JP2024057221A - Rocking biological nitrification method and rocking biological nitrification device - Google Patents

Rocking biological nitrification method and rocking biological nitrification device Download PDF

Info

Publication number
JP2024057221A
JP2024057221A JP2022163814A JP2022163814A JP2024057221A JP 2024057221 A JP2024057221 A JP 2024057221A JP 2022163814 A JP2022163814 A JP 2022163814A JP 2022163814 A JP2022163814 A JP 2022163814A JP 2024057221 A JP2024057221 A JP 2024057221A
Authority
JP
Japan
Prior art keywords
water
treated
nitrification
biological
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022163814A
Other languages
Japanese (ja)
Inventor
博也 小寺
丈夫 山東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Mitsubishi Chemical Aqua Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Aqua Solutions Co Ltd filed Critical Mitsubishi Chemical Aqua Solutions Co Ltd
Priority to JP2022163814A priority Critical patent/JP2024057221A/en
Publication of JP2024057221A publication Critical patent/JP2024057221A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

【課題】本発明の目的は、従来の流動床混合流れ方式より高い硝化速度で、高濃度のアンモニア性窒素を含む被処理水を処理できる揺動式生物硝化方法および揺動式生物硝化装置を提供することである。【解決手段】硝化槽5内に装填された複数の生物保持体6に被処理水を通水する際に下記要件1、要件2、要件3および要件4を満たすこと。要件1:1つの生物保持体6の立体的な大きさが、最大長さ方向が5mmを超えて、かつ、直径20mmの球体に収まる。要件2:被処理水の銅イオン濃度が0.1~300μg/Lである。要件3:被処理水の線速度LV通水[m/h]と気体の線速度LVガス[m/h]との線速度比(LVガス/LV通水)が0.3~6.0である。要件4:下記充填率が75%以上である。充填率(%)=(複数の生物保持体6のかさ体積)/(硝化槽5内の有効水量体積)×100【選択図】図1[Problem] The object of the present invention is to provide an agitating biological nitrification method and an agitating biological nitrification device capable of treating water containing a high concentration of ammonia nitrogen at a nitrification rate higher than that of the conventional fluidized bed mixed flow method. [Solution] The following requirements 1, 2, 3, and 4 are satisfied when the water to be treated is passed through a plurality of biological retainers 6 loaded in a nitrification tank 5. Requirement 1: The three-dimensional size of one biological retainer 6 exceeds 5 mm in the maximum length direction and fits into a sphere with a diameter of 20 mm. Requirement 2: The copper ion concentration of the water to be treated is 0.1 to 300 μg/L. Requirement 3: The linear velocity ratio (LV gas/LV water) of the linear velocity of the water to be treated [m/h] to the linear velocity of the gas [m/h] is 0.3 to 6.0. Requirement 4: The following filling rate is 75% or more. Filling rate (%) = (bulk volume of multiple organism holders 6) / (available water volume in nitrification tank 5) x 100 [Selected figure] Figure 1

Description

本発明は、揺動式生物硝化方法および揺動式生物硝化装置に関する。 The present invention relates to an agitated biological nitrification method and an agitated biological nitrification device.

被処理水のアンモニア性窒素を微生物によって硝酸性窒素に変換する生物硝化反応が知られている。アンモニア性窒素は、例えば、地下水、井戸水、湖沼水、河川水、工業排水に含まれることがある。 Biological nitrification is known, in which ammonia nitrogen in the water being treated is converted to nitrate nitrogen by microorganisms. Ammonia nitrogen can be found, for example, in groundwater, well water, lake water, river water, and industrial wastewater.

低濃度のアンモニア性窒素を含む被処理水の一般的な生物硝化方法として、硝化菌等の微生物が付着したろ材を充填して形成した固定床に、被処理水を押出流れとして通水する固定床押出流れ方式がある。しかし、固定床押出流れ方式においては、硝化槽当たりの硝化速度が0.1kgN/m/d程度と低いことが課題である。 A common biological nitrification method for treating water containing a low concentration of ammonia nitrogen is the fixed-bed push flow method, in which the water is passed as a push flow through a fixed bed formed by packing a filter medium on which microorganisms such as nitrifying bacteria are attached. However, the fixed-bed push flow method has a problem in that the nitrification rate per nitrification tank is low, at about 0.1 kgN/ m3 /d.

高濃度のアンモニア性窒素を含む被処理水の生物硝化方法として、微生物を保持した担体を硝化槽内で循環流動させながら被処理水を通水する流動床混合流れ方式がある(例えば、特許文献1)。
特許文献1の図1に示す流動床混合流れ方式の生物硝化装置によれば、硝化槽内の貯留水に散気部から空気を供給しながら、被処理水供給管から被処理水を硝化槽に供給できる。被処理水は硝化槽内に流入すると、貯留水と瞬間的に混合される。結果、貯留水全体の濃度が一様となる。
As a method for biological nitrification of water containing a high concentration of ammonia nitrogen, there is a fluidized bed mixed flow method in which the water to be treated is passed through a nitrification tank while circulating carriers holding microorganisms (for example, Patent Document 1).
According to the fluidized bed mixed flow type biological nitrification apparatus shown in Fig. 1 of Patent Document 1, the water to be treated can be supplied to the nitrification tank from the water to be treated supply pipe while air is supplied to the stored water in the nitrification tank from the aeration unit. When the water to be treated flows into the nitrification tank, it is instantly mixed with the stored water. As a result, the concentration of the entire stored water becomes uniform.

流動床混合流れ方式においては、硝化菌等を担持した生物保持体が硝化槽内の貯留水中で流動している。この生物保持体と被処理水が接触することで、アンモニア性窒素が硝酸性窒素に変換されて処理される。処理水は処理水流出管から槽外に流出する。流動床混合流れ方式によれば、高濃度のアンモニア性窒素を含む被処理水を処理できる。 In the fluidized bed mixed flow method, a biological retainer carrying nitrifying bacteria and the like is fluidized in the water stored in the nitrification tank. When the biological retainer comes into contact with the water to be treated, ammonia nitrogen is converted to nitrate nitrogen and treated. The treated water flows out of the tank through the treated water outlet pipe. The fluidized bed mixed flow method can treat water to be treated that contains a high concentration of ammonia nitrogen.

特開2017-202473号公報JP 2017-202473 A

しかし、従来の流動床混合流れ方式をもってしても、硝化槽当たりの硝化速度は約0.2kgN/m/d程度である。この硝化速度には改善の余地がある。
本発明の目的は、従来の流動床混合流れ方式より高い硝化速度で、高濃度のアンモニア性窒素を含む被処理水を処理できる揺動式生物硝化方法および揺動式生物硝化装置を提供することである。
However, even with the conventional fluidized bed mixed flow system, the nitrification rate per nitrification tank is about 0.2 kgN/m 3 /d, and there is room for improvement in this nitrification rate.
An object of the present invention is to provide an agitating type biological nitrification method and an agitating type biological nitrification apparatus which can treat water containing a high concentration of ammonia nitrogen at a nitrification rate higher than that of the conventional fluidized bed mixed flow system.

本発明者らは鋭意検討した結果、(i)生物保持体の大きさ、(ii)被処理水の銅イオン濃度、(iii)被処理水の線速度LV通水[m/h]と硝化槽内の貯留水中の気体の線速度LVガス[m/h]との線速度比(LVガス/LV通水)、および(iv)生物保持体の充填率を所定の範囲内とすることに想到した。この特定の条件下で硝化反応を行うと、従来の流動床混合流れ方式より高い硝化速度を実現できることを見出し、本発明を完成させた。 As a result of intensive research, the inventors of the present invention have come up with the idea of setting (i) the size of the biological holder, (ii) the copper ion concentration of the water to be treated, (iii) the linear velocity ratio (LV gas /LV water ) between the linear velocity LV water flow [m/h] of the water to be treated and the linear velocity LV gas [m/h] of the gas in the stored water in the nitrification tank, and (iv) the packing rate of the biological holder within a specified range. It has been found that when the nitrification reaction is carried out under these specific conditions, a higher nitrification rate can be achieved than in the conventional fluidized bed mixed flow method, and the present invention has been completed.

