、ブロワは、密閉性と長時間の連続運転に支障がないものであれば制限はないが、ルーツブロワが好適である。
The air diffuser used in the present invention does not cause nitrification carrier wear / breakage, nitrifying bacteria adherence inhibition, and the gas emitted from the water surface of the nitrification tank is repeatedly aerated to produce a sludge mist. Any porous tube, disk diffuser, sparger, etc. may be used as long as they are not easily clogged by dust or the like. In addition, by installing sludge mist in the circulating gas, mist separator for removing dust, fine dust, etc., gas filtration air, etc. on the suction side of the blower, a fine bubble diffuser with higher oxygen transfer efficiency An apparatus can also be used. Examples of such a diffuser include a diffuser plate and diffuser made of ceramic or synthetic resin, and a membrane diffuser.
The blower is not limited as long as it does not hinder hermeticity and continuous operation for a long time, but a Roots blower is preferable.

本発明に用いる担体は、担体の表面に硝化菌を付着させる結合固定化担体が適している。また、硝化菌の付着性が好く、また、処理に十分な量の硝化菌を保持することができ、流動性、耐久性が良ければ、形状、材質、物性に制限はないが、形状は表面積が大きいこと、耐摩耗性が良いことから、粒状、さらには、球状が好ましい。また、大きさは、直径1〜10mmの粒状が好く、材質はポリエチレングリコール(PEG)又はポリエチレングリコールを含むものが好適である。また、比重は0.90〜1.1の範囲であることが流動性の面で好ましい。
結合固定化担体が適しているのは、硝化槽内で自然発生的に硝化菌が担体に付着し生物膜を形成するものであり、本発明者らの研究によって、pH6以下、場合によっては5.5程度以下といった極めて低い条件にも、徐々に条件に順応して高い硝化性能を発揮できることが判明したためである。このことによって、pHが低下しやすい酸素活性汚泥法でも中和処理を全くしないか、あるいは、少量のアルカリ剤によるpH調整のみで硝化を進めることが可能となる。
As the carrier used in the present invention, a binding-immobilized carrier that allows nitrifying bacteria to adhere to the surface of the carrier is suitable. Moreover, if the adherence of nitrifying bacteria is good and can hold a sufficient amount of nitrifying bacteria for treatment, and the flowability and durability are good, there is no limitation on the shape, material, and physical properties, but the shape is Since it has a large surface area and good wear resistance, it is preferably granular or spherical. The size is preferably a granule having a diameter of 1 to 10 mm, and the material preferably includes polyethylene glycol (PEG) or polyethylene glycol. The specific gravity is preferably in the range of 0.90 to 1.1 in terms of fluidity.
The binding immobilization carrier is suitable in that nitrifying bacteria adhere to the carrier spontaneously in the nitrification tank to form a biofilm. According to the study by the present inventors, the pH is 6 or less, and in some cases 5 This is because it has been found that even under extremely low conditions of about 5 or less, high nitrification performance can be exhibited by gradually adapting to the conditions. This makes it possible to proceed with nitrification only by adjusting the pH with a small amount of an alkaline agent without performing any neutralization treatment even in the oxygen activated sludge method in which the pH tends to decrease.

本発明の対象排水は、下水や産業排水に限らず、アンモニア性窒素及び/又は有機性窒素を含む水であれば良く、含有濃度についても制限はない。例えば、硝化に必要なアルカリ度や、その他、硝化反応に必要なリンや鉄といった成分が不足している水の場合は、これらを添加すればよく、また、硝化反応を阻害する銅や硫化水素などが含まれる水については、除害処置を行うことで対象排水とすることができる。
循環散気はDOの供給だけでなく、担体を流動させる役割も持つのであるが、必要に応じて担体の流動性を維持するために攪拌機を併用しても良い。使用する攪拌機は、硝化担体の磨耗・破損、硝化菌の付着阻害を生じずに、硝化担体を流動させられるものであれば良い。
The target waste water of the present invention is not limited to sewage and industrial waste water, and may be water containing ammonia nitrogen and / or organic nitrogen, and the concentration of the waste water is not limited. For example, in the case of water lacking the alkalinity necessary for nitrification and other components such as phosphorus and iron necessary for the nitrification reaction, these may be added, and copper and hydrogen sulfide that inhibit the nitrification reaction About water that contains etc., it can be set as target drainage by performing abatement treatment.
The circulating air diffuser not only supplies DO but also has a role of causing the carrier to flow. If necessary, a stirrer may be used in combination to maintain the fluidity of the carrier. The stirrer to be used is not limited as long as it can flow the nitrification carrier without causing abrasion or damage of the nitrification carrier and inhibition of nitrifying bacteria adhesion.

さらに、本発明者らが明らかにした低pH条件における硝化反応についての詳細な条件は、アルカリ度が重要であって、具体的には硝化槽のpHが5〜6であって、アルカリ度は最低限、硝化に必要な量、好ましくは、硝化槽のアルカリ度10mg/L以上、さらに好ましくは硝化槽のアルカリ度30mg/L以上となる条件であった。このような範囲に設定できれば、脱炭酸処理やpH調整剤を使用する必要はなく、pHがさらに低下したり、アルカリ度が不足する場合は、不足分に見合うだけのアルカリ剤を注入したり、必要な分の脱炭酸処理をすればよい。このほか、図2に示すとおり硝化槽の前段に脱窒工程を設けて、硝化槽の液相及び/又は汚泥を返送し脱窒反応によるアルカリ度の上昇を利用しても良い。   Furthermore, the detailed conditions for the nitrification reaction under the low pH conditions revealed by the present inventors are that the alkalinity is important, specifically, the pH of the nitrification tank is 5 to 6, and the alkalinity is The minimum amount required for nitrification, preferably the alkalinity of the nitrification tank was 10 mg / L or more, more preferably the alkalinity of the nitrification tank was 30 mg / L or more. If it can be set in such a range, it is not necessary to use a decarboxylation treatment or a pH adjuster, and if the pH is further lowered, or if the alkalinity is insufficient, an alkali agent sufficient to meet the shortage is injected, What is necessary is just to perform the decarboxylation process of a required amount. In addition, as shown in FIG. 2, a denitrification step may be provided in the front stage of the nitrification tank, and the increase in alkalinity due to the denitrification reaction may be utilized by returning the liquid phase and / or sludge of the nitrification tank.

我々の研究では、下水やその他産業排水等種々の排水で、硝化槽の前段に脱窒槽を設け、返送汚泥分に相当する程度の循環式硝化脱窒を行うだけでも、薬品を用いずに、硝化槽のアルカリ度は十分好適範囲に保つことが可能であった。もちろん、硝化槽と脱窒槽に循環ラインを設けて循環させても良い。返送汚泥量を含んだ循環率は、原水量の0.3倍以上が好ましく、0.5以上がより好ましい。このように、脱窒工程を組み込むことによって、窒素除去の目的を達成するだけでなく、アルカリ度を好適に保つことによって硝化性能を安定させることを、薬品を用いずに実現できるのである。硝化槽の前段に脱窒槽を設置すること自体は、硝化脱窒方式として一般的な方法であるが、本発明の硝化担体を用いた酸素活性汚泥法の条件に対しては、アルカリ度を供給することで、低コストで性能を安定化させるという大きな役割を持つ。   In our research, with various effluents such as sewage and other industrial wastewater, a denitrification tank is installed in the front stage of the nitrification tank, and even if circulation nitrification denitrification equivalent to the returned sludge is performed, without using chemicals, It was possible to keep the alkalinity of the nitrification tank in a sufficiently suitable range. Of course, a circulation line may be provided in the nitrification tank and the denitrification tank for circulation. The circulation rate including the amount of returned sludge is preferably 0.3 times or more of the raw water amount, and more preferably 0.5 or more. Thus, by incorporating the denitrification step, not only the purpose of nitrogen removal can be achieved, but also the stabilization of nitrification performance by keeping the alkalinity suitable can be realized without using chemicals. The installation of a denitrification tank in front of the nitrification tank itself is a general method as a nitrification denitrification system, but alkalinity is supplied for the conditions of the oxygen activated sludge method using the nitrification carrier of the present invention. By doing so, it has a big role of stabilizing the performance at a low cost.

硝化槽混合液の浮遊汚泥は、排水に共存するBODの除去や硝化性能を有している場合もあるので、担体と共に硝化槽に共存させる方が有利である。ただし、担体による硝化のみで処理を満足できる場合は、浮遊汚泥を用いなくても良い。このような場合は、返送汚泥ラインも不要であり、また、循環式硝化脱窒運転を行わない場合は、当然循環ラインも不要である。
本発明の方法によれば、高い硝化性能を発揮することができるため、硝化槽容量のコンパクト化が可能であり、HRT1.4〜2hr程度の極めて短い滞留時間で処理性能を満足することができた。
硝化槽に設置する担体分離用のスクリーンは、担体を分離できる形状で担体を破損、磨耗するものでなければ制限はないが、酸素活性汚泥法では、硝化槽が密閉構造であるためにメンテナンス性の良い仕様のものが適している。本発明者らの研究の結果、特に洗浄用のノズルを設置し、回転することのできる円筒形の機械式スクリーンがもっとも好ましい仕様であることが判明した。
The suspended sludge in the nitrification tank mixed solution may have the removal of BOD coexisting in the waste water and the nitrification performance, so it is advantageous to coexist in the nitrification tank together with the carrier. However, if the treatment can be satisfied only by nitrification with a carrier, it is not necessary to use floating sludge. In such a case, the return sludge line is not necessary, and naturally, if the circulation type nitrification denitrification operation is not performed, the circulation line is also unnecessary.
According to the method of the present invention, since high nitrification performance can be exhibited, the nitrification tank capacity can be made compact, and the treatment performance can be satisfied with an extremely short residence time of about HRT 1.4-2 hr. It was.
The screen for separating the carrier installed in the nitrification tank is not limited as long as the carrier can be separated and damaged and worn, but the oxygen activated sludge method has a maintenance structure because the nitrification tank has a sealed structure. Good specification is suitable. As a result of the study by the present inventors, it was found that a cylindrical mechanical screen that can be installed and rotated, in particular, has a most preferable specification.

