JP2013202544A - Waste water treatment method - Google Patents

Waste water treatment method Download PDF

Info

Publication number
JP2013202544A
JP2013202544A JP2012075326A JP2012075326A JP2013202544A JP 2013202544 A JP2013202544 A JP 2013202544A JP 2012075326 A JP2012075326 A JP 2012075326A JP 2012075326 A JP2012075326 A JP 2012075326A JP 2013202544 A JP2013202544 A JP 2013202544A
Authority
JP
Japan
Prior art keywords
gas
oxygen
nitrification tank
concentration
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012075326A
Other languages
Japanese (ja)
Other versions
JP5883698B2 (en
Inventor
Takeshi Yamakawa
岳志 山川
Ryosuke Hata
良介 秦
Toshio Tsukamoto
敏男 塚本
Masato Nishiwaki
正人 西脇
Makoto Tanokura
誠 田之倉
Makoto Takada
高田  誠
Yoshiki Eguchi
義樹 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Kawasaki City
Original Assignee
Swing Corp
Kawasaki City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp, Kawasaki City filed Critical Swing Corp
Priority to JP2012075326A priority Critical patent/JP5883698B2/en
Publication of JP2013202544A publication Critical patent/JP2013202544A/en
Application granted granted Critical
Publication of JP5883698B2 publication Critical patent/JP5883698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a waste water treatment method which can perform high load nitrification of waste water containing nitrogen while enabling reduction in a total running cost of equipment.SOLUTION: In a waste water treatment apparatus in which high concentration oxygen gas 10 is supplied into a gas phase of a nitrification tank 2 filled up with a carrier to which nitrifying bacteria is made to adhere and which can be sealed, an exhaust gas is discharged from the gas phase of the nitrification tank, and the gas in the gas phase in the nitrification tank is diffused into a liquid phase, which carries out oxidation treatment of NH-N and C-N in waste water to NObiologically, so that the dissolved oxygen concentration in the liquid phase in the nitrification tank is detected to maintain the dissolved oxygen concentration at a set value; the amount of air diffused into the liquid phase is controlled to detect the oxygen concentration of the exhaust gas in the nitrification tank, and the amount of an oxygen gas supplied to the gas phase part of the nitrification tank is controlled to maintain the oxygen concentration within a prescribed range and the prescribed range of the oxygen concentration in the gas phase part is set so that the oxygen use efficiency is 85% or less while maintaining the oxygen concentration in the gas phase part at 40% or more.

Description

本発明は、アンモニア性窒素及び有機性窒素を含む排水を生物学的に酸化処理する排水処理方法に関する。   The present invention relates to a wastewater treatment method for biologically oxidizing wastewater containing ammoniacal nitrogen and organic nitrogen.

アンモニア性窒素を含む排水を生物学的に処理する方法として、硝化菌によってアンモニア性窒素を硝酸性窒素、亜硝酸性窒素に酸化する処理が、一般的に行われている。硝化反応には、酸素が必要であり、酸素源として空気が用いられている(例えば、特許文献1)。
アンモニア性窒素及び有機性窒素の硝化反応において、1kgの窒素を硝化するには、約4.6kgもの酸素が必要であるため、空気を酸素源とした従来の排水処理方法においては、硝化槽に大量の空気を供給しなければならない。さらに、硝化を効率的に進めるには、有機物の酸化分解処理に比べて混合液のDOを高めに維持する必要があり、酸素濃度が21%の空気を用いた場合は、設備の小型化や空気供給設備等の動力コストの低減には限界があった。このような問題点を解決する方法として、空気よりも酸素濃度を高めた酸素富化空気を硝化反応に必要な酸素源として用いる酸素活性汚泥法が採用されている(例えば、特許文献2)。
As a method for biologically treating wastewater containing ammonia nitrogen, a treatment for oxidizing ammonia nitrogen to nitrate nitrogen and nitrite nitrogen by nitrifying bacteria is generally performed. The nitrification reaction requires oxygen, and air is used as an oxygen source (for example, Patent Document 1).
In the nitrification reaction of ammonia nitrogen and organic nitrogen, about 4.6 kg of oxygen is required to nitrify 1 kg of nitrogen. Therefore, in the conventional wastewater treatment method using air as an oxygen source, A large amount of air must be supplied. Furthermore, in order to promote nitrification efficiently, it is necessary to maintain the DO of the mixed solution higher than that of the oxidative decomposition treatment of organic matter. When air with an oxygen concentration of 21% is used, the equipment can be downsized. There has been a limit to reducing the power cost of air supply facilities. As a method for solving such a problem, an oxygen activated sludge method using oxygen-enriched air having an oxygen concentration higher than that of air as an oxygen source necessary for the nitrification reaction is employed (for example, Patent Document 2).

高負荷条件で硝化処理を行うためには、酸素の供給能力を上げると共に、硝化槽内に多量の硝化菌を保持しなければならない。そのためには、DOを高く維持して汚泥中の硝化菌の活性を高めると共に、混合液の汚泥濃度(MLSS濃度)を高くしなければならない。酸素活性汚泥法の場合、DOを高く設定できるメリットはあるものの、MLSS濃度をむやみに上げると、標準的な活性汚泥法と同様に、沈殿池で汚泥と処理水を分離しにくくなるといった問題が生じる。この固液分離に膜を用いても良いが、高額な膜分離システムが必要になると共に、膜のつまりなど解決・改良すべき課題も多い。さらに、MLSS濃度を上げることで散気槽や沈殿池でのスカム発生を助長し、運転管理が煩雑になるといった問題点もある。これらの問題を解決するために、微生物を固定した担体を用いる方法が、硝化処理では広く普及しているのである。
酸素供給能力に優れた酸素活性汚泥法と、硝化能力が優れた担体硝化法を組み合わせることによって、コンパクトな設備で硝化処理を進めることができ、装置構造や方法が種々検討されている(例えば、特許文献2)。
In order to perform nitrification under high load conditions, it is necessary to increase the supply capacity of oxygen and hold a large amount of nitrifying bacteria in the nitrification tank. For that purpose, DO must be maintained high to increase the activity of nitrifying bacteria in the sludge, and the sludge concentration (MLSS concentration) of the mixed solution must be increased. In the case of the oxygen activated sludge method, there is a merit that the DO can be set high, but if the MLSS concentration is increased unnecessarily, there is a problem that it becomes difficult to separate the sludge and the treated water in the sedimentation basin as in the case of the standard activated sludge method. Arise. A membrane may be used for this solid-liquid separation, but an expensive membrane separation system is required, and there are many problems to be solved and improved such as clogging of the membrane. Furthermore, raising the MLSS concentration promotes the occurrence of scum in the aeration tank and settling basin, and there is a problem that operation management becomes complicated. In order to solve these problems, a method using a carrier on which microorganisms are fixed is widely used in nitrification treatment.
By combining the oxygen activated sludge method with excellent oxygen supply capability and the carrier nitrification method with excellent nitrification capability, nitrification treatment can proceed with compact equipment, and various device structures and methods have been studied (for example, Patent Document 2).

酸素活性汚泥法では、硝化槽の曝気方法として表面曝気法(機械式エアレーション装置)が採用されている。しかし、機械式エアレーション装置では、アンモニア性窒素を亜硝酸性窒素又は硝酸性窒素へ変換する硝化反応を十分に行うことができず、また、特許文献2にも記載があるとおり、曝気用の攪拌によって、硝化担体が磨耗したり、崩壊するといった問題が生じる場合があった。
また、機械式エアレーション装置を採用した酸素活性汚泥法の場合、酸素利用効率は85〜90%で運転されることが一般的で(非特許文献1)、かつ周知の事実であり、疑いのない常識であった。
担体の損耗の問題を解決するために、表面曝気法のかわりに循環ブロワを介して高濃度酸素ガスを反応槽内で循環散気する方法(ガス循環散気法)があり、この方法で硝化を行っている例もある(例えば、非特許文献2)。
しかしながら、ブロワを用いて循環散気する方法は、表面曝気法に比べて実用例も少なく、運転を安定化したり、効率的に運用するための実施条件の検討が十分なされてこなかった。酸素活性汚泥法で使用する酸素富化空気や純酸素などの、空気よりも酸素濃度が高いガス(以下、高濃度酸素ガス)は、生成するためにコストがかかる。加えて、電力を多大に消費するブロワを併用することで、さらにランニングコストが増加することとなり、ブロワを用いて循環散気する方法を実用化するには、少しでもランニングコストを低減する運転方法を検討することが必要であった。
In the oxygen activated sludge method, a surface aeration method (mechanical aeration apparatus) is employed as an aeration method for the nitrification tank. However, the mechanical aeration apparatus cannot sufficiently perform the nitrification reaction for converting ammonia nitrogen into nitrite nitrogen or nitrate nitrogen, and as described in Patent Document 2, stirring for aeration In some cases, the nitrification carrier may be worn or disintegrated.
Moreover, in the case of the oxygen activated sludge method which employ | adopted the mechanical aeration apparatus, it is common to operate with oxygen utilization efficiency of 85-90% (nonpatent literature 1), and it is a well-known fact, and there is no doubt. It was common sense.
In order to solve the problem of carrier wear, there is a method (gas circulation aeration method) in which high-concentration oxygen gas is circulated in the reaction tank via a circulation blower instead of the surface aeration method. There is an example (for example, Non-Patent Document 2).
However, the method of circulating and aeration using a blower has fewer practical examples than the surface aeration method, and the implementation conditions for stabilizing the operation and operating efficiently have not been sufficiently studied. Gases having a higher oxygen concentration than air (hereinafter referred to as high-concentration oxygen gas) such as oxygen-enriched air and pure oxygen used in the oxygen activated sludge method are expensive to produce. In addition, the combined use of a blower that consumes a large amount of power further increases the running cost. To put into practical use a method of circulating air diffuser using a blower, an operating method that reduces the running cost as much as possible. It was necessary to consider.

特開2000−312898号公報JP 2000-31898 A 特開平8−173983号公報JP-A-8-173983

下水道施設計画・設計指針と解説/後編[2009年版] P.142Sewerage Facility Planning / Design Guidelines and Explanation / Part 2 [2009] 142 住山ら、第30回下水道研究発表会講演集,p524(1993)Sumiyama et al., 30th Sewerage Research Conference Lecture, p524 (1993)

本発明は、前記事情を鑑みてなされたものであり、担体硝化法と循環散気法を組合せた酸素活性汚泥法を用いて、ランニングコストを低く抑え、かつ所定の処理性能を達成することができる窒素含有排水を生物学的に酸化処理する排水処理方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and by using an oxygen activated sludge method combining a carrier nitrification method and a circulation aeration method, it is possible to reduce running costs and achieve a predetermined treatment performance. An object of the present invention is to provide a wastewater treatment method for biologically oxidizing nitrogen-containing wastewater that can be produced.

上記課題を解決するために、本発明では、硝化菌を付着させた担体を充填した密閉可能な硝化槽の気相中に、高濃度酸素ガスを供給し、前記硝化槽の気相中から排気ガスを排出させると共に、前記硝化槽内の気相中の気体を液相中に散気させて、排水中のアンモニア性窒素及び有機性窒素を生物学的に硝酸性窒素及び亜硝酸性窒素に酸化処理する排水処理方法において、前記硝化槽内の液相中の溶存酸素濃度を検出し、該検出結果に基づいて前記溶存酸素濃度が設定値に維持されるように、前記液相中に散気させる散気風量を制御し、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を測定し、該測定結果に基づいて前記酸素濃度が所定範囲に維持されるように、前記硝化槽の気相部に供給する酸素ガス供給量を制御すると共に、前記維持される酸素濃度の所定範囲を、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を40%以上に保持して、酸素利用効率が85%より低くなるように設定することを特徴とする排水処理方法としたものである。   In order to solve the above problems, in the present invention, high-concentration oxygen gas is supplied into a gas phase of a sealable nitrification tank filled with a carrier to which nitrifying bacteria are attached, and exhausted from the gas phase of the nitrification tank. In addition to discharging gas, the gas in the gas phase in the nitrification tank is diffused into the liquid phase, so that ammonia nitrogen and organic nitrogen in the waste water are biologically converted into nitrate nitrogen and nitrite nitrogen. In the wastewater treatment method for oxidation treatment, the dissolved oxygen concentration in the liquid phase in the nitrification tank is detected, and dispersed in the liquid phase so that the dissolved oxygen concentration is maintained at a set value based on the detection result. The amount of diffused air to be controlled is controlled, and the oxygen concentration of the gas phase portion in the nitrification tank or the exhaust gas is measured, and the oxygen concentration is maintained within a predetermined range based on the measurement result. Control the oxygen gas supply amount supplied to the gas phase part of the nitrification tank and The predetermined range of oxygen concentration to be maintained is set so that the gas concentration in the nitrification tank or the oxygen concentration of the exhaust gas is kept at 40% or more and the oxygen utilization efficiency is lower than 85%. The wastewater treatment method is characterized by the following.