本発明は、下記の態様を有する。
[1]被処理水のアンモニア性窒素を処理する揺動式生物硝化方法であり;硝化槽内に装填された複数の生物保持体に前記被処理水を通水する際に、下記の要件1、要件2、要件3および要件4を満たす、揺動式生物硝化方法。
要件1:1つの前記生物保持体の立体的な大きさが、最大長さ方向が5mmを超えて、かつ、直径20mmの球体に収まること。
要件2:前記被処理水の銅イオン濃度が、0.1~300μg/Lであること。
要件3:前記被処理水の線速度LV通水[m/h]と前記硝化槽内の貯留水中の気体の線速度LVガス[m/h]との線速度比(LVガス/LV通水)が、0.3~6.0であること。
要件4:下式(1)で算出される充填率が、75%以上であること。
充填率(%)=(複数の生物保持体のかさ体積)/(硝化槽内の有効水量体積)×100 ・・・式(1)
[2]前記生物保持体が、多孔質の担体と、前記担体に保持された硝化菌とを有する、[1]に記載の揺動式生物硝化方法。
[3]前記被処理水を上向流として通水する、[1]または[2]に記載の揺動式生物硝化方法。
[4]前記被処理水の前記銅イオン濃度が、0.5~50μg/Lである、[1]~[3]のいずれかに記載の揺動式生物硝化方法。
[5]複数の生物保持体が装填された硝化槽と;前記硝化槽内に被処理水を供給する被処理水供給管と;前記被処理水に、銅イオンを供給し得る銅供給源と;前記硝化槽内に供給される前記被処理水の流量を調整する通水量調整手段と;前記硝化槽内の貯留水に気体を供給する気体供給装置と;前記通水量調整手段および前記気体供給装置と電気的に接続された制御装置と;を備え;前記制御装置は、下記の要件3および要件4を満たす制御を実行し;下記の要件1および要件2を満たす、揺動式生物硝化装置。
要件1:1つの前記生物保持体の立体的な大きさが、最大長さ方向が5mmを超えて、かつ、直径20mmの球体に収まること。
要件2:前記被処理水の銅イオン濃度が、0.1~300μg/Lであること。
要件3:前記被処理水の線速度LV通水[m/h]と前記硝化槽内の貯留水中の気体の線速度LVガス[m/h]との線速度比(LVガス/LV通水)が、0.3~6.0であること。
要件4:下式(1)で算出される充填率が、75%以上であること。
充填率(%)=(複数の生物保持体のかさ体積)/(硝化槽内の有効水量体積)×100 ・・・式(1)
[6]前記銅供給源が、前記被処理水と接触している、[5]に記載の揺動式生物硝化装置。
[7]前記制御装置が、前記被処理水の前記銅イオン濃度が0.1~300μg/Lとなる制御を実行する、[5]または[6]に記載の揺動式生物硝化装置。
The present invention has the following aspects.
[1] A rocking biological nitrification method for treating ammonia nitrogen in water to be treated, which satisfies the following requirements 1, 2, 3, and 4 when the water to be treated is passed through a plurality of biological retainers loaded in a nitrification tank.
Requirement 1: The three-dimensional size of one of the bioretainers exceeds 5 mm in the maximum length direction and fits into a sphere having a diameter of 20 mm.
Requirement 2: The copper ion concentration of the water to be treated is 0.1 to 300 μg/L.
Requirement 3: The linear velocity ratio (LV gas /LV water flow) between the linear velocity LV water flow [m/h] of the water to be treated and the linear velocity LV gas [m/h] of the gas in the stored water in the nitrification tank is 0.3 to 6.0.
Requirement 4: The filling rate calculated by the following formula (1) is 75% or more.
Filling rate (%) = (bulk volume of multiple biological retainers) / (available water volume in nitrification tank) × 100 ... formula (1)
[2] The rocking type biological nitrification method according to [1], wherein the biological support has a porous carrier and nitrifying bacteria supported on the carrier.
[3] The rocking type biological nitrification method according to [1] or [2], wherein the water to be treated is passed through as an upward flow.
[4] The rocking-type biological nitrification method according to any one of [1] to [3], wherein the copper ion concentration in the treated water is 0.5 to 50 μg/L.
[5] A oscillating biological nitrification apparatus comprising: a nitrification tank loaded with a plurality of biological retainers; a water-to-be-treated supply pipe for supplying water-to-be-treated into the nitrification tank; a copper supply source capable of supplying copper ions to the water-to-be-treated; a water flow rate adjustment means for adjusting the flow rate of the water-to-be-treated supplied into the nitrification tank; a gas supply device for supplying gas to water stored in the nitrification tank; and a control device electrically connected to the water flow rate adjustment means and the gas supply device; the control device performs control that satisfies the following requirements 3 and 4; and satisfies the following requirements 1 and 2.
Requirement 1: The three-dimensional size of one of the bioretainers exceeds 5 mm in the maximum length direction and fits into a sphere having a diameter of 20 mm.
Requirement 2: The copper ion concentration of the water to be treated is 0.1 to 300 μg/L.
Requirement 3: The linear velocity ratio (LV gas /LV water flow) between the linear velocity LV water flow [m/h] of the water to be treated and the linear velocity LV gas [m/h] of the gas in the stored water in the nitrification tank is 0.3 to 6.0.
Requirement 4: The filling rate calculated by the following formula (1) is 75% or more.
Filling rate (%) = (bulk volume of multiple biological retainers) / (available water volume in nitrification tank) × 100 ... formula (1)
[6] The rocking type biological nitrification apparatus according to [5], wherein the copper source is in contact with the water to be treated.
[7] The rocking type biological nitrification apparatus according to [5] or [6], wherein the control device controls the copper ion concentration of the water to be treated to be 0.1 to 300 μg/L.

本発明によれば、従来の流動床混合流れ方式より高い硝化速度で、高濃度のアンモニア性窒素を含む被処理水を処理できる揺動式生物硝化方法および揺動式生物硝化装置が提供される。 The present invention provides an agitated biological nitrification method and an agitated biological nitrification device that can treat water containing high concentrations of ammonia nitrogen at a nitrification rate higher than that of conventional fluidized bed mixed flow methods.

揺動式生物硝化装置の一例を示す概略構成図である。FIG. 1 is a schematic diagram showing an example of a rocking type biological nitrification device. 複数の生物保持体の平均密度の測定方法を説明するための模式図である。FIG. 1 is a schematic diagram for explaining a method for measuring the average density of a plurality of organism retainers. 複数の生物保持体の平均密度の測定方法を説明するための模式図である。FIG. 1 is a schematic diagram for explaining a method for measuring the average density of a plurality of organism retainers. 揺動式生物硝化装置の他の一例を示す概略構成図である。FIG. 11 is a schematic diagram showing another example of a rocking type biological nitrification device. 図4の揺動式生物硝化装置の被処理水供給管の内部の模式図である。FIG. 5 is a schematic diagram of the inside of the treated water supply pipe of the rocking type biological nitrification apparatus of FIG. 4. 揺動式生物硝化装置の他の一例を示す概略構成図である。FIG. 11 is a schematic diagram showing another example of a rocking type biological nitrification device. 他の一例に係る揺動式生物硝化装置の被処理水供給管の内部の模式図である。FIG. 11 is a schematic diagram of the inside of a treated water supply pipe of a rocking type biological nitrification device according to another example. 揺動式生物硝化装置の他の一例を示す概略構成図である。FIG. 11 is a schematic diagram showing another example of a rocking type biological nitrification device. 揺動式生物硝化装置の他の一例を示す概略構成図である。FIG. 11 is a schematic diagram showing another example of a rocking type biological nitrification device. 実施例で用いた揺動式生物硝化装置の一例を示す概略構成図である。FIG. 2 is a schematic diagram showing an example of a rocking type biological nitrification device used in the examples.

本明細書における以下の用語の意味は以下の通りである。
「アンモニア性窒素」とは、水中にアンモニウム塩として含まれている窒素をいう。アンモニア態窒素ともいう。
数値範囲を示す「~」は、その前後に記載された数値を下限値および上限値として含むことを意味する。
As used herein, the following terms have the following meanings:
"Ammoniacal nitrogen" refers to nitrogen contained in water as ammonium salt. It is also called ammoniacal nitrogen.
The use of "to" indicating a range of numerical values means that the numerical values before and after it are included as the lower limit and upper limit.

<被処理水>
被処理水はアンモニア性窒素を少なくとも含むものであれば、特に限定されない。例えば、地下水、井戸水、湖沼水、河川水、工場用水、下水、排水が挙げられる。ただし、被処理水はこれらの例示に限定されない。
<Water to be treated>
The water to be treated is not particularly limited as long as it contains at least ammonia nitrogen. For example, groundwater, well water, lake water, river water, industrial water, sewage, and wastewater can be mentioned. However, the water to be treated is not limited to these examples.

被処理水は、アンモニア性窒素以外に、炭酸水素イオン、硝酸イオン、硫酸イオン、塩化物イオン等の陰イオン;鉄イオン、マンガンイオン、カルシウムイオン、マグネシウムイオン等の陽イオン;有機物;細菌等をさらに含むことがある。ただし、被処理水の成分はこれらに限定されない。
被処理水の有機物の主成分として、フミン酸、フルボ酸等が挙げられる。ただし、被処理水は、これら例示した成分以外の有機物を含むことがある。
In addition to ammonia nitrogen, the water to be treated may further contain anions such as bicarbonate ions, nitrate ions, sulfate ions, and chloride ions, cations such as iron ions, manganese ions, calcium ions, and magnesium ions, organic matter, bacteria, etc. However, the components of the water to be treated are not limited to these.
The main components of the organic matter in the water to be treated include humic acid, fulvic acid, etc. However, the water to be treated may contain organic matter other than these exemplified components.

被処理水のアンモニア性窒素の含有量は特に限定されないが、例えば、0.1~15mg/Lの範囲内である。アンモニア性窒素の含有量が0.5mg/L以上であり、好ましくは1mg/L以上であると、高い硝化速度を実現できる揺動式生物硝化方法および揺動式生物硝化装置を適用するメリットがさらに大きくなる。さらに高濃度のアンモニア性窒素を含む場合(例えば、アンモニア性窒素の含有量が15mg/Lを超え、50mg/L以下である場合)は、硝化槽を多段にすることが好ましい。
被処理水の鉄の含有量は特に限定されないが、例えば、0~20mg/Lの範囲内である。一実施形態に係る揺動式生物硝化方法および揺動式生物硝化装置によれば、被処理水に鉄が含まれる場合であっても、高い硝化速度を実現できる。
The content of ammoniacal nitrogen in the treated water is not particularly limited, but is, for example, within the range of 0.1 to 15 mg/L. When the content of ammoniacal nitrogen is 0.5 mg/L or more, preferably 1 mg/L or more, the advantage of applying the rocking type biological nitrification method and rocking type biological nitrification device that can realize a high nitrification rate is further increased. When a high concentration of ammoniacal nitrogen is contained (for example, when the content of ammoniacal nitrogen is more than 15 mg/L and is 50 mg/L or less), it is preferable to use multiple nitrification tanks.
The iron content of the water to be treated is not particularly limited, but is, for example, in the range of 0 to 20 mg/L. According to an embodiment of the rocking type biological nitrification method and rocking type biological nitrification device, a high nitrification rate can be achieved even when the water to be treated contains iron.

以下、本発明のいくつかの実施形態について適宜図面を参照しながら説明する。図面における寸法比は、説明の便宜上のものであり、実際のものとは異なる場合がある。また、図面において、同一の構成については同じ符号を用いて示し、重複する構成について説明を省略することがある。 Below, several embodiments of the present invention will be described with reference to the drawings as appropriate. The dimensional ratios in the drawings are for the convenience of explanation and may differ from the actual ones. In addition, in the drawings, the same components are indicated by the same reference numerals, and descriptions of overlapping components may be omitted.