以下、図面を参照して本発明の好適な実施形態について詳細に説明する。
図1は、本発明の排水処理装置の一例を示すフロー構成図である。図1に示すように排水処理装置は、硝化菌を付着させた硝化担体5が貯留されている密閉可能な硝化槽2と、沈殿池3、酸素ガス供給ライン10、排ガスライン11と、原水供給ライン1、処理水流出ライン4を備えている。そして、酸素ガス供給ライン10には流量調節弁17が、排ガスライン11には酸素濃度計14がそれぞれ設置されている。
硝化槽2には、液面と硝化槽の天井部との間の硝化槽気相部ガス12をブロワ9を介して循環散気するためのガス循環ライン15と、溶存酸素濃度計13を備えている。
さらに、本発明の排水処理装置には、制御装置が設けられている。制御装置16は、溶存酸素濃度計13の検出結果に基づいて、ブロワ9の散気量を制御する制御手段として機能する。ブロワ9の制御は、DO値の検出結果を基にブロワの回転数を増減したり、風量調節弁の開度調整によって行われる。一方、制御装置18は、酸素濃度計14の検出結果に基づいて、高濃度酸素ガスの流量調節弁17の開閉操作もしくは開度を調整する制御手段として機能する。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a flow configuration diagram showing an example of a wastewater treatment apparatus of the present invention. As shown in FIG. 1, the waste water treatment apparatus includes a sealable nitrification tank 2 storing a nitrification carrier 5 to which nitrifying bacteria are attached, a sedimentation basin 3, an oxygen gas supply line 10, an exhaust gas line 11, and a raw water supply. Line 1 and treated water outflow line 4 are provided. The oxygen gas supply line 10 is provided with a flow rate control valve 17, and the exhaust gas line 11 is provided with an oxygen concentration meter 14.
The nitrification tank 2 includes a gas circulation line 15 for circulating and diffusing the nitrification tank gas phase gas 12 between the liquid surface and the ceiling of the nitrification tank through the blower 9 and a dissolved oxygen concentration meter 13. ing.
Furthermore, the waste water treatment apparatus of the present invention is provided with a control device. The control device 16 functions as a control unit that controls the amount of air diffused by the blower 9 based on the detection result of the dissolved oxygen concentration meter 13. The blower 9 is controlled by increasing or decreasing the number of rotations of the blower based on the detection result of the DO value, or by adjusting the opening of the air volume control valve. On the other hand, the control device 18 functions as a control means for adjusting the opening / closing operation or the opening degree of the flow control valve 17 of the high concentration oxygen gas based on the detection result of the oximeter 14.

次に、上述したような構成の排水処理装置を用いた排水処理方法について説明する。
まず、ライン1を経て、処理対象排水を硝化槽2に導入する。硝化槽2に導入された排水は、硝化槽2内の硝化菌が固定した担体と混合される。
次いで、ライン10を経て高濃度酸素ガスが硝化槽2内に供給され、気相部12を高濃度酸素で満たした状態とする。そして、ブロワ9を作動させることにより、気相部12内のガスを一旦吸引し、このガスを硝化槽2内の散気管8に送り込んで、硝化槽2の混合液中に散気する。
このようにして、ライン10から密閉可能な硝化槽2内へ供給された酸素は、空気に比してより効率的に硝化槽2内の混合液中に溶解する。
次いで、制御装置18を稼動させ、酸素濃度計14の指示値を基に流量調節弁17が制御され、常に必要な量の酸素が供給されて、硝化槽気相部ガス12の酸素濃度が安定する。さらに、制御装置16を稼動させ、溶存酸素濃度計13の指示値を基にブロワ9の散気量が制御され、常に必要な量の散気が行われ混合液の溶存酸素濃度が安定する。
Next, a wastewater treatment method using the wastewater treatment apparatus configured as described above will be described.
First, the waste water to be treated is introduced into the nitrification tank 2 via the line 1. The waste water introduced into the nitrification tank 2 is mixed with a carrier on which nitrifying bacteria in the nitrification tank 2 are fixed.
Next, high-concentration oxygen gas is supplied into the nitrification tank 2 through the line 10 to fill the gas phase part 12 with high-concentration oxygen. Then, by operating the blower 9, the gas in the gas phase portion 12 is once sucked, and this gas is sent to the diffusion tube 8 in the nitrification tank 2 and diffused into the mixed liquid in the nitrification tank 2.
In this way, oxygen supplied from the line 10 into the sealable nitrification tank 2 dissolves in the mixed liquid in the nitrification tank 2 more efficiently than air.
Next, the control device 18 is operated, the flow rate control valve 17 is controlled based on the indicated value of the oximeter 14, and the necessary amount of oxygen is always supplied, so that the oxygen concentration of the nitrification gas phase gas 12 is stable. To do. Further, the control device 16 is operated, and the amount of air diffused in the blower 9 is controlled based on the indicated value of the dissolved oxygen concentration meter 13, so that the necessary amount of air is always diffused and the dissolved oxygen concentration of the mixed liquid is stabilized.

次に、本発明の排水処理装置及び排水処理方法の別の例について、図2のフロー構成図をもとに説明する。なお、図2において、図1と同一又は相当部分には同一符号を付し、その詳細な説明は省略する。
図2は、硝化槽を隔壁で仕切って原水流入に対して直列の2段構造とし、硝化槽の前段に脱窒槽20を備えている。硝化槽は隔壁によって液相、気相とも仕切られているが、液相は担体分離用のスクリーン24を介して連通しており、一方気相にもガスの連通部25がある。また、硝化槽には各々ガス循環ラインが備えられ、酸素供給ライン10は第一硝化槽に接続されている。
脱窒槽20は、導入された処理対象排水を、脱窒菌を主体とする活性汚泥を用いて生物処理するものであり、例えば、浮遊する活性汚泥を脱窒槽20内に収容し、槽20内の排水を攪拌する攪拌装置21を備えている。
Next, another example of the wastewater treatment apparatus and the wastewater treatment method of the present invention will be described based on the flow configuration diagram of FIG. 2, the same reference numerals are given to the same or corresponding parts as in FIG. 1, and detailed description thereof will be omitted.
In FIG. 2, the nitrification tank is partitioned by a partition wall to form a two-stage structure in series with the inflow of raw water, and a denitrification tank 20 is provided in the front stage of the nitrification tank. The nitrification tank is divided into a liquid phase and a gas phase by a partition wall, but the liquid phase communicates with the carrier separation screen 24, while the gas phase also has a gas communication portion 25. Each nitrification tank is provided with a gas circulation line, and the oxygen supply line 10 is connected to the first nitrification tank.
The denitrification tank 20 biologically treats the introduced wastewater to be treated using activated sludge mainly composed of denitrifying bacteria. For example, floating activated sludge is accommodated in the denitrification tank 20, A stirring device 21 for stirring the waste water is provided.

次に、図2の排水処理装置を用いた排水処理方法について説明する。
まず、ライン1を通して処理対象排水を脱窒槽20に導入する。脱窒槽20内に導入された排水は、活性汚泥と混合され、攪拌されることにより、原水から供給された有機物を水素供与体として、返送汚泥6から供給された硝酸性窒素及び亜硝酸性窒素を窒素ガスに分解する。
脱窒後の排水は、第一硝化槽2、第二硝化槽2’の順に送られ、硝化菌が付着した担体と混合されて硝化が進行する。
硝化後の排水は、沈殿池3に送られ、硝化後の排水から活性汚泥を沈殿分離する。活性汚泥を分離された上澄み排水は、処理水4として排出される。一方、沈殿分離された分離汚泥は、返送汚泥6ラインにより脱窒槽に返送される。また、余剰分の分離汚泥は、余剰汚泥ライン7から系外に排出される。
高濃度酸素ガスは、ライン10から第一硝化槽2の気相部12に供給され、気相部12を高濃度酸素で満たされた状態とする。そして、ブロワ10を作動させることにより、気相部12内のガスを一旦吸引し、このガスを硝化槽2内の散気管8に送り込んで、硝化槽2内の排水中に曝気する。
Next, a wastewater treatment method using the wastewater treatment apparatus of FIG. 2 will be described.
First, the wastewater to be treated is introduced into the denitrification tank 20 through the line 1. The wastewater introduced into the denitrification tank 20 is mixed with the activated sludge and stirred, so that the organic matter supplied from the raw water is used as a hydrogen donor, and nitrate nitrogen and nitrite nitrogen supplied from the return sludge 6 are used. Is decomposed into nitrogen gas.
The drained water after denitrification is sent in the order of the first nitrification tank 2 and the second nitrification tank 2 ′, and is mixed with the carrier to which nitrifying bacteria adhere, and nitrification proceeds.
The effluent after nitrification is sent to the sedimentation basin 3, and activated sludge is separated from the effluent after nitrification. The supernatant waste water from which the activated sludge has been separated is discharged as treated water 4. On the other hand, the separated and separated sludge is returned to the denitrification tank through the return sludge 6 line. Further, surplus separated sludge is discharged from the surplus sludge line 7 to the outside of the system.
The high-concentration oxygen gas is supplied from the line 10 to the gas phase portion 12 of the first nitrification tank 2 so that the gas phase portion 12 is filled with high-concentration oxygen. Then, by operating the blower 10, the gas in the gas phase portion 12 is once sucked, and this gas is sent to the diffuser pipe 8 in the nitrification tank 2 and aerated into the waste water in the nitrification tank 2.