また、本発明では、硝化菌を付着させた担体を充填した密閉可能な硝化槽の気相中に、高濃度酸素ガスを供給し、前記硝化槽の気相中から排気ガスを排出させ、前記硝化槽内の気相中の気体を液相中に散気させると共に、前記硝化槽の前段に設けた脱窒槽に、前記硝化槽の液相及び/又は汚泥を返送して、排水中のアンモニア性窒素及び有機性窒素を生物学的に硝酸性窒素及び亜硝酸性窒素に酸化処理して、脱窒処理する排水処理方法において、前記硝化槽内の液相中の溶存酸素濃度を検出し、該検出結果に基づいて前記溶存酸素濃度が設定値に維持されるように、前記液相中に散気させる散気風量を制御し、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を測定し、該測定結果に基づいて前記酸素濃度が所定範囲に維持されるように、前記硝化槽の気相部に供給する酸素ガス供給量を制御すると共に、前記維持される酸素濃度の所定範囲を、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を40%以上に保持して、酸素利用効率が85%より低くなるように設定することを特徴とする排水処理方法としたものである。   In the present invention, a high-concentration oxygen gas is supplied into the gas phase of a sealable nitrification tank filled with a carrier to which nitrifying bacteria are attached, and exhaust gas is discharged from the gas phase of the nitrification tank, A gas in the gas phase in the nitrification tank is diffused into the liquid phase, and the liquid phase and / or sludge in the nitrification tank is returned to the denitrification tank provided in the preceding stage of the nitrification tank, and ammonia in the waste water In the wastewater treatment method of biologically oxidizing organic nitrogen and organic nitrogen to nitrate nitrogen and nitrite nitrogen, and denitrifying treatment, the dissolved oxygen concentration in the liquid phase in the nitrification tank is detected, Based on the detection result, the amount of diffused air to be diffused into the liquid phase is controlled so that the dissolved oxygen concentration is maintained at a set value, and the gas in the gas phase section in the nitrification tank or the exhaust gas is controlled. The oxygen concentration is measured, and the oxygen concentration is maintained within a predetermined range based on the measurement result. In addition, the oxygen gas supply amount supplied to the gas phase portion of the nitrification tank is controlled, and the oxygen concentration to be maintained is set to a predetermined range of the oxygen concentration of the gas phase portion in the nitrification tank or the oxygen concentration of the exhaust gas. The wastewater treatment method is characterized in that the oxygen utilization efficiency is set to be lower than 85% while being kept at 40% or more.

前記排水処理方法において、硝化槽が、隔壁によって仕切られた複数の槽からなり、該複数の槽の槽毎に、気相中の気体を液相中に散気させると共に、前記複数の硝化槽内の液相中の溶存酸素濃度を槽毎に検出し、該検出結果に基づいて、前記溶存酸素濃度が槽毎に設定値に維持されるように、それぞれの槽の前記液相中に散気させる散気風量を制御することができ、また、前記硝化槽が、隔壁によって仕切られた複数の槽からなり、前記酸素濃度を所定範囲に維持する気相部は、最終槽の硝化槽の気相部とするのがよく、さらに、前記硝化槽内の気相部の気体又は前記排ガス酸素濃度の所定範囲は、硝化槽に流入する流入排水に含まれている酸化処理が必要な汚濁物質量の変動に応じて変動させることができる。   In the wastewater treatment method, the nitrification tank comprises a plurality of tanks partitioned by a partition wall, and for each tank of the plurality of tanks, gas in a gas phase is diffused into the liquid phase, and the plurality of nitrification tanks The dissolved oxygen concentration in the liquid phase is detected for each tank, and based on the detection result, the dissolved oxygen concentration is dispersed in the liquid phase of each tank so that the dissolved oxygen concentration is maintained at the set value for each tank. The amount of air diffused can be controlled, and the nitrification tank is composed of a plurality of tanks partitioned by a partition, and the gas phase part for maintaining the oxygen concentration within a predetermined range is the nitrification tank of the final tank. The gas phase part is preferably a gas phase part gas in the nitrification tank or the predetermined range of the exhaust gas oxygen concentration is a pollutant that requires oxidation treatment contained in the inflow wastewater flowing into the nitrification tank It can be varied according to the amount variation.

本発明の排水処理方法によれば、担体硝化法と循環散気法を組み合わせた酸素活性汚泥法において、排水処理にかかる総ランニングコストを低減することが可能となる。近年では、高濃度酸素ガス発生装置(例えば、PSA法)による高濃度酸素ガスの製造コストが安価になっており、散気ブロワの動力コストより安くなることがあるので、必ずしも高い酸素利用効率を維持する必要が無く、逆に、硝化槽気相部の気体又は排ガスの酸素濃度を高くして、酸素利用効率を低くすることにより、散気風量を抑えて、ランニングコストを低く抑えることができ、排水処理にかかる総ランニングコストを低減することが可能となる。
また、気相部の酸素濃度の所定範囲を、流入排水の汚濁物質量の変動に応じて変動させることにより、ランニングコストをより低く抑えることができる。
According to the wastewater treatment method of the present invention, the total running cost for wastewater treatment can be reduced in the oxygen activated sludge method combining the carrier nitrification method and the circulation aeration method. In recent years, the production cost of high-concentration oxygen gas by a high-concentration oxygen gas generator (for example, the PSA method) has become low, which may be lower than the power cost of the diffuser blower. On the contrary, by increasing the oxygen concentration of the gas or exhaust gas in the gas phase part of the nitrification tank and lowering the oxygen utilization efficiency, it is possible to suppress the amount of diffused air and to reduce the running cost. It is possible to reduce the total running cost for wastewater treatment.
In addition, the running cost can be further reduced by changing the predetermined range of the oxygen concentration in the gas phase portion in accordance with the change in the amount of pollutant in the inflow drainage.

本発明に用いる排水処理装置の一例を示すフロー構成図。The flow block diagram which shows an example of the waste water treatment equipment used for this invention. 本発明に用いる排水処理装置の他の例を示すフロー構成図。The flow block diagram which shows the other example of the waste water treatment equipment used for this invention. 散気装置、散気水深によるランニングコストの変化を示すグラフ。The graph which shows the change of the running cost by the diffuser and the diffused water depth. 時刻による必要酸素量と設定排ガス酸素濃度の変化を示すグラフ。The graph which shows the change of the required oxygen amount and setting exhaust gas oxygen concentration by time. DOと硝化性能の関係を示すグラフ。The graph which shows the relationship between DO and nitrification performance.

以下、本発明について詳細に説明する。
本発明では、まず、従来から実績のある表面曝気法の問題点を明らかにするため、磨耗しにくい形状、材質の担体を用いて、表面曝気法とガス循環散気法の比較実験を行った。その結果、表面曝気法では、担体自体の損耗はない場合でも、曝気用の攪拌による硝化菌の担体表面への付着阻害が原因と推定される硝化性能不良が生じることをつきとめた。一方、これと同じ条件で散気方式のみガス循環散気法にして行った実験では、良好な硝化性能が得られ、処理性能としては従来の表面曝気法よりも優れていることが分かった。しかし、ガス循環散気を行うために使用する散気手段(例えば、ブロワ)の動力コストが高く、システム全体のランニングコストを押し上げるため、高濃度酸素ガスの製造コストと散気手段の動力コストを勘案して、システム全体のランニングコストを低く抑えることができる処理方法の確立が必要不可欠であるという考えに至った。
Hereinafter, the present invention will be described in detail.
In the present invention, first, in order to clarify the problems of the conventional surface aeration method, a comparative experiment between the surface aeration method and the gas circulation aeration method was performed using a carrier having a shape and material that is difficult to wear. . As a result, in the surface aeration method, even when the carrier itself was not worn, it was found that the nitrification performance was estimated to be caused by the inhibition of nitrifying bacteria adhering to the carrier surface by aeration stirring. On the other hand, in experiments conducted using the gas circulation aeration method only under the same conditions as above, it was found that good nitrification performance was obtained, and that the treatment performance was superior to the conventional surface aeration method. However, since the power cost of the air diffuser used to perform the gas circulation diffuser (for example, a blower) is high and increases the running cost of the entire system, the production cost of the high concentration oxygen gas and the power cost of the air diffuser are reduced. Taking this into consideration, we have come to the idea that it is essential to establish a processing method that can keep the running cost of the entire system low.

従来の酸素活性汚泥法の考え方では、排水処理のために投入した酸素を無駄にしないために、高い酸素利用効率で運転することが必須であり、重要であると解されていた。本発明者らも、当初はその考え方を踏襲し、担体硝化法と循環散気法を組み合わせた酸素活性汚泥法においても、高い酸素利用効率の達成を目指して開発を進めていた。
しかし、本発明者らが鋭意、研究開発を進める中で、担体硝化法と循環散気法を組み合わせた酸素活性汚泥法において、高い酸素利用効率を達成することは、必ずしも、システム全体のランニングコストの低下に寄与しないことを見出した。
特に、既存技術の値として知られている85%以上の酸素利用効率を採用した場合には、システム全体のランニングコストの著しい増加を招くことになる。
In the conventional oxygen activated sludge method, it has been understood that it is essential and important to operate with high oxygen utilization efficiency in order not to waste oxygen input for wastewater treatment. The present inventors also followed the idea at the beginning, and were also developing the oxygen activated sludge method combining the carrier nitrification method and the circulation aeration method with the aim of achieving high oxygen utilization efficiency.
However, while the present inventors are diligently pursuing research and development, achieving high oxygen utilization efficiency in the oxygen activated sludge method combining the carrier nitrification method and the circulation aeration method is not necessarily the running cost of the entire system. It has been found that it does not contribute to the decline of
In particular, when the oxygen utilization efficiency of 85% or more, which is known as the value of the existing technology, is adopted, the running cost of the entire system is significantly increased.

近年では、高濃度酸素ガス発生装置(例えば、PSA法)による高濃度酸素ガスの製造コストが安価になっており、散気ブロワの動力コストより安くなることがあるので、必ずしも高い酸素利用効率を達成する必要がなく、硝化槽気相部の気体又は排ガスの酸素濃度を高くして、酸素利用効率を低くすることにより、散気風量を抑えて、ランニングコストを低く抑えることができ、排水処理にかかる総ランニングコストを低減することが可能となる。
これらのことから、本発明者らはシステム全体のランニングコストの低下には、酸素利用効率が85%より低くなるように、硝化槽気相部の気体又は排ガスの酸素濃度を制御することが重要であることを見出した。
本発明には、図1に示すような装置が使用できる。この装置は、硝化菌を表面に固定した硝化担体を投入した密閉型の硝化槽からなり、硝化槽には、酸素供給ライン、排ガスラインが接続されている。硝化槽の散気は、循環ブロワと散気装置を用いたガス循環方式で行われ、散気量は硝化槽DOで制御供給される。また、高濃度酸素ガス供給量は、硝化槽の気相部もしくは排ガスの酸素濃度で制御供給される。
In recent years, the production cost of high-concentration oxygen gas by a high-concentration oxygen gas generator (for example, the PSA method) has become low, which may be lower than the power cost of the diffuser blower. There is no need to achieve this, by increasing the oxygen concentration of the gas or exhaust gas in the nitrification tank gas phase and lowering the oxygen utilization efficiency, it is possible to reduce the amount of diffused air and reduce the running cost, and the wastewater treatment It is possible to reduce the total running cost.
For these reasons, it is important for the present inventors to control the oxygen concentration of the gas or exhaust gas in the gas phase part of the nitrification tank so that the oxygen utilization efficiency is lower than 85% in order to reduce the running cost of the entire system. I found out.
In the present invention, an apparatus as shown in FIG. 1 can be used. This apparatus comprises a sealed nitrification tank into which a nitrification carrier having nitrifying bacteria fixed on the surface is charged, and an oxygen supply line and an exhaust gas line are connected to the nitrification tank. Aeration in the nitrification tank is performed by a gas circulation system using a circulation blower and an aeration device, and the amount of aeration is controlled and supplied by the nitrification tank DO. Further, the supply amount of the high concentration oxygen gas is controlled and supplied by the gas phase portion of the nitrification tank or the oxygen concentration of the exhaust gas.