<揺動式生物硝化装置>
図1に示す揺動式生物硝化装置1Aは、井戸2の原水(井戸水)を汲み上げるための揚水ポンプ3と;原水のための前処理槽8と;第1の端部が揚水ポンプ3と接続され、第2の端部が前処理槽8内と接続された揚水管9と;前処理槽8の貯留水に浸漬された銅線10Aと;生物硝化反応のための硝化槽5と;第1の端部が前処理槽8内と接続され、第2の端部が硝化槽5の底部近傍と接続された被処理水供給管4Aと;被処理水供給管4Aの途中に設けられた給水ポンプ11と;被処理水供給管4Aの途中に設けられ、硝化槽5内に供給される被処理水の流量を調整する通水量調整手段(図示略)と;硝化槽5内に装填された複数の生物保持体6と;硝化槽5内の貯留水に気体を供給するためのブロワ12と;第1の端部がブロワ12と接続され、第2の端部が硝化槽5内で開口している気体供給管13と;通水量調整手段および散気装置と電気的に接続された制御装置(図示略)と;硝化槽5内の液面付近に位置するスクリーン28と;スクリーン28と接続された処理水流出管7とを備える。
<Swing-type biological nitrification device>
The rocking type biological nitrification apparatus 1A shown in FIG. 1 includes a lifting pump 3 for pumping up raw water (well water) from a well 2; a pretreatment tank 8 for the raw water; a lifting pipe 9 having a first end connected to the lifting pump 3 and a second end connected to the inside of the pretreatment tank 8; a copper wire 10A immersed in the stored water in the pretreatment tank 8; a nitrification tank 5 for a biological nitrification reaction; a treated water supply pipe 4A having a first end connected to the inside of the pretreatment tank 8 and a second end connected to the vicinity of the bottom of the nitrification tank 5; a water supply pump 11 provided midway along the treated water supply pipe 4A; and a copper wire 10B immersed in the stored water in the pretreatment tank 8. A water flow rate adjusting means (not shown) is provided midway through A and adjusts the flow rate of the water to be treated supplied to the nitrification tank 5; a plurality of biological retainers 6 loaded in the nitrification tank 5; a blower 12 for supplying gas to the stored water in the nitrification tank 5; a gas supply pipe 13 having a first end connected to the blower 12 and a second end opening in the nitrification tank 5; a control device (not shown) electrically connected to the water flow rate adjusting means and the aeration device; a screen 28 located near the liquid level in the nitrification tank 5; and a treated water outflow pipe 7 connected to the screen 28.

揚水管9は、井戸2の井戸水を前処理槽8内に供給する。前処理槽8は、原水(この例では井戸水)を前段処理して被処理水とするための槽である。被処理水は、硝化槽5内に装填された複数の生物保持体6からなる生物保持体領域11に通水される水である。 The lift pipe 9 supplies well water from the well 2 into the pretreatment tank 8. The pretreatment tank 8 is a tank for pre-treating raw water (well water in this example) to produce water to be treated. The water to be treated is water that is passed through the biological retainer area 11, which is made up of multiple biological retainers 6 loaded into the nitrification tank 5.

前処理槽8は、例えば、単なる原水貯槽であってもよく、溶存酸素供給装置を備えた槽でもよい。ここでいう溶存酸素供給装置は、溶存酸素を供給するための曝気装置であり、散気装置とは異なる。
他にも、前段処理の例として脱メタン処理、砂ろ過処理が挙げられるが、これらに限定されるものではない。
The pretreatment tank 8 may be, for example, a simple raw water storage tank, or a tank equipped with a dissolved oxygen supply device. The dissolved oxygen supply device referred to here is an aeration device for supplying dissolved oxygen, and is different from an aeration device.
Other examples of pre-treatment include, but are not limited to, demethanization and sand filtration.

銅線10Aは、前処理槽8内の貯留水と接触している。銅線10Aは、被処理水に銅イオンを供給し得る銅供給源の一例である。銅線10Aは銅単体であってもよく、銅の合金であってもよい。
銅線10Aによれば、銅イオンが前処理槽8内の貯留水に溶出する結果、被処理水に銅イオンを供給できる。揺動式生物硝化装置1Aにおいては、被処理水の銅イオン濃度が0.1~300μg/Lの範囲内となる(要件2)。
The copper wire 10A is in contact with the water stored in the pretreatment tank 8. The copper wire 10A is an example of a copper supply source capable of supplying copper ions to the water to be treated. The copper wire 10A may be made of copper alone or a copper alloy.
With the copper wire 10A, copper ions are eluted into the water stored in the pretreatment tank 8, and as a result, copper ions can be supplied to the water to be treated. In the rocking type biological nitrification device 1A, the copper ion concentration of the water to be treated falls within the range of 0.1 to 300 μg/L (requirement 2).

被処理水供給管4Aは、給水ポンプ11によって被処理水を硝化槽5内に供給する。被処理水供給管4Aの途中には、硝化槽5内に供給される被処理水の水量を測定する通水量測定手段(図示略)と;通水量調整手段が設けられている。
通水量調整手段としては、例えば、流量調整弁が挙げられる。
通水量測定手段としては、例えば、ローターメータ、電磁流量計が挙げられる。
被処理水供給管4Aには、給水ポンプ11が設けられているが、このことは必須ではない。給水ポンプ11を設けず、水位差によって被処理水を硝化槽5内に供給してもよい。
The water to be treated is supplied to the nitrification tank 5 through the water supply pipe 4A by a water supply pump 11. A water flow rate measuring means (not shown) for measuring the amount of water to be treated supplied to the nitrification tank 5 and a water flow rate adjusting means are provided in the water supply pipe 4A.
An example of the water flow rate adjusting means is a flow rate adjusting valve.
Examples of the water flow rate measuring means include a rotameter and an electromagnetic flowmeter.
The untreated water supply pipe 4A is provided with a water supply pump 11, but this is not essential. The untreated water may be supplied to the nitrification tank 5 by using a water level difference without providing the water supply pump 11.

被処理水供給管4Aには、硝化槽5に供給される被処理水の銅イオン濃度、鉄の含有量およびアンモニア性窒素を測定する水質計(図示略)が設けられている。
被処理水供給管4Aには、例えば曝気槽のような溶存酸素供給手段が設けられていてもよい。溶存酸素供給手段は、被処理水に溶存酸素を供給するためのものである。
The untreated water supply pipe 4A is provided with a water quality meter (not shown) for measuring the copper ion concentration, iron content and ammoniacal nitrogen of the untreated water to be supplied to the nitrification tank 5.
The treated water supply pipe 4A may be provided with a dissolved oxygen supplying means such as an aeration tank. The dissolved oxygen supplying means is for supplying dissolved oxygen to the treated water.

硝化槽5は、生物保持体6を用いた生物硝化反応によって被処理水のアンモニア性窒素を処理するためのものである。硝化槽5には複数の生物保持体6が装填されている。
硝化槽5においては複数の生物保持体6が装填されることで、生物保持体領域11が形成されている。生物保持体領域11では、被処理水の通水時に揺動するように各生物保持体6が装填されている。硝化槽5内の生物保持体6に通水された被処理水の線速度がLV通水[m/h]である。
The nitrification tank 5 is for treating ammonia nitrogen in the water to be treated by biological nitrification reaction using the organism retainers 6. The nitrification tank 5 is loaded with a plurality of organism retainers 6.
In the nitrification tank 5, a plurality of biological retainers 6 are loaded to form a biological retainer region 11. In the biological retainer region 11, each biological retainer 6 is loaded so as to oscillate when the water to be treated is passed through it. The linear velocity of the water to be treated passed through the biological retainer 6 in the nitrification tank 5 is the LV water pass [m/h].

LV通水[m/h]は、通水量[m/h]を硝化槽5の断面積S[m]で除することで算出できる。断面積Sは、硝化槽5の底面(底部に担体を支える有孔ブロック、ストレーナー、スクリーン、グリッド等の支持板が存在する場合には、それら支持板の上面)から通水時にオーバーフローする水位までの縦方向各位置での水平断面積の平均値である。 The LV water flow rate [m/h] can be calculated by dividing the water flow rate [ m3 /h] by the cross-sectional area S [ m2 ] of the nitrification tank 5. The cross-sectional area S is the average value of the horizontal cross-sectional areas at each vertical position from the bottom of the nitrification tank 5 (or the upper surfaces of support plates such as perforated blocks, strainers, screens, and grids that support the carriers at the bottom) to the water level at which water overflows when the water is flowing.

硝化槽5は、生物保持体領域11における各生物保持体6と被処理水とを接触させることで、被処理水のアンモニア性窒素を酸化して処理水とする。生物保持体領域11は、複数の生物保持体6で硝化槽5の底部を覆うようにし、かつ、複数の生物保持体6を硝化槽5の高さ方向で多段に積み重ねて形成されていてもよい。 The nitrification tank 5 oxidizes the ammoniacal nitrogen in the water to be treated to produce treated water by contacting each of the biological retainers 6 in the biological retainer region 11 with the water. The biological retainer region 11 may be formed by covering the bottom of the nitrification tank 5 with multiple biological retainers 6 and stacking multiple biological retainers 6 in multiple stages in the height direction of the nitrification tank 5.

硝化槽5の大きさは、処理すべき水量によって設計可能である。そのため、硝化槽5の容積は特に限定されない。例えば、硝化槽5の容積は0.1~100mの範囲内とすることができる。また、硝化槽5の形状は特に限定されないが、硝化槽5は気液固三相流動反応槽に関するものである。そのため、気液固三相の流動を阻害する障害物はできるだけない形状が好ましく、特に凹凸の少ない形状が好ましい。例えば、円筒形、角形が挙げられる。加工性の点から、その断面が角形である硝化槽は好ましい。 The size of the nitrification tank 5 can be designed depending on the amount of water to be treated. Therefore, the volume of the nitrification tank 5 is not particularly limited. For example, the volume of the nitrification tank 5 can be within the range of 0.1 to 100 m3. In addition, the shape of the nitrification tank 5 is not particularly limited, but the nitrification tank 5 relates to a gas-liquid-solid three-phase flow reaction tank. Therefore, a shape that has as few obstacles as possible that hinder the flow of the gas-liquid-solid three phases is preferable, and a shape with few projections and recesses is particularly preferable. For example, a cylindrical shape or a square shape can be mentioned. From the viewpoint of workability, a nitrification tank having a square cross section is preferable.

硝化槽5の材質は特に限定されない。種々の素材の中でも、耐圧性に優れる素材は好適である。例えば、コンクリート、鉄の合金、アクリル樹脂、繊維強化樹脂が挙げられる。硝化槽5の加工しやすさの面からはパネル水槽(FRP水槽)が好ましい。 The material of the nitrification tank 5 is not particularly limited. Among various materials, materials with excellent pressure resistance are preferable. Examples include concrete, iron alloys, acrylic resin, and fiber-reinforced resin. In terms of ease of processing the nitrification tank 5, a panel tank (FRP tank) is preferable.