次いで、第一硝化槽2から排出される残りの酸素ガスは、第二硝化槽2’の気相部12’に供給され、気相部12’を高濃度酸素で満たされた状態とする。そして、ブロワ10’を作動させることにより、気相部12’内のガスを一旦吸引し、このガスを硝化槽2’内の散気管8’に送り込んで、硝化槽2’内の排水中に曝気する。
次いで、制御装置18を稼動させ、酸素濃度計14の指示値を基に流量調節弁17が制御され、常に必要な量の酸素が供給されて、硝化槽気相部ガス12、12’の酸素濃度が安定する。さらに、制御装置16、16’を稼動させ、溶存酸素濃度計13、13’の指示値を基に、ブロワ10、10’の散気量がそれぞれ制御され、常に必要な量の散気が行われ、硝化槽混合液の溶存酸素濃度が安定する。
Next, the remaining oxygen gas discharged from the first nitrification tank 2 is supplied to the gas phase section 12 ′ of the second nitrification tank 2 ′, and the gas phase section 12 ′ is filled with high-concentration oxygen. Then, by operating the blower 10 ′, the gas in the gas phase portion 12 ′ is once sucked, and this gas is sent to the diffuser tube 8 ′ in the nitrification tank 2 ′ and discharged into the nitrification tank 2 ′. Aerate.
Next, the control device 18 is operated, the flow rate control valve 17 is controlled based on the indicated value of the oximeter 14, and a necessary amount of oxygen is always supplied, and oxygen in the nitrification tank gas phase gas 12, 12 ′. The concentration is stable. Further, the control devices 16 and 16 ′ are operated, and the amount of air diffused in the blowers 10 and 10 ′ is controlled based on the indicated values of the dissolved oxygen concentration meters 13 and 13 ′, so that the necessary amount of air is always diffused. The dissolved oxygen concentration of the nitrification tank mixture is stabilized.

このようにして、ライン10から密閉可能な硝化槽2、2’内へ供給された酸素は、空気に比してより効率的に硝化槽2、2’内の排水中に溶解する。さらに、硝化槽を直列多段とし、上流側の槽に酸素を供給することで、上流側から効率よく酸素が利用されて、下流側に向かって酸素濃度は低くなり、排ガスとして系外に排出される酸素量を低く抑え、効率的に酸素を利用することができる。
高濃度酸素ガスを、ライン10から第一硝化槽2の気相部12に供給するというのは、効率良く酸素を利用することが目的であるから、この目的が達成できれば、高濃度酸素ガスの注入点やガスの流れは、第一硝化槽2に限定されるものではない。例えば、第二硝化槽2’の気相部でも、第一硝化槽2の気相部との境界付近に注入すれば、高濃度酸素ガスは、一部が第二硝化槽2’から第一硝化槽2にも供給され、効率的な運転は可能であった。
In this way, the oxygen supplied from the line 10 into the sealable nitrification tank 2, 2 ′ dissolves in the waste water in the nitrification tank 2, 2 ′ more efficiently than air. In addition, the nitrification tanks are multistage in series, and oxygen is supplied to the upstream tank, so that oxygen is efficiently used from the upstream side, and the oxygen concentration decreases toward the downstream side, and is discharged out of the system as exhaust gas. Therefore, the amount of oxygen to be used can be kept low and oxygen can be used efficiently.
The purpose of supplying the high concentration oxygen gas from the line 10 to the gas phase portion 12 of the first nitrification tank 2 is to use oxygen efficiently. The injection point and gas flow are not limited to the first nitrification tank 2. For example, if the gas phase part of the second nitrification tank 2 ′ is also injected near the boundary with the gas phase part of the first nitrification tank 2, a part of the high-concentration oxygen gas is first from the second nitrification tank 2 ′. It was also supplied to the nitrification tank 2 and efficient operation was possible.

次に、図3の排水処理装置を用いた排水処理方法について説明する。水の流れは先述の図2の説明と同じである。
図2と異なる箇所を以下に説明する。図3においては、1台としたブロワ9を作動させることにより、第2硝化槽の気相部12’内のガスを一旦吸引し、このガスを第一硝化槽2と第二硝化槽2’の排水中に曝気する。第一硝化槽2と第二硝化槽2’の各々の散気装置8及び8’に通じる配管には、各々流量調節弁26及び26’が付いている。第1硝化槽2には、溶存酸素濃度計13、第2硝化槽2’には、溶存酸素濃度計13’が設置してあり、各々の溶存酸素濃度計13及び13’の指示値により制御装置16が稼動して、ブロワ9のインバータ周波数及び流量調節弁26及び26’の開度を調節することで各硝化槽の曝気風量を調節して、常に必要な量の散気が行われ硝化槽混合液の溶存酸素濃度が安定する。
このようにして、図2に示したフローと同等の制御を行いながら、ブロワ9を1台にしてブロワを複数槽で共有することで、機器の必要台数が削減されイニシャルコスト、メンテナンスコストの削減につながる。
Next, a wastewater treatment method using the wastewater treatment apparatus of FIG. 3 will be described. The flow of water is the same as described above with reference to FIG.
A different part from FIG. 2 is demonstrated below. In FIG. 3, by operating the blower 9 as a single unit, the gas in the gas phase part 12 ′ of the second nitrification tank is once sucked, and this gas is used as the first nitrification tank 2 and the second nitrification tank 2 ′. Aerated during drainage. Flow control valves 26 and 26 'are attached to the pipes leading to the air diffusers 8 and 8' of the first nitrification tank 2 and the second nitrification tank 2 ', respectively. A dissolved oxygen concentration meter 13 is installed in the first nitrification tank 2 and a dissolved oxygen concentration meter 13 'is installed in the second nitrification tank 2', which is controlled by the indicated values of the dissolved oxygen concentration meters 13 and 13 '. The apparatus 16 is operated, and the aeration amount of each nitrification tank is adjusted by adjusting the inverter frequency of the blower 9 and the opening degree of the flow rate control valves 26 and 26 ', so that a necessary amount of aeration is always performed and nitrification is performed. The dissolved oxygen concentration in the tank mixture is stabilized.
In this way, while performing the same control as the flow shown in FIG. 2, the number of devices is reduced by reducing the initial cost and maintenance cost by sharing the blower 9 with one blower 9 and sharing the blower with a plurality of tanks. Leads to.

次に、図4の排水処理装置を用いた排水処理方法について説明する。水の流れは先述の図2及び図3の説明と同じである。
図3と異なる箇所を以下に説明する。図4においては、風量調節弁26を設置するのは、第一硝化槽と第二硝化槽どちらか一方の散気装置8もしくは8’に通じる配管にとする。すなわち、一方の硝化槽への曝気風量は、流量調節弁26の開度を調節することで制御を行い、もう一方の硝化槽への曝気風量は、ブロワ9のインバータ周波数を調節することで制御を行う。各々の制御は、各槽に設置された溶存酸素濃度計13及び13’の指示値に基づく。
Next, a wastewater treatment method using the wastewater treatment apparatus of FIG. 4 will be described. The flow of water is the same as described above with reference to FIGS.
A different part from FIG. 3 is demonstrated below. In FIG. 4, the air volume control valve 26 is installed in the pipe leading to the air diffuser 8 or 8 ′ in either the first nitrification tank or the second nitrification tank. That is, the amount of aeration air to one nitrification tank is controlled by adjusting the opening degree of the flow control valve 26, and the amount of aeration air to the other nitrification tank is controlled by adjusting the inverter frequency of the blower 9. I do. Each control is based on the indicated value of dissolved oxygen concentration meter 13 and 13 'installed in each tank.

次に、図5を参照して、硝化槽混合液のDOと排ガスのO濃度を調整する制御動作を具体的に説明する。図5において、まず、自動運転の開始により、ステップS1では、循環ブロワのインバータ制御及び/又は風量調節弁の開度調節による自動風量調整運転を行う。次いで、ステップS2に進行し、ここで、硝化槽DO値が適正でなければS1にもどり、循環ブロワの回転数をインバータで増減したり、風量調節弁の開度調整によって風量が増減して硝化槽DO値を適正にする。硝化槽DO値が適正であれば、ステップS3に進行し、ここで酸素ガス流入弁の自動開度調整運転を行う。次いで、ステップS4に進行し、ここで、排ガスO濃度が適正でなければS3にもどり、酸素ガス流入弁の開閉操作もしくは開度調整により排ガスO濃度を適正にする。そして、排ガスO濃度が適正であればS1に戻る。このように、ステップS1〜S4を繰り返すことで、硝化槽混合液のDOと排ガスのO濃度が安定維持することが可能となる。 Next, with reference to FIG. 5, the control operation for adjusting the DO concentration of the nitrification tank mixture and the O 2 concentration of the exhaust gas will be specifically described. In FIG. 5, the automatic air volume adjustment operation is first performed in step S1 by the start of the automatic operation and the inverter control of the circulation blower and / or the opening adjustment of the air volume control valve. Next, the process proceeds to step S2, where the nitrification tank DO value is returned to S1 if it is not proper, and the rotation speed of the circulation blower is increased or decreased by an inverter, or the air volume is increased or decreased by adjusting the opening of the air volume control valve. Make the tank DO value appropriate. If the nitrification tank DO value is appropriate, the process proceeds to step S3, where an automatic opening adjustment operation of the oxygen gas inflow valve is performed. Then proceeds to step S4, where the return to step S3 if not properly exhaust gas O 2 concentration and the proper exhaust gas O 2 concentration by the opening and closing operation or the opening adjustment of the oxygen gas inlet valve. Then, the exhaust gas O 2 concentration is returned to S1 if appropriate. Thus, by repeating steps S1 to S4, it is possible to stably maintain DO in the nitrification tank mixed solution and O 2 concentration in the exhaust gas.

