JP2022153861A - Biological nitrification method and biological nitrification system - Google Patents

Biological nitrification method and biological nitrification system Download PDF

Info

Publication number
JP2022153861A
JP2022153861A JP2021056603A JP2021056603A JP2022153861A JP 2022153861 A JP2022153861 A JP 2022153861A JP 2021056603 A JP2021056603 A JP 2021056603A JP 2021056603 A JP2021056603 A JP 2021056603A JP 2022153861 A JP2022153861 A JP 2022153861A
Authority
JP
Japan
Prior art keywords
water
nitrification
biological
treated
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021056603A
Other languages
Japanese (ja)
Inventor
丈夫 山東
Takeo Santo
博也 小寺
Hiroya Kodera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Mitsubishi Chemical Aqua Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Aqua Solutions Co Ltd filed Critical Mitsubishi Chemical Aqua Solutions Co Ltd
Priority to JP2021056603A priority Critical patent/JP2022153861A/en
Publication of JP2022153861A publication Critical patent/JP2022153861A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

To provide a biological nitrification method and a biological nitrification system capable of treating treated water containing high concentrations of ammonia nitrogen at a high nitrification rate, and downsizing a treatment system with high safety and cost effective.SOLUTION: When making treated water pass through a nitrification tank 5 loaded with a plurality of bio-retainers 6 having an average density of 1.0 to 1.4 g/cm3, the linear velocity ratio (LVair/LVwaterconduction) between the linear velocity of treated water LVwaterconduction [m/h] and the linear velocity of air in the stored water in the nitrification tank 5 LVair [m/h] is 5.0 or less, and the biological nitrification method is characterized in that a filling ratio calculated by the following equation (1) is 25 vol.% or more. Filling rate (volume%)=((total volume of the plurality of bio-retainers 6)/(sum of the total volume of the plurality of bio-retainers 6 and the volume of stored water in the nitrification tank 5))×100 ... Formula (1).SELECTED DRAWING: Figure 1

Description

本発明は、生物硝化方法および生物硝化システムに関する。 The present invention relates to a bio-nitrification method and a bio-nitrification system.

被処理水のアンモニア性窒素を微生物によって硝酸に変換する生物硝化反応が知られている。アンモニア性窒素は、例えば地下水、井戸水、湖沼水、河川水、工業排水等に含まれることがある。
低濃度のアンモニア性窒素を含む被処理水の一般的な生物硝化方法として、硝化菌等の微生物が付着したろ材を充填して形成した固定床に、被処理水を押出流れとして通水する固定床押出流れ方式がある(例えば、特許文献1、非特許文献1、2)。
A biological nitrification reaction is known in which ammoniacal nitrogen in water to be treated is converted to nitric acid by microorganisms. Ammonia nitrogen may be contained in, for example, groundwater, well water, lake water, river water, industrial wastewater, and the like.
As a general biological nitrification method for water to be treated containing low-concentration ammonia nitrogen, the water to be treated is forced through a fixed bed formed by filling a filter medium to which microbes such as nitrifying bacteria are adhered. There is a bed extrusion flow system (for example, Patent Document 1, Non-Patent Documents 1 and 2).

例えば、図5に示す固定床押出流れ方式の生物硝化システム100Aにおいては、アンモニア性窒素を含む被処理水が供給管104Aから硝化槽105A内に貯留される。硝化槽105A内には、石、セラミックス、合成樹脂等のろ材が充填されたろ層106Aが形成されている。被処理水がろ層106Aに通水されると、ろ材の表面に付着した硝化菌等の微生物によってアンモニア性窒素が硝酸性窒素に変換されて処理される。 For example, in the fixed-bed push-flow biological nitrification system 100A shown in FIG. 5, water to be treated containing ammoniacal nitrogen is stored in the nitrification tank 105A from the supply pipe 104A. In the nitrification tank 105A, a filter layer 106A filled with filter media such as stones, ceramics, synthetic resins, etc. is formed. When the water to be treated is passed through the filter layer 106A, ammonia nitrogen is converted to nitrate nitrogen by microorganisms such as nitrifying bacteria adhering to the surface of the filter medium.

固定床押出流れ方式の生物硝化システム100Aにおいては、被処理水が押出流れとなるようにろ層106Aに通水される。すなわち、被処理水は硝化槽105A内の流れ方向で混合および拡散がなく、かつ、流れ方向と直角方向における速度が均一となるように、ろ層106Aに通水される。その後、生物硝化処理後の処理水が流出管110Aから流出する。
固定床押出流れ方式によれば、低濃度のアンモニア性窒素を含む被処理水の硝化反応を均一に行うことができる。
In the biological nitrification system 100A of the fixed bed extrusion flow type, the water to be treated is passed through the filter layer 106A so as to form an extrusion flow. That is, the water to be treated is passed through the filter layer 106A so that there is no mixing or diffusion in the flow direction in the nitrification tank 105A and the velocity in the direction perpendicular to the flow direction is uniform. After that, the treated water after the biological nitrification treatment flows out from the outflow pipe 110A.
According to the fixed-bed extrusion flow system, the nitrification reaction of the water to be treated containing low-concentration ammoniacal nitrogen can be carried out uniformly.

一方で、高濃度のアンモニア性窒素を含む被処理水の生物硝化方法として、微生物を保持した担体を硝化槽内で循環流動させながら被処理水を通水する流動床混合流れ方式がある(例えば、特許文献2、3)。
例えば、図6に示す流動床混合流れ方式の生物硝化システム100Bにおいては、硝化槽105B内の貯留水に散気部107から空気を供給しながら、被処理水を硝化槽105Bに供給する。被処理水は硝化槽105B内に流入すると、貯留水と瞬間的に混合されて貯留水全体の濃度が一様となる。
流動床混合流れ方式においては、硝化菌等を担持した生物保持体106Bが硝化槽105B内の貯留水中で流動している。この生物保持体106Bと被処理水が接触することで、アンモニア性窒素が硝酸性窒素に変換されて処理される。
流動床混合流れ方式によれば、高濃度のアンモニア性窒素を含む被処理水を処理できる。
On the other hand, as a method for biological nitrification of water to be treated containing a high concentration of ammonia nitrogen, there is a fluidized bed mixed flow method in which the water to be treated is passed while circulating and flowing carriers holding microorganisms in a nitrification tank (for example, , Patent Documents 2 and 3).
For example, in the fluidized bed mixed flow type biological nitrification system 100B shown in FIG. 6, the water to be treated is supplied to the nitrification tank 105B while air is supplied from the air diffuser 107 to the water stored in the nitrification tank 105B. When the water to be treated flows into the nitrification tank 105B, it is instantly mixed with the stored water, and the concentration of the entire stored water becomes uniform.
In the fluidized bed mixed flow system, the biological support 106B carrying nitrifying bacteria etc. is fluidized in the retained water in the nitrification tank 105B. When the biological support 106B and the water to be treated come into contact with each other, ammonia nitrogen is converted to nitrate nitrogen and treated.
According to the fluidized bed mixed flow system, water to be treated containing a high concentration of ammoniacal nitrogen can be treated.

特開2005-288417号公報JP 2005-288417 A 特開2017-202473号公報JP 2017-202473 A 特開2011-212670号公報Japanese Unexamined Patent Application Publication No. 2011-212670

鉄バクテリアを用いた地下水の浄水処理,神鋼パンテック技報,Vol.45 No.2,p.16-24(2002)Groundwater Purification Treatment Using Iron Bacteria, Shinko Pantech Technical Report, Vol. 45 No. 2, p. 16-24 (2002) ユーザーのための凝集・沈降/浮上分離・粒状層ろ過事例集,5.3 地下水を原水とする超高速無薬注生物処理装置 日本液体清澄化技術工業会,p.64-67(2019)Collection of flocculation/sedimentation/flotation separation/granular layer filtration case studies for users, 5.3 Ultra-high-speed chemical-free biological treatment equipment using groundwater as raw water, Japan Liquid Clarification Technology Industry Association, p. 64-67 (2019)

しかし、特許文献1や非特許文献1、2の方法のような一般的な固定床押出流れ方式の処理においては、硝化槽当たりの硝化速度が0.1kgN/m/d程度と低い。また、高濃度のアンモニア性窒素を含む被処理水を固定床押出流れ方式の処理に適用すると、処理システムが大型化するという問題もある。 However, in general fixed-bed extrusion flow processes such as the methods of Patent Document 1 and Non-Patent Documents 1 and 2, the nitrification rate per nitrification tank is as low as about 0.1 kgN/m 3 /d. In addition, when the water to be treated containing a high concentration of ammoniacal nitrogen is applied to the treatment of the fixed bed extrusion flow system, there is also the problem that the treatment system becomes large-sized.

特許文献2の方法においては、有効水量に対する硝化菌担持担体のかさ体積が小さい(実施例1では、30体積%であり、これは、後述の本発明における充填率に換算すると20体積%である)。しかし、本発明者の検討によれば体積比がこれ以上高くなると、硝化菌担持担体の流動性が低下し、デッドスペースや短絡流が発生する問題があった。これにより、被処理水に対して硝化反応を均一に行うことができなくなるおそれがあった。
また、硝化速度は硝化槽における硝化菌担持担体の体積比に依存するため、特許文献2の方法では硝化菌担持担体の体積比をこれ以上高めることができず、硝化速度のさらなる向上を図ることができない。
加えて、特許文献2の方法では、1つの硝化槽当たりの硝化速度が低く、高濃度のアンモニア性窒素を含む被処理水を処理するには、硝化槽の数をさらに増やす必要が生じ、処理システムが大型化するという問題もある。
In the method of Patent Document 2, the bulk volume of the nitrifying bacteria-supporting carrier is small relative to the amount of effective water (30% by volume in Example 1, which is 20% by volume when converted to the filling rate in the present invention described later. ). However, according to the studies of the present inventors, if the volume ratio is higher than this, the fluidity of the nitrifying bacteria-carrying carrier is lowered, resulting in the problem of dead space and short-circuit flow. As a result, there is a possibility that the nitrification reaction cannot be uniformly performed on the water to be treated.
In addition, since the nitrification rate depends on the volume ratio of the nitrifying bacteria-supporting carrier in the nitrification tank, the method of Patent Document 2 cannot further increase the volume ratio of the nitrifying bacteria-supporting carrier, and further improvement of the nitrification rate is desired. can't
In addition, in the method of Patent Document 2, the nitrification rate per one nitrification tank is low, and in order to treat the water to be treated containing a high concentration of ammoniacal nitrogen, it becomes necessary to further increase the number of nitrification tanks. Another problem is that the system becomes large.

特許文献3においては、硝化槽の気相部に供給する高濃度酸素ガスのO濃度を80~90%とし、高負荷条件下での硝化処理を行っている。しかし、高濃度酸素ガスのO濃度を80~90%として硝化槽の気相部に供給することは、コスト面で不利であり、安全性の観点で問題があった。 In Patent Document 3, the concentration of O 2 in the high-concentration oxygen gas supplied to the gas phase of the nitrification tank is 80-90%, and the nitrification process is performed under high load conditions. However, supplying high-concentration oxygen gas with an O 2 concentration of 80 to 90% to the gas phase portion of the nitrification tank is disadvantageous in terms of cost and poses a problem in terms of safety.

本発明は、高濃度のアンモニア性窒素を含む被処理水を高い硝化速度で処理でき、処理システムの小型化が可能であり、安全性が高く、コスト面でも有利な生物硝化方法および生物硝化システムを提供する。 INDUSTRIAL APPLICABILITY The present invention is capable of treating water to be treated containing a high concentration of ammoniacal nitrogen at a high rate of nitrification, enabling downsizing of the treatment system, high safety, and a biological nitrification system that is advantageous in terms of cost. I will provide a.

本発明者らは、鋭意検討した結果、(i)生物保持体の平均密度、(ii)生物保持体の特定の充填率および(iii)被処理水の通水線速度に対する空気の供給線速度の比率を、所定の範囲内に維持することで、前記課題を解決し得ることを見出した。この特定の条件下で硝化反応を行うと高い硝化速度を実現できることを本発明者は見出し、本発明を完成させた。 As a result of extensive studies, the present inventors found that (i) the average density of the biological support, (ii) the specific filling rate of the biological support, and (iii) the air supply linear velocity with respect to the water flow linear velocity of the water to be treated The inventors have found that the above problem can be solved by maintaining the ratio of , within a predetermined range. The present inventors have found that a high nitrification rate can be achieved by carrying out the nitrification reaction under these specific conditions, and have completed the present invention.