生物保持体6は、担体が硝化菌を保持したものである。1つの生物保持体6の立体的な大きさは、最大長さ方向が5mmを超えて、かつ、直径20mmの球体に収まる大きさである(要件1)。
生物保持体6は、担体と、担体に保持された硝化菌とを有する。担体の形状は、要件1が満足される限り、特に限定されない。例えば、立方体、直方体、球体、円錐状、多角錐状、筒体、糸状体が挙げられる。ただし、通水時に揺動させることや硝化槽5への装填の容易さを考慮すると、直方体、立方体、球体が好ましい。
The organism retainer 6 is a carrier that retains nitrifying bacteria. The three-dimensional size of one organism retainer 6 is such that the maximum length exceeds 5 mm and the organism retainer 6 can fit into a sphere having a diameter of 20 mm (requirement 1).
The organism holder 6 has a carrier and nitrifying bacteria held on the carrier. The shape of the carrier is not particularly limited as long as requirement 1 is satisfied. Examples of the shape of the carrier include a cube, a rectangular parallelepiped, a sphere, a cone, a polygonal pyramid, a cylinder, and a filament. However, in consideration of the ease of shaking during water flow and of loading into the nitrification tank 5, a rectangular parallelepiped, a cube, and a sphere are preferred.

複数の生物保持体6において、各担体の形状はすべて互いに同一である必要はなく、互いに異なる形状であってもよい。揺動状態を維持しやすく、また、均一に硝化反応を行いやすい点では、各担体は互いに同一の形状が好ましいが、必ずしもこれに限定されるものではない。 In multiple organism holders 6, the shapes of the carriers do not all need to be the same, and they may be different shapes. From the viewpoint of making it easier to maintain the oscillating state and to make it easier to carry out the nitrification reaction uniformly, it is preferable that the carriers have the same shape, but this is not necessarily limited to this.

担体としては、担体の表面および内部に硝化菌を担持することでより多くの硝化菌を担持でき、硝化速度がさらに向上する点から、多孔質の担体が好ましい。担体が多孔質の場合は、担体の内部に硝化菌が担持されていてもよい。
多孔質の担体の孔径は0.01~3mm程度が好ましく、0.05~1mm程度がより好ましく、0.1~0.5mm程度がさらに好ましい。
The carrier is preferably a porous carrier, since more nitrifying bacteria can be supported by supporting the nitrifying bacteria on the surface and inside of the carrier, and the nitrification rate can be further improved. When the carrier is porous, the nitrifying bacteria may be supported inside the carrier.
The pore size of the porous carrier is preferably about 0.01 to 3 mm, more preferably about 0.05 to 1 mm, and even more preferably about 0.1 to 0.5 mm.

特に、硝化菌の担持を良好に維持でき、かつポンプや配管の損傷を最小限に抑制できる点から、スポンジ担体が好ましい。スポンジ担体の空隙率は85~99%程度が好ましく、90~97%程度がより好ましい。
スポンジ担体の材料としては、例えば、ポリビニールアルコール、ポリエチレングリコール、ポリウレタンが挙げられる。
スポンジ担体の真密度は0.90~1.50g/cmが好ましく、1.00~1.40g/cmがより好ましく、1.00~1.20g/cmがさらに好ましい。
In particular, a sponge carrier is preferred because it can maintain the support of nitrifying bacteria well and minimize damage to pumps and piping. The porosity of the sponge carrier is preferably about 85 to 99%, and more preferably about 90 to 97%.
Examples of materials for the sponge carrier include polyvinyl alcohol, polyethylene glycol, and polyurethane.
The true density of the sponge carrier is preferably 0.90 to 1.50 g/cm 3 , more preferably 1.00 to 1.40 g/cm 3 , and even more preferably 1.00 to 1.20 g/cm 3 .

スポンジ担体の見かけの表面積は300m/m以上が好ましく、600m/m以上がより好ましい。スポンジ担体の見かけの表面積が前記下限値以上であると、表面積が充分大きく、被処理水との接触効率が高くなる。また、硝化菌を保持しやく、酸素供給効率も高くなり、硝化速度がさらに高くなる。 The apparent surface area of the sponge carrier is preferably 300 m2 / m3 or more, more preferably 600 m2 / m3 or more. When the apparent surface area of the sponge carrier is equal to or more than the lower limit, the surface area is sufficiently large, and the contact efficiency with the water to be treated is high. In addition, it is easy to retain nitrifying bacteria, the oxygen supply efficiency is also high, and the nitrification rate is further increased.

硝化菌としては、アンモニア性窒素の生物硝化に用いられる公知の硝化菌が挙げられる。例えば、Nitrosomonasを代表とする硝化菌は、独立栄養であり、基本的には炭酸ガスを唯一の炭素源としており、有機物基質を必要とせずアンモニア性窒素の存在下で生育できるが、その増殖速度は極めて小さい。硝化速度を高くするためには、硝化菌を硝化槽内に大量に保持する操作が必要となる。よって、硝化菌を、浮遊菌体ではなく担体に担体した状態で保持することが好ましい。
硝化菌の担体への担持方法としては、例えば、既存の水処理装置の硝化槽に担体を投入して担体の表面等に硝化菌を増殖させる方法が挙げられる。
The nitrifying bacteria include known nitrifying bacteria used in biological nitrification of ammonia nitrogen. For example, nitrifying bacteria such as Nitrosomonas are autotrophic, and basically use carbon dioxide as the only carbon source. They do not require an organic substrate and can grow in the presence of ammonia nitrogen, but their growth rate is extremely low. In order to increase the nitrification rate, an operation is required to hold a large amount of nitrifying bacteria in the nitrification tank. Therefore, it is preferable to hold the nitrifying bacteria on a carrier rather than as suspended bodies.
An example of a method for supporting nitrifying bacteria on a carrier is to introduce the carrier into a nitrification tank of an existing water treatment device and grow the nitrifying bacteria on the surface of the carrier.

生物保持体6の平均密度は1.00~2.00g/cmが好ましく、1.05~1.40g/cmがより好ましく、1.10~1.20g/cmがさらに好ましい。ここで、生物保持体6の平均密度は各生物保持体6が硝化菌を保持した湿潤状態における平均密度である。湿潤状態については後述する。
生物保持体6の平均密度が前記範囲の下限値以上であれば、生物保持体6が硝化槽5内の貯留水に沈降しやすいため、揺動状態を維持できる。そのため、生物保持体6は過度に流動することがない。よって、被処理水は出口方向に向かい徐々に複数の生物保持体6と接触しながら、硝化反応が進みやすい。生物保持体6の平均密度が前記範囲の上限値以下であれば、生物保持体6が揺動しやすい。
したがって、生物保持体6の平均密度が前記範囲内であれば、生物保持体6が被処理水の通水によって貯留水中で揺動しやすい。そのため、被処理水中の不純物(ss等)が生物保持体6に付着しにくくなる。結果として、被処理水と各生物保持体との接触効率がよくなり、硝化速度がより高くなる。
The average density of the organism retainer 6 is preferably 1.00 to 2.00 g/ cm3 , more preferably 1.05 to 1.40 g/ cm3 , and even more preferably 1.10 to 1.20 g/ cm3 . Here, the average density of the organism retainer 6 is the average density in a wet state in which each organism retainer 6 retains nitrifying bacteria. The wet state will be described later.
If the average density of the organism retainers 6 is equal to or greater than the lower limit of the range, the organism retainers 6 are likely to settle in the stored water in the nitrification tank 5, and therefore the oscillating state can be maintained. Therefore, the organism retainers 6 do not flow excessively. As a result, the water to be treated moves toward the outlet and gradually comes into contact with a number of organism retainers 6, and the nitrification reaction is likely to proceed. If the average density of the organism retainers 6 is equal to or less than the upper limit of the range, the organism retainers 6 are likely to oscillate.
Therefore, if the average density of the organism retainers 6 is within the above range, the organism retainers 6 are easily swung in the stored water by the flow of the water to be treated. Therefore, impurities (such as SS) in the water to be treated are less likely to adhere to the organism retainers 6. As a result, the contact efficiency between the water to be treated and each organism retainer is improved, and the nitrification rate is increased.

生物保持体の平均密度は、以下のようにして算出できる。
まず、複数の生物保持体の質量m[g]を測定する。例えば、図2に示すように、質量計30の上に容積が既知の容器20を載置した状態で、かさ体積が一定となるように生物保持体6を硝化槽から取り出して容器20に装填する。ここで、かさ体積を一定とするには、例えば、容積が既知の容器20の側面に目安線Lを引いておき、目安線Lと最上段の生物保持体6の上面とが一致するように複数の生物保持体6を容器20に装填することができる。
The average density of the bioretainer can be calculated as follows.
First, the mass m [g] of the plurality of organism supports is measured. For example, as shown in Fig. 2, a container 20 with a known volume is placed on a mass meter 30, and the organism supports 6 are removed from the nitrification tank and loaded into the container 20 so that the bulk volume is constant. To make the bulk volume constant, for example, a reference line L is drawn on the side of the container 20 with a known volume, and the plurality of organism supports 6 can be loaded into the container 20 so that the reference line L coincides with the top surface of the uppermost organism support 6.

硝化槽から生物保持体を取り出す際には、担体に付着した貯留水が生物保持体から滴り落ちる。この滴り落ちた貯留水の質量は、複数の生物保持体の質量m[g]に含めないものとする。本実施形態においては硝化槽から、かさ体積500cm程度の生物保持体をすくい出して水面上に保持し、水滴が5秒間以上滴り落ちなくなったときを生物保持体の「湿潤状態」として定義する。このような湿潤状態の生物保持体を容器20に装填する。
その後、生物保持体を硝化槽から取り出して容器20に装填する操作を繰り返し、複数の生物保持体の全体のかさ体積が所定の値となったときの質量を複数の生物保持体の質量m[g]として記録する。
When the organism holder is removed from the nitrification tank, the retained water adhering to the carrier drips off the organism holder. The mass of the dripped retained water is not included in the mass m [g] of the multiple organism holders. In this embodiment, an organism holder with a bulk volume of about 500 cm3 is scooped out of the nitrification tank and held on the water surface. The time when water droplets stop dripping for 5 seconds or more is defined as the "wet state" of the organism holder. The organism holder in such a wet state is loaded into the container 20.
Thereafter, the operation of removing the biological retainers from the nitrification tank and loading them into container 20 is repeated, and the mass when the total bulk volume of the multiple biological retainers reaches a predetermined value is recorded as the mass m [g] of the multiple biological retainers.