担体の硝化性能は、硝化槽のDOに大きく依存し、硝化性能を高く維持するのに2mg/L以上のDOが必要であった。一方、DOが高いほど硝化性能は上昇するため、なるべく高めのDOに設定した方が良いのであるが、DOが12mg/Lを超えると硝化性能は頭打ちになる(図5参照)ことから、好ましい硝化槽液相部の混合液のDO条件は、2〜12mg/Lである。また、DOの依存性が高いということは、負荷条件や必要とする処理性能に合わせて最適なDO値に設定することで、硝化性能を任意に調整できることを意味する。特に、負荷変動がある場合には、負荷が低い時間帯にはDO値を低く設定し、逆に、負荷が高い時間帯にはDO値を高く設定することで、低い動力コストで安定した硝化性能を発揮することができる。   The nitrification performance of the carrier greatly depends on the DO of the nitrification tank, and 2 mg / L or more of DO was necessary to maintain high nitrification performance. On the other hand, the higher the DO, the higher the nitrification performance. Therefore, it is better to set the DO as high as possible. However, when the DO exceeds 12 mg / L, the nitrification performance reaches its peak (see FIG. 5), which is preferable. The DO condition of the liquid mixture in the nitrification tank liquid phase is 2 to 12 mg / L. Further, the high dependency of DO means that the nitrification performance can be arbitrarily adjusted by setting the optimal DO value according to the load condition and the required processing performance. In particular, when there is load fluctuation, the DO value is set low during the low load period, and conversely, the DO value is set high during the high load period. Performance can be demonstrated.

具体的には、アンモニア性窒素あるいは有機性窒素負荷の時間経過に伴う変動パターンに基づいて、予め硝化槽混合液の溶存酸素濃度の上下限設定値を変更する方法などを採用することができる。負荷は、排水流入量と排水濃度の積、(排水流入量)×(排水の濃度)で計算されるので、排水流入量と排水濃度の双方を指標とするのであるが、排水流入量の変動が小さい場合は排水濃度を指標とすれば良いし、逆に、排水濃度の変動が小さい場合は排水流入量を指標とすれば良い。ここで、指標とする液相は排水に限らない。すなわち、負荷変動に追随して、硝化槽の混合液や沈殿池の水、処理水といった液相のアンモニア性窒素濃度も変化するので、これらの液相の水質の時間経過に伴う変動パターンに基づいて予め硝化槽混合液の溶存酸素濃度の上下限設定値を変更しても良い。   Specifically, a method of changing the upper and lower limit set values of the dissolved oxygen concentration in the nitrification tank mixed solution in advance based on the fluctuation pattern of the ammonia nitrogen or organic nitrogen load with time can be employed. Since the load is calculated by the product of wastewater inflow and wastewater concentration, (drainage inflow) x (drainage concentration), both wastewater inflow and wastewater concentration are used as indicators. Is small, the drainage concentration may be used as an index, and conversely, when the fluctuation of the drainage concentration is small, the drainage inflow amount may be used as an index. Here, the liquid phase as an index is not limited to waste water. That is, following the load fluctuation, the concentration of ammonia nitrogen in the liquid phase such as the mixed liquid in the nitrification tank, the water in the sedimentation basin, and the treated water also changes. The upper and lower limit set values of the dissolved oxygen concentration of the nitrification tank mixture may be changed in advance.

指標とする液相については、アンモニア性窒素濃度変化が把握できるものであれば制限はないが、負荷変動パターンとの追随をよくするため、流入してくる処理対象の排水や、硝化反応が進行している硝化槽が好ましい。さらには、アンモニア性窒素あるいは有機性窒素負荷、もしくは、液相のアンモニア性窒素濃度を測定する検出結果に基づいて、硝化槽混合液の溶存酸素濃度の上下限設定値を変更する機能を有した制御装置を用いて自動制御しても良い。これらの検出器の例としては、アンモニア濃度計、窒素濃度計などが用いられる。また、負荷変動については、濃度と共に水量の変化が影響するので、これらの濃度計と共に水量計を併用すれば良いし、濃度と水量を各々測定して負荷を計算して示す負荷計などを用いても良い。もちろん、アンモニア性窒素あるいは有機性窒素負荷、もしくは、液相のアンモニア性窒素濃度を把握・予測できる検出手段であれば、これらの検出器に限定されない。   The liquid phase used as an indicator is not limited as long as the change in ammoniacal nitrogen concentration can be grasped. However, in order to better follow the load fluctuation pattern, the wastewater to be treated and the nitrification reaction progress. A nitrification tank is preferred. Furthermore, based on the detection result of measuring ammonia nitrogen or organic nitrogen load or ammonia nitrogen concentration in the liquid phase, it had a function to change the upper and lower limit set values of dissolved oxygen concentration in the nitrification tank mixture You may control automatically using a control apparatus. Examples of these detectors include an ammonia concentration meter and a nitrogen concentration meter. As for load fluctuations, changes in the amount of water affect the concentration, so it is sufficient to use a water meter together with these concentration meters, or use a load meter that measures the concentration and water volume and calculates the load. May be. Of course, the detector is not limited to these detectors as long as it is a detection means capable of grasping and predicting ammonia nitrogen or organic nitrogen load or liquid ammonia ammonia concentration.

ブロワの散気量を制御するための、硝化槽の混合液のDO濃度の測定場所は、ブロワの運転や硝化槽DOの安定化が可能であれば制限はないが、硝化槽が多段の場合は、各々の硝化槽にDO計とブロワを設け、個別に、DOでブロワを制御させることが好ましい。これは、硝化を効率よく進めるためには、すべての硝化槽で適切なDOに維持する必要があるためである。ブロワの制御は、DO値の検出結果を基にブロワの回転数をインバータで増減したり、風量調節弁の開度調整によって行われる。
本発明に用いるDO計は、混合液や排水の成分によって測定に影響を受けず、長期間の使用に耐えうるものであれば制限はないが、維持管理性が良い事から蛍光式溶存酸素計が好適である。
There are no restrictions on the location of DO concentration measurement in the nitrification tank mixture to control the amount of air blower blower, as long as the operation of the blower and stabilization of the nitrification tank DO are possible. It is preferable that a DO meter and a blower are provided in each nitrification tank, and the blower is individually controlled by DO. This is because it is necessary to maintain an appropriate DO in all nitrification tanks in order to advance nitrification efficiently. The blower is controlled by increasing or decreasing the number of rotations of the blower with an inverter based on the detection result of the DO value, or by adjusting the opening of the air volume control valve.
The DO meter used in the present invention is not limited as long as it can be used for a long period of time without being affected by the measurement of the mixed liquid and wastewater components. Is preferred.

酸素ガス供給量を制御する方法には、硝化槽気相部の圧力変化や排ガスの流量変化を基にして供給制御する方法があり、表面曝気法で採用されることが多い。
しかし、循環散気法では、これらの方法を適用すると、ガスの動きと圧力変化が表面曝気法よりも顕著で安定した運転ができないため、硝化槽気相部又は排ガスの酸素濃度の測定結果を基に、高濃度酸素ガスを供給する制御方法の採用が好適である。
As a method for controlling the supply amount of oxygen gas, there is a method of supply control based on a change in pressure in the gas phase part of the nitrification tank or a change in the flow rate of exhaust gas, which is often employed in the surface aeration method.
However, in the circulation aeration method, when these methods are applied, the gas movement and pressure change are more remarkable than the surface aeration method, and stable operation cannot be performed. On the basis of this, it is preferable to employ a control method for supplying high-concentration oxygen gas.

本発明の方法では、硝化槽気相部もしくは排ガスの酸素濃度の測定結果を基に、高濃度酸素ガスを制御供給している。具体的には、例えば、気相部の酸素濃度が下限値を下回ったら、酸素ガス供給管(図1の10)に設置した流量調節弁(図1の17)を開けるか、または、開度を大きくすることで供給酸素量を増やすことができる。逆に、酸素濃度が上限値を上回ったら、酸素ガス供給管に設置した流量調節弁を閉じるか、又は、開度を小さくすることで供給酸素量を減らすことができる。この方法では、気相部の酸素濃度を任意に設定できるため、ブロワの運転や硝化槽DOの安定化に寄与するだけでなく、酸素利用効率も任意に調整し、安定的・効率的な運転ができる。
高濃度酸素ガス供給量を制御するための酸素濃度の測定場所は、ブロワの運転や硝化槽DOの安定化と、酸素利用効率の調整が可能であれば制限はないが、酸素利用効率を調整し易いことから、最下流の硝化槽の気相部もしくは排ガスの酸素濃度で制御するのが好ましい。
In the method of the present invention, the high concentration oxygen gas is controlled and supplied based on the measurement result of the oxygen concentration of the nitrification tank gas phase part or the exhaust gas. Specifically, for example, when the oxygen concentration in the gas phase part falls below the lower limit value, the flow control valve (17 in FIG. 1) installed in the oxygen gas supply pipe (10 in FIG. 1) is opened, or the opening degree The amount of supplied oxygen can be increased by increasing. Conversely, when the oxygen concentration exceeds the upper limit, the amount of supplied oxygen can be reduced by closing the flow rate control valve installed in the oxygen gas supply pipe or reducing the opening. In this method, since the oxygen concentration in the gas phase can be set arbitrarily, it not only contributes to the operation of the blower and the stabilization of the nitrification tank DO, but also adjusts the oxygen utilization efficiency arbitrarily, so that stable and efficient operation is possible. Can do.
The oxygen concentration measurement location for controlling the high-concentration oxygen gas supply is not limited as long as the operation of the blower, stabilization of the nitrification tank DO, and adjustment of oxygen utilization efficiency are possible, but the oxygen utilization efficiency is adjusted. Therefore, it is preferable to control by the gas phase part of the most downstream nitrification tank or the oxygen concentration of the exhaust gas.

本発明では、硝化槽気相部ガスもしくは排ガスの酸素濃度を設定することによって、目標とするランニングコストの低減化を容易に達成することができる。一般的に酸素活性汚泥法では、85〜90%程度の酸素利用効率を要求されるが、本発明では、最下流の硝化槽気相部ガスもしくは排ガスの酸素濃度を40%以上、望ましくは45%以上に制御して、85%より低く、好ましくは80%以下の酸素利用効率となるように設定することとした。この設定は使用する高濃度酸素ガスの濃度にもよるが、酸素濃度が40%以下の場合、高濃度酸素ガスを使用して散気風量を減少させるという利点を発揮することができない。また、酸素利用効率が85%以上の場合、数々の試験によって、必要酸素量を液相に供給するために散気風量を増大させることが必要となることを突き止めるとともに、使用機器の性能や水処理施設の制約条件といった重要な因子について調査研究することによって、設定の優位性を見出したことによる。
ここで、酸素利用効率とは、下記により示される。
酸素利用効率=酸素利用量(必要酸素量)/供給酸素量×100
In the present invention, the target running cost can be easily reduced by setting the oxygen concentration of the nitrification tank gas phase gas or exhaust gas. In general, in the oxygen activated sludge method, oxygen utilization efficiency of about 85 to 90% is required. However, in the present invention, the oxygen concentration of the gas phase part gas or exhaust gas in the most downstream is 40% or more, preferably 45%. The oxygen utilization efficiency was set to be lower than 85%, preferably 80% or lower, by controlling to not less than 85%. Although this setting depends on the concentration of the high-concentration oxygen gas to be used, when the oxygen concentration is 40% or less, the advantage of using the high-concentration oxygen gas to reduce the amount of air diffused cannot be exhibited. In addition, when the oxygen utilization efficiency is 85% or more, it has been found through numerous tests that it is necessary to increase the amount of diffused air in order to supply the required amount of oxygen to the liquid phase. By finding out the superiority of setting by investigating and studying important factors such as constraints on treatment facilities.
Here, the oxygen utilization efficiency is represented by the following.
Oxygen utilization efficiency = Oxygen utilization (necessary oxygen) / Supplying oxygen x 100

本発明に用いる酸素濃度計は、循環散気するガスや排ガスの成分によって測定に影響を受けることなく、長期間の使用に耐えうるものであれば制限はないが、対象ガスに高濃度で含まれる二酸化炭素の影響を受けにくいジルコニア酸素濃度計、磁気式酸素濃度計、赤外線式酸素濃度計が好適である。
本発明の方法に使用する高濃度酸素ガスは、空気よりも酸素濃度を高めた任意の酸素濃度のガスを用いることができる。このようなガスの例としては、酸素富化装置を用いて酸素ガス濃度を高めた酸素富化空気や、酸素濃度が100%に近い純酸素ガスが挙げられるが、特に製造コストが安い酸素濃度が90%程度のPSA法による高濃度酸素ガスを用いるのがよい。このような高濃度酸素ガスを硝化槽の気相部や、循環散気配管に直接供給することができる。循環散気配管に供給した場合は、硝化槽気相部の酸素濃度及び混合液のDOの応答性が若干速くなる効果が見られた。
The oxygen concentration meter used in the present invention is not limited as long as it can withstand long-term use without being affected by the measurement of the gas diffused and the components of the exhaust gas, but is included in the target gas at a high concentration. A zirconia oxygen concentration meter, a magnetic oxygen concentration meter, and an infrared oxygen concentration meter that are not easily affected by carbon dioxide are suitable.
As the high-concentration oxygen gas used in the method of the present invention, a gas having an arbitrary oxygen concentration in which the oxygen concentration is higher than that of air can be used. Examples of such a gas include oxygen-enriched air in which the oxygen gas concentration is increased using an oxygen enricher, and pure oxygen gas having an oxygen concentration close to 100%. It is preferable to use a high-concentration oxygen gas by the PSA method with about 90%. Such a high-concentration oxygen gas can be directly supplied to the gas phase part of the nitrification tank or the circulation aeration pipe. When supplied to the circulating air diffuser piping, the oxygen concentration in the nitrification tank gas phase and the DO responsiveness of the mixed solution were slightly accelerated.