本発明は、下記の態様を有する。
[1] 被処理水のアンモニア性窒素を処理する生物硝化方法であって;平均密度が1.0~1.4g/cmである複数の生物保持体が装填された硝化槽に前記被処理水を通水する際;前記被処理水の線速度LV通水[m/h]と前記硝化槽内の貯留水中の空気の線速度LV空気[m/h]との線速度比(LV空気/LV通水)を5.0以下とし、かつ、下式(1)で算出される充填率を25体積%以上とすることを特徴とする、生物硝化方法。
充填率(体積%)=((複数の生物保持体の総体積)/(複数の生物保持体の総体積と硝化槽内の貯留水の体積との和))×100 ・・・式(1)
[2] 前記生物保持体が、多孔質の担体と、前記担体に保持された硝化菌とを有する、[1]の生物硝化方法。
[3] さらに、前記線速度LV空気を30m/h以下とする、[1]または[2]の生物硝化方法。
[4] 前記被処理水の鉄の含有量が0.5mg/L超である場合、前記線速度比(LV空気/LV通水)を0.20~5.0とする、[1]~[3]のいずれかの生物硝化方法。
[5] 平均密度が1.0~1.4g/cmである複数の生物保持体が装填された硝化槽と;前記硝化槽に被処理水を供給する被処理水供給管と;前記被処理水供給管に設けられ、前記硝化槽に供給される前記被処理水の流量を調整する通水量調整手段と;前記硝化槽内の貯留水に空気を供給する散気装置と;少なくとも前記通水量調整手段および前記散気装置と電気的に接続された制御装置と;を備え;前記制御装置は、前記被処理水の通水時の線速度LV通水[m/h]と前記硝化槽内の貯留水中の空気の線速度LV空気[m/h]との線速度比(LV空気/LV通水)を5.0以下とし、かつ、下式(1)で算出される充填率を25体積%以上とする制御部を有する、生物硝化システム。
充填率(体積%)=((複数の生物保持体の総体積)/(複数の生物保持体の総体積と硝化槽内の貯留水の体積との和))×100 ・・・式(1)
[6] 前記生物保持体が、多孔質の担体と、前記担体に保持された硝化菌とを有する、[5]の生物硝化システム。
[7] 前記制御部は、前記線速度LV空気を30m/h以下とする、[5]または[6]の生物硝化システム。
[8] 前記制御部は、前記被処理水の鉄の含有量が0.5mg/L超である場合、前記線速度比(LV空気/LV通水)を0.20~5.0とする、[5]~[7]のいずれかの生物硝化システム。
The present invention has the following aspects.
[ 1 ] A biological nitrification method for treating ammonia nitrogen in water to be treated; When passing water : Linear velocity ratio (LV air /LV water flow ) is 5.0 or less, and the filling rate calculated by the following formula (1) is 25% by volume or more.
Filling rate (% by volume)=((total volume of a plurality of biological supports)/(total volume of a plurality of biological supports and the volume of water stored in the nitrification tank))×100 Equation (1 )
[2] The biological nitrification method according to [1], wherein the biological support comprises a porous carrier and nitrifying bacteria retained on the carrier.
[3] The biological nitrification method of [1] or [2], wherein the linear velocity LV air is 30 m/h or less.
[4] When the iron content of the water to be treated is more than 0.5 mg/L, the linear velocity ratio (LV air /LV water flow ) is set to 0.20 to 5.0, [1] to The biological nitrification method according to any one of [3].
[5] a nitrification tank loaded with a plurality of biological supports having an average density of 1.0 to 1.4 g/cm 3 ; a water supply pipe to supply water to be treated to the nitrification tank; a water flow adjusting means provided in a treated water supply pipe for adjusting the flow rate of the water to be treated supplied to the nitrification tank; an air diffuser for supplying air to the water stored in the nitrification tank; a control device electrically connected to the water volume adjusting means and the air diffuser; The linear velocity ratio (LV air / LV water flow ) to the linear velocity LV air [m / h] of the air in the stored water is set to 5.0 or less, and the filling rate calculated by the following formula (1) A bio-nitrification system having a control unit of 25% by volume or more.
Filling rate (% by volume)=((total volume of a plurality of biological supports)/(total volume of a plurality of biological supports and the volume of water stored in the nitrification tank))×100 Equation (1 )
[6] The biological nitrification system of [5], wherein the biological support comprises a porous carrier and nitrifying bacteria retained on the carrier.
[7] The biological nitrification system of [5] or [6], wherein the control unit sets the linear velocity LV air to 30 m/h or less.
[8] The control unit sets the linear velocity ratio (LV air /LV water flow ) to 0.20 to 5.0 when the iron content of the water to be treated exceeds 0.5 mg/L. , the biological nitrification system according to any one of [5] to [7].

本発明によれば、高濃度のアンモニア性窒素を含む被処理水を高い硝化速度で処理でき、処理システムの小型化が可能であり、安全性が高く、コスト面でも有利な生物硝化方法および生物硝化システムが提供される。 EFFECTS OF THE INVENTION According to the present invention, water to be treated containing a high concentration of ammoniacal nitrogen can be treated at a high nitrification rate, the treatment system can be downsized, and the biological nitrification method and the biological nitrification method are highly safe and advantageous in terms of cost. A nitrification system is provided.

一実施形態に係る生物硝化システムの一例を示す概略構成図である。1 is a schematic configuration diagram showing an example of a biological nitrification system according to one embodiment; FIG. 複数の生物保持体の平均密度の測定方法を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a method for measuring the average density of a plurality of biological supports; 複数の生物保持体の平均密度の測定方法を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a method for measuring the average density of a plurality of biological supports; 一実施形態に係る生物硝化システムの他の一例を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing another example of the biological nitrification system according to one embodiment; 従来の生物硝化システムの一例を示す概略構成図である。1 is a schematic configuration diagram showing an example of a conventional biological nitrification system; FIG. 従来の生物硝化システムの一例を示す概略構成図である。1 is a schematic configuration diagram showing an example of a conventional biological nitrification system; FIG.

本明細書における以下の用語の意味は以下の通りである。
「アンモニア性窒素」とは、水中にアンモニウム塩として含まれている窒素をいう。アンモニア態窒素ともいう。
数値範囲を示す「~」は、その前後に記載された数値を下限値および上限値として含むことを意味する。
The following terms used herein have the following meanings.
"Ammoniacal nitrogen" refers to nitrogen contained in water as an ammonium salt. It is also called ammonia nitrogen.
"-" indicating a numerical range means that the numerical values before and after it are included as lower and upper limits.

<被処理水>
一実施形態において、被処理水はアンモニア性窒素を少なくとも含むものであれば、特に限定されない。例えば、地下水、井戸水、湖沼水、河川水、工場用水、下水、排水等が挙げられる。ただし、被処理水はこれらの例示に限定されない。
<Water to be treated>
In one embodiment, the water to be treated is not particularly limited as long as it contains at least ammonia nitrogen. Examples include ground water, well water, lake water, river water, factory water, sewage, and waste water. However, the water to be treated is not limited to these examples.

被処理水は、アンモニア性窒素以外に、炭酸水素イオン、硝酸イオン、硫酸イオン、塩化物イオン等の陰イオン;鉄イオン、マンガンイオン、カルシウムイオン、マグネシウムイオン等の陽イオン;有機物;細菌等をさらに含むことがある。ただし、被処理水の成分はこれらに限定されない。
被処理水の有機物の主成分として、フミン酸、フルボ酸等が挙げられる。ただし、被処理水は、これら例示した成分以外の有機物を含むことがある。
In addition to ammonia nitrogen, the water to be treated contains anions such as bicarbonate ions, nitrate ions, sulfate ions, and chloride ions; cations such as iron ions, manganese ions, calcium ions, and magnesium ions; organic matter; bacteria, etc. It may contain more. However, the components of the water to be treated are not limited to these.
Main components of organic matter in the water to be treated include humic acid and fulvic acid. However, the water to be treated may contain organic matter other than these exemplified components.

被処理水のアンモニア性窒素の含有量は特に限定されないが、例えば、0.1~15mg/Lの範囲内である。アンモニア性窒素の含有量が0.5mg/L以上であり、好ましくは1mg/L以上であると、高い硝化速度を実現できる生物硝化方法および硝化システムを適用するメリットがさらに大きくなる。さらに高濃度のアンモニア性窒素を含む場合(例えば、アンモニア性窒素の含有量が15~50mg/Lである場合)は、硝化槽を多段にすることが好ましい。
被処理水の鉄の含有量は特に限定されないが、例えば、0~20mg/Lの範囲内である。一実施形態に係る生物硝化方法および硝化システムによれば、被処理水に鉄が含まれる場合であっても、高い硝化速度を実現できる。
The content of ammonia nitrogen in the water to be treated is not particularly limited, but is, for example, within the range of 0.1 to 15 mg/L. When the content of ammoniacal nitrogen is 0.5 mg/L or more, preferably 1 mg/L or more, the advantage of applying a biological nitrification method and a nitrification system capable of realizing a high nitrification rate is further increased. In the case of containing a higher concentration of ammonium nitrogen (for example, when the content of ammonium nitrogen is 15 to 50 mg/L), it is preferable to use a multistage nitrification tank.
The iron content of the water to be treated is not particularly limited, but is, for example, within the range of 0 to 20 mg/L. According to the biological nitrification method and nitrification system according to one embodiment, a high nitrification rate can be achieved even when the water to be treated contains iron.

<生物硝化システム>
図1は、一実施形態に係る生物硝化システムの一例を示す概略構成図である。
生物硝化システム1Aは、井戸2の井戸水(被処理水の一例)を汲み上げるための揚水ポンプ3と;第1の端部が揚水ポンプ3と接続され、第2の端部が硝化槽5の底部と接続された被処理水供給管4Aと;被処理水供給管4Aの途中に設けられ、硝化槽5に供給される被処理水の流量を調整する通水量調整手段(図示略)と;硝化槽5内で空気を散気する散気装置の散気部7、空気供給管8およびブロア9と;通水量調整手段および散気装置と電気的に接続された制御装置(図示略)と;硝化槽5の頂部付近の壁面と接続された処理水流出管10Aと;を備える。
<Biological nitrification system>
FIG. 1 is a schematic configuration diagram showing an example of a biological nitrification system according to one embodiment.
The biological nitrification system 1A includes a pump 3 for pumping well water (an example of water to be treated) from a well 2; a first end connected to the pump 3; water flow rate adjusting means (not shown) provided in the middle of the water supply pipe 4A to adjust the flow rate of the water to be treated supplied to the nitrification tank 5; nitrification an air diffuser 7, an air supply pipe 8 and a blower 9 of an air diffuser for diffusing air in the tank 5; a control device (not shown) electrically connected to the water flow adjusting means and the air diffuser; a treated water outlet pipe 10A connected to the wall surface near the top of the nitrification tank 5;

被処理水供給管4Aは、井戸2の井戸水を被処理水として硝化槽5内に供給する。被処理水供給管4Aの途中には、硝化槽5内に供給される被処理水の水量を測定する通水量測定手段(図示略)と;通水量調整手段が設けられている。
通水量調整手段としては、例えば、流量調整弁が挙げられる。
通水量測定手段としては、例えば、ローターメータ、電磁流量計等が挙げられる。
被処理水供給管4Aには、硝化槽5に供給される被処理水の鉄の含有量およびアンモニア性窒素を測定する水質計が設けられてもよい。
The to-be-treated water supply pipe 4A supplies the well water of the well 2 into the nitrification tank 5 as the to-be-treated water. In the middle of the water-to-be-treated supply pipe 4A, a water-flow measuring means (not shown) for measuring the amount of the water to be treated supplied into the nitrification tank 5; and a water-flow adjusting means are provided.
For example, a flow control valve can be used as the water flow control means.
Examples of water flow measuring means include a rotameter, an electromagnetic flowmeter, and the like.
The to-be-treated water supply pipe 4A may be provided with a water quality meter for measuring the iron content and ammonia nitrogen of the to-be-treated water supplied to the nitrification tank 5 .