続いて、複数の生物保持体の体積V[cm]を測定する。図3に示すように、湿潤状態の生物保持体6が装填された容器20に、別途用意したビーカー40から所定のかさ体積となるまで、すなわち、目安線Lまで水を注ぎ、生物保持体6同士の間を水で満たす。このとき、ビーカー40から容器20に注いだ水の量を測定し、所定のかさ体積とビーカー40から注いだ水の量との差分を複数の生物保持体の体積V[cm]とする。
最後に、複数の生物保持体の質量m[g]を生物保持体の体積V[cm]で除して生物保持体6の平均密度m/V[g/cm]とする。
Next, the volume V [ cm3 ] of the multiple organism supports is measured. As shown in Fig. 3, water is poured from a separately prepared beaker 40 into a container 20 loaded with wet organism supports 6 until a predetermined bulk volume is reached, i.e., up to the reference line L, filling the spaces between the organism supports 6 with water. At this time, the amount of water poured from the beaker 40 into the container 20 is measured, and the difference between the predetermined bulk volume and the amount of water poured from the beaker 40 is taken as the volume V [ cm3 ] of the multiple organism supports.
Finally, the mass m [g] of the plurality of biosupports is divided by the volume V [cm 3 ] of the biosupports to obtain the average density m/V [g/cm 3 ] of the biosupports 6 .

生物保持体1個分の平均体積は、通水時の揺動を考慮すると、0.03~5.00cmが好ましく、0.06~1.00cmがより好ましく、0.10~0.30cmがさらに好ましい。生物保持体1個分の体積が前記範囲の下限値以上であると、スクリーン28等による生物保持体の固液分離が容易になる。生物保持体の1個分の体積が前記範囲の上限値以下であると、LVガスが比較的小さくても生物保持体が揺動しやすくなる。
ここで、生物保持体1個分の平均体積は、硝化槽内の複数の生物保持体の総体積を硝化槽内の生物保持体の個数で除した値である。
また、複数の生物保持体において、各生物保持体の体積は互いにすべて同一である必要はなく、互いに異なっていてもよい。
Taking into consideration the oscillation during water flow, the average volume of one organism retainer is preferably 0.03 to 5.00 cm3 , more preferably 0.06 to 1.00 cm3 , and even more preferably 0.10 to 0.30 cm3 . When the volume of one organism retainer is equal to or greater than the lower limit of the above range, solid-liquid separation of the organism retainer using screen 28 or the like becomes easy. When the volume of one organism retainer is equal to or less than the upper limit of the above range, the organism retainer is more likely to oscillate even with a relatively small LV gas .
Here, the average volume of one biological retainer is the total volume of a plurality of biological retainers in the nitrification tank divided by the number of biological retainers in the nitrification tank.
Furthermore, in a plurality of bioretainers, the volumes of each bioretainer do not all need to be the same, and may be different from one another.

生物保持体は、例えば以下のようにして準備できる。
既存の生物硝化装置の硝化槽を用いて担体を通水培養する。例えば、新品の多孔質の担体の密度は、内部に空気を含むため1g/cm未満の値となることが多い。
硝化槽で担体を通水培養していくと担体から空気が徐々に抜け、硝化菌が担体に付着していく。そして、硝化菌と水を含んだ湿潤状態での密度が例えば1.0~1.4g/cmの範囲内となるまで通水培養し、生物保持体とする。
The bioretainer can be prepared, for example, as follows.
The carrier is cultured by passing water through the nitrification tank of an existing biological nitrification device. For example, the density of a new porous carrier is often less than 1 g/ cm3 because it contains air inside.
When the carrier is cultured in a nitrification tank, air gradually escapes from the carrier and the nitrifying bacteria adhere to the carrier. The carrier is cultured in a water flow until the density of the carrier containing the nitrifying bacteria and water in a wet state is within the range of 1.0 to 1.4 g/ cm3 , for example, to form a biological retainer.

再び図1を参照する。処理水流出管7は、硝化槽5から処理水を取り出すためのものである。処理水流出管7は、スクリーン28と接続されている。処理水はスクリーン28に一度集められたのち処理水流出管7を介して硝化槽5外に流出する。
処理水流出管7の途中には、硝化槽5から流出する処理水の水量を測定する流出量測定手段(図示略)と;処理水流出管7を流れる処理水の流量を調整する流出量調整手段(図示略)が設けられている。
流出量測定手段としては、例えば、ローターメータ、電磁流量計が挙げられる。
流出量調整手段としては、例えば、流量調整弁が挙げられる。
1 again, the treated water outlet pipe 7 is for taking out the treated water from the nitrification tank 5. The treated water outlet pipe 7 is connected to a screen 28. The treated water is once collected on the screen 28 and then flows out of the nitrification tank 5 through the treated water outlet pipe 7.
An outflow volume measuring means (not shown) for measuring the volume of treated water flowing out from the nitrification tank 5 and an outflow volume adjusting means (not shown) for adjusting the flow rate of treated water flowing through the treated water outflow pipe 7 are provided midway through the treated water outflow pipe 7.
Examples of the outflow measuring means include a rotameter and an electromagnetic flowmeter.
An example of the outflow rate adjusting means is a flow rate adjusting valve.

ブロア12および気体供給管13を備えた散気装置は、気体供給装置の一例である。硝化槽5内の貯留水に供給された気体の線速度がLVガス[m/h]である。
揺動式生物硝化装置1Aにおいては、硝化槽5内の底部付近に延びた気体供給管13の開口から、気体が硝化槽5内の貯留水に供給される。気体供給管13の途中には気体供給量調整手段(図示略)が設けられている。
The air diffuser equipped with the blower 12 and the gas supply pipe 13 is an example of a gas supply device. The linear velocity of the gas supplied to the stored water in the nitrification tank 5 is LV gas [m/h].
In the rocking type biological nitrification apparatus 1A, gas is supplied to the stored water in the nitrification tank 5 from an opening of a gas supply pipe 13 extending near the bottom of the nitrification tank 5. A gas supply amount adjustment means (not shown) is provided in the middle of the gas supply pipe 13.

散気装置は原則として生物保持体6の表面に付着した固形物を曝気して取り除くためのものである。散気装置によれば、硝化槽内に供給した気泡によって、生物保持体6の表面に付着した固形物を取り除くことができる。 In principle, the aeration device is used to aerate and remove solid matter adhering to the surface of the biological retainer 6. With the aeration device, the air bubbles supplied into the nitrification tank can remove solid matter adhering to the surface of the biological retainer 6.

散気装置により供給する気体は、生物保持体6を揺動させられる気体であれば特に限定されないが、硝化反応を阻害せず、かつ、爆発や腐食等が起こらない安全な気体が好ましい。
気体としては、例えば、空気、アルゴンや窒素等の不活性ガスが挙げられる。
The gas supplied by the air diffuser is not particularly limited as long as it can agitate the organism holder 6, but a safe gas that does not inhibit the nitrification reaction and does not cause explosions or corrosion is preferable.
The gas may be, for example, air or an inert gas such as argon or nitrogen.

揺動式生物硝化装置1Aにおいては、気体供給管13の開口面が散気部であるが、他の例において散気部は、散気孔が形成された散気管、散気球、ディフューザーであってもよい。
気体供給量調整手段としては、例えば、ゲート弁、バタフライ弁、インバーターによるブロワ周波数の制御が挙げられる。
In the rocking type biological nitrification apparatus 1A, the opening surface of the gas supply pipe 13 is the aeration section, but in other examples the aeration section may be an aeration tube, an aeration ball, or a diffuser having a diffusion hole formed therein.
The gas supply amount adjusting means may be, for example, a gate valve, a butterfly valve, or control of blower frequency by an inverter.

制御装置は、インターフェイス部(図示略)、記憶部(図示略)、処理部(図示略)、判定部(図示略)、制御部(図示略)等を備える。
インターフェイス部は、通水量測定手段、通水量調整手段、水質計、流出量測定手段、流出量調整手段、散気装置のブロアおよび気体供給量調整手段と、制御部との間を電気的に接続するものである。
The control device includes an interface unit (not shown), a memory unit (not shown), a processing unit (not shown), a determination unit (not shown), a control unit (not shown), and the like.
The interface unit electrically connects the control unit to the water flow measurement means, the water flow adjustment means, the water quality meter, the outflow measurement means, the outflow adjustment means, the blower of the air diffuser, and the gas supply adjustment means.

記憶部は、線速度比(LVガス/LV通水)、下式(1)で算出される充填率を算出するための揺動式生物硝化装置1Aの運転条件等を記憶するものである。
充填率(%)=(複数の生物保持体6のかさ体積/硝化槽5内の有効水量体積)×100 ・・・式(1)
The memory unit stores the linear velocity ratio (LV gas /LV water flow rate ) and the operating conditions of the oscillating type biological nitrification device 1A for calculating the filling rate calculated by the following formula (1), etc.
Filling rate (%)=(bulk volume of multiple organism holders 6/available water volume in nitrification tank 5)×100 Equation (1)

LVガス[m/h]は、硝化槽内の貯留水中の気体の線速度である。LVガス[m/h]は、下式(2)で算出される。
LVガス[m/h]=散気装置による気体の供給量[m/h]/硝化槽の断面積S[m] ・・・式(2)
LV gas [m/h] is the linear velocity of gas in the water stored in the nitrification tank. LV gas [m/h] is calculated by the following formula (2).
LV gas [m/h]=amount of gas supplied by aeration device [m 3 /h]/cross-sectional area of nitrification tank S [m 2 ] Equation (2)

LV通水[m/h]は、複数の生物保持体に通水される被処理水の線速度である。LV通水は、以下の式(3)で計算される。
LV通水=通水量[m/h]/硝化槽の断面積S[m] ・・・式(3)
The LV water flow rate [m/h] is the linear velocity of the water being treated as it flows through the multiple organism retainers. The LV water flow rate is calculated by the following formula (3).
LV water flow rate =water flow rate [m 3 /h]/cross-sectional area of nitrification tank S [m 2 ] Equation (3)

記憶部に記憶される運転条件として、例えば、被処理水の銅イオン濃度、複数の生物保持体6の体積の総和、硝化槽5内の有効水量体積、硝化槽5の断面積S、硝化槽5内に装填した生物保持体6のかさ体積、総質量、個数、生物保持体6の平均密度、被処理水の供給量、処理水の流出量、硝化槽5内への気体供給量が挙げられる。 The operating conditions stored in the memory unit include, for example, the copper ion concentration of the water to be treated, the sum of the volumes of the multiple biological holders 6, the effective water volume in the nitrification tank 5, the cross-sectional area S of the nitrification tank 5, the bulk volume, total mass, and number of the biological holders 6 loaded in the nitrification tank 5, the average density of the biological holders 6, the supply amount of water to be treated, the outflow amount of treated water, and the amount of gas supplied into the nitrification tank 5.