本発明では、混合液に酸素濃度が高いガスを散気するのであるが、散気されて水面から出てきた排ガスも大気に比べて酸素濃度は高いので、この排ガスを大気放出するのではなく、ブロワを介して繰り返して液相に散気することによって酸素の利用効率を上げることができた。したがって、一旦散気されたガスを槽外にそのまま排出するのではなく、排ガスとして排出する分以外の大部分を、再度ブロワに供給して繰り返し散気できるような密閉可能な構造であれば良く、槽の形状、数、配置などに制限はない。槽構造を簡単にする場合は単槽でも良く、また、担体の流動性などを考慮して槽を複槽に分けても良い。槽の分割は原水の流入に対して、並行にしても直列にしても良いが、特に効率良く酸素を使う場合は、図2に示すような直列多段の構造とし、原水の流入側の槽の気相部もしくは循環散気のライン(15)に高濃度酸素(10)を供給し、気相の連通部を介して順次上流側の槽から下流側の槽にガスが流れるように配置し、最下流の水槽から排ガス(11)を系外に排出する方法が最も効率的である。   In the present invention, a gas having a high oxygen concentration is diffused into the mixed solution. However, the exhaust gas that has been diffused and has come out of the water surface has a higher oxygen concentration than the atmosphere, so this exhaust gas is not released into the atmosphere. The oxygen utilization efficiency could be increased by repeatedly aeration into the liquid phase through the blower. Therefore, the gas once diffused is not directly discharged to the outside of the tank, but can be sealed so that most of the gas other than the discharged gas can be supplied again to the blower and repeatedly diffused. There are no restrictions on the shape, number, arrangement, etc. of the tank. When the tank structure is simplified, a single tank may be used, or the tank may be divided into multiple tanks in consideration of the fluidity of the carrier. The division of the tank may be parallel or in series with the inflow of raw water. However, when oxygen is used particularly efficiently, a multistage structure as shown in FIG. Supply high-concentration oxygen (10) to the gas phase section or circulation aeration line (15), and arrange the gas to flow from the upstream tank to the downstream tank sequentially through the gas phase communication section, The most efficient method is to discharge the exhaust gas (11) out of the system from the most downstream water tank.

本発明に用いる散気装置は、硝化担体の磨耗・破損、硝化菌の付着阻害を生じないもの、そして、硝化槽の水面から出てくるガスを吸引して繰り返し散気することから、汚泥ミストや粉塵等による目詰まりを生じにくいものであれば制限はなく、多孔管、ディスクディフューザ、スパージャなどが用いられる。また、循環ガス中の汚泥ミストや、ほこり、微細なごみなどを除去するためのミストセパレータ、ガスろ過気などをブロワの吸い込み側に設置することによって、より酸素移動効率の高い微細気泡性の散気装置を用いることもできる。このような散気装置の例としては、セラミック製又は合成樹脂製の散気板及び散気筒、メンブレン式の散気装置などが挙げられる。   The air diffuser used in the present invention does not cause nitrification carrier wear / breakage, nitrifying bacteria adherence inhibition, and the gas emitted from the water surface of the nitrification tank is repeatedly aerated to produce a sludge mist. Any porous tube, disk diffuser, sparger, etc. may be used as long as they are not easily clogged by dust or the like. In addition, by installing sludge mist in the circulating gas, mist separator for removing dust, fine dust, etc., gas filtration air, etc. on the suction side of the blower, a fine bubble diffuser with higher oxygen transfer efficiency An apparatus can also be used. Examples of such a diffuser include a diffuser plate and diffuser made of ceramic or synthetic resin, and a membrane diffuser.

同量の酸素を汚水中に供給する場合でも、散気を行う水深や使用する散気装置によって、散気する風量は変わる。通常の散気槽は、散気水深が4〜6mであるが、散気を行う水深が深くなれば、同一の散気装置を用いていても、必要な散気風量は少なくなる。酸素の溶解効率が良い散気装置を用いた場合も、必要な散気風量は少なくなる。
したがって、散気する水深や用いる散気装置によって、ランニングコストが最低となる酸素利用効率は異なることになる。それを示したものが、図3の散気装置・散気水深によるランニングコストの変化のグラフである。各々の条件において、酸素利用効率が85%の場合のランニングコストを100とし、酸素利用効率の変化によって、ランニングコストがどの様に変化するかを示したものである。
ただ、いずれの場合においても、酸素利用効率が85%より低い場合に、ランニングコストが最小になる点が存在する。
Even when the same amount of oxygen is supplied to the sewage, the amount of air diffused varies depending on the depth of the diffused air and the diffuser used. A normal aeration tank has an aeration depth of 4 to 6 m. However, if the depth of the aeration is increased, the required amount of aeration is reduced even if the same aeration device is used. Even when an air diffuser with good oxygen dissolution efficiency is used, the amount of air required is reduced.
Therefore, the oxygen utilization efficiency at which the running cost is minimum differs depending on the depth of water to be diffused and the diffuser to be used. This is shown in the graph of the change in running cost according to the air diffuser and the water depth of FIG. In each condition, the running cost when the oxygen utilization efficiency is 85% is assumed to be 100, and the running cost changes depending on the change of the oxygen utilization efficiency.
However, in any case, there is a point where the running cost is minimized when the oxygen utilization efficiency is lower than 85%.

実施設においては、常にランニングコストが最小となる点で運転できるわけではない。酸素利用効率を低く運転すると言うことは、それだけ多くの高濃度酸素ガスが必要となり、多くの酸素製造装置を必要とする。処理場によっては、それだけの酸素製造装置を設置する施設面積を保有していない場合もあり、その場合は酸素製造装置を設置できる範囲内においてランニングコストが最小となる酸素利用効率で運転することになる。また、酸素製造装置の容量が小さく、本発明の条件で定常的に運転することが困難な場合については、例えば、酸化処理が必要な汚濁物質量の季節変化や時間変動を参考にして、必要酸素量が比較的低い条件の時間帯など、運転時間の一部に絞って本発明を適用しても良い。
本発明は、前記した様々な散気装置で使用することが可能だが、循環散気法で使用する場合は、吸引するガスに水滴やスカムが混入し、散気装置の目詰まりの原因になることも考えられることから、散気装置としては、散気孔を大きく取ることが可能な多孔管がより好ましい。
また、ブロワは、密閉性と長時間の連続運転に支障がないものであれば制限はないが、ルーツブロワが好適である。
In an actual facility, it is not always possible to drive at a point where the running cost is minimized. To operate with low oxygen utilization efficiency requires so much high-concentration oxygen gas and many oxygen production apparatuses. Depending on the treatment plant, there may not be enough facility area to install the oxygen production device, and in that case, it will be operated with the oxygen utilization efficiency that minimizes the running cost within the range where the oxygen production device can be installed. Become. In addition, when the capacity of the oxygen production device is small and it is difficult to operate constantly under the conditions of the present invention, it is necessary, for example, referring to seasonal changes and fluctuations in the amount of pollutants that require oxidation treatment. The present invention may be applied to a part of the operation time such as a time zone in which the amount of oxygen is relatively low.
The present invention can be used with the various air diffusers described above, but when used in the circulating air diffuser, water drops and scum are mixed into the gas to be sucked, causing clogging of the air diffuser. In view of this, it is more preferable that the air diffuser is a perforated tube capable of providing large air holes.
The blower is not limited as long as it does not hinder hermeticity and continuous operation for a long time, but a Roots blower is preferable.

本発明に用いる担体は、担体の表面に硝化菌を付着させる結合固定化担体が適している。また、硝化菌の付着性が好く、また、処理に十分な量の硝化菌を保持することができ、流動性、耐久性が良ければ、形状、材質、物性に制限はないが、形状は表面積が大きいこと、耐摩耗性が良いことから、粒状、さらには、球状が好ましい。また、大きさは、直径1〜10mmの粒状が好く、材質はポリエチレングリコール(PEG)又はポリエチレングリコールを含むものが好適である。また、比重は0.90〜1.1の範囲であることが流動性の面で好ましい。
結合固定化担体が適しているのは、硝化槽内で自然発生的に硝化菌が担体に付着し生物膜を形成するものであり、本発明者らの研究によって、pH6以下、場合によっては5.5程度以下といった極めて低い条件にも、徐々に条件に順応して高い硝化性能を発揮できることが判明したためである。このことによって、pHが低下しやすい酸素活性汚泥法でも中和処理を全くしないか、あるいは、少量のアルカリ剤によるpH調整のみで硝化を進めることが可能となる。
As the carrier used in the present invention, a binding-immobilized carrier that allows nitrifying bacteria to adhere to the surface of the carrier is suitable. Moreover, if the adherence of nitrifying bacteria is good and can hold a sufficient amount of nitrifying bacteria for treatment, and the flowability and durability are good, there is no limitation on the shape, material, and physical properties, but the shape is Since it has a large surface area and good wear resistance, it is preferably granular or spherical. The size is preferably a granule having a diameter of 1 to 10 mm, and the material preferably includes polyethylene glycol (PEG) or polyethylene glycol. The specific gravity is preferably in the range of 0.90 to 1.1 in terms of fluidity.
The binding immobilization carrier is suitable in that nitrifying bacteria adhere to the carrier spontaneously in the nitrification tank to form a biofilm. According to the study by the present inventors, the pH is 6 or less, and in some cases 5 This is because it has been found that even under extremely low conditions of about 5 or less, high nitrification performance can be exhibited by gradually adapting to the conditions. This makes it possible to proceed with nitrification only by adjusting the pH with a small amount of an alkaline agent without performing any neutralization treatment even in the oxygen activated sludge method in which the pH tends to decrease.

本発明の対象排水は、下水や産業排水に限らず、アンモニア性窒素及び/又は有機性窒素を含む水であれば良く、含有濃度についても制限はない。例えば、硝化に必要なアルカリ度や、その他、硝化反応に必要なリンや鉄といった成分が不足している水の場合は、これらを添加すればよく、また、硝化反応を阻害する銅や硫化水素などが含まれる水については、除害処置を行うことで対象排水とすることができる。
生活排水が流入する下水は、人間の生活パターンによって一日の間で周期的な流量の変動と汚濁物質濃度の変動を有している。活動が活発になる朝や夕食の時間になる夜には流量が増え、汚濁物質濃度も高まる。一方で、人間の活動が少なくなる深夜〜早朝にかけては流量や汚濁物質濃度が下がる。ただし、汚水発生点から下水処理場に流下するまでに時間がかかることから、処理場ごとに特有の流量変動及び汚濁物質濃度変動を有している。流入原水の要求する酸素必要量は、主に流入原水に含まれる汚濁物質量(=負荷)で決まり、負荷は流量と汚濁物質濃度の積で表される。この負荷の変動に合わせて、酸素濃度の所定範囲を変動することにより、さらにシステム全体のランニングコストの低減を図ることが可能である。
The target waste water of the present invention is not limited to sewage and industrial waste water, and may be water containing ammonia nitrogen and / or organic nitrogen, and the concentration of the waste water is not limited. For example, in the case of water lacking the alkalinity necessary for nitrification and other components such as phosphorus and iron necessary for the nitrification reaction, these may be added, and copper and hydrogen sulfide that inhibit the nitrification reaction About water that contains etc., it can be set as target drainage by performing abatement treatment.
The sewage into which domestic wastewater flows has periodic fluctuations in the flow rate and fluctuations in the pollutant concentration during the day depending on human life patterns. The flow increases and the pollutant concentration also increases in the morning and evening when activities are active. On the other hand, the flow rate and pollutant concentration decrease from midnight to early morning when human activity is reduced. However, since it takes time to flow from the sewage generation point to the sewage treatment plant, there is a flow rate variation and pollutant concentration variation specific to each treatment plant. The required amount of oxygen required for inflow raw water is mainly determined by the amount of pollutants contained in the inflow raw water (= load), and the load is expressed by the product of the flow rate and the concentration of pollutants. It is possible to further reduce the running cost of the entire system by changing the predetermined range of the oxygen concentration in accordance with the change of the load.