硝化槽5は、生物保持体6を用いた生物硝化反応によって被処理水のアンモニア性窒素を処理するためのものである。硝化槽5には複数の生物保持体6が装填されている。
硝化槽5においては、複数の生物保持体6が装填されて形成された生物保持体領域11が形成されている。生物保持体領域11では、被処理水の通水時に揺動可能となるように各生物保持体6が装填されている。
硝化槽5は、生物保持体領域11における各生物保持体6と被処理水とを接触させ、被処理水のアンモニア性窒素を酸化して処理水とする。生物保持体6に通水される被処理水の線速度がLV通水[m/h]である。
The nitrification tank 5 is for treating ammonia nitrogen in the water to be treated by a biological nitrification reaction using the biological support 6 . A plurality of biological supports 6 are loaded in the nitrification tank 5 .
In the nitrification tank 5, a biosupport region 11 is formed by loading a plurality of biosupports 6 therein. In the biological support area 11, each biological support 6 is loaded so as to be swingable when water to be treated flows.
The nitrification tank 5 brings the water to be treated into contact with each biological support 6 in the biological support region 11 to oxidize the ammonia nitrogen in the water to be treated water. The linear velocity of the water to be treated flowing through the biological support 6 is LV water flow [m/h].

生物保持体領域11は、複数の生物保持体6で硝化槽5の底部を覆うようにし、かつ、複数の生物保持体6を硝化槽5の高さ方向で多段に積み重ねて形成されていてもよい。 The biological support area 11 may be formed by covering the bottom of the nitrification tank 5 with a plurality of biological supports 6 and stacking the plurality of biological supports 6 in the height direction of the nitrification tank 5 in multiple stages. good.

硝化槽5の容積は特に限定されない。例えば、0.1~100mの範囲内とすることができる。また、硝化槽5の材質も特に限定されない。例えば、アクリル樹脂、繊維強化樹脂等が挙げられる。硝化槽5内の生物保持体6を観察しやすい点では、透明の材質が好ましく、アクリル樹脂がより好ましい。 The volume of the nitrification tank 5 is not particularly limited. For example, it can be in the range of 0.1 to 100 m 3 . Also, the material of the nitrification tank 5 is not particularly limited. For example, acrylic resins, fiber-reinforced resins, and the like can be used. A transparent material is preferable, and an acrylic resin is more preferable in terms of easy observation of the biological support 6 in the nitrification tank 5 .

生物保持体6は、担体が硝化菌を保持したものである。すなわち、生物保持体6は、担体と、担体に保持された硝化菌とを有する。担体の形状は特に限定されないが、例えば、立方体、直方体、球体、円錐状、多角錐状、筒体、糸状体等が挙げられる。ただし、通水時に揺動させることや硝化槽5への装填の容易さを考慮すると、直方体、立方体、球体が好ましい。
また、複数の生物保持体6において、各担体の形状はすべて互いに同一である必要はなく、互いに異なる形状であってもよい。揺動状態を維持しやすく、また、均一に硝化反応を行いやすい点では、各担体は互いに同一の形状が好ましいが、必ずしもこれに限定されるものではない。
The biological support 6 is a carrier holding nitrifying bacteria. That is, the biological support 6 has a carrier and nitrifying bacteria held by the carrier. The shape of the carrier is not particularly limited, but examples thereof include cubes, rectangular parallelepipeds, spheres, cones, polygonal pyramids, cylinders, filaments and the like. However, a rectangular parallelepiped, a cube, or a sphere is preferable in consideration of the ease of loading into the nitrification tank 5 and the ability to oscillate when water is passed through.
Further, in a plurality of biological support bodies 6, the shape of each carrier does not have to be the same as each other, and may be different from each other. Although each carrier preferably has the same shape from the viewpoint of easy maintenance of the rocking state and easy uniform nitrification reaction, it is not necessarily limited to this.

担体としては、担体の表面および内部に硝化菌を担持できる、すなわち多くの硝化菌を担持でき、硝化速度がさらに向上する点から、多孔質の担体が好ましい。担体が多孔質の場合は、担体の内部に硝化菌が担持されていてもよい。
多孔質の担体の孔径は、0.01~3mm程度が好ましく、0.05~1mm程度がより好ましく、0.1~0.5mm程度がさらに好ましい。
As the carrier, a porous carrier is preferable because it can carry nitrifying bacteria on the surface and inside of the carrier, that is, it can carry a large amount of nitrifying bacteria, further improving the rate of nitrification. When the carrier is porous, nitrifying bacteria may be carried inside the carrier.
The pore size of the porous carrier is preferably about 0.01 to 3 mm, more preferably about 0.05 to 1 mm, even more preferably about 0.1 to 0.5 mm.

特に、硝化菌の担持を良好に維持でき、かつポンプや配管の損傷を最小限に抑制できる点から、スポンジ担体が好ましい。
スポンジ担体の材料としては、ポリビニールアルコール、ポリエチレングリコール、ポリウレタン等が挙げられる。
In particular, a sponge carrier is preferable because it can maintain good support of nitrifying bacteria and minimize damage to pumps and pipes.
Materials for the sponge carrier include polyvinyl alcohol, polyethylene glycol, polyurethane and the like.

スポンジ担体の見かけの表面積は、300m/m以上が好ましく、600m/m以上がより好ましい。スポンジ担体の見かけの表面積が前記下限値以上であると、表面積が充分大きく、被処理水との接触効率が高くなる。また、硝化菌を保持しやく、酸素供給効率も高くなり、硝化速度がさらに高くなる。 The apparent surface area of the sponge carrier is preferably 300 m 2 /m 3 or more, more preferably 600 m 2 /m 3 or more. When the apparent surface area of the sponge carrier is at least the above lower limit, the surface area is sufficiently large, and the contact efficiency with the water to be treated increases. In addition, the nitrifying bacteria are easily retained, the oxygen supply efficiency is increased, and the nitrification rate is further increased.

硝化菌としては、アンモニア性窒素の生物硝化に用いられる公知の硝化菌が挙げられる。Nitrosomonasを代表とする硝化菌は、独立栄養であり、基本的には炭酸ガスを唯一の炭素源としており、有機物基質を必要とせずアンモニアの存在下で生育できるが、その増殖速度は極めて小さい。したがって、硝化速度を高くするためには、硝化菌を硝化槽内に大量に保持する操作が必要となる。よって、硝化菌を、浮遊菌体ではなく担体に担体した状態で保持することが好ましい。
硝化菌の担体への担持方法としては、例えば、既存の水処理システムの硝化槽に担体を投入して担体の表面等に硝化菌を増殖させる方法等が挙げられる。
Examples of nitrifying bacteria include known nitrifying bacteria used for biological nitrification of ammoniacal nitrogen. Nitrosomonas typified by nitrifying bacteria are autotrophic, basically using carbon dioxide gas as the sole carbon source, and can grow in the presence of ammonia without requiring an organic substrate, but their growth rate is extremely low. Therefore, in order to increase the nitrification rate, it is necessary to maintain a large amount of nitrifying bacteria in the nitrification tank. Therefore, it is preferable to retain the nitrifying bacteria in a state of being carried on a carrier instead of floating cells.
As a method for supporting nitrifying bacteria on a carrier, for example, there is a method in which the carrier is put into a nitrification tank of an existing water treatment system and the nitrifying bacteria grow on the surface of the carrier.

生物保持体6の平均密度は1.0~1.4g/cmであり、1.05~1.30g/cmが好ましく、1.10~1.20g/cmがより好ましい。ここで、生物保持体6の平均密度は各生物保持体6が硝化菌を保持した湿潤状態における平均密度である。湿潤状態については後述する。
生物保持体6の平均密度が前記範囲の下限値以上であれば、生物保持体6が硝化槽5内の貯留水に沈降する。そのため、被処理水が複数の生物保持体6全体と均一に接触し、硝化反応が硝化槽5内で均一に起きやすい。
生物保持体6の平均密度が前記範囲の上限値以下であれば、生物保持体6が揺動しやすい。そのため通水時に散気装置によって曝気しなくても、生物保持体6の揺動状態を維持できる。結果、散気装置のエネルギー消費量を削減でき、コスト面でさらなる利点が提供され得る。
したがって、生物保持体6の平均密度が前記範囲内であれば、生物保持体6が被処理水の通水によって貯留水中で揺動可能となるため、被処理水中の不純物(ss等)が生物保持体6に付着しにくくなる。結果として、通水時に生物保持体を揺動させやすくするため、被処理水と各生物保持体との接触効率がよくなり、硝化速度がよくなる。また、コスト面でも有利となる。
The average density of the biological support 6 is 1.0-1.4 g/cm 3 , preferably 1.05-1.30 g/cm 3 , more preferably 1.10-1.20 g/cm 3 . Here, the average density of the biological support 6 is the average density in a wet state in which each biological support 6 retains nitrifying bacteria. Wet conditions will be discussed later.
If the average density of the biological support 6 is equal to or higher than the lower limit of the above range, the biological support 6 settles in the water retained in the nitrification tank 5 . Therefore, the water to be treated uniformly comes into contact with the whole of the plurality of biological supports 6 , and the nitrification reaction tends to occur uniformly within the nitrification tank 5 .
If the average density of the biological support 6 is equal to or less than the upper limit of the above range, the biological support 6 is easily rocked. Therefore, the rocking state of the organism retainer 6 can be maintained without aeration by an air diffuser when water is passed. As a result, the energy consumption of the air diffuser can be reduced, which can provide further cost advantages.
Therefore, if the average density of the organism support 6 is within the above range, the organism support 6 will be able to oscillate in the pooled water when the water to be treated flows. It becomes difficult to adhere to the holder 6 . As a result, the biological support is easily rocked when water is passed through, so that the contact efficiency between the water to be treated and each biological support is improved, and the nitrification rate is improved. Moreover, it is advantageous in terms of cost.

生物保持体の平均密度は、以下のようにして算出できる。
まず、複数の生物保持体の質量m[g]を測定する。例えば、図2に示すように、質量計30の上に容積が既知の容器20を載置した状態で、かさ体積が一定となるように生物保持体6を硝化槽から取り出して容器20に装填する。ここで、かさ体積を一定とするには、容積が既知の容器20の側面に目安線Lを引いておき、目安線Lと最上段の生物保持体6の上面とが一致するように生物保持体6を容器20に装填する。
The average density of the biological support can be calculated as follows.
First, the mass m [g] of a plurality of biological supports is measured. For example, as shown in FIG. 2, with a container 20 having a known volume placed on a mass meter 30, the biological support 6 is taken out from the nitrification tank and loaded into the container 20 so that the bulk volume is constant. do. Here, in order to keep the bulk volume constant, a reference line L is drawn on the side surface of the container 20 whose volume is known, and the organism holding body 6 is placed so that the reference line L and the upper surface of the organism retainer 6 on the uppermost stage are aligned. A body 6 is loaded into a container 20 .

硝化槽から生物保持体を取り出す際には、担体に付着した貯留水が生物保持体から滴り落ちる。この滴り落ちた貯留水の質量は、複数の生物保持体の質量m[g]に含めないものとする。本実施形態においては、硝化槽からかさ体積500cm程度の生物保持体をすくい出して水面上に保持し、水滴が5秒間以上滴り落ちなくなったときを生物保持体の「湿潤状態」として定義する。このような湿潤状態の生物保持体を容器20に装填する。
その後、生物保持体を硝化槽から取り出して容器20に装填する操作を繰り返し、複数の生物保持体の全体のかさ体積が所定の値となったときの質量を複数の生物保持体の質量m[g]として記録する。
When the biological support is taken out from the nitrification tank, the retained water adhering to the carrier drips from the biological support. The mass of this dripped stored water shall not be included in the mass m [g] of the plurality of biological supports. In the present embodiment, a biological support having a bulk volume of about 500 cm 3 is scooped out from the nitrification tank and held on the water surface, and the "wet state" of the biological support is defined as the time when water droplets stop dripping for 5 seconds or more. . The container 20 is loaded with such a wet biological support.
After that, the operation of taking out the biological supports from the nitrification tank and loading them into the container 20 is repeated, and the mass of the plurality of biological supports when the total bulk volume of the plurality of biological supports reaches a predetermined value is the mass of the plurality of biological supports m[ g].

続いて、複数の生物保持体の体積V[cm]を測定する。図3に示すように、湿潤状態の生物保持体6が装填された容器20に、別途用意したビーカー40から所定のかさ体積となるまで、すなわち、目安線Lまで水を注ぎ、生物保持体6同士の間を水で満たす。このとき、ビーカー40から容器20に注いだ水の量を測定し、所定のかさ体積とビーカー40から注いだ水の量との差分を複数の生物保持体の体積V[cm]とする。
最後に、複数の生物保持体の質量m[g]を生物保持体の体積V[cm]で除して生物保持体6の平均密度m/V[g/cm]とする。
Subsequently, the volume V [cm 3 ] of a plurality of biological supports is measured. As shown in FIG. 3, water is poured from a separately prepared beaker 40 into a container 20 loaded with a wet biological support 6 until it reaches a predetermined bulk volume, that is, up to a reference line L, and the biological support 6 is Fill the space between them with water. At this time, the amount of water poured from the beaker 40 into the container 20 is measured, and the difference between the predetermined bulk volume and the amount of water poured from the beaker 40 is defined as the volume V [cm 3 ] of the plurality of biological supports.
Finally, the mass m [g] of the plurality of biological supports is divided by the volume V [cm 3 ] of the biological support to obtain the average density m/V [g/cm 3 ] of the biological support 6 .