揺動式生物硝化装置1Aにおいて、式(1)中の「複数の生物保持体6のかさ体積」は、生物保持体領域11を構成するすべての生物保持体6の体積の総和である。つまり、「複数の生物保持体のかさ体積」とは、複数の生物保持担体を硝化槽内に投入したとき、静置状態における生物保持体の集合体が、有効水量体積の空間内に占める体積である。 In the oscillating biological nitrification device 1A, the "bulk volume of the multiple biological retainers 6" in formula (1) is the sum of the volumes of all the biological retainers 6 that make up the biological retainer region 11. In other words, the "bulk volume of the multiple biological retainers" is the volume that the assembly of the biological retainers in a stationary state occupies within the space of the effective water volume when multiple biological retainer carriers are placed in the nitrification tank.

「生物保持体のかさ体積」は、高さ方向で均一な角型または円筒形の硝化槽において、硝化槽内に投入したすべての生物保持体6の静置時における硝化槽5の底面(底部に担体を支える有孔ブロック、ストレーナー、スクリーン、グリッド等の支持板が存在する場合には、それらの支持板の上面)から生物保持担体の上表面までの距離(有効充填高さh)と、硝化槽5の断面積Sを乗ずることで算出できる。 The "bulk volume of the biological retainer" can be calculated by multiplying the distance (effective filling height hZ) from the bottom of the nitrification tank 5 (or the top surfaces of support plates such as perforated blocks, strainers, screens, and grids that support the carriers at the bottom, if any) of the nitrification tank 5 is a rectangular or cylindrical tank that is uniform in height, to the upper surface of the biological retainer when all of the biological retainers 6 placed in the nitrification tank are allowed to stand, by the cross-sectional area S of the nitrification tank 5.

揺動式生物硝化装置1Aにおいて、式(1)中の「硝化槽5内の有効水量体積」は、硝化槽5内に存在する被処理水および生物保持担体の合計の体積である。この「硝化槽5内の有効水量体積」は、硝化槽5のオーバーフロー水位までの空容積である。硝化槽5の底面(底部に担体を支える有孔ブロック、ストレーナー、スクリーン、グリッド等の支持板が存在する場合には、それら支持板の上面)から通水時にオーバーフローする水位までの距離(有効水位h)と、硝化槽5の断面積Sを乗ずることで算出できる。 In the rocking type biological nitrification apparatus 1A, the "effective water volume in the nitrification tank 5" in formula (1) is the total volume of the water to be treated and the organism retention carrier present in the nitrification tank 5. This "effective water volume in the nitrification tank 5" is the empty volume up to the overflow water level of the nitrification tank 5. It can be calculated by multiplying the distance (effective water level hT) from the bottom of the nitrification tank 5 (if there are support plates such as perforated blocks, strainers, screens, grids, etc. that support the carriers at the bottom, the top surfaces of these support plates ) to the water level that overflows when water is passed through by the cross-sectional area S of the nitrification tank 5.

処理部は、以下の演算1を行うことができる。
演算1:複数の生物保持体6のかさ体積、硝化槽5内の有効水量体積をそれぞれ算出し、次いで、前記式(1)から生物保持体6の充填率を算出する。
The processing unit can perform the following operation 1.
Calculation 1: The bulk volume of the plurality of organism holders 6 and the available water volume in the nitrification tank 5 are calculated, and then the packing rate of the organism holders 6 is calculated from the above formula (1).

処理部は、以下の演算2を行うことができる。
演算2:通水量調整手段の流量値および硝化槽5の断面積SからLV通水を算出し、かつ、気体供給量調整手段の供給値および硝化槽5の断面積SからLVガスを算出し、線速度比(LVガス/LV通水)を算出する。
The processing unit can perform the following operation 2.
Calculation 2: The LV water flow rate is calculated from the flow rate value of the water flow rate adjustment means and the cross-sectional area S of the nitrification tank 5, and the LV gas is calculated from the supply value of the gas supply rate adjustment means and the cross-sectional area S of the nitrification tank 5, and the linear velocity ratio (LV gas /LV water flow rate ) is calculated.

判定部は、例えば、以下に掲げる事項の少なくとも1項を判定し得る。
・水質計で測定された被処理水の銅イオン濃度が、0.1~300μg/Lの範囲内であるか否か(要件2)。
・線速度比(LVガス/LV通水)が0.3~6.0の範囲内であるか否か(要件3)。
・処理部で算出された生物保持体6の充填率が75%以上であるか否か(要件4)。
・水質計で測定された被処理水の鉄の含有量が0.5mg/L以上であるか否か。
The determination unit may determine, for example, at least one of the following items:
- Whether the copper ion concentration of the treated water measured with a water quality meter is within the range of 0.1 to 300 μg/L (requirement 2).
- Whether the linear velocity ratio (LV gas /LV water ) is within the range of 0.3 to 6.0 (requirement 3).
Whether or not the filling rate of the organism holder 6 calculated in the processing section is 75% or more (requirement 4).
- Whether the iron content of the treated water measured with a water quality meter is 0.5 mg/L or more.

制御部は、判定部における判定結果、記憶部に記憶された揺動式生物硝化装置1Aの運転条件等に基づいて、揺動式生物硝化装置1Aの制御を行うものである。制御部は、要件3および要件4を満たすための制御を実行する。
制御部は、要件2を満たすための制御、つまり、被処理水の前記銅イオン濃度が0.1~300μg/Lとなるための制御を実行してもよい。また、被処理水中に含まれたアンモニア性窒素含有量が安定した場合、銅イオン濃度を事前に好ましい範囲内に確保してもよい。
The control unit controls the rocking type biological nitrification device 1A based on the determination result by the determination unit, the operating conditions of the rocking type biological nitrification device 1A stored in the storage unit, etc. The control unit executes control to satisfy requirements 3 and 4.
The control unit may execute control for satisfying requirement 2, that is, control for making the copper ion concentration in the water to be treated 0.1 to 300 μg/L. In addition, when the ammoniacal nitrogen content in the water to be treated is stabilized, the copper ion concentration may be secured in advance within a preferred range.

判定部において銅イオン濃度が0.1μg/L未満であると判定されたときは、制御部によって以下の制御がなされ得る。
・被処理水の供給量を減らして被処理水の銅イオン濃度を高くするように通水量調整手段を制御すること。
・処理水の流出量を減らして被処理水の銅イオン濃度を高くするように流出量調整手段を制御すること。
When the determining section determines that the copper ion concentration is less than 0.1 μg/L, the control section can carry out the following control.
Controlling the water flow rate adjusting means so as to reduce the supply rate of water to be treated and increase the copper ion concentration in the water to be treated.
Controlling the outflow rate adjusting means so as to reduce the outflow rate of treated water and increase the copper ion concentration in the water to be treated.

判定部において銅イオン濃度が300μg/L超であると判定されたときは、制御部によって以下の制御がなされ得る。
・被処理水の供給量を増やして被処理水の銅イオン濃度を低くするように通水量調整手段を制御すること。
・処理水の流出量を増やして被処理水の銅イオン濃度を低くするように流出量調整手段を制御すること。
When the determining section determines that the copper ion concentration is greater than 300 μg/L, the control section can carry out the following control.
The water flow rate adjusting means is controlled so as to increase the supply rate of water to be treated and to lower the copper ion concentration in the water to be treated.
- Controlling the outflow rate adjusting means so as to increase the outflow rate of treated water and lower the copper ion concentration in the water to be treated.

判定部において線速度比(LVガス/LV通水)が0.3未満であると判定されたときは、制御部によって以下の制御がなされ得る。
・散気装置による気体の供給量を増やしてLVガス[m/h]を高くするように気体供給量調整手段を制御すること。
・被処理水の供給量を減らしてLV通水[m/h]を低くするように通水量調整手段を制御すること。
・処理水の流出量を減らしてLV通水[m/h]を低くするように流出量調整手段を制御すること。
When the determining unit determines that the linear velocity ratio (LV gas /LV water flow ) is less than 0.3, the control unit can carry out the following control.
- Controlling the gas supply amount adjustment means so as to increase the amount of gas supplied by the aeration device and increase the LV gas [m/h].
Controlling the water flow rate adjustment means to reduce the supply rate of water to be treated and lower the LV water flow rate [m/h].
- Controlling the outflow rate adjustment means to reduce the outflow rate of treated water and lower the LV water flow rate [m/h].

判定部において線速度比(LVガス/LV通水)が6.0超であると判定されたときは、制御部によって以下の制御がなされ得る。
・散気装置による気体の供給量を減らしてLVガス[m/h]を低くするように気体供給量調整手段を制御すること。
・被処理水の供給量を増やしてLV通水[m/h]を高くするように通水量調整手段を制御すること。
・処理水の流出量を増やしてLV通水[m/h]を高くするように流出量調整手段を制御すること。
When the determining unit determines that the linear velocity ratio (LV gas /LV water flow ) is greater than 6.0, the control unit can carry out the following control.
Controlling the gas supply amount adjustment means to reduce the amount of gas supplied by the aeration device and lower the LV gas [m/h].
- Controlling the water flow rate adjustment means so as to increase the supply rate of water to be treated and increase the LV water flow rate [m/h].
- Controlling the outflow rate adjustment means to increase the outflow rate of treated water and increase the LV water flow rate [m3/h].

例えば、判定部において生物保持体6の充填率が75%未満であると判定された場合、制御部によって以下の制御がなされ得る。
・被処理水の供給量を減らして硝化槽5内の貯留水の体積を減らすように通水量調整手段を制御すること。
・処理水の流出量を増やして硝化槽5内の貯留水の体積を減らすように流出量調整手段を制御すること。
For example, when the determining section determines that the filling rate of the organism holder 6 is less than 75%, the control section can carry out the following control.
Controlling the water flow rate adjusting means so as to reduce the amount of water to be treated and thereby reduce the volume of water stored in the nitrification tank 5.
- Controlling the outflow rate adjustment means so as to increase the outflow rate of treated water and reduce the volume of stored water in the nitrification tank 5.

他にも、判定部において被処理水の鉄の含有量が0.5mg/L以上であると判定されたときは、制御部によって以下の制御がなされ得る。
・散気装置による気体の供給量を調整するように気体供給量調整手段を制御すること。
・通水量調整手段、流出量調整手段の各流量を調整してLV通水を調節すること。
In addition, when the judgment section judges that the iron content of the water to be treated is 0.5 mg/L or more, the control section may carry out the following control.
Controlling the gas supply amount adjusting means to adjust the amount of gas supplied by the air diffuser.
-Adjusting the flow rate of the water flow rate adjusting means and the outflow rate adjusting means to adjust the LV water flow rate .