循環散気はDOの供給だけでなく、担体を流動させる役割も持つのであるが、必要に応じて担体の流動性を維持するために攪拌機を併用しても良い。使用する攪拌機は、硝化担体の磨耗・破損、硝化菌の付着阻害を生じずに、硝化担体を流動させられるものであれば良い。
さらに、本発明者らが明らかにした低pH条件における硝化反応についての詳細な条件は、アルカリ度が重要であって、具体的には硝化槽のpHが5〜6であって、アルカリ度は最低限、硝化に必要な量、好ましくは、硝化槽のアルカリ度10mg/L以上、さらに好ましくは硝化槽のアルカリ度30mg/L以上となる条件であった。このような範囲に設定できれば、脱炭酸処理やpH調整剤を使用する必要はなく、pHがさらに低下したり、アルカリ度が不足する場合は、不足分に見合うだけのアルカリ剤を注入したり、必要な分の脱炭酸処理をすればよい。このほか、図2に示すとおり硝化槽の前段に脱窒工程を設けて、硝化槽の液相及び/又は汚泥を返送し脱窒反応によるアルカリ度の上昇を利用しても良い。
The circulating air diffuser not only supplies DO but also has a role of causing the carrier to flow. If necessary, a stirrer may be used in combination to maintain the fluidity of the carrier. The stirrer to be used is not limited as long as it can flow the nitrification carrier without causing abrasion or damage of the nitrification carrier and inhibition of nitrifying bacteria adhesion.
Furthermore, the detailed conditions for the nitrification reaction under the low pH conditions revealed by the present inventors are that the alkalinity is important, specifically, the pH of the nitrification tank is 5 to 6, and the alkalinity is The minimum amount required for nitrification, preferably the alkalinity of the nitrification tank was 10 mg / L or more, more preferably the alkalinity of the nitrification tank was 30 mg / L or more. If it can be set in such a range, it is not necessary to use a decarboxylation treatment or a pH adjuster, and if the pH is further lowered, or if the alkalinity is insufficient, an alkali agent sufficient to meet the shortage is injected, What is necessary is just to perform the decarboxylation process of a required amount. In addition, as shown in FIG. 2, a denitrification step may be provided in the front stage of the nitrification tank, and the increase in alkalinity due to the denitrification reaction may be utilized by returning the liquid phase and / or sludge of the nitrification tank.

我々の研究では、下水やその他産業排水等種々の排水で、硝化槽の前段に脱窒槽を設け、返送汚泥分に相当する程度の循環式硝化脱窒を行うだけでも、薬品を用いずに、硝化槽のアルカリ度は十分好適範囲に保つことが可能であった。もちろん、硝化槽と脱窒槽に循環ラインを設けて循環させても良い。返送汚泥量を含んだ循環率は、原水量の0.3倍以上が好ましく、0.5以上がより好ましい。このように、脱窒工程を組み込むことによって、窒素除去の目的を達成するだけでなく、アルカリ度を好適に保つことによって硝化性能を安定させることを、薬品を用いずに実現できるのである。硝化槽の前段に脱窒槽を設置すること自体は、硝化脱窒方式として一般的な方法であるが、本発明の硝化担体を用いた酸素活性汚泥法の条件に対しては、アルカリ度を供給することで、低コストで性能を安定化させるという大きな役割を持つ。   In our research, with various effluents such as sewage and other industrial wastewater, a denitrification tank is installed in the front stage of the nitrification tank, and even if circulation nitrification denitrification equivalent to the returned sludge is performed, without using chemicals, It was possible to keep the alkalinity of the nitrification tank in a sufficiently suitable range. Of course, a circulation line may be provided in the nitrification tank and the denitrification tank for circulation. The circulation rate including the amount of returned sludge is preferably 0.3 times or more of the raw water amount, and more preferably 0.5 or more. Thus, by incorporating the denitrification step, not only the purpose of nitrogen removal can be achieved, but also the stabilization of nitrification performance by keeping the alkalinity suitable can be realized without using chemicals. The installation of a denitrification tank in front of the nitrification tank itself is a general method as a nitrification denitrification system, but alkalinity is supplied for the conditions of the oxygen activated sludge method using the nitrification carrier of the present invention. By doing so, it has a big role of stabilizing the performance at a low cost.

硝化槽混合液の浮遊汚泥は、排水に共存するBODの除去や硝化性能を有している場合もあるので、担体と共に硝化槽に共存させる方が有利である。ただし、担体による硝化のみで処理を満足できる場合は、浮遊汚泥を用いなくても良い。このような場合は、返送汚泥ラインも不要であり、また、循環式硝化脱窒運転を行わない場合は、当然循環ラインも不要である。
本発明の方法によれば、高い硝化性能を発揮することができるため、硝化槽容量のコンパクト化が可能であり、HRT1.4〜2hr程度の極めて短い滞留時間で処理性能を満足することができる。
硝化槽に設置する担体分離用のスクリーンは、担体を分離できる形状で担体を破損、磨耗するものでなければ制限はないが、酸素活性汚泥法では、硝化槽が密閉構造であるためにメンテナンス性の良い仕様のものが適している。本発明者らの研究の結果、特に洗浄用のノズルを設置し、回転することのできる円筒形の機械式スクリーンがもっとも好ましい仕様であることが判明した。
The suspended sludge in the nitrification tank mixed solution may have the removal of BOD coexisting in the waste water and the nitrification performance, so it is advantageous to coexist in the nitrification tank together with the carrier. However, if the treatment can be satisfied only by nitrification with a carrier, it is not necessary to use floating sludge. In such a case, the return sludge line is not necessary, and naturally, if the circulation type nitrification denitrification operation is not performed, the circulation line is also unnecessary.
According to the method of the present invention, since high nitrification performance can be exhibited, the nitrification tank capacity can be made compact, and the treatment performance can be satisfied with an extremely short residence time of about HRT 1.4-2 hr. .
The screen for separating the carrier installed in the nitrification tank is not limited as long as the carrier can be separated and damaged and worn, but the oxygen activated sludge method has a maintenance structure because the nitrification tank has a sealed structure. Good specification is suitable. As a result of the study by the present inventors, it was found that a cylindrical mechanical screen that can be installed and rotated, in particular, has a most preferable specification.

以下、図面を参照して本発明の好適な実施形態について詳細に説明する。
図1は、本発明の排水処理方法に用いる装置の一例を示すフロー構成図である。図1に示すように排水処理装置は、硝化菌を付着させた硝化担体5が貯留されている密閉可能な硝化槽2と、沈殿池3、酸素ガス供給ライン10、排ガスライン11と、原水供給ライン1、処理水流出ライン4を備えている。そして、酸素ガス供給ライン10には流量調節弁17が、排ガスライン11には酸素濃度計14がそれぞれ設置されている。
硝化槽2には、液面と硝化槽の天井部との間の硝化槽気相部ガス12をブロワ9を介して循環散気するためのガス循環ライン15と、溶存酸素濃度計13を備えている。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a flow configuration diagram showing an example of an apparatus used in the wastewater treatment method of the present invention. As shown in FIG. 1, the waste water treatment apparatus includes a sealable nitrification tank 2 storing a nitrification carrier 5 to which nitrifying bacteria are attached, a sedimentation basin 3, an oxygen gas supply line 10, an exhaust gas line 11, and a raw water supply. Line 1 and treated water outflow line 4 are provided. The oxygen gas supply line 10 is provided with a flow rate control valve 17, and the exhaust gas line 11 is provided with an oxygen concentration meter 14.
The nitrification tank 2 includes a gas circulation line 15 for circulating and diffusing the nitrification tank gas phase gas 12 between the liquid surface and the ceiling of the nitrification tank through the blower 9 and a dissolved oxygen concentration meter 13. ing.

さらに、本発明の排水処理装置には、制御装置が設けられている。制御装置16は、溶存酸素濃度計13の検出結果に基づいて、ブロワ9の散気量を制御する制御手段として機能する。ブロワ9の制御は、DO値の検出結果を基にブロワの回転数を増減したり、風量調節弁の開度調整によって行われる。一方、制御装置18は、酸素濃度計14の検出結果に基づいて、高濃度酸素ガスの流量調節弁17の開閉操作もしくは開度を調整する制御手段として機能する。
その際、本発明では、ランニングコストを下げるために、制御装置18で硝化槽内の排気ガスの酸素濃度を40%以上に保持して、酸素利用効率が85%より低くなるように設定している。こうすることで、散気風量を少なくしても溶存酸素濃度は設定値に維持でき、散気ブロワの動力が少なくて済み、システム全体としてのコストを低減できる。
Furthermore, the waste water treatment apparatus of the present invention is provided with a control device. The control device 16 functions as a control unit that controls the amount of air diffused by the blower 9 based on the detection result of the dissolved oxygen concentration meter 13. The blower 9 is controlled by increasing or decreasing the number of rotations of the blower based on the detection result of the DO value, or by adjusting the opening of the air volume control valve. On the other hand, the control device 18 functions as a control means for adjusting the opening / closing operation or the opening degree of the flow control valve 17 of the high concentration oxygen gas based on the detection result of the oximeter 14.
At this time, in the present invention, in order to reduce the running cost, the control device 18 sets the oxygen concentration of the exhaust gas in the nitrification tank to 40% or more and sets the oxygen utilization efficiency to be lower than 85%. Yes. By doing so, the dissolved oxygen concentration can be maintained at the set value even if the amount of air diffused is reduced, the power of the air diffuser can be reduced, and the cost of the entire system can be reduced.

次に、上述したような構成の排水処理装置を用いた排水処理方法について説明する。
まず、ライン1を経て、処理対象排水を硝化槽2に導入する。硝化槽2に導入された排水は、硝化槽2内の硝化菌が固定した担体と混合される。
次いで、ライン10を経て高濃度酸素ガスが硝化槽2内に供給され、気相部12を高濃度酸素で満たした状態とする。そして、ブロワ9を作動させることにより、気相部12内のガスを一旦吸引し、このガスを硝化槽2内の散気管8に送り込んで、硝化槽2の混合液中に散気する。
このようにして、ライン10から密閉可能な硝化槽2内へ供給された酸素は、空気に比してより効率的に硝化槽2内の混合液中に溶解する。
次いで、制御装置18を稼動させ、酸素濃度計14の指示値を基に流量調節弁17が制御され、常に必要な量の酸素が供給されて、硝化槽気相部ガス12の酸素濃度が所定範囲内に安定する。さらに、制御装置16を稼動させ、溶存酸素濃度計13の指示値を基にブロワ9の散気量が制御され、常に必要な量の散気が行われ混合液の溶存酸素濃度が安定する。
Next, a wastewater treatment method using the wastewater treatment apparatus configured as described above will be described.
First, the waste water to be treated is introduced into the nitrification tank 2 via the line 1. The waste water introduced into the nitrification tank 2 is mixed with a carrier on which nitrifying bacteria in the nitrification tank 2 are fixed.
Next, high-concentration oxygen gas is supplied into the nitrification tank 2 through the line 10 to fill the gas phase part 12 with high-concentration oxygen. Then, by operating the blower 9, the gas in the gas phase portion 12 is once sucked, and this gas is sent to the diffusion tube 8 in the nitrification tank 2 and diffused into the mixed liquid in the nitrification tank 2.
In this way, oxygen supplied from the line 10 into the sealable nitrification tank 2 dissolves in the mixed liquid in the nitrification tank 2 more efficiently than air.
Next, the control device 18 is operated, the flow rate control valve 17 is controlled based on the indicated value of the oximeter 14, and a necessary amount of oxygen is always supplied, so that the oxygen concentration of the nitrification tank gas phase gas 12 is predetermined. Stable within range. Further, the control device 16 is operated, and the amount of air diffused in the blower 9 is controlled based on the indicated value of the dissolved oxygen concentration meter 13, so that the necessary amount of air is always diffused and the dissolved oxygen concentration of the mixed liquid is stabilized.

次に、本発明の排水処理方法に用いる装置の別の例について、図2のフロー構成図をもとに説明する。なお、図2において、図1と同一又は相当部分には同一符号を付し、その詳細な説明は省略する。
図2は、硝化槽を隔壁で仕切って原水流入に対して直列の2段構造とし、硝化槽の前段に脱窒槽20を備えている。硝化槽は隔壁によって液相、気相とも仕切られているが、液相は担体分離用のスクリーン24を介して連通しており、一方気相にもガスの連通部25がある。また、硝化槽には各々ガス循環ラインが備えられ、酸素供給ライン10は第一硝化槽に接続されている。
脱窒槽20は、導入された処理対象排水を、脱窒菌を主体とする活性汚泥を用いて生物処理するものであり、例えば、浮遊する活性汚泥を脱窒槽20内に収容し、槽20内の排水を攪拌する攪拌装置21を備えている。
図2では、排ガスライン11に酸素濃度計14が備えられているが、硝化槽2の気相部や硝化槽2’の気相部に備えることも可能である。
Next, another example of the apparatus used in the wastewater treatment method of the present invention will be described based on the flow configuration diagram of FIG. 2, the same reference numerals are given to the same or corresponding parts as in FIG. 1, and detailed description thereof will be omitted.
In FIG. 2, the nitrification tank is partitioned by a partition wall to form a two-stage structure in series with the inflow of raw water, and a denitrification tank 20 is provided in the front stage of the nitrification tank. The nitrification tank is divided into a liquid phase and a gas phase by a partition wall, but the liquid phase communicates with the carrier separation screen 24, while the gas phase also has a gas communication portion 25. Each nitrification tank is provided with a gas circulation line, and the oxygen supply line 10 is connected to the first nitrification tank.
The denitrification tank 20 biologically treats the introduced wastewater to be treated using activated sludge mainly composed of denitrifying bacteria. For example, floating activated sludge is accommodated in the denitrification tank 20, A stirring device 21 for stirring the waste water is provided.
In FIG. 2, the exhaust gas line 11 is provided with the oxygen concentration meter 14, but it can also be provided in the gas phase part of the nitrification tank 2 or the gas phase part of the nitrification tank 2 ′.