さらに、ステップS2の判定の基となる適正DO値は、図6に示すようなDOと硝化速度の関係に基づき、アンモニア性窒素あるいは有機性窒素負荷、もしくは、液相のアンモニア性窒素濃度の時間経過に伴う変動パターンに対応した硝化速度が得られるようなDOになるように、予めDOのプログラムを設定しておいたり、アンモニア性窒素あるいは有機性窒素負荷、もしくは、液相のアンモニア性窒素濃度を測定する検出結果に基づいて、対応した硝化速度が得られるDOになるように硝化槽混合液の溶存酸素濃度の上下限設定値を変更する機能を有した制御装置を用いて自動制御することで、さらに動力コストを下げ、硝化性能をより安定化することができる。
以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されないことは言うまでもない。
Furthermore, the appropriate DO value that is the basis of the determination in step S2 is based on the relationship between DO and nitrification rate as shown in FIG. 6, and the time of ammonia nitrogen or organic nitrogen load or liquid phase ammonia nitrogen concentration The DO program has been set in advance so that the nitrification rate corresponding to the fluctuation pattern with the course of the process can be obtained, the ammonia nitrogen or organic nitrogen load, or the liquid phase ammonia nitrogen concentration Based on the detection result of measuring, automatically control using a control device that has a function to change the upper and lower limits of the dissolved oxygen concentration of the nitrification tank mixture so that DO corresponding to the nitrification rate is obtained Thus, the power cost can be further reduced and the nitrification performance can be further stabilized.
As mentioned above, although preferred embodiment of this invention was described in detail, it cannot be overemphasized that this invention is not limited to the said embodiment.

以下、本発明を実施例により具体的に説明し、実験で得られた結果を表2、表3に示す。
実施例1
図1に示したフローに基づく循環散気方式の実験装置(処理量165m/日、硝化槽容量10m、HRT 1.5hr、返送汚泥量82.5m/日)に硝化担体を投入して、表1に示すアンモニア性窒素(NH−N)濃度16〜25mg/L、有機性窒素(Org−N)濃度3〜11mg/Lの下水一次処理水(以下、原水)を対象に、処理実験を行った。
実験装置の仕様は次のとおりである。
酸素ガス発生装置 :PSA(pressure swing adsorption)方式の装置
DO計 :蛍光式溶存酸素計
酸素濃度計 :ジルコニア式酸素濃度
ブロワ :ルーツブロワ
散気装置 :多孔管
担体 :球状PEG担体
担体の充填率 :20%(硝化槽容積あたりの見かけ体積)
また、実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度:80〜90%
高濃度酸素ガス供給量 :28〜55L/min
設定DO :7.5mg/L
設定排ガスO濃度 :46%
曝気量 :41〜86m/h
Hereinafter, the present invention will be described in detail with reference to examples, and the results obtained by experiments are shown in Tables 2 and 3.
Example 1
The nitrification carrier is put into the experimental apparatus (circulation amount 165 m 3 / day, nitrification tank capacity 10 m 3 , HRT 1.5 hr, return sludge amount 82.5 m 3 / day) based on the flow shown in FIG. For the sewage primary treated water (hereinafter referred to as raw water) of ammonia nitrogen (NH 4 -N) concentration 16 to 25 mg / L and organic nitrogen (Org-N) concentration 3 to 11 mg / L shown in Table 1, A treatment experiment was conducted.
The specifications of the experimental apparatus are as follows.
Oxygen gas generator: PSA (pressure swing adsorption) system DO meter: Fluorescent dissolved oxygen meter Oxygen meter: Zirconia oxygen concentration Blower: Roots blower diffuser: Porous tube Carrier: Spherical PEG carrier Carrier filling rate: 20 % (Apparent volume per nitrification tank volume)
The experimental conditions are as follows.
O 2 concentration of the supplied high concentration oxygen gas: 80 to 90%
High concentration oxygen gas supply amount: 28 to 55 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: 46%
Aeration amount: 41 to 86 m 3 / h

結果は、徐々に担体に付着した硝化菌が馴養されて、処理水のNH−N濃度は徐々に低下し、処理開始20日目には、0.2〜0.9mg/Lとなった。さらに、排ガスの酸素濃度によって高濃度酸素ガスの供給量を制御したため、水量変動、負荷変動、散気量によらずに、排ガスの酸素濃度46%程度で一定となり、その結果、85%という高い酸素利用効率を達成できた。なお、この間の硝化槽のpHは5.0〜5.2と低い値であったが、これは、少量の高濃度酸素ガスを注入させる密閉式であるため、硝化液の二酸化炭素分圧が高く、かつ、硝化の進行によってアルカリ度が消費されたためである(硝化槽のアルカリ度は10〜25mg/L)。また、硝化槽のDOは水量変動、負荷変動の影響を受けずに7.4〜7.7mg/Lで安定していた。これは、DO値による曝気量制御が上手く行われたためである。以上のとおり、低pH条件でも、DOを安定維持させることによって良好な処理性能を発揮させることができた。 As a result, the nitrifying bacteria adhering to the carrier gradually became acclimatized, and the NH 4 -N concentration of the treated water gradually decreased and became 0.2 to 0.9 mg / L on the 20th day from the start of the treatment. . Furthermore, since the supply amount of the high-concentration oxygen gas is controlled by the oxygen concentration of the exhaust gas, the oxygen concentration of the exhaust gas becomes constant at about 46% regardless of the water amount fluctuation, the load fluctuation, and the amount of diffused air, and as a result, it is as high as 85%. Oxygen utilization efficiency was achieved. The pH of the nitrification tank during this period was a low value of 5.0 to 5.2, but this is a closed type in which a small amount of high-concentration oxygen gas is injected, so the carbon dioxide partial pressure of the nitrification solution is low. This is because the alkalinity is high due to the high nitrification (the alkalinity of the nitrification tank is 10 to 25 mg / L). Moreover, DO of the nitrification tank was stable at 7.4 to 7.7 mg / L without being affected by fluctuations in water amount and load. This is because the aeration amount control based on the DO value was successfully performed. As described above, even in a low pH condition, good treatment performance could be exhibited by maintaining DO stably.

実施例2
図2に示したフローに基づく循環散気方式の実験装置(処理量165m/日、硝化槽容量10m、HRT 1.5hr、脱窒槽容量0.5m、返送汚泥量82.5m/日)に硝化担体を投入して、表1に示すアンモニア性窒素(NH−N)濃度16〜25mg/L、有機性窒素(Org−N)濃度3〜11mg/Lの下水一次処理水(以下、原水)を対象に、処理実験を行った。
実験装置の仕様は実施例1と同じであり、実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :25〜50L/min
設定DO :7.5mg/L
設定排ガスO濃度 :46%
曝気量 :56〜77m/h
徐々に担体に付着した硝化菌が馴養されて、処理水のNH−N濃度は徐々に低下し、処理開始20日目には、0.2〜0.4mg/Lであり、実施例1よりもさらに良好な硝化性能であった。これは、脱窒反応によるアルカリ度の上昇により硝化槽のアルカリ度を常に30mg/L以上に維持することができたためである。なお、本実施例においても85%という高い酸素利用効率を達成した。
Example 2
Experimental apparatus of circulation aeration method based on the flow shown in FIG. 2 (throughput 165 m 3 / day, nitrification tank capacity 10 m 3 , HRT 1.5 hr, denitrification tank capacity 0.5 m 3 , return sludge volume 82.5 m 3 / The nitrification carrier was added to the sewage primary treated water of ammonia nitrogen (NH 4 -N) concentration 16 to 25 mg / L and organic nitrogen (Org-N) concentration 3 to 11 mg / L shown in Table 1. Hereinafter, treatment experiments were conducted on raw water).
The specifications of the experimental apparatus are the same as those in Example 1, and the experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High concentration gas supply: 25-50 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: 46%
Aeration amount: 56-77 m 3 / h
The nitrifying bacteria adhering to the carrier gradually became acclimatized, and the NH 4 -N concentration of the treated water gradually decreased, and was 0.2 to 0.4 mg / L on the 20th day from the start of the treatment. The nitrification performance was even better than that. This is because the alkalinity of the nitrification tank could always be maintained at 30 mg / L or more due to the increase in alkalinity due to the denitrification reaction. In this example, oxygen utilization efficiency as high as 85% was achieved.

実施例3
水量計とアンモニア濃度計を用いてアンモニア性窒素の負荷量を算出し、この値をもとにして硝化槽混合液のDO設定値を調整したこと以外は、実施例2と同じ条件で処理実験を行った。
水量計は電磁流量計、アンモニア濃度計はイオン電極方式の装置を用い、その他の仕様は実施例1と同じである。また、実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :17〜50L/min
設定DO :アンモニア性窒素負荷で設定DOを調整
設定排ガスO濃度 :46%
曝気量 :26〜77m/h
本実施例では、高負荷時間帯に高DOに維持されることで硝化性能が実施例2よりもさらに向上し、処理水のNH−N濃度は0.1〜0.2mg/Lとなった。一方、低負荷時間帯は、低DOに維持されることで散気の動力を抑えられ、動力コストは実施例2よりも1割程度削減された。なお、本実施例においても酸素利用効率は85%という高い酸素利用効率を達成した。
Example 3
A treatment experiment under the same conditions as in Example 2 except that the load of ammonia nitrogen was calculated using a water meter and an ammonia concentration meter, and the DO setting value of the nitrification tank mixture was adjusted based on this value. Went.
The water meter uses an electromagnetic flow meter, the ammonia concentration meter uses an ion electrode type device, and other specifications are the same as those in the first embodiment. The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High-concentration gas supply amount: 17 to 50 L / min
Setting DO: Adjusting the setting DO with ammonia nitrogen load Setting exhaust gas O 2 concentration: 46%
Aeration amount: 26 to 77 m 3 / h
In this example, the nitrification performance is further improved as compared with Example 2 by being maintained at high DO during the high load time period, and the NH 4 —N concentration of the treated water is 0.1 to 0.2 mg / L. It was. On the other hand, in the low load time zone, the power of the aeration was suppressed by being maintained at low DO, and the power cost was reduced by about 10% compared to Example 2. In this example, the oxygen utilization efficiency was as high as 85%.