処理部、判定部および制御部は、専用のハードウエアによって実現されるものであってもよい。また、処理部、判定部および制御部は、メモリおよび中央演算装置(CPU)によって構成されてもよい。CPUの場合、処理部、判定部および制御部の機能を実現するためのプログラムをメモリにロードして実行することによってその機能を実現させてもよい。 The processing unit, the determination unit, and the control unit may be realized by dedicated hardware. The processing unit, the determination unit, and the control unit may also be configured by a memory and a central processing unit (CPU). In the case of a CPU, the functions of the processing unit, the determination unit, and the control unit may be realized by loading a program for realizing the functions of the processing unit, the determination unit, and the control unit into memory and executing the program.

制御装置には、周辺機器として、入力装置、表示装置等が接続されていてもよい。入力装置としては、例えば、ディスプレイタッチパネル、スイッチパネル、キーボード等の入力デバイスが挙げられる。表示装置としては、例えば、液晶表示装置、CRT等の表示デバイスが挙げられる。 The control device may be connected to peripheral devices such as an input device and a display device. Examples of the input device include a display touch panel, a switch panel, a keyboard, and the like. Examples of the display device include a liquid crystal display device, a CRT, and the like.

<揺動式生物硝化方法>
以下、揺動式生物硝化装置1Aを用いた硝化方法の一例について説明する。
まず、既存の生物硝化装置の硝化槽で通水培養した複数の生物保持体6を、揺動式生物硝化装置1Aの硝化槽5内に装填する。
1つの生物保持体6の立体的な大きさが、最大長さ方向が5mmを超えて、かつ、直径20mmの球体に収まるものを用いる(要件1)。そのため、被処理水の通水時にそれぞれの生物保持体が揺動する。生物保持体6の装填時には、通水時に生物保持体6が揺動可能となるように、生物保持体6同士の間には揺動のための空間を空けておくとよい。
<Swing-type biological nitrification method>
An example of a nitrification method using the rocking type biological nitrification device 1A will be described below.
First, a plurality of organism holders 6 cultured in a nitrification tank of an existing biological nitrification apparatus are loaded into the nitrification tank 5 of the rocking type biological nitrification apparatus 1A.
The three-dimensional size of each organism retainer 6 exceeds 5 mm in the maximum length direction and fits into a sphere with a diameter of 20 mm (requirement 1). Therefore, each organism retainer 6 rocks when the water to be treated is passed through it. When the organism retainers 6 are loaded, it is advisable to leave a space between the organism retainers 6 for rocking so that the organism retainers 6 can rock when the water is passed through them.

次いで、アンモニア性窒素を含む原水(この例では、井戸水)を前処理槽8に溜める。前処理槽8内で銅線10Aと接触することで、被処理水に銅イオンが供給される。
その後、被処理水供給管4Aによって前処理槽8から硝化槽5の底部近傍に被処理水を供給して硝化槽5に貯める。このとき、硝化槽5内に水を貯めていくと、生物保持体領域11における生物保持体6同士の間にも水が満たされる。その後も貯水を続けると、生物保持体領域11の最上段の生物保持体6が貯留水に浸漬される。
Next, raw water containing ammonia nitrogen (well water in this example) is stored in the pretreatment tank 8. By contacting the raw water with the copper wire 10A in the pretreatment tank 8, copper ions are supplied to the water to be treated.
Thereafter, the water to be treated is supplied from the pretreatment tank 8 to the vicinity of the bottom of the nitrification tank 5 via the water to be treated supply pipe 4A and stored in the nitrification tank 5. As water is stored in the nitrification tank 5, the water also fills the spaces between the biological retainers 6 in the biological retainer region 11. As the water continues to be stored thereafter, the biological retainer 6 at the top of the biological retainer region 11 becomes immersed in the stored water.

硝化槽5内に水を貯める際には、下式(1)で算出される充填率が75%以上となるようにする。
充填率(%)=(複数の生物保持体6のかさ体積)/(硝化槽5内の有効水量体積)×100 ・・・式(1)
When water is stored in the nitrification tank 5, the filling rate calculated by the following formula (1) is set to 75% or more.
Filling rate (%)=(bulk volume of multiple organism holders 6)/(available water volume in nitrification tank 5)×100 Formula (1)

(生物硝化反応)
硝化槽5において被処理水が生物保持体領域11に通水されると、被処理水が生物保持体6と接触する。そして、被処理水のアンモニア性窒素が生物保持体6の硝化菌によって酸化されて硝酸性窒素になる。このようにして、アンモニア性窒素を含む被処理水を硝化槽5で処理して処理水とする。
(Biological nitrification reaction)
When the water to be treated is passed through the biological retainer region 11 in the nitrification tank 5, the water to be treated comes into contact with the biological retainer 6. Ammoniacal nitrogen in the water to be treated is then oxidized to nitrate nitrogen by the nitrifying bacteria in the biological retainer 6. In this way, the water to be treated containing ammoniacal nitrogen is treated in the nitrification tank 5 to produce treated water.

通水時に気体曝気を行うことでスポンジ担体のみかけ上の体積は膨張するが、この時の膨張率は2~25%の範囲内に収まることが望ましい。膨張率は下式(4)で算出される。
膨張率(%)=(通水時における複数の生物保持体6が硝化槽5内を占める体積[m]-静置時における複数の生物保持体6のかさ体積[m])/(有効水量体積[m])×100 ・・・式(4)
The apparent volume of the sponge carrier expands by aeration with gas while water is passing through it, and the expansion rate at this time is preferably within the range of 2 to 25%. The expansion rate is calculated by the following formula (4).
Expansion rate (%)=(volume [m 3 ] of the plurality of organism holders 6 in the nitrification tank 5 when water is flowing−bulk volume [m 3 ] of the plurality of organism holders 6 when left stationary)/(effective water volume [m 3 ])×100 (Equation (4))

(銅イオン濃度:要件2)
本実施形態においては、被処理水を通水する際に被処理水の銅イオン濃度を0.1~300μg/Lの範囲内とする。
銅イオン濃度は0.5μg/L以上が好ましく、1.0μg/L以上がより好ましい。銅イオン濃度を0.1μg/L以上とすることで硝化菌による生物硝化反応が活性化される結果、高い硝化速度を実現できる。
銅イオン濃度は100.0μg/L以下が好ましく、50.0μg/L以下がより好ましく、10.0μg/L以下がさらに好ましい。銅イオン濃度を300μg/L以下とすることで硝化菌による生物硝化反応が阻害されにくくなる結果、高い硝化速度を実現できる。
(Copper ion concentration: requirement 2)
In this embodiment, the copper ion concentration of the water to be treated is set within the range of 0.1 to 300 μg/L when the water to be treated is passed through the treatment system.
The copper ion concentration is preferably 0.5 μg/L or more, and more preferably 1.0 μg/L or more. By setting the copper ion concentration to 0.1 μg/L or more, the biological nitrification reaction by nitrifying bacteria is activated, and as a result, a high nitrification rate can be achieved.
The copper ion concentration is preferably 100.0 μg/L or less, more preferably 50.0 μg/L or less, and even more preferably 10.0 μg/L or less. By setting the copper ion concentration to 300 μg/L or less, the biological nitrification reaction by nitrifying bacteria is less likely to be inhibited, and a high nitrification rate can be achieved.

(LVガス/LV通水:要件3)
本実施形態では被処理水を通水する際に、線速度比(LVガス/LV通水)を0.3~6.0とする。線速度比(LVガス/LV通水)は0.5~6.0が好ましく、2.0~4.0がより好ましい。
線速度比(LVガス/LV通水)が前記数値範囲内であれば、生物保持体6の表面に鉄等の固形物を付着しにくくしながら、硝化速度を高めることができる。特に、被処理水の鉄の含有量が1.0mg/L超である場合、硝化反応中に生成した水酸化鉄等の固形物が生物保持体の表面に大量に付着する可能性がある。この場合、線速度比(LVガス/LV通水)を0.3以上とすることは特に有益であり得る。
(LV gas /LV water flow : requirement 3)
In this embodiment, when the water to be treated is passed through, the linear velocity ratio (LV gas /LV water passing ) is set to 0.3 to 6.0. The linear velocity ratio (LV gas /LV water passing ) is preferably 0.5 to 6.0, and more preferably 2.0 to 4.0.
If the linear velocity ratio (LV gas /LV water flow ) is within the above-mentioned numerical range, the nitrification rate can be increased while preventing solids such as iron from adhering to the surface of the organism holder 6. In particular, if the iron content of the water to be treated is more than 1.0 mg/L, there is a possibility that a large amount of solids such as iron hydroxide produced during the nitrification reaction will adhere to the surface of the organism holder. In this case, it may be particularly beneficial to set the linear velocity ratio (LV gas /LV water flow ) to 0.3 or more.

LV通水は、例えば、通水量調整手段、流出量調整手段の各流量によって調節可能である。
LV通水は特に限定されないが、5~40m/hの範囲内が好ましく、8~30m/hがより好ましく、10~25m/hがさらに好ましい。LV通水が前記範囲の下限値以上であると、生物保持体6が揺動しやすい。LV通水が前記範囲の上限値以下であると、硝化反応効率を維持しやすいため、硝化速度がさらに向上しやすい。
The LV water flow can be adjusted, for example, by adjusting the flow rate of the water flow rate adjusting means and the outflow rate adjusting means.
The LV water flow rate is not particularly limited, but is preferably within the range of 5 to 40 m/h, more preferably 8 to 30 m/h, and even more preferably 10 to 25 m/h. If the LV water flow rate is equal to or higher than the lower limit of the range, the organism holder 6 is likely to oscillate. If the LV water flow rate is equal to or lower than the upper limit of the range, the nitrification reaction efficiency is likely to be maintained, and the nitrification rate is likely to be further improved.

LVガスは、例えば、散気装置の気体供給量によって調節可能である。散気装置から散気される気体量は、気体供給量調整手段によって任意の気体量に調整できる。
LVガスは特に限定されないが、生物保持体6を揺動させる点、また、気体供給に必要な電気エネルギーを低減する点で、LVガスは3~100m/hの範囲内が好ましく、20~60m/hの範囲内がより好ましい。
The LV gas can be adjusted, for example, by the gas supply amount of the air diffuser. The amount of gas diffused from the air diffuser can be adjusted to an arbitrary amount by a gas supply amount adjusting means.
The LV gas is not particularly limited, but in terms of agitating the biological holder 6 and reducing the electrical energy required for gas supply, the LV gas is preferably in the range of 3 to 100 m/h, more preferably in the range of 20 to 60 m/h.