次に、図2の排水処理装置を用いた排水処理方法について説明する。
まず、ライン1を通して処理対象排水を脱窒槽20に導入する。脱窒槽20内に導入された排水は、活性汚泥と混合され、攪拌されることにより、原水から供給された有機物を水素供与体として、返送汚泥6から供給された硝酸性窒素及び亜硝酸性窒素を窒素ガスに分解する。
脱窒後の排水は、第一硝化槽2、第二硝化槽2’の順に送られ、硝化菌が付着した担体と混合されて硝化が進行する。
硝化後の排水は、沈殿池3に送られ、硝化後の排水から活性汚泥を沈殿分離する。活性汚泥を分離された上澄み排水は、処理水4として排出される。一方、沈殿分離された分離汚泥は、返送汚泥6ラインにより脱窒槽に返送される。また、余剰分の分離汚泥は、余剰汚泥ライン7から系外に排出される。
高濃度酸素ガスは、ライン10から第一硝化槽2の気相部12に供給され、気相部12を高濃度酸素で満たされた状態とする。そして、ブロワ9を作動させることにより、気相部12内のガスを一旦吸引し、このガスを硝化槽2内の散気管8に送り込んで、硝化槽2内の排水中に散気する。
Next, a wastewater treatment method using the wastewater treatment apparatus of FIG. 2 will be described.
First, the wastewater to be treated is introduced into the denitrification tank 20 through the line 1. The wastewater introduced into the denitrification tank 20 is mixed with the activated sludge and stirred, so that the organic matter supplied from the raw water is used as a hydrogen donor, and nitrate nitrogen and nitrite nitrogen supplied from the return sludge 6 are used. Is decomposed into nitrogen gas.
The drained water after denitrification is sent in the order of the first nitrification tank 2 and the second nitrification tank 2 ′, and is mixed with the carrier to which nitrifying bacteria adhere, and nitrification proceeds.
The effluent after nitrification is sent to the sedimentation basin 3, and activated sludge is separated from the effluent after nitrification. The supernatant waste water from which the activated sludge has been separated is discharged as treated water 4. On the other hand, the separated and separated sludge is returned to the denitrification tank through the return sludge 6 line. Further, surplus separated sludge is discharged from the surplus sludge line 7 to the outside of the system.
The high-concentration oxygen gas is supplied from the line 10 to the gas phase portion 12 of the first nitrification tank 2 so that the gas phase portion 12 is filled with high-concentration oxygen. Then, by operating the blower 9, the gas in the gas phase portion 12 is once sucked, and this gas is sent to the aeration pipe 8 in the nitrification tank 2 and diffused into the waste water in the nitrification tank 2.

次いで、第一硝化槽2から排出される残りの酸素ガスは、第二硝化槽2’の気相部12’に供給され、気相部12’を高濃度酸素で満たされた状態とする。そして、ブロワ9’を作動させることにより、気相部12’内のガスを一旦吸引し、このガスを硝化槽2’内の散気管8’に送り込んで、硝化槽2’内の排水中に散気する。
次いで、制御装置18を稼動させ、酸素濃度計14の指示値を基に流量調節弁17が制御され、常に必要な量の酸素が供給されて、硝化槽気相部ガス12’の酸素濃度がランニングコストを下げるための所定範囲内に安定する。さらに、制御装置16、16’を稼動させ、溶存酸素濃度計13、13’の指示値を基に、ブロワ9、9’散気量がそれぞれ制御され、常に必要な量の散気が行われ、硝化槽混合液の溶存酸素濃度が安定する。
Next, the remaining oxygen gas discharged from the first nitrification tank 2 is supplied to the gas phase section 12 ′ of the second nitrification tank 2 ′, and the gas phase section 12 ′ is filled with high-concentration oxygen. Then, by operating the blower 9 ′, the gas in the gas phase section 12 ′ is once sucked, and this gas is sent to the diffuser pipe 8 ′ in the nitrification tank 2 ′ to be discharged into the waste water in the nitrification tank 2 ′. Scatter.
Next, the control device 18 is operated, the flow rate control valve 17 is controlled based on the indicated value of the oximeter 14, and a necessary amount of oxygen is always supplied, so that the oxygen concentration of the nitrification tank gas phase gas 12 ′ is increased. Stable within a predetermined range to reduce running costs. Further, the control devices 16 and 16 ′ are operated, and the blower 9 and 9 ′ aeration amount are controlled based on the indicated values of the dissolved oxygen concentration meters 13 and 13 ′, respectively, so that a necessary amount of aeration is always performed. The dissolved oxygen concentration in the nitrification tank mixture is stabilized.

このようにして、ライン10から密閉可能な硝化槽2、2’内へ供給された酸素は、空気に比してより効率的に硝化槽2、2’内の排水中に溶解する。さらに、硝化槽を直列多段とし、上流側の槽に酸素を供給することで、上流側から効率よく酸素が利用されて、下流側に向かって酸素濃度は低くなり、効率的に酸素を利用することができる。
高濃度酸素ガスを、ライン10から第一硝化槽2の気相部12に供給するというのは、効率良く酸素を利用することが目的であるから、この目的が達成できれば、高濃度酸素ガスの注入点やガスの流れは、第一硝化槽2に限定されるものではない。例えば、第二硝化槽2’の気相部でも、第一硝化槽2の気相部との境界付近に注入すれば、高濃度酸素ガスは、一部が第二硝化槽2’から第一硝化槽2にも供給され、効率的な運転は可能であった。
In this way, the oxygen supplied from the line 10 into the sealable nitrification tank 2, 2 ′ dissolves in the waste water in the nitrification tank 2, 2 ′ more efficiently than air. Furthermore, the nitrification tank is made into a multistage in series, and oxygen is efficiently used from the upstream side by supplying oxygen to the upstream tank, and the oxygen concentration is lowered toward the downstream side, so that oxygen is efficiently used. be able to.
The purpose of supplying the high concentration oxygen gas from the line 10 to the gas phase portion 12 of the first nitrification tank 2 is to use oxygen efficiently. The injection point and gas flow are not limited to the first nitrification tank 2. For example, if the gas phase part of the second nitrification tank 2 ′ is also injected near the boundary with the gas phase part of the first nitrification tank 2, a part of the high-concentration oxygen gas is first from the second nitrification tank 2 ′. It was also supplied to the nitrification tank 2 and efficient operation was possible.

以下、本発明を実施例により具体的に説明し、実験で得られた結果を比較例と共に表2、表3に示す。
実施例1
図1に示したフローに基づく循環散気方式の実験装置(処理量165m/日、硝化槽容量10m、HRT 1.5hr、返送汚泥量82.5m/日)に硝化担体を投入して、表1に示すアンモニア性窒素(NH−N)濃度16〜25mg/L、有機性窒素(Org−N)濃度3〜11mg/Lの下水一次処理水(以下、原水)を対象に、処理実験を行った。
Hereinafter, the present invention will be described in detail with reference to examples, and the results obtained through experiments are shown in Tables 2 and 3 together with Comparative Examples.
Example 1
The nitrification carrier is put into the experimental apparatus (circulation amount 165 m 3 / day, nitrification tank capacity 10 m 3 , HRT 1.5 hr, return sludge amount 82.5 m 3 / day) based on the flow shown in FIG. For the sewage primary treated water (hereinafter referred to as raw water) of ammonia nitrogen (NH 4 -N) concentration 16 to 25 mg / L and organic nitrogen (Org-N) concentration 3 to 11 mg / L shown in Table 1, A treatment experiment was conducted.

実験装置の仕様は次のとおりである。
酸素ガス発生装置 :PSA(pressure swing adsorption)方式の装置
DO計 :蛍光式溶存酸素計
酸素濃度計 :ジルコニア式酸素濃度
ブロワ :ルーツブロワ
散気装置 :多孔管
担体 :球状PEG担体
担体の充填率 :20%(硝化槽容積あたりの見かけ体積)
また、実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度:80〜90%
高濃度酸素ガス供給量 :34〜66L/min
設定DO :7.5mg/L
設定排ガスO濃度 :66%
散気量 :34〜72m/h
散気水深 :4m
The specifications of the experimental apparatus are as follows.
Oxygen gas generator: PSA (pressure swing adsorption) system DO meter: Fluorescent dissolved oxygen meter Oxygen meter: Zirconia oxygen concentration Blower: Roots blower diffuser: Porous tube Carrier: Spherical PEG carrier Carrier filling rate: 20 % (Apparent volume per nitrification tank volume)
The experimental conditions are as follows.
O 2 concentration of the supplied high concentration oxygen gas: 80 to 90%
High concentration oxygen gas supply amount: 34 to 66 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: 66%
Aeration amount: 34 to 72 m 3 / h
Aeration water depth: 4m

結果は、徐々に担体に付着した硝化菌が馴養されて、処理水のNH−N濃度は徐々に低下し、処理開始20日目には、0.2〜0.9mg/Lとなって、処理性能は良好だった。DOや排ガス酸素濃度は制御が成功し、設定通りに制御することができた。排ガスの酸素濃度は66%程度で一定となり、酸素利用効率は63%であった。また、酸素利用効率を85%とした比較例1の動力コストを1とした場合、動力コストはブロワ動力が低減され0.85と下げることができた。 As a result, the nitrifying bacteria adhering to the carrier gradually became acclimatized, and the NH 4 -N concentration of the treated water gradually decreased, and on the 20th day from the start of the treatment, it became 0.2 to 0.9 mg / L. The processing performance was good. The DO and exhaust gas oxygen concentrations were successfully controlled and could be controlled as set. The oxygen concentration of the exhaust gas was constant at about 66%, and the oxygen utilization efficiency was 63%. Further, when the power cost of Comparative Example 1 in which the oxygen utilization efficiency was 85% was set to 1, the power cost was reduced to 0.85 because the blower power was reduced.

実施例2
図2に示したフローに基づく循環散気方式の実験装置(処理量165m/日、硝化槽容量10m、HRT 1.5hr、脱窒槽容量5m、返送汚泥量82.5m/日)に硝化担体を投入して、表1に示すアンモニア性窒素(NH−N)濃度16〜25mg/L、有機性窒素(Org−N)濃度3〜11mg/Lの下水一次処理水(以下、原水)を対象に、処理実験を行った。
実験装置の仕様は実施例1と同じであり、実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :31〜63L/min
設定DO :7.5mg/L
設定排ガスO濃度 :66%
散気量 :45〜62m/h
散気水深 :4m
Example 2
Experimental apparatus of circulation aeration system based on the flow shown in FIG. 2 (throughput 165 m 3 / day, nitrification tank capacity 10 m 3 , HRT 1.5 hr, denitrification tank capacity 5 m 3 , return sludge volume 82.5 m 3 / day) The nitrification carrier is added to the sewage primary treated water (hereinafter, referred to as “ammonia nitrogen (NH 4 -N) concentration 16-25 mg / L, organic nitrogen (Org-N) concentration 3-11 mg / L) shown in Table 1”. A treatment experiment was conducted on the raw water.
The specifications of the experimental apparatus are the same as those in Example 1, and the experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High-concentration gas supply amount: 31 to 63 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: 66%
Aeration amount: 45 to 62 m 3 / h
Aeration water depth: 4m

徐々に担体に付着した硝化菌が馴養されて、処理水のNH−N濃度は徐々に低下し、処理開始20日目には、0.2〜0.4mg/Lであり、実施例1よりもさらに良好な硝化性能であった。これは、脱窒反応によるアルカリ度の上昇により硝化槽のアルカリ度を常に30mg/L以上に維持することができたためである。なお、処理性能は良好で、DOや排ガス酸素濃度は制御が成功し、排ガス酸素濃度を設定値(66%)通りに制御することができた。酸素利用効率を63%に設定したため、ブロワ動力が低減され、動力コストは、比較例1の動力コストを1とした場合、0.80となり、同様の実験条件の比較例2(動力コスト:0.95)よりも低くなった。 The nitrifying bacteria adhering to the carrier gradually became acclimatized, and the NH 4 -N concentration of the treated water gradually decreased, and was 0.2 to 0.4 mg / L on the 20th day from the start of the treatment. The nitrification performance was even better than that. This is because the alkalinity of the nitrification tank could always be maintained at 30 mg / L or more due to the increase in alkalinity due to the denitrification reaction. The treatment performance was good, the DO and exhaust gas oxygen concentrations were successfully controlled, and the exhaust gas oxygen concentrations could be controlled as set values (66%). Since the oxygen utilization efficiency was set to 63%, the blower power was reduced, and the power cost was 0.80 when the power cost of Comparative Example 1 was 1, and Comparative Example 2 (power cost: 0) under the same experimental conditions. .95).