実施例4
図3に示したフローに基づく処理実験を行った。ブロワを1台とし、各硝化槽の散気装置入り口に流量調節弁を各々設けた。実験装置の仕様は実施例1と同じであり、実施例2と同じ条件で処理実験を行った。流量調節弁の仕様は以下の通りである。
流量調節弁:空気作動式グローブ弁
本実施例では、ブロワ台数を1台にしても、実施例1及び2と遜色なく、徐々に担体に付着した硝化菌が馴養されて、処理水のNH−N濃度は徐々に低下し、処理開始20日目には、0.2〜0.5mg/Lであり、良好な硝化性能であった。本実施例においても、流量調節弁の開度及びブロワのインバータを制御することで安定して設定DO値7.5mg/Lを維持することができ、酸素利用効率も85%を達成した。
ブロワを1台にした分、動力コストが減った。
Example 4
A processing experiment based on the flow shown in FIG. 3 was performed. One blower was provided, and a flow rate control valve was provided at the inlet of the diffuser in each nitrification tank. The specifications of the experimental apparatus are the same as in Example 1, and the treatment experiment was performed under the same conditions as in Example 2. The specifications of the flow control valve are as follows.
Flow control valve: Pneumatically operated globe valve In this embodiment, even if the number of blowers is one, the nitrifying bacteria adhering to the carrier gradually acclimatize, and the NH 4 of the treated water is not inferior to the first and second embodiments. The -N concentration gradually decreased, and on the 20th day from the start of the treatment, it was 0.2 to 0.5 mg / L, indicating good nitrification performance. Also in this example, the set DO value of 7.5 mg / L could be stably maintained by controlling the opening degree of the flow control valve and the inverter of the blower, and the oxygen utilization efficiency was also 85%.
The power cost has been reduced by using one blower.

実施例5
図4に示したフローに基づく処理実験を行った。実施例4と同じくブロワを1台として、更に流量調節弁を1個とした。実験装置の仕様は実施例1と同じであり、流量調節弁の仕様は実施例4と同じである。
本実施例では、ブロワを1台、流量調節弁を1個としたが、他の実施例と遜色なく安定した制御が可能であり、処理水のNH−N濃度は徐々に低下し、処理開始20日目には、0.2〜0.4mg/Lであり、良好な硝化性能であった。本実施例においても、流量調節弁の開度及びブロワのインバータを制御することで安定して設定DO値7.5mg/Lを維持することができ、酸素利用効率も85%を達成した。
ブロワを1台にした分と風量調節弁が1台になった分、動力コストが減った。
Example 5
A processing experiment based on the flow shown in FIG. 4 was performed. As in Example 4, one blower and one flow control valve were used. The specification of the experimental apparatus is the same as that of the first embodiment, and the specification of the flow rate control valve is the same as that of the fourth embodiment.
In this embodiment, one blower and one flow control valve are used. However, stable control is possible without any difference from the other embodiments, and the concentration of NH 4 -N in the treated water is gradually reduced. On the 20th day from the start, it was 0.2 to 0.4 mg / L, which was a good nitrification performance. Also in this example, the set DO value of 7.5 mg / L could be stably maintained by controlling the opening degree of the flow control valve and the inverter of the blower, and the oxygen utilization efficiency was also 85%.
The power cost has been reduced by the amount of blower and the amount of air flow control valve.

比較例1
高濃度酸素ガスの供給量を硝化槽気相部の圧力変化によって制御したこと以外は、実施例2と同じ条件で処理実験を行った。
実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :22〜66L/min
設定DO :7.5mg/L
設定排ガスO濃度 :成り行き
曝気量 :28〜120m/h
本比較例では、酸素が反応に利用されて硝化槽気相部の圧力が減少することを利用して高濃度酸素ガスの供給量を制御するものであるが、実際は水量変動と循環ブロワによる気相部の圧力変化の影響により制御がうまく働かず、排ガス酸素濃度が42〜60%と安定せず、酸素利用効率は67〜76%と低かった。ここで、酸素利用効率が99%以上と見かけ上高い値を示す場合があったが、反応に必要な量の酸素が供給されなかった時間帯に相当し、制御が上手く機能しなかったことを示すものである。また、硝化液のDOによって散気量を制御したものの、気相部の酸素濃度が不安定であったことから制御しきれず、硝化槽のDOも安定させられなかった。その結果、処理水にNH−Nが0.2〜7mg/L残留し、処理性能が不十分であった。
Comparative Example 1
The treatment experiment was performed under the same conditions as in Example 2 except that the supply amount of the high-concentration oxygen gas was controlled by the pressure change in the gas phase section of the nitrification tank.
The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High concentration gas supply amount: 22 to 66 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: Resulting aeration amount: 28-120 m 3 / h
In this comparative example, the supply amount of high-concentration oxygen gas is controlled by utilizing the fact that oxygen is used in the reaction and the pressure in the gas phase part of the nitrification tank is reduced. The control did not work well due to the influence of the pressure change in the phase part, the exhaust gas oxygen concentration was not stabilized at 42 to 60%, and the oxygen utilization efficiency was as low as 67 to 76%. Here, there were cases where the oxygen utilization efficiency was an apparently high value of 99% or more, but this corresponds to a time zone in which the amount of oxygen necessary for the reaction was not supplied, and the control did not function well. It is shown. Further, although the amount of air diffused was controlled by DO of the nitrification solution, it was not possible to control because the oxygen concentration in the gas phase was unstable, and the DO of the nitrification tank could not be stabilized. As a result, NH 4 —N remained in the treated water at 0.2 to 7 mg / L, and the treatment performance was insufficient.

比較例2
硝化液DOによる散気量制御は行わず、かつ、高濃度酸素ガスの供給量を硝化槽の混合液のDOで制御したこと以外は、実施例2と同じ条件で実験を行った。
実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :44〜83L/min
設定DO :7.5mg/L
設定排ガスO濃度 :成り行き
曝気量 :53m/h
本比較例では、水量変動、負荷変動によらずDOは、設定値7.5mg/Lに対して、7.0〜8.1mg/Lの間で維持されたため、硝化性能も高く維持され、処理水NH−Nは実施例2と同様に0.2〜0.4mg/L程度であった。しかし、DOを安定させる代わりに気相部の酸素濃度及び排ガスの酸素濃度が56〜65%と安定せず、酸素利用効率は57〜71%と低く不安定であった。
Comparative Example 2
The experiment was performed under the same conditions as in Example 2 except that the amount of air diffused by the nitrification solution DO was not controlled, and the supply amount of the high-concentration oxygen gas was controlled by the DO of the mixture solution in the nitrification tank.
The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High-concentration gas supply amount: 44 to 83 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: Resulting aeration amount: 53 m 3 / h
In this comparative example, DO was maintained between 7.0 and 8.1 mg / L with respect to the set value of 7.5 mg / L regardless of water amount fluctuation and load fluctuation, and thus the nitrification performance was also maintained high. Treated water NH 4 —N was about 0.2 to 0.4 mg / L as in Example 2. However, instead of stabilizing DO, the oxygen concentration in the gas phase and the oxygen concentration in the exhaust gas were not stable at 56 to 65%, and the oxygen utilization efficiency was as low as 57 to 71% and was unstable.

比較例3
図7に示したフローに基づく表面曝気方式の実験装置(処理量165m/日、硝化槽容量10m、HRT1.5hr、返送汚泥量82.5m/日)に硝化担体を投入して、表1に示した性状の原水を対象に処理実験を行った。実施例2との違いは、曝気を表面曝気方式で行っていることと、硝化槽気相部の圧力によって高濃度酸素ガスの供給量を制御している点である。
実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :15〜21L/min
設定DO :成り行き
設定排ガスO濃度 :成り行き
本比較例の制御方法は、曝気方式が異なる比較例2でも採用したが、本比較例のほうが制御は安定していた。これは、表面曝気方式の方が、硝化槽気相部の圧力変化が小さいためと推察される。ただし、表面曝気方式でも、水量変動に起因する圧力変化の影響は避けられず、排ガスの酸素濃度は43〜52%とやや安定しなかった。その結果、酸素利用効率は75〜82%とやや低く不安定であった。また、硝化槽のDOが1.2〜8.3mg/Lと大きく変動したため、処理水にNH−Nが6〜13mg/L程度残留し、処理性能が不十分であった。
Comparative Example 3
The nitrification carrier is introduced into the experimental apparatus (surface treatment 165 m 3 / day, nitrification tank capacity 10 m 3 , HRT 1.5 hr, return sludge volume 82.5 m 3 / day) based on the flow shown in FIG. A treatment experiment was conducted on the raw water having the properties shown in Table 1. The difference from Example 2 is that the aeration is performed by the surface aeration method, and the supply amount of the high-concentration oxygen gas is controlled by the pressure of the nitrification tank gas phase.
The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High concentration gas supply: 15 to 21 L / min
Setting DO: Result Setting exhaust gas O 2 concentration: Resulting Although the control method of this comparative example was also adopted in Comparative Example 2 with a different aeration method, the control was more stable in this Comparative Example. This is presumably because the surface aeration method has a smaller pressure change in the gas phase part of the nitrification tank. However, even in the surface aeration method, the influence of the pressure change due to the fluctuation of the water amount is unavoidable, and the oxygen concentration of the exhaust gas is somewhat unstable at 43 to 52%. As a result, the oxygen utilization efficiency was slightly low and unstable at 75 to 82%. Moreover, since DO of the nitrification tank fluctuated greatly from 1.2 to 8.3 mg / L, NH 4 -N remained in the treated water by about 6 to 13 mg / L, and the treatment performance was insufficient.