生物保持体1個分の平均体積は、通水時に揺動させることを考慮すると、0.03~5.00cmが好ましく、0.06~1.00cmがより好ましく、0.10~0.30cmがさらに好ましいと考えられる。生物保持体1個分の体積が前記範囲の下限値以上であると、生物保持体が硝化槽内で流動しにくく、硝化速度が向上しやすいと考えられる。生物保持体の1個分の体積が前記範囲の上限値以下であると、LV空気が比較的小さくても生物保持体が揺動しやすいと考えられる。
ここで、生物保持体1個分の平均体積は、硝化槽内の複数の生物保持体の総体積を硝化槽内の生物保持体の個数で除した値である。
また、複数の生物保持体において、各生物保持体の体積は互いにすべて同一である必要はなく、互いに異なっていてもよい。
The average volume of one biological support is preferably 0.03 to 5.00 cm 3 , more preferably 0.06 to 1.00 cm 3 , and more preferably 0.10 to 0 0.30 cm 3 is considered more preferred. If the volume of one biological support is equal to or higher than the lower limit of the above range, it is considered that the biological support is less likely to flow in the nitrification tank, and the nitrification rate tends to increase. If the volume for one organism support is equal to or less than the upper limit of the above range, it is considered that the organism support will easily swing even if the LV air is relatively small.
Here, the average volume for one biological support is a value obtained by dividing the total volume of a plurality of biological supports in the nitrification tank by the number of biological supports in the nitrification tank.
Moreover, in a plurality of biological supports, the volumes of the individual biological supports do not all need to be the same, and may differ from each other.

生物保持体は、例えば以下のようにして準備できる。
既存の生物硝化システムの硝化槽を用いて担体を通水培養する。例えば、新品の多孔質の担体の密度は、内部に空気を含むため1g/cm未満の値となることが多い。
硝化槽で担体を通水培養していくと担体から空気が徐々に抜け、硝化菌が担体に付着していく。そして、硝化菌と水を含んだ湿潤状態での密度が1.0~1.4g/cmの範囲内となるまで通水培養し、生物保持体とする。
A biological support can be prepared, for example, as follows.
The carrier is passed through and cultured using a nitrification tank of an existing biological nitrification system. For example, a new porous carrier often has a density of less than 1 g/cm 3 because it contains air inside.
As the carrier is cultured in water in the nitrification tank, air is gradually released from the carrier, and the nitrifying bacteria adhere to the carrier. Then, water-flow culture is performed until the density in a wet state containing nitrifying bacteria and water reaches a range of 1.0 to 1.4 g/cm 3 to obtain a biological support.

図1に示す生物硝化システム1Aにおいて散気装置は、硝化槽5内の底部付近に位置する散気部7と;散気部7に空気を供給する空気供給管8と;空気供給管8の一端に設けられたブロア9と;散気部7とブロア9との間の空気供給管8の途中に設けられた空気供給量調整手段(図示略)とを備えて構成されている。散気装置は原則として生物保持体6の表面に付着した固形物を曝気して取り除くためのものである。ただし、このとき曝気した空気は、生物保持体6の硝化菌の酸素源にもなり得る。 The air diffuser in the biological nitrification system 1A shown in FIG. It comprises a blower 9 provided at one end; The air diffuser is, in principle, for aerating and removing the solid matter adhering to the surface of the biological support 6 . However, the air aerated at this time can also serve as an oxygen source for the nitrifying bacteria in the biological support 6 .

散気部7としては、例えば、散気孔(図示略)が形成された散気管、散気球、ディフューザー等が挙げられる。散気装置は散気部7から硝化槽5内に供給した空気の気泡によって、生物保持体6の表面に付着した固形物を取り除く。硝化槽5内の貯留水に供給された空気の線速度がLV空気[m/h]である。 Examples of the air diffuser 7 include an air diffuser having air diffusion holes (not shown), an air diffuser bulb, and a diffuser. The air diffuser removes solid matter adhering to the surface of the biological support 6 by air bubbles supplied from the air diffuser 7 into the nitrification tank 5 . The linear velocity of the air supplied to the water stored in the nitrification tank 5 is LV air [m/h].

空気供給量調整手段としては、例えば、ゲート弁、バタフライ弁等が挙げられる。
ただし、一実施形態に係る生物硝化システムにおいて被処理水の鉄の含有量が0.5mg/L以下である場合、散気装置は不要であり、散気部7、空気供給管8およびブロア9等は省略可能である。
Examples of the air supply amount adjusting means include a gate valve and a butterfly valve.
However, in the biological nitrification system according to one embodiment, when the iron content of the water to be treated is 0.5 mg/L or less, the air diffuser is unnecessary, and the air diffuser 7, the air supply pipe 8 and the blower 9 etc. can be omitted.

処理水流出管10Aは、硝化槽5から処理水を取り出すためのものである。
処理水流出管10Aの途中には、硝化槽5から流出する処理水の水量を測定する流出量測定手段(図示略)と;処理水流出管10Aを流れる処理水の流量を調整する流出量調整手段(図示略)が設けられている。
流出量測定手段としては、例えば、ローターメータ、電磁流量計等が挙げられる。
流出量調整手段としては、例えば、流量調整弁が挙げられる。
The treated water outflow pipe 10A is for taking out the treated water from the nitrification tank 5. As shown in FIG.
In the middle of the treated water outflow pipe 10A, an outflow measuring means (not shown) for measuring the amount of treated water flowing out from the nitrification tank 5; Means (not shown) are provided.
Examples of outflow measuring means include a rotameter, an electromagnetic flowmeter, and the like.
For example, a flow control valve can be used as the outflow control means.

制御装置は、インターフェイス部(図示略)、記憶部(図示略)、処理部(図示略)、判定部(図示略)、制御部(図示略)等を備える。
インターフェイス部は、通水量測定手段、通水量調整手段、水質計、流出量測定手段、流出量調整手段、散気装置のブロアおよび空気量調整手段と、制御部との間を電気的に接続するものである。
The control device includes an interface section (not shown), a storage section (not shown), a processing section (not shown), a determination section (not shown), a control section (not shown), and the like.
The interface section electrically connects the flow rate measuring means, the flow rate adjusting means, the water quality meter, the outflow rate measuring means, the outflow rate adjusting means, the blower of the air diffuser, the air rate adjusting means, and the control section. It is.

記憶部は、線速度比(LV空気/LV通水)および下式(1)で算出される充填率を算出するための生物硝化システム1Aの運転条件等を記憶するものである。
充填率(体積%)=((複数の生物保持体6の総体積)/(複数の生物保持体6の総体積と硝化槽5内の貯留水の体積との和))×100 ・・・式(1)
The storage unit stores the operating conditions and the like of the biological nitrification system 1A for calculating the linear velocity ratio (LV air /LV water flow ) and the filling rate calculated by the following formula (1).
Filling rate (% by volume)=((total volume of a plurality of biological supports 6)/(sum of total volume of a plurality of biological supports 6 and volume of water stored in the nitrification tank 5))×100 formula (1)

記憶部に記憶される運転条件として、例えば、硝化槽5の投影面積、生物保持体6の平均密度(1.0~1.4g/cmの範囲内の値である)、硝化槽5内に装填した生物保持体6の総質量および個数、被処理水の供給量、処理水の流出量、散気装置における空気供給量等が挙げられる。 The operating conditions stored in the storage unit include, for example, the projected area of the nitrification tank 5, the average density of the biological support 6 (a value within the range of 1.0 to 1.4 g/cm 3 ), and the inside of the nitrification tank 5. The total mass and number of the biological support bodies 6 loaded in the chamber, the supply amount of the water to be treated, the outflow amount of the treated water, the air supply amount in the air diffuser, and the like can be mentioned.

生物硝化システム1Aにおいて、式(1)中の「複数の生物保持体6の総体積」は、生物保持体領域11を構成するすべての生物保持体6の体積の総和である。この「生物保持体の総体積」は、例えば、硝化槽5に投入したすべての生物保持体6の総質量を生物保持体の平均密度で除して算出できる。 In the biological nitrification system 1A, the “total volume of the plurality of biological supports 6” in the formula (1) is the sum of the volumes of all the biological supports 6 forming the biological support region 11. This "total volume of biological support" can be calculated, for example, by dividing the total mass of all biological supports 6 put into the nitrification tank 5 by the average density of the biological supports.

生物硝化システム1Aにおいて、式(1)中の「硝化槽5内の貯留水の体積」は、硝化槽5内に存在する被処理水および処理水の合計の体積である。この「硝化槽5内の貯留水の体積」は、例えば、通水量測定手段で測定された被処理水の供給量の積算値と、流出量測定手段で測定された処理水の流出量の積算値とから算出できる。 In the biological nitrification system 1A, the “volume of water stored in the nitrification tank 5” in Equation (1) is the total volume of the water to be treated and the treated water existing in the nitrification tank 5. This "volume of water stored in the nitrification tank 5" is, for example, the integrated value of the supply amount of the water to be treated measured by the water flow rate measuring means and the integrated amount of the treated water outflow measured by the outflow rate measuring means. can be calculated from

処理部は、以下の演算1を行うことができる。
演算1:複数の生物保持体6の総体積、硝化槽5内の貯留水の体積をそれぞれ算出し、次いで、前記式(1)から生物保持体6の充填率を算出する。
The processing unit can perform operation 1 below.
Calculation 1: Calculate the total volume of the plurality of biosupports 6 and the volume of the water retained in the nitrification tank 5, and then calculate the filling rate of the biosupports 6 from the above equation (1).

処理部は、以下の演算2を行うこともできる。
演算2:通水量調整手段の流量値および硝化槽5の投影面積からLV通水を算出し、かつ、空気量調整手段の供給値および硝化槽5の投影面積からLV空気を算出し、線速度比(LV空気/LV通水)を算出する。
The processing unit can also perform operation 2 below.
Calculation 2: LV water flow is calculated from the flow rate value of the water flow rate adjusting means and the projected area of the nitrification tank 5, and LV air is calculated from the supply value of the air flow rate adjusting means and the projected area of the nitrification tank 5, and the linear velocity Calculate the ratio (LV air /LV water flow ).

判定部は、処理部で算出された生物保持体6の充填率が25体積%以上であるか否かを判定したり;線速度比(LV空気/LV通水)が5.0以下であるか否かを判定したり;水質計で測定された被処理水の鉄の含有量が1.0mg/L以上であるか否かを判定したりするものである。 The determination unit determines whether the filling rate of the biological support 6 calculated by the processing unit is 25% by volume or more; the linear velocity ratio (LV air /LV water flow ) is 5.0 or less and whether or not the iron content of the water to be treated measured by a water quality meter is 1.0 mg/L or more.

制御部は、判定部における判定結果、記憶部に記憶された生物硝化システム1Aの運転条件等に基づいて、生物硝化システム1Aの制御を行うものである。特に、制御部は生物保持体6の充填率を25体積%以上とし、かつ、線速度比(LV空気/LV通水)を、5.0以下とする制御を行う。
例えば、判定部において生物保持体6の充填率が25体積%未満であると判定された場合、制御部は被処理水の供給量を減らして硝化槽5内の貯留水の体積を減らすように通水量調整手段を制御したり;処理水の流出量を増やして硝化槽5内の貯留水の体積を減らすように流出量調整手段を制御したりすることができる。
The control unit controls the biological nitrification system 1A based on the determination result of the determination unit, the operating conditions of the biological nitrification system 1A stored in the storage unit, and the like. In particular, the control unit controls the filling rate of the biological support 6 to 25% by volume or more and the linear velocity ratio (LV air /LV water flow ) to 5.0 or less.
For example, when the determination unit determines that the filling rate of the biological support 6 is less than 25% by volume, the control unit reduces the supply amount of the water to be treated so as to reduce the volume of the water stored in the nitrification tank 5. It is possible to control the water flow adjusting means; or to control the outflow adjusting means so as to increase the outflow of the treated water and reduce the volume of the water retained in the nitrification tank 5 .