実施例3
図2に示したフローに基づき、表1の処理水を対象に処理実験を行った。多孔管の散気水深を5mとした以外は、実施例2と同じ条件で処理実験を行った。実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :29〜59L/min
設定DO :7.5mg/L
設定排ガスO濃度 :63%
散気量 :34〜47m/h
散気水深 :5m
本実施例では、徐々に担体に付着した硝化菌が馴養されて、処理水のNH−N濃度は徐々に低下し、処理開始20日目には、0.2〜0.4mg/Lであり、良好な硝化性能だった。DOや排ガス酸素濃度は制御が成功し、排ガス酸素濃度は63%と設定値通りに制御することができた。本実施例では、散気水深を5mと深くしたため、ランニングコスト最適点が変化し、最適な酸素利用効率は67%と実施例1及び2より高くなった。動力コストは、ブロワ動力が低減され、比較例3より低下し、比較例3のコストを1とした場合、0.85となった。
Example 3
Based on the flow shown in FIG. 2, a treatment experiment was performed on the treated water of Table 1. A treatment experiment was performed under the same conditions as in Example 2 except that the diffused water depth of the perforated tube was 5 m. The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High-concentration gas supply amount: 29 to 59 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: 63%
Aeration amount: 34 to 47 m 3 / h
Aeration water depth: 5m
In this example, nitrifying bacteria adhering to the carrier gradually acclimatize, and the NH 4 -N concentration of the treated water gradually decreases, and on the 20th day from the start of the treatment, it is 0.2 to 0.4 mg / L. There was good nitrification performance. The DO and exhaust gas oxygen concentrations were successfully controlled, and the exhaust gas oxygen concentration was 63% and could be controlled as set. In this example, since the diffused water depth was increased to 5 m, the optimum running cost point was changed, and the optimum oxygen utilization efficiency was 67%, which was higher than those in Examples 1 and 2. The power cost was 0.85 when the blower power was reduced and was lower than that of Comparative Example 3, and the cost of Comparative Example 3 was set to 1.

実施例4
図2に示したフローに基づき、表1の処理水を対象に、散気装置としてメンブレンパネルを用いた以外は、実施例2と同じ条件で処理実験を行った。
実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :28〜56L/min
設定DO :7.5mg/L
設定排ガスO濃度 :55%
散気装置 :メンブレンパネル
散気量 :12〜17m/h
散気水深 :4m
本実施例では、処理水のNH−Nは0.2〜0.4mg/Lであり、処理性能は良好だった。DOや排ガス酸素濃度は制御が成功し、排ガス酸素濃度は55%と設定値通りに制御できた。本実施例では、散気装置をメンブレンパネルにしたため、ランニングコストの最適点が変化し、最適な酸素利用効率は78%となった。動力コストは、ブロワ動力が低減されて、比較例4の動力コストを1とした場合、0.90となった。
Example 4
Based on the flow shown in FIG. 2, a treatment experiment was performed under the same conditions as in Example 2 except that a membrane panel was used as a diffuser for the treated water of Table 1.
The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High concentration gas supply amount: 28 to 56 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: 55%
Air diffuser: Membrane panel Air diffuser: 12-17m 3 / h
Aeration water depth: 4m
In this example, NH 4 —N of the treated water was 0.2 to 0.4 mg / L, and the treatment performance was good. The DO and exhaust gas oxygen concentrations were successfully controlled, and the exhaust gas oxygen concentration was 55%, which was controlled as set. In this example, since the diffuser was a membrane panel, the optimum point of running cost was changed, and the optimum oxygen utilization efficiency was 78%. The power cost was 0.90 when the power of the blower power was reduced and the power cost of Comparative Example 4 was 1.

実施例5
図2に示したフローに基づく処理実験を行った。設定する排ガス酸素濃度は、原水に含まれる汚濁物質を酸化するために必要となる酸素量の変動に合わせて変動させた。
各時刻の必要酸素量を、必要酸素量の日間平均値に対する比率として表したものを図4に示す。図4には、必要酸素量の変動によって、変動させた設定排ガス酸素濃度の設定値を示している。設定排ガス酸素濃度を原水の必要酸素量に応じて変更する以外は、実施例2と同じ条件で処理実験を行っており、実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :36〜72L/min
設定DO :7.5mg/L
設定排ガスO濃度 :図4のとおり、(60〜72%の間で変動)
散気量 :39〜53m/h
散気水深 :4m
本実施例では、流入排水の必要酸素量の変動により、設定排ガス酸素濃度も変動させたが、他の実施例と同じく安定した制御が可能だった。運転開始から、処理水のNH−N濃度は徐々に低下し、処理開始20日目には、0.2〜0.4mg/Lとなり、良好な硝化性能だった。DOや排ガス酸素濃度は制御が成功し、排ガス酸素濃度は図4に示される設定値通りに制御できた。本実施例においては、酸素利用効率は58%となったが、比較例1の動力コストを1とした場合の動力コストは、0.70で、設定排ガス酸素濃度を原水の必要酸素量の変動に応じて変更した結果、更に低減することができた。
Example 5
A processing experiment based on the flow shown in FIG. 2 was performed. The exhaust gas oxygen concentration to be set was changed in accordance with the change in the amount of oxygen necessary for oxidizing the pollutant contained in the raw water.
FIG. 4 shows the required oxygen amount at each time as a ratio to the daily average value of the required oxygen amount. FIG. 4 shows a set value of the set exhaust gas oxygen concentration that is changed by the change in the required oxygen amount. Except for changing the set exhaust gas oxygen concentration according to the required oxygen amount of the raw water, a treatment experiment was conducted under the same conditions as in Example 2, and the experimental conditions were as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High-concentration gas supply amount: 36 to 72 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: As shown in FIG. 4, (varies between 60-72%)
Aeration amount: 39 to 53 m 3 / h
Aeration water depth: 4m
In this example, the set exhaust gas oxygen concentration was also changed by the change in the required amount of oxygen in the influent wastewater, but stable control was possible as in the other examples. From the start of operation, the NH 4 —N concentration in the treated water gradually decreased, and on the 20th day from the start of the treatment, it was 0.2 to 0.4 mg / L, indicating good nitrification performance. The DO and exhaust gas oxygen concentrations were successfully controlled, and the exhaust gas oxygen concentrations could be controlled according to the set values shown in FIG. In this example, the oxygen utilization efficiency was 58%, but the power cost when the power cost of Comparative Example 1 was set to 1 was 0.70, and the set exhaust gas oxygen concentration was changed in the required oxygen amount of raw water. As a result of changing according to the above, it could be further reduced.

比較例1
実験装置、処理対象水及び実験装置の仕様は、実施例1と同じ条件で処理実験を行った。
実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :28〜55L/min
設定DO :7.5mg/L
設定排ガスO濃度 :46%
散気量 :41〜86m/h
散気水深 :4m
本比較例では、実施例1の比較例であり、実施例1と同様に排ガス酸素濃度で高濃度酸素ガスの供給量を制御するものである。本比較例においても、処理性能は良好で、DOや排ガス酸素濃度は制御が成功し、排ガス酸素濃度を46%と設定値通りに制御できた。しかし、酸素利用効率を85%としたために、ランニングコストの観点から酸素利用効率を最適に設定した実施例1より、酸素供給量は減少した一方で、散気量が増えて、システム全体の動力コストは高くなった。
Comparative Example 1
The specifications of the experimental apparatus, the water to be treated, and the experimental apparatus were treated under the same conditions as in Example 1.
The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High-concentration gas supply amount: 28 to 55 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: 46%
Aeration amount: 41 to 86 m 3 / h
Aeration water depth: 4m
This comparative example is a comparative example of the first embodiment, and controls the supply amount of the high concentration oxygen gas by the exhaust gas oxygen concentration as in the first embodiment. Also in this comparative example, the treatment performance was good, the DO and exhaust gas oxygen concentration were successfully controlled, and the exhaust gas oxygen concentration was controlled to 46% as set. However, since the oxygen utilization efficiency was set to 85%, the oxygen supply amount was reduced from the first embodiment in which the oxygen utilization efficiency was optimally set from the viewpoint of running cost. The cost was high.

比較例2
実験装置、処理対象水及び実験装置の仕様は、実施例2と同じ条件で実験を行った。
実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :25〜50L/min
設定DO :7.5mg/L
設定排ガスO濃度 :46%
散気量 :56〜77m/h
散気水深 :4m
本比較例では、実施例2の比較例であり、実施例2と同様に脱窒反応によるアルカリ度の上昇で処理性能はさらに良好となり、制御も良好であった。しかし、排ガス酸素濃度を46%に制御し、酸素利用効率を85%に設定したために、ランニングコストの観点から酸素利用効率を最適に設定した実施例2よりも酸素供給量は減少した一方で、散気量が増えて、システム全体の動力コストは高くなった。
Comparative Example 2
The experiment was performed under the same conditions as in Example 2 with respect to the specifications of the experimental apparatus, the water to be treated and the experimental apparatus.
The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High concentration gas supply: 25-50 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: 46%
Aeration amount: 56-77 m 3 / h
Aeration water depth: 4m
This comparative example is a comparative example of Example 2. Like Example 2, the treatment performance was further improved by the increase in alkalinity due to the denitrification reaction, and the control was also good. However, since the exhaust gas oxygen concentration was controlled to 46% and the oxygen utilization efficiency was set to 85%, the oxygen supply amount decreased from Example 2 in which the oxygen utilization efficiency was optimally set from the viewpoint of running cost. The amount of air diffused increased and the power cost of the entire system increased.

比較例3
多孔管の散気水深を5mとした以外は、比較例2と同じ条件で処理実験を行った。
実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :25〜50L/min
設定DO :7.5mg/L
散気量 :40〜55m/h
設定排ガスO濃度 :46%
散気水深 :5m
本比較例は、実施例3の比較例であり、実施例3と同様に処理性能は良好で、DOや排ガス酸素濃度も設定値通りに制御できた。しかし、排ガス酸素濃度を46%に制御し、酸素利用効率を85%に設定したために、ランニングコストの観点から酸素利用効率を最適に設定した実施例3よりも、酸素供給量は減少した一方で、散気量が増えて、システム全体の動力コストは高くなった。
Comparative Example 3
A treatment experiment was performed under the same conditions as in Comparative Example 2, except that the diffused water depth of the perforated tube was 5 m.
The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High concentration gas supply: 25-50 L / min
Setting DO: 7.5 mg / L
Aeration amount: 40 to 55 m 3 / h
Set exhaust gas O 2 concentration: 46%
Aeration water depth: 5m
This comparative example is a comparative example of Example 3. The processing performance was good as in Example 3, and the DO and exhaust gas oxygen concentrations could be controlled as set values. However, since the exhaust gas oxygen concentration was controlled to 46% and the oxygen utilization efficiency was set to 85%, the oxygen supply amount decreased compared to Example 3 in which the oxygen utilization efficiency was optimally set from the viewpoint of running cost. As the amount of air diffused increased, the power cost of the entire system increased.

比較例4
散気装置としてメンブレンパネルを用いた以外は、比較例2と同じ条件で処理実験を行った。
実験条件は次のとおりである。
供給した高濃度酸素ガスのO濃度 :80〜90%
高濃度ガス供給量 :25〜50L/min
設定DO :7.5mg/L
設定排ガスO濃度 :46%
散気装置 :メンブレンパネル
散気水深 :4m
散気量 :14〜19m/h
本比較例は、実施例4の比較例であり、実施例4と同様に処理性能は良好で、DOや排ガス酸素濃度も設定値通りに制御できた。しかし、排ガス酸素濃度を46%に制御し、酸素利用効率を85%に設定したために、ランニングコストの観点から酸素利用効率を最適に設定した実施例4よりも、酸素供給量は減少した一方で、散気量が増えて、システム全体の動力コストは高くなった。
Comparative Example 4
A treatment experiment was performed under the same conditions as in Comparative Example 2, except that a membrane panel was used as the air diffuser.
The experimental conditions are as follows.
O 2 concentration of supplied high concentration oxygen gas: 80 to 90%
High concentration gas supply: 25-50 L / min
Setting DO: 7.5 mg / L
Set exhaust gas O 2 concentration: 46%
Air diffuser: Membrane panel Air diffuser depth: 4m
Aeration amount: 14 to 19 m 3 / h
This comparative example is a comparative example of the example 4. The processing performance was good as in the example 4, and the DO and exhaust gas oxygen concentrations could be controlled as set values. However, since the exhaust gas oxygen concentration was controlled to 46% and the oxygen utilization efficiency was set to 85%, the oxygen supply amount decreased compared to Example 4 in which the oxygen utilization efficiency was optimally set from the viewpoint of running cost. As the amount of air diffused increased, the power cost of the entire system increased.