比較例4
高濃度酸素ガスの供給量を硝化槽混合液のDOで制御したこと以外は、比較例3と同じ条件で処理実験を行った。
実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :15〜38L/min
設定DO :7.5mg/L
設定排ガスO濃度 :成り行き
本比較例では、気相部の酸素濃度及び排ガスの酸素濃度は43〜57%であり、酸素利用効率は69〜82%とやや低く不安定であった。さらに、硝化槽のDOは、7.2〜7.8mg/L程度と硝化に有利なDO条件に維持できたものの、表面曝気の攪拌によって硝化菌の担体への付着が阻害され、処理水にNH−Nが2〜4mg/L程度残留する結果となった。なお、比較例3の性能不良についても、このような付着阻害が一因として影響していたものと推察された。
Comparative Example 4
A treatment experiment was performed under the same conditions as in Comparative Example 3 except that the supply amount of the high-concentration oxygen gas was controlled by DO of the nitrification tank mixture.
The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High concentration gas supply rate: 15 to 38 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: consequence In this comparative example, the oxygen concentration in the gas phase portion and the oxygen concentration in the exhaust gas were 43 to 57%, and the oxygen utilization efficiency was slightly low and unstable, 69 to 82%. Furthermore, although the DO in the nitrification tank was maintained at about 7.2 to 7.8 mg / L, which was advantageous for nitrification, the aeration of surface aeration hindered the attachment of nitrifying bacteria to the carrier, and the treated water As a result, NH 4 —N remained at about 2 to 4 mg / L. In addition, it was guessed that the poor adhesion of Comparative Example 3 was also influenced by such adhesion inhibition.

比較例5
硝化槽混合液の設定DOを、1.5mg/Lと低めに設定したこと以外は、実施例2と同じ条件で処理実験を行った。
実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :10〜19L/min
設定DO :1.5mg/L
設定排ガスO濃度 :46%
曝気量 :26〜41m/h
本比較例では、実際のDOは1.3〜1.8mg/Lであり、DO不足の影響で処理水にNH−Nが12〜16mg/L残留し、処理性能が不十分であった。
Comparative Example 5
The treatment experiment was performed under the same conditions as in Example 2 except that the DO of the nitrification tank mixture was set to a low value of 1.5 mg / L.
The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High concentration gas supply: 10 to 19 L / min
Setting DO: 1.5 mg / L
Set exhaust gas O 2 concentration: 46%
Aeration amount: 26 to 41 m 3 / h
In this comparative example, the actual DO was 1.3 to 1.8 mg / L, and NH 4 -N remained in the treated water due to the influence of DO shortage, and the treatment performance was insufficient. .

比較例6
硝化槽混合液の設定DOを、13mg/Lと高く設定したこと以外は、実施例2と同じ条件で処理実験を行った。
実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度:80〜90%
高濃度ガス供給量 :19〜40L/min
設定DO :13mg/L
設定排ガスO濃度 :46%
曝気量 :110〜215m/h
本比較例では、実際のDOは13mg/Lであり、処理水のNH−Nは0.2〜0.4mg/Lであり、処理性能は良好であったが、DOを高く維持するためにブロワの動力がかかり、動力コストは実施例2の2倍になった。
Comparative Example 6
The treatment experiment was performed under the same conditions as in Example 2 except that the DO setting of the nitrification tank mixture was set as high as 13 mg / L.
The experimental conditions are as follows.
O 2 concentration of the supplied high concentration oxygen gas: 80 to 90%
High concentration gas supply amount: 19 to 40 L / min
Setting DO: 13 mg / L
Set exhaust gas O 2 concentration: 46%
Aeration amount: 110 to 215 m 3 / h
In this comparative example, the actual DO was 13 mg / L, the NH 4 —N of the treated water was 0.2 to 0.4 mg / L, and the treatment performance was good, but to maintain the DO high. The power of the blower was applied, and the power cost was twice that of Example 2.

比較例7
排ガス酸素濃度を25%と低く設定したこと以外は、実施例2と同じ条件で処理実験を行った。
実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :12〜19L/min
設定DO :7.5mg/L
設定排ガスO濃度 :25%
曝気量 :250m/h
本比較例では、酸素利用効率は93%以上ときわめて高い値を示した。しかし、排ガス酸素濃度を25%と低く設定したために、硝化槽気相部の酸素濃度も低く、適性なDO値に維持するために大風量で曝気する必要があった。ブロワの最大風量250m/hでも足りず、硝化槽混合液のDOを7.5mg/Lに維持できなかった。その結果、処理水にNH−Nが12〜19mg/L残留し、処理性能が不十分であった。また、多量の曝気を行ったため、硝化槽でスカムが大量に発生し、これが循環ブロワに吸引されて度々ブロワが停止するトラブルが生じた。
Comparative Example 7
A treatment experiment was performed under the same conditions as in Example 2 except that the exhaust gas oxygen concentration was set to a low 25%.
The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High-concentration gas supply amount: 12 to 19 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: 25%
Aeration amount: 250 m 3 / h
In this comparative example, the oxygen utilization efficiency was as high as 93% or more. However, since the exhaust gas oxygen concentration was set as low as 25%, the oxygen concentration in the gas phase part of the nitrification tank was also low, and it was necessary to aerate with a large air volume in order to maintain an appropriate DO value. The maximum air flow of the blower was 250 m 3 / h, and the DO of the nitrification tank mixture could not be maintained at 7.5 mg / L. As a result, 12 to 19 mg / L of NH 4 —N remained in the treated water, and the treatment performance was insufficient. In addition, since a large amount of aeration was performed, a large amount of scum was generated in the nitrification tank, and this was sucked into the circulation blower, resulting in frequent troubles that the blower stopped.

比較例8
排ガス酸素濃度を78%と高く設定したこと以外は、実施例2と同じ条件で処理実験を行った。
実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :97〜212L/min
設定DO :7.5mg/L
設定排ガスO濃度 :78%
曝気量 :21〜43m/h
本比較例では、硝化槽混合液のDOは、7.4〜7.7mg/Lと適正に維持できたため、処理水のNH−Nは0.2〜0.4mg/Lであり処理性能も良好であった。また、排ガス酸素濃度を78%と高く設定したために、硝化槽気相部の酸素濃度も高く、適性なDO値に維持するための風量は少なくて済み、動力コストは実施例2の6割程度であった。しかし、排ガスの酸素濃度が高いことから、酸素利用効率は23%ときわめて低い値であった。処理試験の高濃度酸素ガスは、PSA方式の装置で発生したガスを用いたが、比較例8の酸素利用効率が低かったことにより供給ガス量不足となり、並列で運転していた試験装置を停止せざるを得なかった。
これらの結果をまとめて表2と表3に示す。
Comparative Example 8
A treatment experiment was performed under the same conditions as in Example 2 except that the exhaust gas oxygen concentration was set as high as 78%.
The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High-concentration gas supply amount: 97 to 212 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: 78%
Aeration amount: 21 to 43 m 3 / h
In this comparative example, the DO of the nitrification tank mixture was properly maintained at 7.4 to 7.7 mg / L, so that the NH 4 —N of the treated water was 0.2 to 0.4 mg / L and the treatment performance Was also good. Further, since the exhaust gas oxygen concentration was set as high as 78%, the oxygen concentration in the gas phase part of the nitrification tank was also high, and the amount of air needed to maintain an appropriate DO value was small, and the power cost was about 60% of that in Example 2. Met. However, since the oxygen concentration of the exhaust gas is high, the oxygen utilization efficiency was a very low value of 23%. The high-concentration oxygen gas used in the treatment test was the gas generated by the PSA system. However, the oxygen utilization efficiency of Comparative Example 8 was low, so the amount of gas supplied was insufficient, and the test equipment operating in parallel was stopped. I had to do it.
These results are summarized in Tables 2 and 3.

1:排水、2、2’:硝化槽、3:沈殿池、4:処理水、5:硝化担体、6:返送汚泥、7:余剰汚泥、8、8’:散気管、9、9’:ブロワ、10:高濃度酸素ガス、11:排ガス、12、12’:硝化槽気相部ガス、13、13’:溶存酸素濃度計、14:酸素濃度計、15、15’:ガス循環ライン、16、16’:制御装置、17:流量調節弁、18:制御装置、19:攪拌機、20:脱窒槽、22:表面曝気機、23:圧力計、24、24’:スクリーン、25:気相連通部、26:流量調節弁   1: drainage, 2, 2 ′: nitrification tank, 3: sedimentation pond, 4: treated water, 5: nitrification carrier, 6: return sludge, 7: surplus sludge, 8, 8 ′: air diffuser, 9, 9 ′: Blower, 10: High concentration oxygen gas, 11: Exhaust gas, 12, 12 ′: Nitrogen tank gas phase gas, 13, 13 ′: Dissolved oxygen concentration meter, 14: Oxygen concentration meter, 15, 15 ′: Gas circulation line, 16, 16 ': Control device, 17: Flow control valve, 18: Control device, 19: Stirrer, 20: Denitrification tank, 22: Surface aeration machine, 23: Pressure gauge, 24, 24': Screen, 25: Gas phase connection Passage, 26: Flow control valve

Claims (8)