一方、判定部において線速度比(LV空気/LV通水)が5.0超であると判定された場合、制御部は散気部7による空気の供給量を減らしてLV空気[m/h]を低くするように空気量調整手段を制御したり;被処理水の供給量を増やしてLV通水[m/h]を高くするように通水量調整手段を制御したり;処理水の流出量を増やしてLV通水[m/h]を高くするように流出量調整手段を制御したりすることができる。
他にも、判定部において被処理水の鉄の含有量が0.5mg/L超であると判定された場合、LV空気/LV通水が0.20~5.0となるように制御部は散気部7による空気の供給量を調整するように空気量調整手段を制御したり;通水量調整手段、流出量調整手段の各流量を調整してLV通水を調節したりすることができる。
On the other hand, when the determination unit determines that the linear velocity ratio (LV air /LV water flow ) is greater than 5.0, the control unit reduces the amount of air supplied by the air diffuser 7 to LV air [m/h ] or control the air amount adjustment means to lower; or control the water flow rate adjustment means to increase the LV water flow rate [m / h] by increasing the supply rate of the water to be treated; outflow of treated water It is possible to control the outflow amount adjustment means so as to increase the amount and increase the LV water flow [m/h].
In addition, when the determination unit determines that the iron content of the water to be treated is greater than 0.5 mg / L, the control unit so that the LV air / LV water flow is 0.20 to 5.0 controls the air amount adjusting means so as to adjust the amount of air supplied by the air diffuser 7; can.

処理部、判定部および制御部は、専用のハードウエアによって実現されるものであってもよく、メモリおよび中央演算装置(CPU)によって構成され、処理部、判定部および制御部の機能を実現するためのプログラムをメモリにロードして実行することによってその機能を実現させるものであってもよい。
制御装置には、周辺機器として、入力装置、表示装置等が接続されていてもよい。入力装置としては、例えば、ディスプレイタッチパネル、スイッチパネル、キーボード等の入力デバイスが挙げられる。表示装置としては、例えば、液晶表示装置、CRT等の表示デバイスが挙げられる。
The processing unit, determination unit, and control unit may be implemented by dedicated hardware, and are configured by a memory and a central processing unit (CPU) to implement the functions of the processing unit, determination unit, and control unit. The function may be implemented by loading a program for the function into a memory and executing the program.
An input device, a display device, and the like may be connected to the control device as peripheral devices. Examples of input devices include input devices such as display touch panels, switch panels, and keyboards. Examples of the display device include a liquid crystal display device and a display device such as a CRT.

<生物硝化方法>
以下、生物硝化システム1Aを用いた硝化方法の一例について説明する。
まず、既存の生物硝化システムの硝化槽で通水培養した複数の生物保持体6を、生物硝化システム1Aの硝化槽5内に装填する。このとき、通水時に生物保持体6が揺動可能となるように、生物保持体6同士の間には揺動のための空間を空けておくとよい。
<Biological nitrification method>
An example of a nitrification method using the biological nitrification system 1A will be described below.
First, a plurality of biological support bodies 6 that have been passed through and cultured in a nitrification tank of an existing biological nitrification system are loaded into the nitrification tank 5 of the biological nitrification system 1A. At this time, it is preferable to leave a space for rocking between the living body holders 6 so that the living body holders 6 can swing when the water flows.

次いで、被処理水供給管4Aの一端に設けられた揚水ポンプ3を駆動させて、アンモニア性窒素を含む被処理水を、井戸2から被処理水供給管4Aを通って硝化槽5に供給して硝化槽5に貯める。このとき、硝化槽5内に水を貯めていくと、生物保持体領域11における生物保持体6同士の間の間にも水が満たされる。その後も貯水を続けると、生物保持体領域11の最上段の生物保持体6が貯留水に浸漬される。 Next, the water pump 3 provided at one end of the water supply pipe 4A to be treated is driven to supply the water to be treated containing ammonia nitrogen from the well 2 to the nitrification tank 5 through the water supply pipe 4A to be treated. and stored in the nitrification tank 5. At this time, when the nitrification tank 5 is filled with water, the spaces between the biological support bodies 6 in the biological support area 11 are also filled with water. If water storage is continued thereafter, the uppermost biological support 6 in the biological support area 11 is immersed in the stored water.

(生物硝化反応)
硝化槽5において被処理水が生物保持体領域11に通水されると、被処理水が生物保持体6と接触する。そして、被処理水のアンモニア性窒素が生物保持体6の硝化菌によって酸化されて硝酸性窒素になる。このようにして、アンモニア性窒素を含む被処理水を硝化槽5で処理して処理水とする。このとき、生物硝化システム1Aにおいては、被処理水が上向流として生物保持体領域11の複数の生物保持体6に通水される。
(Biological nitrification reaction)
When the water to be treated in the nitrification tank 5 is passed through the biological support area 11 , the water to be treated comes into contact with the biological support 6 . Then, the ammonia nitrogen in the water to be treated is oxidized by the nitrifying bacteria in the biological support 6 to become nitrate nitrogen. In this manner, the water to be treated containing ammoniacal nitrogen is treated in the nitrification tank 5 to obtain treated water. At this time, in the biological nitrification system 1A, the water to be treated is passed through the plurality of biological support bodies 6 in the biological support area 11 as an upward flow.

硝化槽5内に水を貯める際には、下式(1)で算出される充填率が25体積%以上となるようにする。
充填率(体積%)=((複数の生物保持体6の総体積)/(複数の生物保持体6の総体積と硝化槽5内の貯留水の体積との和))×100 ・・・式(1)
When water is stored in the nitrification tank 5, the filling rate calculated by the following formula (1) is set to 25% by volume or more.
Filling rate (% by volume)=((total volume of a plurality of biological supports 6)/(sum of total volume of a plurality of biological supports 6 and volume of water stored in the nitrification tank 5))×100 formula (1)

本実施形態においては、式(1)で算出される充填率を25体積%以上とするため、硝化速度が充分に高くなる。硝化速度を高める点では、前記式(1)で算出される充填率は32体積%以上とすることが好ましく、42体積%以上とすることがより好ましく、45体積%以上とすることがさらに好ましい。
前記式(1)で算出される充填率の計算上の上限は100体積%であるが、通水時に生物保持体6を揺動させる点では、65体積%以下とすることが好ましく、60体積%以下とすることがより好ましく、55体積%以下とすることがさらに好ましい。
In this embodiment, since the filling rate calculated by the formula (1) is set to 25% by volume or more, the nitrification rate is sufficiently high. In order to increase the nitrification rate, the filling rate calculated by the above formula (1) is preferably 32% by volume or more, more preferably 42% by volume or more, and even more preferably 45% by volume or more. .
Although the upper limit of the filling rate calculated by the formula (1) is 100% by volume, it is preferably 65% by volume or less in terms of rocking the biological support 6 when water is passed, and 60% by volume. % or less, more preferably 55 volume % or less.

(充填率の制御)
制御装置の判定部にて生物保持体6の充填率が25体積%未満であると判定された場合には、制御部によって被処理水の供給量を減らして硝化槽5内の貯留水の体積を減らすように通水量調整手段を制御したり;処理水の流出量を増やして硝化槽5内の貯留水の体積を減らすように流出量調整手段を制御したりすることができる。貯留水の体積を減らす他にも、作業者が手動にて、または制御装置によって自動にて、生物保持体6を硝化槽5に補充してもよい。
(Control of filling rate)
When the determination unit of the control device determines that the filling rate of the biological support 6 is less than 25% by volume, the control unit reduces the supply amount of the water to be treated to decrease the volume of the stored water in the nitrification tank 5. or control the outflow adjusting means to increase the outflow of treated water and reduce the volume of water stored in the nitrification tank 5 . In addition to reducing the volume of the retained water, the biological support 6 may be replenished into the nitrification tank 5 manually by an operator or automatically by a control device.

(線速度比の制御)
本実施形態においては、線速度比(LV空気/LV通水)を、5.0以下とする。かかる構成によれば、通水時に生物保持体が揺動した状態を長く維持でき、硝化反応を均一に行うことができ、高濃度のアンモニア性窒素を含む被処理水を高い硝化速度で処理できるようになる。また、必要以上に空気を供給しなくてすむため、コスト面で有利であり安全性が高くなる。そのため、線速度比(LV空気/LV通水)は、0.1~4.0とすることが好ましく、0.5~1.0とすることがより好ましい。
(Control of linear velocity ratio)
In this embodiment, the linear velocity ratio (LV air /LV water flow ) is set to 5.0 or less. According to such a configuration, it is possible to maintain the vibrating state of the biological support for a long time when the water is passed through, and the nitrification reaction can be uniformly performed, and the water to be treated containing a high concentration of ammoniacal nitrogen can be treated at a high nitrification rate. become. Moreover, since it is not necessary to supply air more than necessary, it is advantageous in terms of cost and safety is enhanced. Therefore, the linear velocity ratio (LV air /LV water flow ) is preferably 0.1 to 4.0, more preferably 0.5 to 1.0.

制御装置の判定部にて、線速度比(LV空気/LV通水)が5.0超であると判定された場合、制御部は散気部7による空気の供給量を減らしてLV空気[m/h]を低くするように空気量調整手段を制御したり;被処理水の供給量を増やしてLV通水[m/h]を高くするように通水量調整手段を制御したり;処理水の流出量を増やしてLV通水[m/h]を高くするように流出量調整手段を制御したりすることができる。 When the determination unit of the control device determines that the linear velocity ratio (LV air /LV water flow ) is greater than 5.0, the control unit reduces the amount of air supplied by the air diffusion unit 7 to increase the LV air [ m/h] to be low; or control the water flow rate adjusting means to increase the LV water flow rate [m/h] by increasing the supply rate of the water to be treated; It is possible to control the outflow amount adjustment means so as to increase the outflow amount of water and increase the LV water flow [m/h].

LV通水は特に限定されないが、5~40m/hの範囲内が好ましく、8~30m/hがより好ましく、10~15m/hがさらに好ましい。LV通水が前記範囲の下限値以上であると、生物保持体6が揺動しやすい。LV通水が前記範囲の上限値以下であると、硝化反応効率を維持しやすく、硝化速度がさらに向上しやすい。 Although the LV water flow is not particularly limited, it is preferably in the range of 5 to 40 m/h, more preferably 8 to 30 m/h, and even more preferably 10 to 15 m/h. When the LV water flow is equal to or higher than the lower limit of the range, the organism support 6 tends to swing. When the LV water flow is equal to or less than the upper limit of the above range, the nitrification reaction efficiency can be easily maintained, and the nitrification rate can be further improved.

(LV空気の制御)
散気装置の散気部7から散気される空気量は、空気量調整手段(図示略)によって任意の空気量に調整できる。例えば、生物保持体6を揺動させる点で、LV空気は50m/h以下とすることが好ましく、30m/h以下とすることがより好ましい。被処理水の鉄の含有量が0.5mg/L以下である場合においては、消費エネルギーの削減の点で、LV空気は0m/hとすること、すなわち、空気を供給しないことが好ましい。
(LV air control)
The amount of air diffused from the diffuser section 7 of the air diffuser can be adjusted to an arbitrary amount by an air amount adjusting means (not shown). For example, the LV air is preferably 50 m/h or less, more preferably 30 m/h or less, in terms of rocking the organism support 6 . When the iron content of the water to be treated is 0.5 mg/L or less, it is preferable to set the LV air to 0 m/h, that is, not to supply air, from the viewpoint of reducing energy consumption.

一実施形態に係る生物硝化システムにおいて、例えば、被処理水の鉄の含有量が0.5mg/L以下であるときのように生物保持体6の表面に付着し得る成分量が少ない場合、散気装置による曝気は不要である。通水時に生物保持体6が揺動するため、生物保持体6の表面に固形物が付着しにくいからである。曝気を省略することにより、コスト面でさらなる利点が提供される。
一方、例えば、被処理水の鉄の含有量が0.5mg/L超である場合、特に1.0mg/L以上であるとき、硝化反応中に生成した水酸化鉄等の固形物が生物保持体の表面に大量に付着する可能性がある。そのため、LV空気/LV通水が0.20~5.0となるように、散気装置を駆動させて散気部7から硝化槽5内に供給される空気量を調整することが好ましい。生物保持体6の表面に付着した固形物を曝気して取り除くことができ、硝化速度を高めることができるからである。
他にも、LV空気/LV通水が0.20~5.0となるように通水量調整手段、流出量調整手段の各流量からLV通水を調節してもよい。
In the biological nitrification system according to one embodiment, when the amount of components that can adhere to the surface of the biological support 6 is small, such as when the iron content of the water to be treated is 0.5 mg/L or less, scattering Aeration with an air device is not required. This is because the organism retainer 6 oscillates when water is passed through, so solids are less likely to adhere to the surface of the organism retainer 6 . Eliminating aeration provides additional cost advantages.
On the other hand, for example, when the iron content of the water to be treated exceeds 0.5 mg/L, particularly when it is 1.0 mg/L or more, solids such as iron hydroxide generated during the nitrification reaction are biologically retained. Large amounts may adhere to the surface of the body. Therefore, it is preferable to adjust the amount of air supplied from the air diffuser 7 into the nitrification tank 5 by driving the air diffuser so that the LV air /LV water flow ratio is 0.20 to 5.0. This is because the solid matter adhering to the surface of the biological support 6 can be aerated and removed, and the nitrification rate can be increased.
Alternatively, the LV water flow rate may be adjusted from each flow rate of the water flow rate adjusting means and the outflow rate adjusting means so that the LV air /LV water flow rate is 0.20 to 5.0.