1:排水、2、2’:硝化槽、3:沈殿池、4:処理水、5:硝化担体、6:返送汚泥、7:余剰汚泥、8、8’:多孔管、9、9’:ブロワ、10:高濃度酸素ガス、11:排ガス、12、12’:硝化槽気相部ガス、13、13’:溶存酸素濃度計、14:酸素濃度計、15、15’:ガス循環ライン、16、16’:制御装置、17:流量調節弁、18:制御装置、19:攪拌機、20:脱窒槽、21:撹拌機、24、24’:スクリーン、25:気相連通部   1: drainage, 2, 2 ′: nitrification tank, 3: sedimentation tank, 4: treated water, 5: nitrification carrier, 6: return sludge, 7: surplus sludge, 8, 8 ′: perforated pipe, 9, 9 ′: Blower, 10: High concentration oxygen gas, 11: Exhaust gas, 12, 12 ′: Nitrogen tank gas phase gas, 13, 13 ′: Dissolved oxygen concentration meter, 14: Oxygen concentration meter, 15, 15 ′: Gas circulation line, 16, 16 ': Control device, 17: Flow control valve, 18: Control device, 19: Stirrer, 20: Denitrification tank, 21: Stirrer, 24, 24': Screen, 25: Gas phase communication part

Claims (5)

硝化菌を付着させた担体を充填した密閉可能な硝化槽の気相中に、高濃度酸素ガスを供給し、前記硝化槽の気相中から排気ガスを排出させると共に、前記硝化槽内の気相中の気体を液相中に散気させて、排水中のアンモニア性窒素及び有機性窒素を生物学的に硝酸性窒素及び亜硝酸性窒素に酸化処理する排水処理方法において、前記硝化槽内の液相中の溶存酸素濃度を検出し、該検出結果に基づいて前記溶存酸素濃度が設定値に維持されるように、前記液相中に散気させる散気風量を制御し、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を測定し、該測定結果に基づいて前記酸素濃度が所定範囲に維持されるように、前記硝化槽の気相部に供給する酸素ガス供給量を制御すると共に、前記維持される酸素濃度の所定範囲を、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を40%以上に保持して、酸素利用効率が85%より低くなるように設定することを特徴とする排水処理方法。   A high-concentration oxygen gas is supplied into the gas phase of a sealable nitrification tank filled with a carrier to which nitrifying bacteria are attached, exhaust gas is discharged from the gas phase of the nitrification tank, and the gas in the nitrification tank is discharged. In the wastewater treatment method, the gas in the phase is diffused into the liquid phase, and the ammonia nitrogen and organic nitrogen in the wastewater are biologically oxidized to nitrate nitrogen and nitrite nitrogen. Detecting the dissolved oxygen concentration in the liquid phase, and controlling the amount of air diffused in the liquid phase so that the dissolved oxygen concentration is maintained at a set value based on the detection result, and the nitrification tank An oxygen gas supply for supplying gas to the gas phase part of the nitrification tank so that the oxygen concentration of the gas in the gas phase part or the exhaust gas is measured and the oxygen concentration is maintained within a predetermined range based on the measurement result Controlling the amount and maintaining a predetermined range of the maintained oxygen concentration, Waste water treatment method which holds the gas or the oxygen concentration of the exhaust gas in the vapor phase in the reduction vessel above 40%, oxygen utilization efficiency is characterized in that set to be lower than 85%. 硝化菌を付着させた担体を充填した密閉可能な硝化槽の気相中に、高濃度酸素ガスを供給し、前記硝化槽の気相中から排気ガスを排出させ、前記硝化槽内の気相中の気体を液相中に散気させると共に、前記硝化槽の前段に設けた脱窒槽に、前記硝化槽の液相及び/又は汚泥を返送して、排水中のアンモニア性窒素及び有機性窒素を生物学的に硝酸性窒素及び亜硝酸性窒素に酸化処理して、脱窒処理する排水処理方法において、前記硝化槽内の液相中の溶存酸素濃度を検出し、該検出結果に基づいて前記溶存酸素濃度が設定値に維持されるように、前記液相中に散気させる散気風量を制御し、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を測定し、該測定結果に基づいて前記酸素濃度が所定範囲に維持されるように、前記硝化槽の気相部に供給する酸素ガス供給量を制御すると共に、前記維持される酸素濃度の所定範囲を、前記硝化槽内の気相部の気体又は前記排気ガスの酸素濃度を40%以上に保持して、酸素利用効率が85%より低くなるように設定することを特徴とする排水処理方法。   A high-concentration oxygen gas is supplied into the gas phase of a sealable nitrification tank filled with a carrier to which nitrifying bacteria are attached, and exhaust gas is exhausted from the gas phase of the nitrification tank. The gas inside is diffused into the liquid phase, and the liquid phase and / or sludge of the nitrification tank is returned to the denitrification tank provided in the preceding stage of the nitrification tank, so that ammonia nitrogen and organic nitrogen in the waste water In a wastewater treatment method of biologically oxidizing to nitrate nitrogen and nitrite nitrogen and denitrifying, the dissolved oxygen concentration in the liquid phase in the nitrification tank is detected, and based on the detection result Control the amount of diffused air to be diffused into the liquid phase so that the dissolved oxygen concentration is maintained at a set value, and measure the oxygen concentration of the gas phase portion or the exhaust gas in the nitrification tank, Based on the measurement result, the nitrification tank is maintained so that the oxygen concentration is maintained within a predetermined range. The oxygen gas supply amount supplied to the phase part is controlled, and the oxygen concentration to be maintained is maintained within a predetermined range of oxygen concentration of the gas phase part in the nitrification tank or the exhaust gas at 40% or more. The wastewater treatment method is characterized in that the oxygen utilization efficiency is set to be lower than 85%. 前記硝化槽が、隔壁によって仕切られた複数の槽からなり、該複数の槽の槽毎に、気相中の気体を液相中に散気させると共に、前記複数の硝化槽内の液相中の溶存酸素濃度を槽毎に検出し、該検出結果に基づいて、前記溶存酸素濃度が設定値に維持されるように、それぞれの槽の前記液相中に散気させる散気風量を制御することを特徴とする請求項1又は2に記載の排水処理方法。   The nitrification tank is composed of a plurality of tanks partitioned by a partition wall, and for each tank of the plurality of tanks, gas in the gas phase is diffused into the liquid phase, and in the liquid phase in the plurality of nitrification tanks The dissolved oxygen concentration of each tank is detected for each tank, and based on the detection result, the amount of diffused air to be diffused in the liquid phase of each tank is controlled so that the dissolved oxygen concentration is maintained at a set value. The waste water treatment method according to claim 1 or 2. 前記硝化槽が、隔壁によって仕切られた複数の槽からなり、前記酸素濃度が所定範囲に維持される気相部が、最終槽の硝化槽の気相部であることを特徴とする請求項1、2又は3に記載の排水処理方法。   2. The nitrification tank comprises a plurality of tanks partitioned by a partition wall, and the gas phase part in which the oxygen concentration is maintained within a predetermined range is a gas phase part of a nitrification tank of a final tank. The waste water treatment method according to 2 or 3. 前記硝化槽内の気相部の気体又は前記排ガス酸素濃度の所定範囲は、硝化槽に流入する流入排水に含まれている酸化処理が必要な汚濁物質量の変動に応じて、変動させることを特徴とする請求項1〜4のいずれか1項に記載の排水処理方法。   The predetermined range of the gas in the gas phase in the nitrification tank or the oxygen concentration of the exhaust gas may be changed in accordance with the fluctuation of the amount of pollutants that need to be oxidized in the inflow wastewater flowing into the nitrification tank. The wastewater treatment method according to any one of claims 1 to 4, wherein
JP2012075326A 2012-03-29 2012-03-29 Wastewater treatment method Active JP5883698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075326A JP5883698B2 (en) 2012-03-29 2012-03-29 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075326A JP5883698B2 (en) 2012-03-29 2012-03-29 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2013202544A true JP2013202544A (en) 2013-10-07
JP5883698B2 JP5883698B2 (en) 2016-03-15

Family

ID=49522248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075326A Active JP5883698B2 (en) 2012-03-29 2012-03-29 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP5883698B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105565511A (en) * 2016-02-03 2016-05-11 浙江裕腾百诺环保科技有限公司 Black and odorous river channel repair technology for reducing odor dissipation and gas distribution device
CN106916873A (en) * 2017-03-14 2017-07-04 无锡市中渔健宝生物有限公司 A kind of method for quick of nitrobacteria nitrification effect
JP2017189769A (en) * 2016-04-12 2017-10-19 株式会社Ihi Wastewater treatment apparatus
JP2018187587A (en) * 2017-05-10 2018-11-29 株式会社東芝 Aeration air volume control apparatus and aeration air volume control method
WO2019163429A1 (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Operating method for aerobic organism treatment device
WO2019163424A1 (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Aerobic biological treatment device and method for operating same
EP3597608A4 (en) * 2017-03-16 2020-12-02 Kurita Water Industries Ltd. Aerobe treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110193A (en) * 1997-06-23 1999-01-19 Showa Eng Kk Method and apparatus for shared carrier nitrification denitrification reaction
JP2004298674A (en) * 2003-03-28 2004-10-28 Sumitomo Heavy Ind Ltd Waste water treatment apparatus and waste water treatment method
JP2011194330A (en) * 2010-03-19 2011-10-06 Swing Corp Apparatus and method for treating wastewater
JP2011212670A (en) * 2010-03-19 2011-10-27 Swing Corp Wastewater treatment apparatus and wastewater treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110193A (en) * 1997-06-23 1999-01-19 Showa Eng Kk Method and apparatus for shared carrier nitrification denitrification reaction
JP2004298674A (en) * 2003-03-28 2004-10-28 Sumitomo Heavy Ind Ltd Waste water treatment apparatus and waste water treatment method
JP2011194330A (en) * 2010-03-19 2011-10-06 Swing Corp Apparatus and method for treating wastewater
JP2011212670A (en) * 2010-03-19 2011-10-27 Swing Corp Wastewater treatment apparatus and wastewater treatment method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105565511A (en) * 2016-02-03 2016-05-11 浙江裕腾百诺环保科技有限公司 Black and odorous river channel repair technology for reducing odor dissipation and gas distribution device
CN105565511B (en) * 2016-02-03 2019-01-15 浙江裕腾百诺环保科技股份有限公司 A kind of black-odor riverway renovation technique and distribution device reducing foul smell loss
JP2017189769A (en) * 2016-04-12 2017-10-19 株式会社Ihi Wastewater treatment apparatus
CN106916873A (en) * 2017-03-14 2017-07-04 无锡市中渔健宝生物有限公司 A kind of method for quick of nitrobacteria nitrification effect
EP3597608A4 (en) * 2017-03-16 2020-12-02 Kurita Water Industries Ltd. Aerobe treatment method
JP2018187587A (en) * 2017-05-10 2018-11-29 株式会社東芝 Aeration air volume control apparatus and aeration air volume control method
WO2019163429A1 (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Operating method for aerobic organism treatment device
WO2019163424A1 (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Aerobic biological treatment device and method for operating same
JP2019141781A (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Aerobic biological treatment apparatus and operation method of the same
JP2019141786A (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Operation method of aerobic biological treatment apparatus

Also Published As

Publication number Publication date
JP5883698B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5698025B2 (en) Waste water treatment apparatus and waste water treatment method
JP5883698B2 (en) Wastewater treatment method
JP5878231B2 (en) Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
JP6022536B2 (en) Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
NZ585366A (en) Wastewater treatment process and plant comprising controlling the dissolved oxygen concentration
JP2006281003A (en) Biological waste water treatment method
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP2017144402A (en) Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
JP6422639B2 (en) Waste water treatment device, waste water treatment method, waste water treatment system, control device, and program
JP5189688B1 (en) Wastewater treatment system and treatment method
JP2009131773A (en) Waste water treatment method
JP5300898B2 (en) Organic wastewater treatment equipment
KR100913726B1 (en) Method of controlling dissolved oxygen level in waste water treatment system
KR100913727B1 (en) Waste water treatment system maintaining do level by use of pure oxygen gas and treatment method employing the same
JP5883697B2 (en) Waste water treatment apparatus and waste water treatment method
JP2015054271A (en) Effluent treatment apparatus and effluent treatment method
KR100436960B1 (en) The Biological Nutrient Removal System Using The Porous Media
WO2020152680A1 (en) Methods for treating waste activated sludge with a membrane-aerated biofilm reactor
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
CN111825213A (en) One-tank type mainstream anaerobic ammonia oxidation fluidized bed membrane bioreactor and sewage treatment method thereof
JP6396238B2 (en) Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program
JP2019171235A (en) Wastewater treatment apparatus
JP6022537B2 (en) Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
CN207483552U (en) A kind of underground integrated domestic sewage treatment device
JP2017205734A (en) Waste water treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5883698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250