硝化菌を付着させた担体を充填した密閉可能な硝化槽と、該硝化槽の気相部に高濃度酸素ガスを供給する酸素ガス供給ラインと、前記硝化槽の気相部からの排気ガスを排出する排出ラインと、前記硝化槽内の気相部の気体を液相中に導いて曝気させるブロワと散気装置を有する曝気手段とを備えた、排水中のアンモニア性窒素及び/又は有機性窒素を生物学的に硝酸性窒素及び/又は亜硝酸性窒素に酸化処理する排水処理装置であって、前記硝化槽内の液相中の溶存酸素濃度を検出する溶存酸素検出手段と、該溶存酸素検出手段による検出結果に基づいて、前記溶存酸素濃度が設定値に維持されるように前記曝気手段の曝気風量を制御する手段とを備えると共に、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を検出する酸素検出手段と、該酸素検出手段による検出結果に基づいて、前記酸素濃度が所定範囲に維持されるように前記酸素ガス供給ラインの酸素ガス供給量を制御する手段とを備えることを特徴とする排水処理装置。   A sealable nitrification tank filled with a carrier with nitrifying bacteria attached thereto, an oxygen gas supply line for supplying high-concentration oxygen gas to the gas phase part of the nitrification tank, and an exhaust gas from the gas phase part of the nitrification tank Ammonia nitrogen and / or organic in the wastewater, comprising a discharge line for discharging, a blower for introducing the gas in the gas phase portion in the nitrification tank into the liquid phase and aeration means having a diffuser A wastewater treatment apparatus that biologically oxidizes nitrogen to nitrate nitrogen and / or nitrite nitrogen, the dissolved oxygen detection means for detecting the dissolved oxygen concentration in the liquid phase in the nitrification tank, and the dissolved oxygen And a means for controlling the amount of aeration air in the aeration means so that the dissolved oxygen concentration is maintained at a set value based on the detection result by the oxygen detection means, and the gas in the gas phase section in the nitrification tank or the Oxygen detection to detect oxygen concentration in exhaust gas And a means for controlling an oxygen gas supply amount of the oxygen gas supply line so that the oxygen concentration is maintained within a predetermined range based on a detection result by the oxygen detection means. apparatus. 硝化菌を付着させた担体を充填した密閉可能な硝化槽と、該硝化槽の気相部に高濃度酸素ガスを供給する酸素ガス供給ラインと、前記硝化槽の気相部からの排気ガスを排出する排出ラインと、前記硝化槽内の気相部の気体を液相中に導いて曝気させるブロワと散気装置を有する曝気手段とを備えると共に、前記硝化槽の前段に脱窒槽を設け、該脱窒槽に前記硝化槽の液相及び/又は汚泥を返送する返送ラインを設けた、排水中のアンモニア性窒素及び/又は有機性窒素を生物学的に硝酸性窒素及び/又は亜硝酸性窒素に酸化処理して、脱窒処理する排水処理装置であって、前記硝化槽内の液相中の溶存酸素濃度を検出する溶存酸素検出手段と、該溶存酸素検出手段による検出結果に基づいて、前記溶存酸素濃度が設定値に維持されるように前記曝気手段の曝気風量を制御する手段とを備えると共に、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を検出する酸素検出手段と、該酸素検出手段による検出結果に基づいて、前記酸素濃度が所定範囲に維持されるように前記酸素ガス供給ラインの酸素ガス供給量を制御する手段とを備えることを特徴とする排水処理装置。   A sealable nitrification tank filled with a carrier with nitrifying bacteria attached thereto, an oxygen gas supply line for supplying high-concentration oxygen gas to the gas phase part of the nitrification tank, and an exhaust gas from the gas phase part of the nitrification tank A discharge line for discharging, a blower for introducing the gas in the gas phase portion in the nitrification tank into the liquid phase and aeration means having an air diffuser, and a denitrification tank in the previous stage of the nitrification tank, The denitrification tank is provided with a return line for returning the liquid phase and / or sludge of the nitrification tank, and ammonia nitrogen and / or organic nitrogen in the wastewater is biologically nitrate nitrogen and / or nitrite nitrogen. Is a wastewater treatment device that performs a denitrification treatment on the basis of the dissolved oxygen detection means for detecting the dissolved oxygen concentration in the liquid phase in the nitrification tank, and the detection result by the dissolved oxygen detection means, Before the dissolved oxygen concentration is maintained at the set value A means for controlling the amount of aeration air of the aeration means, oxygen detection means for detecting the oxygen concentration of the gas in the gas phase part or the exhaust gas in the nitrification tank, and based on the detection result by the oxygen detection means, And a means for controlling an oxygen gas supply amount of the oxygen gas supply line so that the oxygen concentration is maintained within a predetermined range. 前記硝化槽が、隔壁によって仕切られた複数の槽からなり、該複数の槽の槽毎に、液相中の溶存酸素濃度を検出する溶存酸素検出手段と、ブロワと散気装置を有する曝気手段と、前記溶存酸素濃度が槽毎に設定値に維持されるように、前記曝気手段の曝気風量を制御する手段とを備えたことを特徴とする請求項1又は2に記載の排水処理装置。   The nitrification tank is composed of a plurality of tanks partitioned by a partition wall, and for each tank of the plurality of tanks, dissolved oxygen detection means for detecting the dissolved oxygen concentration in the liquid phase, aeration means having a blower and a diffuser And a means for controlling the amount of aeration air of the aeration means so that the dissolved oxygen concentration is maintained at a set value for each tank. 前記硝化槽が、隔壁によって仕切られた複数の槽からなり、該複数の槽の槽毎に、液相中の溶存酸素濃度を検出する溶存酸素検出手段と、散気手段と該散気手段の少なくとも1つに接続している流量調節弁とを有する曝気手段とを備え、該槽毎の曝気手段に接続する1個のインバータ制御されるブロワを有し、該ブロワの風量及び/又は前記散気手段に接続する流量調節弁の開度により前記溶存酸素濃度が槽毎に設定値に維持されるように、前記曝気手段の曝気風量を制御する手段を備えたことを特徴とする請求項1又は2に記載の排水処理装置。   The nitrification tank is composed of a plurality of tanks partitioned by a partition wall, and for each tank of the plurality of tanks, dissolved oxygen detection means for detecting the dissolved oxygen concentration in the liquid phase, aeration means, and aeration means Aeration means having a flow control valve connected to at least one, and has one inverter controlled blower connected to the aeration means for each tank, and the air volume and / or the dispersion of the blower 2. The apparatus according to claim 1, further comprising means for controlling the amount of aeration air of the aeration means so that the dissolved oxygen concentration is maintained at a set value for each tank by an opening degree of a flow control valve connected to the air means. Or the waste water treatment apparatus of 2. 前記液相中の溶存酸素濃度の設定値は、2〜12mg/Lであり、また、前記気相部又は排気ガスの酸素濃度の所定範囲は、30〜70%(容量)であることを特徴とする請求項1〜4のいずれか1項に記載の排水処理装置。   The set value of the dissolved oxygen concentration in the liquid phase is 2 to 12 mg / L, and the predetermined range of the oxygen concentration of the gas phase part or the exhaust gas is 30 to 70% (volume). The wastewater treatment apparatus according to any one of claims 1 to 4. 硝化菌を付着させた担体を充填した密閉可能な硝化槽の気相中に、高濃度酸素ガスを供給し、前記硝化槽の気相中から排気ガスを排出させると共に、前記硝化槽内の気相中の気体をブロワと散気装置を介して液相中に曝気させる、排水中のアンモニア性窒素及び有機性窒素を生物学的に硝酸性窒素及び亜硝酸性窒素に酸化処理する排水処理方法において、前記硝化槽内の液相中の溶存酸素濃度を検出し、該検出結果に基づいて前記溶存酸素濃度が設定値に維持されるように、前記液相中に曝気させる曝気風量を制御すると共に、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を検出し、該検出結果に基づいて前記酸素濃度が所定範囲に維持されるように、前記硝化槽の気相部に供給する酸素ガス供給量を制御することを特徴とする排水処理方法。   A high-concentration oxygen gas is supplied into the gas phase of a sealable nitrification tank filled with a carrier to which nitrifying bacteria are attached, exhaust gas is discharged from the gas phase of the nitrification tank, and the gas in the nitrification tank is discharged. A wastewater treatment method in which ammonia nitrogen and organic nitrogen in wastewater are biologically oxidized to nitrate nitrogen and nitrite nitrogen by aeration of the gas in the phase into the liquid phase through a blower and a diffuser , The dissolved oxygen concentration in the liquid phase in the nitrification tank is detected, and the amount of aeration air to be aerated in the liquid phase is controlled so that the dissolved oxygen concentration is maintained at a set value based on the detection result In addition, the gas concentration in the nitrification tank is detected in the gas phase portion of the nitrification tank, or the oxygen concentration of the exhaust gas is detected, and the oxygen concentration is maintained within a predetermined range based on the detection result. Controlling the amount of oxygen gas supplied Water treatment process. 硝化菌を付着させた担体を充填した密閉可能な硝化槽の気相中に、高濃度酸素ガスを供給し、前記硝化槽の気相中から排気ガスを排出させ、前記硝化槽内の気相中の気体をブロワと散気装置を介して液相中に曝気させると共に、前記硝化槽の前段に設けた脱窒槽に、前記硝化槽の液相及び/又は汚泥を返送して、排水中のアンモニア性窒素及び有機性窒素を生物学的に硝酸性窒素及び亜硝酸性窒素に酸化処理して、脱窒処理する排水処理方法において、前記硝化槽内の液相中の溶存酸素濃度を検出し、該検出結果に基づいて前記溶存酸素濃度が設定値に維持されるように、前記液相中に曝気させる曝気風量を制御すると共に、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を検出し、該検出結果に基づいて前記酸素濃度が所定範囲に維持されるように、前記硝化槽の気相部に供給する酸素ガス供給量を制御することを特徴とする排水処理方法。   A high-concentration oxygen gas is supplied into the gas phase of a sealable nitrification tank filled with a carrier to which nitrifying bacteria are attached, and exhaust gas is exhausted from the gas phase of the nitrification tank. The gas inside is aerated in the liquid phase via a blower and a diffuser, and the liquid phase and / or sludge in the nitrification tank is returned to the denitrification tank provided in the previous stage of the nitrification tank, In a wastewater treatment method in which ammonia nitrogen and organic nitrogen are biologically oxidized to nitrate nitrogen and nitrite nitrogen and denitrified, the concentration of dissolved oxygen in the liquid phase in the nitrification tank is detected. The amount of aeration air to be aerated in the liquid phase is controlled so that the dissolved oxygen concentration is maintained at a set value based on the detection result, and the gas in the gas phase portion in the nitrification tank or the exhaust gas An oxygen concentration is detected, and the oxygen concentration is within a predetermined range based on the detection result. As will be maintained, the waste water treatment method characterized by controlling the oxygen gas supply amount supplied to the gas phase portion of the nitrification tank. 前記液相中の溶存酸素濃度の設定値は、2〜12mg/Lであり、また、前記気相部又は排気ガス中の酸素濃度の所定範囲は、30〜70%(容量)であることを特徴とする請求項6又は7に記載の排水処理方法。   The set value of the dissolved oxygen concentration in the liquid phase is 2 to 12 mg / L, and the predetermined range of the oxygen concentration in the gas phase part or the exhaust gas is 30 to 70% (volume). The wastewater treatment method according to claim 6 or 7, characterized in that
JP2011037992A 2010-03-19 2011-02-24 Waste water treatment apparatus and waste water treatment method Active JP5698025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011037992A JP5698025B2 (en) 2010-03-19 2011-02-24 Waste water treatment apparatus and waste water treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010064657 2010-03-19
JP2010064657 2010-03-19
JP2011037992A JP5698025B2 (en) 2010-03-19 2011-02-24 Waste water treatment apparatus and waste water treatment method