<作用機序>
以上一例を用いて説明した一実施形態に係る生物硝化方法においては、(i)生物保持体の平均密度、(ii)生物保持体の特定の充填率および(iii)線速度比(LV空気/LV通水)の少なくとも3つが所定の条件を満たす。そのため、通水時に生物保持体が硝化槽内で揺動可能となり、固形物が生物保持体の表面に付着しにくくなる。加えて、硝化反応を均一に行うことができる。結果として、生物保持体による硝化反応の反応効率がよくなる。
加えて、生物保持体が揺動可能であるため、通水時に被処理水が生物保持体の全体と効率的に接触する。その結果、生物保持体の充填率を25体積%以上としながらも、短絡流の発生や生物保持体6と接触しないデッドスペースの発生を防ぐことができ、硝化速度も向上し、優れた硝化速度を実現できる。
<Mechanism of action>
In the biological nitrification method according to one embodiment described using the above example, (i) the average density of the biological support, (ii) the specific filling rate of the biological support, and (iii) the linear velocity ratio (LV air / LV water flow ) satisfies a predetermined condition. Therefore, the biological support can be oscillated in the nitrification tank when water is passed through, and solid matter is less likely to adhere to the surface of the biological support. In addition, the nitrification reaction can be carried out uniformly. As a result, the reaction efficiency of the nitrification reaction by the biological support is improved.
In addition, since the biological support is rockable, the water to be treated efficiently comes into contact with the entire biological support when the water is passed. As a result, it is possible to prevent the occurrence of short-circuit currents and the occurrence of dead spaces not in contact with the biological support 6, even though the filling rate of the biological support is 25% by volume or more. can be realized.

本実施形態によれば優れた硝化速度を実現できるため、硝化槽の数を増やす必要性も少なくなり、硝化槽自体も小型化が可能である。そして、高濃度酸素ガスの代わりに空気を硝化槽内に供給するため、安全性が高い。また、線速度比(LV空気/LV通水)が所定の範囲内であるように、空気供給量が抑制されているため、散気装置の消費エネルギーも少なくなり、コスト面でも有利である。
したがって、一実施形態に係る生物硝化方法によれば、高濃度のアンモニア性窒素を含む被処理水を高い硝化速度で処理でき、処理システムの小型化が可能であり、安全性が高く、コスト面でも有利である。
According to this embodiment, an excellent nitrification rate can be achieved, so the need to increase the number of nitrification tanks is reduced, and the size of the nitrification tank itself can be reduced. Moreover, since air is supplied into the nitrification tank instead of the high-concentration oxygen gas, safety is high. In addition, since the air supply amount is suppressed so that the linear velocity ratio (LV air /LV water flow ) is within a predetermined range, the energy consumption of the air diffuser is reduced, which is advantageous in terms of cost.
Therefore, according to the biological nitrification method according to one embodiment, the water to be treated containing a high concentration of ammoniacal nitrogen can be treated at a high nitrification rate, the treatment system can be downsized, the safety is high, and the cost is high. But it is advantageous.

例えば特許文献2のような流動床混合流れ方式の硝化方法においては、充填率が25体積%以上になると、担体の流動性不良によるデッドスペースや短絡流が発生するため、硝化速度を高めることに限界がある。
対して、本実施形態においては通水時に生物保持体が揺動し、被処理水が複数の生物保持体と全体的に効率よく接触する。そのため、所定の充填率を25体積%以上としながらも、短絡流の発生や生物保持体と接触しないデッドスペースの発生を防ぐことができ、結果として硝化速度を高めることができる。
For example, in a nitrification method using a fluidized bed mixed flow method as disclosed in Patent Document 2, when the filling rate is 25% by volume or more, dead space and short-circuit flow occur due to poor fluidity of the carrier. There is a limit.
On the other hand, in the present embodiment, the organism-supporting bodies oscillate when water is passed through, and the water to be treated efficiently contacts the plurality of organism-supporting bodies as a whole. Therefore, it is possible to prevent the generation of short-circuit current and the generation of dead space that does not come into contact with the biological support even when the predetermined filling rate is 25% by volume or more, and as a result, the nitrification rate can be increased.

本実施形態においては、生物保持体が硝化槽内の貯留水中で揺動可能である。そのため、被処理水の鉄の含有量が0.5mg/L以下である場合、散気装置によって曝気しなくても生物保持体の表面に付着した固形物を充分に除去でき、硝化反応の効率を高く維持して高い硝化速度を実現できる。この場合、散気装置のエネルギー消費量をさらに削減できるため、コスト面の効果が顕著となる。
一方、後述の実施例に示すように、被処理水の鉄の含有量が0.5mg/L超である場合であっても、アンモニア性窒素を高い硝化速度で処理できる。
In this embodiment, the biological support is oscillatable in the water stored in the nitrification tank. Therefore, when the iron content of the water to be treated is 0.5 mg/L or less, the solid matter adhering to the surface of the biological support can be sufficiently removed without aeration using an air diffuser, and the nitrification reaction efficiency is improved. can be maintained high to achieve a high nitrification rate. In this case, the energy consumption of the air diffuser can be further reduced, resulting in a significant cost effect.
On the other hand, as shown in Examples below, ammonia nitrogen can be treated at a high nitrification rate even when the iron content of the water to be treated exceeds 0.5 mg/L.

また、以上説明した生物硝化システム1Aは上述した構成を備えるため、生物硝化システム1Aを用いることによって上述の一実施形態に係る生物硝化方法を実施でき、上述の作用機序を発揮できる。 Further, since the biological nitrification system 1A described above has the above-described configuration, the biological nitrification method according to the above-described embodiment can be implemented by using the biological nitrification system 1A, and the above-described mechanism of action can be exhibited.

<他の実施形態例>
以上一実施形態例を示して一実施形態について説明したが、本発明は本明細書に開示の実施形態例に限定されず、その要旨を変更しない範囲で適宜変更して実施できる。本明細書に開示の実施形態は、その他の様々な形態で実施可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置換、変更が可能である。
<Other embodiment examples>
Although one embodiment has been shown and described above, the present invention is not limited to the embodiment disclosed in this specification, and can be implemented with appropriate modifications within the scope of the invention. The embodiments disclosed herein can be embodied in various other forms, and various omissions, substitutions, and modifications are possible without departing from the scope of the invention.

例えば、図4に示す生物硝化システム1Bは、被処理水供給管4Bが硝化槽5の頂部付近の壁面と接続され、処理水流出管10Bが硝化槽5の底面と接続されている点で生物硝化システム1Aと相違する。この生物硝化システム1Bにおいては、被処理水を通水すると、生物保持体領域11の上側から下側に向かって下向流として被処理水が生物保持体6に通水される。
生物硝化システム1Bのように下向流として被処理水を通水する場合でも、生物硝化システム1Aと同様の効果が得られ、高い硝化速度を実現できる。
For example, the biological nitrification system 1B shown in FIG. It differs from the nitrification system 1A. In the biological nitrification system 1B, when the water to be treated is passed through the biological support body 6, the water to be treated flows downward from the upper side to the lower side of the biological support area 11 as a downward flow.
Even when the water to be treated flows downward as in the biological nitrification system 1B, the same effect as in the biological nitrification system 1A can be obtained, and a high nitrification rate can be achieved.

他にも、硝化槽の数は1つに限定されず、複数でもよい。例えば、被処理水のアンモニア性窒素の含有量が2mg/L以下の場合、硝化槽の数は1つでもよいが、被処理水のアンモニア性窒素の含有量が2~6mg/Lの場合、硝化槽の数を増やして複数としてもよいし、硝化反応を促進するために散気装置を設ける硝化槽の数は1つでもよい。例えば、アンモニア性窒素の含有量が6mg/L程度増える毎に、散気装置を設ける硝化槽を1つずつ増やしてもよい。
散気装置も図示した形態のものに限定されず、種々の形態の散気装置を採用できる。他にも、硝化槽5内の貯留水の溶存酸素濃度(DO)を測定するDOメータを用いてもよい。
In addition, the number of nitrification tanks is not limited to one, and may be plural. For example, if the ammoniacal nitrogen content of the water to be treated is 2 mg/L or less, the number of nitrification tanks may be one. The number of nitrification tanks may be increased to a plurality, or the number of nitrification tanks provided with an air diffuser to promote the nitrification reaction may be one. For example, each time the content of ammonia nitrogen increases by about 6 mg/L, the number of nitrification tanks provided with a diffuser may be increased by one.
The air diffuser is also not limited to the illustrated form, and various forms of air diffuser can be employed. Alternatively, a DO meter for measuring the dissolved oxygen concentration (DO) of the water stored in the nitrification tank 5 may be used.

以下、図示を省略するが、硝化槽5に供給される被処理水に前段処理を施す前段処理装置や硝化槽5から流出する処理水に後段処理を施す後段処理装置を用いてもよい。前段処理装置、後段処理装置は、被処理水の水質、処理水の水質等に応じて適宜設置され得る。
前段処理装置としては、例えば、原水貯槽、溶存酸素供給装置、砂ろ過塔等が挙げられる。生物硝化反応の効率を上げるため、別途溶存酸素供給装置を設置することも好ましい。溶存酸素供給装置は、溶存酸素を供給するための曝気装置であり、上述の実施形態における散気装置とは異なる。この曝気装置は、生物硝化槽内の生物保持体の揺動状態に直接影響しないよう、原水貯槽内や原水貯槽と生物硝化槽の間に、複数の生物硝化槽がある場合は、各生物硝化槽の間に設けられたほうがよい。
後段処理装置としては、例えば、イオン交換処理槽、凝集剤添加装置、酸化剤添加装置、砂ろ過塔、膜ろ過装置、殺菌剤添加装置等が挙げられる。
後段処理が施された後の最終処理水の用途は特に限定されない。例えば、生活用水、飲料水等としての用途が挙げられるが、これらに限定されるものではない。
Hereinafter, although illustration is omitted, a pre-treatment device for pre-treatment of the water to be treated supplied to the nitrification tank 5 or a post-treatment device for post-treatment of the treated water flowing out from the nitrification tank 5 may be used. The pre-treatment device and the post-treatment device can be appropriately installed according to the quality of the water to be treated, the quality of the treated water, and the like.
Examples of the pretreatment device include a raw water storage tank, a dissolved oxygen supply device, a sand filter tower, and the like. In order to increase the efficiency of the biological nitrification reaction, it is also preferable to install a separate dissolved oxygen supply device. The dissolved oxygen supply device is an aeration device for supplying dissolved oxygen, and is different from the aeration device in the above-described embodiments. If there are multiple biological nitrification tanks in the raw water storage tank or between the raw water storage tank and the biological nitrification tank, the It should be placed between the tanks.
Examples of the post-treatment device include an ion exchange treatment tank, a coagulant addition device, an oxidant addition device, a sand filtration tower, a membrane filtration device, a sterilant addition device, and the like.
The use of the final treated water after post-treatment is not particularly limited. Examples include, but are not limited to, domestic water, drinking water, and the like.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は以下の記載に限定されない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to the following descriptions.