Publications (2)

Publication Number Publication Date
JP2011212670A true JP2011212670A (en) 2011-10-27
JP5698025B2 JP5698025B2 (en) 2015-04-08

Family

ID=44942978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011037992A Active JP5698025B2 (en) 2010-03-19 2011-02-24 Waste water treatment apparatus and waste water treatment method

Country Status (1)

Country Link
JP (1) JP5698025B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104585A (en) * 2009-10-20 2011-06-02 Metawater Co Ltd Wastewater treatment method and wastewater treatment apparatus
JP2013202544A (en) * 2012-03-29 2013-10-07 Swing Corp Waste water treatment method
JP2013202543A (en) * 2012-03-29 2013-10-07 Swing Corp Waste water treatment apparatus and waste water treatment method
JP2014087720A (en) * 2012-10-29 2014-05-15 Swing Corp Recovery device of heat of gas, and water treatment apparatus equipped with recovery device of heat of gas
JP2014128765A (en) * 2012-12-28 2014-07-10 Sanki Eng Co Ltd Renewal device for aeration system and renewal method for aeration system
JP2015208708A (en) * 2014-04-25 2015-11-24 株式会社日立製作所 Water treatment monitor system, water treatment system having the same and water treatment method
JP2015231603A (en) * 2014-06-10 2015-12-24 株式会社ウェルシィ Method for treating ammonia-nitrogen-containing water
WO2016042901A1 (en) * 2014-09-16 2016-03-24 栗田工業株式会社 Biological treatment method and biological treatment device
JP2017189769A (en) * 2016-04-12 2017-10-19 株式会社Ihi Wastewater treatment apparatus
JP2017202473A (en) * 2016-05-13 2017-11-16 株式会社ウェルシィ Water treatment method and system
JP2017209602A (en) * 2016-05-23 2017-11-30 株式会社ダイキアクシス Wastewater treatment device
JP2020039314A (en) * 2018-09-12 2020-03-19 学校法人 東洋大学 Method of culturing acid-tolerant nitrifying bacteria group, and nitrification apparatus and method using acid-tolerant nitrifying bacteria group
CN112239311A (en) * 2020-10-28 2021-01-19 桂林电子科技大学 Micro-aeration acidification control wastewater treatment device and method
JP2021098166A (en) * 2019-12-23 2021-07-01 株式会社フジタ Sewage treatment apparatus
CN113845265A (en) * 2020-06-25 2021-12-28 宝山钢铁股份有限公司 Efficient treatment method and system for alkaline wastewater

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840198A (en) * 1981-08-13 1983-03-09 リンデ・アクテイーンゲゼルシャフト Method and device for biologically purifying waste water
JPS6451197A (en) * 1987-08-24 1989-02-27 Toshiba Corp Biological nitration and denitrification plant of waste water
JPH10296283A (en) * 1997-04-30 1998-11-10 Showa Eng Kk Carrier separating method for biological reaction tank using carrier combinedly
JPH1110193A (en) * 1997-06-23 1999-01-19 Showa Eng Kk Method and apparatus for shared carrier nitrification denitrification reaction
JPH1170392A (en) * 1997-06-30 1999-03-16 Nippon Sanso Kk Aerobic water treatment apparatus
JP2001137880A (en) * 1999-11-16 2001-05-22 Nippon Sanso Corp Oxygen activated sludge treating device and running method for the same
JP2004298674A (en) * 2003-03-28 2004-10-28 Sumitomo Heavy Ind Ltd Waste water treatment apparatus and waste water treatment method
JP2005199116A (en) * 2004-01-13 2005-07-28 Toshiba Corp Aeration air quantity controller for sewage treatment plant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840198A (en) * 1981-08-13 1983-03-09 リンデ・アクテイーンゲゼルシャフト Method and device for biologically purifying waste water
JPS6451197A (en) * 1987-08-24 1989-02-27 Toshiba Corp Biological nitration and denitrification plant of waste water
JPH10296283A (en) * 1997-04-30 1998-11-10 Showa Eng Kk Carrier separating method for biological reaction tank using carrier combinedly
JPH1110193A (en) * 1997-06-23 1999-01-19 Showa Eng Kk Method and apparatus for shared carrier nitrification denitrification reaction
JPH1170392A (en) * 1997-06-30 1999-03-16 Nippon Sanso Kk Aerobic water treatment apparatus
JP2001137880A (en) * 1999-11-16 2001-05-22 Nippon Sanso Corp Oxygen activated sludge treating device and running method for the same
JP2004298674A (en) * 2003-03-28 2004-10-28 Sumitomo Heavy Ind Ltd Waste water treatment apparatus and waste water treatment method
JP2005199116A (en) * 2004-01-13 2005-07-28 Toshiba Corp Aeration air quantity controller for sewage treatment plant

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104585A (en) * 2009-10-20 2011-06-02 Metawater Co Ltd Wastewater treatment method and wastewater treatment apparatus
JP2013202544A (en) * 2012-03-29 2013-10-07 Swing Corp Waste water treatment method
JP2013202543A (en) * 2012-03-29 2013-10-07 Swing Corp Waste water treatment apparatus and waste water treatment method
JP2014087720A (en) * 2012-10-29 2014-05-15 Swing Corp Recovery device of heat of gas, and water treatment apparatus equipped with recovery device of heat of gas
JP2014128765A (en) * 2012-12-28 2014-07-10 Sanki Eng Co Ltd Renewal device for aeration system and renewal method for aeration system
JP2015208708A (en) * 2014-04-25 2015-11-24 株式会社日立製作所 Water treatment monitor system, water treatment system having the same and water treatment method
JP2015231603A (en) * 2014-06-10 2015-12-24 株式会社ウェルシィ Method for treating ammonia-nitrogen-containing water
US20170217808A1 (en) * 2014-09-16 2017-08-03 Kurita Water Industries Ltd. Biological treatment method and biological treatment apparatus
CN106470950B (en) * 2014-09-16 2018-06-01 栗田工业株式会社 Bioremediation and biological treatment device
CN106470950A (en) * 2014-09-16 2017-03-01 栗田工业株式会社 Bioremediation and biological treatment device
WO2016042901A1 (en) * 2014-09-16 2016-03-24 栗田工業株式会社 Biological treatment method and biological treatment device
JP2016059843A (en) * 2014-09-16 2016-04-25 栗田工業株式会社 Method and apparatus for biological treatment
JP2017189769A (en) * 2016-04-12 2017-10-19 株式会社Ihi Wastewater treatment apparatus
JP2017202473A (en) * 2016-05-13 2017-11-16 株式会社ウェルシィ Water treatment method and system
JP2017209602A (en) * 2016-05-23 2017-11-30 株式会社ダイキアクシス Wastewater treatment device
JP2020039314A (en) * 2018-09-12 2020-03-19 学校法人 東洋大学 Method of culturing acid-tolerant nitrifying bacteria group, and nitrification apparatus and method using acid-tolerant nitrifying bacteria group
JP2021098166A (en) * 2019-12-23 2021-07-01 株式会社フジタ Sewage treatment apparatus
WO2021131088A1 (en) * 2019-12-23 2021-07-01 株式会社フジタ Wastewater treatment apparatus
JP7376342B2 (en) 2019-12-23 2023-11-08 株式会社フジタ Sewage treatment equipment
CN113845265A (en) * 2020-06-25 2021-12-28 宝山钢铁股份有限公司 Efficient treatment method and system for alkaline wastewater
CN113845265B (en) * 2020-06-25 2024-03-12 宝山钢铁股份有限公司 Efficient alkaline wastewater treatment method and system
CN112239311A (en) * 2020-10-28 2021-01-19 桂林电子科技大学 Micro-aeration acidification control wastewater treatment device and method

Also Published As

Publication number Publication date
JP5698025B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5698025B2 (en) Waste water treatment apparatus and waste water treatment method
JP5878231B2 (en) Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
JP5883698B2 (en) Wastewater treatment method
JP6022536B2 (en) Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
WO2011148949A1 (en) Method for biological denitrification using anaerobic ammonia oxidation reaction
JP2010221201A (en) Wastewater treatment apparatus
JP2017144402A (en) Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP2018138292A (en) Water treatment method and apparatus
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
CN104108834A (en) Method for carrying out nitrogen and phosphorus removal on municipal sewage
Lemaire et al. Experience from start-up and operation of deammonification MBBR plants, and testing of a new deammonification IFAS configuration
JP5300898B2 (en) Organic wastewater treatment equipment
KR100913726B1 (en) Method of controlling dissolved oxygen level in waste water treatment system
KR101485500B1 (en) Device and method by the membrane separator activated advanced oxidation process
KR100913727B1 (en) Waste water treatment system maintaining do level by use of pure oxygen gas and treatment method employing the same
JP5883697B2 (en) Waste water treatment apparatus and waste water treatment method
JP2015054271A (en) Effluent treatment apparatus and effluent treatment method
KR101634296B1 (en) Sbr wastewater treatment system using soil microorganism
JP7002977B2 (en) Wastewater treatment equipment
KR102250417B1 (en) Annamox reactor comprising settling tank and water treatment method using the same
TW202202454A (en) Aerobic biological processing method and device
JPH0780494A (en) Controlling method for operation of activated sludge circulation modification method
KR20040021146A (en) The Biological Nutrient Removal System Using The Porous Media
JP2673488B2 (en) Method and apparatus for treating organic wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150212

R150 Certificate of patent or registration of utility model

Ref document number: 5698025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250