<被処理水の調製>
採取した地下水に塩化アンモニウムおよび硫酸鉄七水和物を加えて、以下の被処理水(1)~(4)を調製した。採取したときの地下水の水温は17±1℃であり、アルカリ度は85mg/Lであり、pHは7.6±0.2であった。
被処理水(1):アンモニア性窒素の濃度が2.5mg/Lであり、鉄イオンの濃度が0.0mg/Lである模擬地下水。
被処理水(2):アンモニア性窒素の濃度が2.5mg/Lであり、鉄イオンの濃度が0.5mg/Lである模擬地下水。
被処理水(3):アンモニア性窒素の濃度が2.5mg/Lであり、鉄イオンの濃度が1.0mg/Lである模擬地下水。
被処理水(4):アンモニア性窒素の濃度が2.5mg/Lであり、鉄イオンの濃度が3.0mg/Lである模擬地下水。
<Preparation of water to be treated>
Ammonium chloride and iron sulfate heptahydrate were added to the sampled groundwater to prepare the following treated waters (1) to (4). The temperature of the groundwater at the time of sampling was 17±1° C., the alkalinity was 85 mg/L, and the pH was 7.6±0.2.
Water to be treated (1): Simulated groundwater having an ammonia nitrogen concentration of 2.5 mg/L and an iron ion concentration of 0.0 mg/L.
Water to be treated (2): Simulated groundwater having an ammonia nitrogen concentration of 2.5 mg/L and an iron ion concentration of 0.5 mg/L.
Water to be treated (3): Simulated groundwater having an ammonia nitrogen concentration of 2.5 mg/L and an iron ion concentration of 1.0 mg/L.
Water to be treated (4): Simulated groundwater having an ammonia nitrogen concentration of 2.5 mg/L and an iron ion concentration of 3.0 mg/L.

<試験システムの構築>
(生物保持体)
スポンジ担体として、5mm角の立方体状のポリウレタン製スポンジ担体(株式会社テクノフォームジャパン製「ウォーターフレックスAQ-15」)を用意した。通水培養する前のスポンジ担体の密度は0.044g/cmであった。これらのスポンジ担体を既存の生物硝化システムの硝化槽で通水培養し、約11kg(約13000個)の生物保持体を調製した。通水培養後、硝化槽から生物保持体をすくい出して水面上に保持し、水滴が5秒間以上滴り落ちなくなったとき、生物保持体が湿潤状態にあると判断し、10Lの目盛り付き容器に装填した。
生物保持体を10Lの目盛り付き容器に装填し終えたとき、生物保持体の質量mは、5776gであった。
その後、生物保持体が装填された目盛り付き容器内に、別途用意したビーカーから水を注いで生物保持体同士の間を水で満たし、水面が10Lの目盛りに到達したとき注水を止めた。このとき別途用意したビーカーから注いだ水量は、4767cmであったため、生物保持体の体積Vを10000cm(10L)-4767cm=5233cmとした。
したがって、生物保持体の平均密度は5776g/5233cm≒1.1g/cmと算出した。
<Construction of test system>
(biological support)
As a sponge carrier, a 5 mm square cubic polyurethane sponge carrier ("Waterflex AQ-15" manufactured by Technoform Japan Co., Ltd.) was prepared. The density of the sponge carrier before water culture was 0.044 g/cm 3 . These sponge carriers were passed through and cultured in a nitrification tank of an existing biological nitrification system to prepare approximately 11 kg (approximately 13,000 pieces) of biological supports. After water culture, the biological support was scooped out from the nitrification tank and held on the water surface. When water droplets stopped dripping for 5 seconds or more, the biological support was judged to be in a wet state, and the liquid was placed in a 10 L graduated container. loaded.
When the biological support was completely loaded into the 10 L graduated vessel, the mass m of the biological support was 5776 g.
After that, water was poured from a separately prepared beaker into the graduated container charged with the biological support to fill the space between the biological supports, and when the water surface reached the 10 L scale, the water supply was stopped. At this time, since the amount of water poured from a separately prepared beaker was 4767 cm 3 , the volume V of the biological support was set to 10000 cm 3 (10 L)−4767 cm 3 =5233 cm 3 .
Therefore, the average density of the biological support was calculated as 5776 g/5233 cm 3 ≈1.1 g/cm 3 .

(硝化槽)
円筒形の透明アクリル製の水槽を2つ直列に接続した。各水槽の直径φは150cm、高さは750cmであり、有効水量は13.5Lである。各水槽の底部には散気球を設けた。1槽目、2槽目の水槽にはそれぞれ約6kgの生物保持体を装填し、硝化反応用の水槽とした。また、原水貯槽および1槽目出口の処理水は溶存酸素濃度が十分に飽和するまで溶存酸素供給装置により曝気処理を行ったのちに通水した。
(Nitrification tank)
Two cylindrical transparent acrylic water tanks were connected in series. Each water tank has a diameter φ of 150 cm, a height of 750 cm, and an effective water volume of 13.5 L. A diffuser ball was provided at the bottom of each water tank. Each of the first and second tanks was filled with about 6 kg of biological support, and was used as a tank for nitrification reaction. The raw water storage tank and the treated water at the outlet of the first tank were aerated by a dissolved oxygen supply device until the dissolved oxygen concentration was sufficiently saturated, and then passed through.

(生物硝化システム)
生物硝化システムとして、硝化槽の個数が異なる以外は図1に示す生物硝化システム1Aと同様のものを用意した。前述の通り、原水貯槽および1槽目出口の処理水は溶存酸素濃度が十分に飽和するまで溶存酸素供給装置により曝気処理を行ったのちに通水した。
硝化槽の生物保持体のすべてが貯留水に浸漬された状態で、水槽の底部の散気球から空気を連続的に供給し、LV空気を0m/h、10m/h、30m/h、60m/hと段階的に上げ、装填された約11kgの生物保持体の揺動状態を目視で確認した。結果、LV空気が30m/hのとき、生物保持体のおよそ半分が流動し始めたが、残りの生物保持体は揺動状態を維持できていた。LV空気が60m/hのとき、ほぼすべての生物保持体が流動した。
一方、硝化反応後の処理水のアンモニア性窒素濃度を測定しながら、通水量を徐々に増やし、2槽目の処理水のアンモニア濃度値が0.1mg/L以下を維持できるようなLV通水[m/h]の最大値を求めた。結果、本実施例の生物硝化システムの場合、当該最大値は、17.8m/hであった。
(Biological nitrification system)
As a biological nitrification system, the same system as the biological nitrification system 1A shown in FIG. 1 was prepared except that the number of nitrification tanks was different. As described above, the raw water storage tank and the treated water from the outlet of the first tank were aerated by the dissolved oxygen supply device until the dissolved oxygen concentration was sufficiently saturated, and then passed through.
With all of the biological supports in the nitrification tank immersed in the stored water, air was continuously supplied from the diffuser bulb at the bottom of the tank, and the LV air was changed to 0 m/h, 10 m/h, 30 m/h, and 60 m/h. h, and the rocking state of the loaded biological support of about 11 kg was visually confirmed. As a result, when the LV air was 30 m/h, approximately half of the biological support began to flow, but the rest of the biological support was able to maintain a rocking state. When the LV air was 60 m/h, almost all biosupports flowed.
On the other hand, while measuring the ammonia nitrogen concentration of the treated water after the nitrification reaction, the amount of water passing is gradually increased, and the LV water passing so that the ammonia concentration value of the treated water in the second tank can be maintained at 0.1 mg / L or less. The maximum value of [m/h] was obtained. As a result, in the case of the biological nitrification system of this example, the maximum value was 17.8 m/h.

<測定方法>
(LV空気
空気の供給量[m/h]を水槽の投影面積[m]で除してLV空気[m/h]を算出した。
<Measurement method>
(LV air )
LV air [m/h] was calculated by dividing the air supply amount [m 3 /h] by the projected area of the water tank [m 2 ].

(LV被処理水
被処理水の供給量[m/h]を水槽の投影面積[m]で除してLV被処理水[m/h]を算出した。
(LV treated water )
LV treated water [m/h] was calculated by dividing the supply amount of treated water [m 3 /h] by the projected area [m 2 ] of the water tank.

<実施例1~6、比較例1~7>
表1に示す条件で被処理水(1)を硝化槽内の生物保持体に通水した。LV空気を0m/hとした各例では空気を供給せず、これら以外の例では散気球から空気を連続的に供給した。
通水開始後LV通水を徐々に上げていくと、生物硝化反応が追い付かず、処理水中に0.1mg/L以上のアンモニア性窒素濃度が検出されるようになった。その時の被処理水および処理水中の各アンモニア性窒素濃度[kg/m]を測定した。一方、処理水中のアンモニア性窒素濃度が0.1mg/L以下を維持できるLV通水の最大値における通水量M[m/d]を取得し、硝化槽当たりの硝化速度v[kgN/m/d]を算出した。結果を表1に示す。
<Examples 1 to 6, Comparative Examples 1 to 7>
Under the conditions shown in Table 1, the water to be treated (1) was passed through the biological support in the nitrification tank. In each case where the LV air was set to 0 m/h, no air was supplied, and in the other examples, air was continuously supplied from diffuser balloons.
When the LV water supply was gradually increased after the start of water supply, the biological nitrification reaction could not catch up, and an ammonia nitrogen concentration of 0.1 mg/L or more was detected in the treated water. Each ammonia nitrogen concentration [kg/m 3 ] in the water to be treated and the treated water at that time was measured. On the other hand, the water flow rate M [m 3 /d] at the maximum value of LV water flow that can maintain the ammonia nitrogen concentration in the treated water at 0.1 mg / L or less was obtained, and the nitrification rate v [kgN / m 3 /d] was calculated. Table 1 shows the results.

硝化速度v[kgN/m/d]は、以下のようにして算出した。
硝化速度v[kgN/m/d]=(被処理水のアンモニア性窒素濃度[kg/m]-処理水のアンモニア性窒素濃度[kg/m])×LV通水の最大値における通水量M[m/d]÷水槽体積[m]
The nitrification rate v [kgN/m 3 /d] was calculated as follows.
Nitrification rate v [kgN/m 3 /d] = (Ammonia nitrogen concentration in treated water [kg/m 3 ]−Ammonia nitrogen concentration in treated water [kg/m 3 ]) × At maximum value of LV water flow Water flow rate M [m 3 /d] ÷ water tank volume [m 3 ]

次いで、以下の基準にしたがって、硝化速度を評価した。結果を表1に示す。
◎:硝化速度が0.44kgN/m/d超である。
〇:硝化速度が0.25kgN/m/d超0.44kgN/m/d以下である。
△:硝化速度が0.22kgN/m/d超0.25kgN/m/d以下である。
×:硝化速度が0.22kgN/m/d以下である。
Then, the nitrification rate was evaluated according to the following criteria. Table 1 shows the results.
A: The nitrification rate is over 0.44 kgN/m 3 /d.
Good: The nitrification rate is more than 0.25 kgN/m 3 /d and 0.44 kgN/m 3 /d or less.
Δ: The nitrification rate is more than 0.22 kgN/m 3 /d and 0.25 kgN/m 3 /d or less.
x: The nitrification rate is 0.22 kgN/m 3 /d or less.

<実施例7>
生物硝化システムとして、図4に示す生物硝化システム1Bと同様のものを用意した以外は、すなわち、被処理水が下向流として生物保持体領域11の複数の生物保持体6に通水されること以外は、実施例6と同様にして生物硝化反応を行った。実施例1と同様に硝化速度v[kgN/m/d]を算出および評価した。結果を表1に示す。
<Example 7>
As the biological nitrification system, the same system as the biological nitrification system 1B shown in FIG. A biological nitrification reaction was carried out in the same manner as in Example 6, except for the above. The nitrification rate v [kgN/m 3 /d] was calculated and evaluated in the same manner as in Example 1. Table 1 shows the results.

Figure 2022153861000002
Figure 2022153861000002

表1に示すように、生物保持体の平均密度、生物保持体の充填率および線速度比(LV空気/LV通水)の3つが所定の反応条件を満たすとき、優れた硝化速度を実現できた。
また、表1の実施例6、7の結果に示すように、上向流および下向流のいずれの通水方向でも優れた硝化速度を実現できた。
As shown in Table 1, when three of the average density of the biological support, the filling rate of the biological support, and the linear velocity ratio (LV air /LV water flow ) satisfy predetermined reaction conditions, a superior nitrification rate can be achieved. rice field.
Moreover, as shown in the results of Examples 6 and 7 in Table 1, excellent nitrification rates were achieved in both upward and downward water flow directions.

各例の揺動状態について言及すると、比較例1~5ではすべての生物保持体が流動し、揺動状態を維持できなかった。対して、実施例1~7ではいずれも生物保持体の揺動状態を維持できた。比較例6では、生物保持体の揺動状態が維持されたものの、充填率が低いため、硝化速度が低下したと考えられる。比較例7では生物硝化槽内に、ろ材としてマンガン砂(平均密度2.0g/cm)を50体積%充填して通水した。その結果、生物保持体の平均密度が高いため、揺動させにくかった。また、デッドスペースや短絡流が発生しやすく、固形物が生物保持体の表面に付着することで閉塞が起こりやすいため、被処理水と各生物保持体との接触効率が悪くなった。また、マンガン砂の生物保持能力が実施例の生物保持体より低いことも、硝化速度が他の実施例よりも低下した原因の1つと考えられる。 Regarding the rocking state of each example, in Comparative Examples 1 to 5, all of the biological supports flowed and the rocking state could not be maintained. On the other hand, in Examples 1 to 7, the rocking state of the biological support could be maintained. In Comparative Example 6, although the vibrating state of the biological support was maintained, the nitrification rate decreased due to the low filling rate. In Comparative Example 7, the biological nitrification tank was filled with 50% by volume of manganese sand (average density: 2.0 g/cm 3 ) as a filter medium, and water was passed through the tank. As a result, since the average density of the biological support was high, it was difficult to rock it. In addition, a dead space and a short-circuit flow are likely to occur, and clogging is likely to occur due to adhesion of solids to the surface of the biological support, resulting in poor contact efficiency between the water to be treated and each biological support. In addition, the fact that manganese sand has a lower ability to retain organisms than the organism retainers of Examples is also considered to be one of the reasons why the nitrification rate is lower than that of other Examples.

<実施例8~13>
実施例8~13では、被処理水が鉄を含む場合の反応条件を検討した。具体的には、下記の表2に示すように処理条件を変更した以外は前記の<実施例1~6、比較例1~7>と同様にして硝化速度v[kgN/m/d]を算出し、評価した。
<Examples 8 to 13>
In Examples 8 to 13, reaction conditions were examined when the water to be treated contained iron. Specifically, the nitrification rate v [kgN/m 3 /d] was obtained in the same manner as in <Examples 1 to 6 and Comparative Examples 1 to 7> except that the treatment conditions were changed as shown in Table 2 below. was calculated and evaluated.

Figure 2022153861000003
Figure 2022153861000003

表1、2に示すように、散気球から空気を供給せず、LV通水を12.5m/hとした実施例8では、LV通水を12.5m/hとした実施例3と同程度の優れた硝化速度を実現できた。この結果から、鉄の含有量が0.5mg/Lの場合であっても、散気装置による曝気は必要ではなく、散気装置の消費エネルギーを削減できると考えられた。
一方、鉄の含有量が0.5mg/L超である(例えば、1.0mg/L)、曝気をしなかった実施例9の結果に示すように硝化速度が50%程度低下した。
As shown in Tables 1 and 2, in Example 8 in which the LV water flow rate was 12.5 m/h without supplying air from the air diffuser ball, the LV water flow rate was the same as in Example 3 in which the LV water flow rate was 12.5 m/h. A moderately good nitrification rate could be realized. From this result, even if the iron content is 0.5 mg/L, it was considered that the aeration by the air diffuser was not necessary and the energy consumption of the air diffuser could be reduced.
On the other hand, when the iron content was more than 0.5 mg/L (for example, 1.0 mg/L), the nitrification rate decreased by about 50% as shown in the results of Example 9 without aeration.

実施例10~13の結果に示すように、鉄の含有量が0.5mg/L超である場合には、散気装置で空気を供給し、線速度比(LV空気/LV通水)を5.0以下に維持することで、良好な硝化速度を実現できた。このように、線速度比(LV空気/LV通水)を0.20~5.0とすることで、鉄の含有量が増えても優れた硝化速度を実現できると考えられた。 As shown in the results of Examples 10 to 13, when the iron content is more than 0.5 mg / L, air is supplied by an air diffuser, and the linear velocity ratio (LV air / LV water flow ) is A good nitrification rate could be achieved by maintaining it at 5.0 or less. Thus, it was thought that by setting the linear velocity ratio (LV air /LV water flow ) to 0.20 to 5.0, an excellent nitrification rate could be achieved even if the iron content increased.

実施例11、13の結果に示すように、線速度比(LV空気/LV通水)を0.7としたときには、鉄の含有量が1.0mg/Lであろうと、3.0mg/Lであろうと、きわめて良好な硝化速度を実現できた。 As shown in the results of Examples 11 and 13, when the linear velocity ratio (LV air /LV water flow ) is 0.7, even if the iron content is 1.0 mg/L, it is 3.0 mg/L. However, a very good nitrification rate could be achieved.

1 生物硝化システム
2 井戸
3 揚水ポンプ
4 被処理水供給管
5 硝化槽
6 生物保持体
7 散気部(散気装置)
8 空気供給管(散気装置)
9 ブロア(散気装置)
10 処理水流出管
1 biological nitrification system 2 well 3 pump 4 water supply pipe to be treated 5 nitrification tank 6 biological support 7 air diffuser (air diffuser)
8 Air supply pipe (air diffuser)
9 blower (air diffuser)
10 Treated water outflow pipe

Claims (8)

被処理水のアンモニア性窒素を処理する生物硝化方法であって、
平均密度が1.0~1.4g/cmである複数の生物保持体が装填された硝化槽に前記被処理水を通水する際、
前記被処理水の線速度LV通水[m/h]と前記硝化槽内の貯留水中の空気の線速度LV空気[m/h]との線速度比(LV空気/LV通水)を5.0以下とし、かつ、下式(1)で算出される充填率を25体積%以上とすることを特徴とする、生物硝化方法。
充填率(体積%)=((複数の生物保持体の総体積)/(複数の生物保持体の総体積と硝化槽内の貯留水の体積との和))×100 ・・・式(1)
A biological nitrification method for treating ammoniacal nitrogen in water to be treated,
When the water to be treated is passed through a nitrification tank loaded with a plurality of biological supports having an average density of 1.0 to 1.4 g/cm 3 ,
The linear velocity ratio (LV air /LV water flow ) between the linear velocity LV water flow [m/h] of the water to be treated and the linear velocity LV air [m/h] of the air in the stored water in the nitrification tank is set to 5 0.0 or less, and the filling rate calculated by the following formula (1) is 25% by volume or more.
Filling rate (% by volume)=((total volume of a plurality of biological supports)/(total volume of a plurality of biological supports and the volume of water stored in the nitrification tank))×100 Equation (1 )
前記生物保持体が、多孔質の担体と、前記担体に保持された硝化菌とを有する、請求項1に記載の生物硝化方法。 2. The biological nitrification method according to claim 1, wherein said biological support comprises a porous carrier and nitrifying bacteria held on said carrier. さらに、前記線速度LV空気を30m/h以下とする、請求項1または2に記載の生物硝化方法。 Furthermore, the biological nitrification method according to claim 1 or 2, wherein the linear velocity LV air is 30 m/h or less. 前記被処理水の鉄の含有量が0.5mg/L超である場合、前記線速度比(LV空気/LV通水)を0.20~5.0とする、請求項1~3のいずれか一項に記載の生物硝化方法。 Any one of claims 1 to 3, wherein when the iron content of the water to be treated exceeds 0.5 mg/L, the linear velocity ratio (LV air /LV water flow ) is 0.20 to 5.0. or the biological nitrification method according to item 1. 平均密度が1.0~1.4g/cmである複数の生物保持体が装填された硝化槽と、
前記硝化槽に被処理水を供給する被処理水供給管と、
前記被処理水供給管に設けられ、前記硝化槽に供給される前記被処理水の流量を調整する通水量調整手段と、
前記硝化槽内の貯留水に空気を供給する散気装置と、
少なくとも前記通水量調整手段および前記散気装置と電気的に接続された制御装置と、
を備え、
前記制御装置は、
前記被処理水の通水時の線速度LV通水[m/h]と前記硝化槽内の貯留水中の空気の線速度LV空気[m/h]との線速度比(LV空気/LV通水)を5.0以下とし、かつ、下式(1)で算出される充填率を25体積%以上とする制御部を有する、生物硝化システム。
充填率(体積%)=((複数の生物保持体の総体積)/(複数の生物保持体の総体積と硝化槽内の貯留水の体積との和))×100 ・・・式(1)
a nitrification tank loaded with a plurality of biological supports having an average density of 1.0 to 1.4 g/cm 3 ;
a to-be-treated water supply pipe for supplying to-be-treated water to the nitrification tank;
a water flow rate adjusting means provided in the to-be-treated water supply pipe for adjusting the flow rate of the to-be-treated water supplied to the nitrification tank;
an air diffuser that supplies air to the water stored in the nitrification tank;
a control device electrically connected to at least the water flow adjusting means and the air diffuser;
with
The control device is
The linear velocity ratio between the linear velocity LV water flow [m/h] when the water to be treated flows and the linear velocity LV air [m/h] of the air in the water stored in the nitrification tank (LV air /LV flow Water ) is 5.0 or less, and the biological nitrification system has a control unit that sets the filling rate calculated by the following formula (1) to 25% by volume or more.
Filling rate (% by volume)=((total volume of a plurality of biological supports)/(total volume of a plurality of biological supports and the volume of water stored in the nitrification tank))×100 Equation (1 )
前記生物保持体が、多孔質の担体と、前記担体に保持された硝化菌とを有する、請求項5に記載の生物硝化システム。 6. The biological nitrification system according to claim 5, wherein said biological support comprises a porous carrier and nitrifying bacteria held on said carrier. 前記制御部は、前記線速度LV空気を30m/h以下とする、請求項5または6に記載の生物硝化システム。 The biological nitrification system according to claim 5 or 6, wherein said control unit sets said linear velocity LV air to 30 m/h or less. 前記制御部は、前記被処理水の鉄の含有量が0.5mg/L超である場合、前記線速度比(LV空気/LV通水)を0.20~5.0とする、請求項5~7のいずれか一項に記載の生物硝化システム。 The control unit sets the linear velocity ratio (LV air /LV water flow ) to 0.20 to 5.0 when the iron content of the water to be treated is more than 0.5 mg/L. The biological nitrification system according to any one of 5 to 7.
JP2021056603A 2021-03-30 2021-03-30 Biological nitrification method and biological nitrification system Pending JP2022153861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021056603A JP2022153861A (en) 2021-03-30 2021-03-30 Biological nitrification method and biological nitrification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021056603A JP2022153861A (en) 2021-03-30 2021-03-30 Biological nitrification method and biological nitrification system

Publications (1)

Publication Number Publication Date
JP2022153861A true JP2022153861A (en) 2022-10-13

Family

ID=83557985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021056603A Pending JP2022153861A (en) 2021-03-30 2021-03-30 Biological nitrification method and biological nitrification system

Country Status (1)

Country Link
JP (1) JP2022153861A (en)

Similar Documents

Publication Publication Date Title
US11746030B2 (en) Aerobic granular sludge in continuous flow reactors
Schwarzenbeck et al. Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter
US10392279B2 (en) Eductor-based membrane bioreactor
CN102754613A (en) Integrated circulating water culture system
CN102173510A (en) Sludge reflow-free device with simultaneous nitrification and denitrification (SND) function and operation control method thereof
US7666302B2 (en) Dual cell nitrogen removal apparatus
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
CN106986442B (en) Method for treating ammonia nitrogen sewage by combining microorganism carrier and fluidized bed
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP7133339B2 (en) Nitrogen treatment method
JP6811031B2 (en) Bio-nitrification method and bio-nitrification system
KR101023479B1 (en) A aerobic deammonification method of SBR type sewage, waste, livestock waste water treatment plant by use of micro sand bio mass, chemical and apparatus therof
CN102198971A (en) Upward flow biological aerated filter and aeration method thereof
CN104176893A (en) Canned fungus processing wastewater treatment system
JP2022153861A (en) Biological nitrification method and biological nitrification system
Rodríguez-Hernández et al. Evaluation of a hybrid vertical membrane bioreactor (HVMBR) for wastewater treatment
CN203048672U (en) Floating island system for restoring polluted eutrophic water body
Marbelia et al. A Comparative Study of Conventional Aerator and Microbubble Generator in Aerobic Reactors for Wastewater Treatment
KR101634296B1 (en) Sbr wastewater treatment system using soil microorganism
US9463991B2 (en) Method and apparatus for the treatment of water with a gas or nutrient infused liquid
JP2017104806A (en) Nitrification-denitrification device
KR100403288B1 (en) A treatment method of wastewater with low concentration of ammonia by the type of non-aeration nitrification
JP2016190203A (en) Wastewater treatment method and wastewater treatment device
JP2024057221A (en) Oscillating biological nitrification method and oscillating biological nitrification device
JP2024057217A (en) Oscillating biological nitrification method and oscillating biological nitrification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240806