(充填率:要件4)
本実施形態では、被処理水を通水する際に式(1)で算出される充填率を75%以上とする。そのため、硝化速度が充分に高くなる。硝化速度を高める点では、前記式(1)で算出される充填率は75%以上とすることが好ましく、80%以上とすることがより好ましく、85%以上とすることがさらに好ましい。
前記式(1)で算出される充填率の計算上の上限は100%であるが、通水時に生物保持体6を揺動させる点では、100%以下とすることが好ましく、98%以下とすることがより好ましく、95%以下とすることがさらに好ましい。
ただし、充填率が100%付近になると揺動するための空間的なスペースが少なくなる。そのため、被処理水が鉄イオンを含む場合には、水酸化鉄等の濁質が担体に付着することで、ろ過閉塞が発生し得る。
(Filling rate: requirement 4)
In this embodiment, the filling rate calculated by formula (1) is set to 75% or more when the water to be treated is passed through the treatment tank. Therefore, the nitrification rate is sufficiently high. In terms of increasing the nitrification rate, the filling rate calculated by formula (1) is preferably set to 75% or more, more preferably set to 80% or more, and even more preferably set to 85% or more.
The upper limit of the filling rate calculated by the above formula (1) is 100%, but in terms of agitating the biological holder 6 when water is passed through it, it is preferable to set it to 100% or less, more preferably 98% or less, and even more preferably 95% or less.
However, when the filling rate approaches 100%, the spatial space for oscillation is reduced, and therefore, when the water to be treated contains iron ions, suspended matter such as iron hydroxide adheres to the carrier, which may cause filtration blockage.

(上向流)
揺動式生物硝化装置1Aにおいては、被処理水が上向流として生物保持体領域11の複数の生物保持体6に通水される。本実施形態のように被処理水を上向流として通水することで、曝気時においても生物保持体が揺動しやすい状態を実現できる。
(Upward flow)
In the rocking type biological nitrification apparatus 1A, the water to be treated is passed as an upward flow through the multiple biological retainers 6 in the biological retainer region 11. By passing the water to be treated as an upward flow as in this embodiment, a state in which the biological retainers are easily rocked even during aeration can be achieved.

<作用機序>
以上一例を用いて説明した一実施形態に係る揺動式生物硝化方法においては、(i)生物保持体の大きさ、(ii)被処理水の銅イオン濃度、(iii)線速度比(LVガス/LV通水)および(iv)生物保持体の充填率が所定の条件を満たす。そのため、以下に掲げる利点が提供され得る。よって、高濃度のアンモニア性窒素を含む被処理水を高い硝化速度で処理でき、かつ、処理装置の小型化も可能である。
<Mechanism of action>
In the rocking biological nitrification method according to the embodiment described above, (i) the size of the biological holder, (ii) the copper ion concentration of the water to be treated, (iii) the linear velocity ratio (LV gas /LV water flow ), and (iv) the filling rate of the biological holder satisfy certain conditions. Therefore, the following advantages can be provided. Therefore, the water to be treated containing a high concentration of ammonia nitrogen can be treated at a high nitrification rate, and the treatment device can be made compact.

・通水時に生物保持体が硝化槽内で揺動可能となるため、固形物が生物保持体の表面に付着しにくくなる。そのため、生物保持体による硝化反応の反応効率がよくなる。
・被処理水の銅イオン濃度が充分に高く、かつ、過度には高くないため、高い硝化速度を実現できる。結果として、高濃度のアンモニア性窒素を含む被処理水も処理できる。また、処理装置の小型化も実現できる。
・生物保持体が揺動可能であるため、通水時に被処理水が生物保持体の全体と効率的に接触する。その結果、生物保持体の充填率を75%以上としながらも、短絡流の発生や生物保持体6と接触しないデッドスペースの発生を防ぐことができる。よって、硝化速度も向上し、また、優れた硝化速度を実現できる。
・本実施形態によれば優れた硝化速度を実現できる。そのため、硝化槽の数を増やす必要性も少なくなる。また、硝化槽自体も小型化が可能である。
- Because the biological retainer can oscillate in the nitrification tank when water is passed through it, solid matter is less likely to adhere to the surface of the biological retainer, improving the efficiency of the nitrification reaction by the biological retainer.
- The copper ion concentration in the treated water is sufficiently high, but not excessively high, so a high nitrification rate can be achieved. As a result, the treated water containing a high concentration of ammonia nitrogen can also be treated. In addition, the treatment device can be made smaller.
Since the organism retainer can oscillate, the water to be treated comes into contact with the entire organism retainer efficiently when the water passes through it. As a result, even if the filling rate of the organism retainer is set to 75% or more, it is possible to prevent the occurrence of short-circuiting and the occurrence of dead spaces that do not come into contact with the organism retainer 6. This improves the nitrification rate and realizes an excellent nitrification rate.
According to the present embodiment, an excellent nitrification rate can be achieved. Therefore, there is less need to increase the number of nitrification tanks. In addition, the nitrification tanks themselves can be made smaller.

例えば特許文献1のような流動床混合流れ方式の硝化方法においては、充填率が75%以上になると、担体の流動性不良によるデッドスペースや短絡流が発生するため、硝化速度を高めることに限界がある。
対して、本実施形態においては通水時に生物保持体が揺動するため、被処理水が複数の生物保持体と全体的に効率よく接触する。そのため、所定の充填率を75%以上としながらも、短絡流の発生や生物保持体と接触しないデッドスペースの発生を防ぐことができ、結果として硝化速度を高めることができる。かかる本実施形態の生物硝化反応は、揺動床押出流れ方式であるとも言える。
For example, in a fluidized bed mixed flow type nitrification method as described in Patent Document 1, when the packing rate reaches 75% or more, dead spaces and short-circuiting occur due to poor fluidity of the carrier, so there is a limit to how quickly the nitrification rate can be increased.
In contrast, in this embodiment, the biological retainer oscillates when water is passed through, so the treated water comes into contact with the multiple biological retainers efficiently overall. Therefore, even with a predetermined filling rate of 75% or more, it is possible to prevent the occurrence of short-circuiting flow and the occurrence of dead spaces where the water does not come into contact with the biological retainers, and as a result, the nitrification rate can be increased. The biological nitrification reaction in this embodiment can also be said to be a oscillating bed push-out flow method.

本実施形態においては、生物保持体が硝化槽内の貯留水中で揺動可能である。そのため、被処理水の鉄の含有量が1.0mg/L以下である場合、LVガスが相対的に低くても生物保持体の表面に付着した固形物を充分に除去できるため、硝化反応の効率を高く維持できる。結果、高い硝化速度を実現できる。この場合、曝気によるエネルギー消費量を削減できる。
一方、後述の実施例に示すように、被処理水の鉄の含有量が1.0mg/L超である場合であっても、アンモニア性窒素を高い硝化速度で処理できる。
In this embodiment, the biological retainer can be swung in the water stored in the nitrification tank. Therefore, when the iron content of the water to be treated is 1.0 mg/L or less, the solid matter attached to the surface of the biological retainer can be sufficiently removed even if the LV gas is relatively low, so that the efficiency of the nitrification reaction can be maintained high. As a result, a high nitrification rate can be achieved. In this case, the energy consumption due to aeration can be reduced.
On the other hand, as shown in the examples described later, even when the iron content of the water to be treated exceeds 1.0 mg/L, ammoniacal nitrogen can be treated at a high nitrification rate.

また、以上説明した揺動式生物硝化装置1Aは上述した構成を備えるため、揺動式生物硝化装置1Aを用いることによって上述の一実施形態に係る揺動式生物硝化方法を実施でき、上述の作用機序を発揮できる。
例えば揺動式生物硝化装置1Aのように硝化槽を1つ備える場合、被処理水の滞留時間を30min以下とした場合でも、5mg/L以上の高濃度のアンモニア性窒素を含む被処理水のアンモニア性窒素をおよそ0.1mg/L未満まで低減する処理が可能となる。よって、例えば、1mg/L以上の高濃度のアンモニア性窒素を含む被処理水を処理する場合、被処理水を飲用化する用途に本発明を特に好適に適用できる。
Furthermore, since the oscillating biological nitrification apparatus 1A described above has the configuration described above, by using the oscillating biological nitrification apparatus 1A, the oscillating biological nitrification method according to the above-mentioned embodiment can be implemented and the above-mentioned mechanism of action can be exerted.
For example, in the case of a rocking biological nitrification apparatus 1A having one nitrification tank, even if the residence time of the treated water is 30 min or less, it is possible to reduce the ammoniacal nitrogen of the treated water containing a high concentration of ammoniacal nitrogen of 5 mg/L or more to less than about 0.1 mg/L. Therefore, for example, when treating the treated water containing a high concentration of ammoniacal nitrogen of 1 mg/L or more, the present invention is particularly suitable for use in making the treated water potable.

<他の実施形態例>
以上一実施形態例を示して一実施形態について説明したが、本発明は本明細書に開示の実施形態例に限定されず、その要旨を変更しない範囲で適宜変更して実施できる。本明細書に開示の実施形態は、その他の様々な形態で実施可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置換、変更が可能である。
以下、いくつかの変形例を示すが、本発明の実施形態はこれらの変形例に限定されるものではない。
<Other embodiment examples>
Although one embodiment has been described above by showing one embodiment, the present invention is not limited to the embodiment disclosed in this specification, and can be appropriately modified and implemented without departing from the gist of the present invention. The embodiment disclosed in this specification can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the gist of the invention.
Several modified examples are shown below, but the embodiments of the present invention are not limited to these modified examples.

上述の揺動式生物硝化装置1Aにおいては、銅供給源の銅線10Aは、前処理槽8内の貯留水に接触しているが、銅供給源はこの形態例に限定されない。また、銅供給源は、被処理水に銅イオンを供給してもよく、原水に銅イオンを供給してもよい。
例えば図4に示す揺動式生物硝化装置1Bにおいては、図5に示すように被処理水供給管4Bの配管内部に銅線10Aが配置されている。被処理水供給管4Bの第1の端部は揚水ポンプ3と接続され、第2の端部は硝化槽5内と接続されている。
揺動式生物硝化装置1Bによれば、被処理水供給管4Bにおいて原水の井戸水に銅イオンを供給できる。被処理水供給管4B内で原水に銅イオンが供給された後の被処理水を、硝化槽5内の生物保持体6に通水できる。
In the above-mentioned rocking type biological nitrification apparatus 1A, the copper wire 10A of the copper supply source is in contact with the stored water in the pretreatment tank 8, but the copper supply source is not limited to this embodiment. In addition, the copper supply source may supply copper ions to the water to be treated or may supply copper ions to the raw water.
For example, in the rocking type biological nitrification apparatus 1B shown in Fig. 4, a copper wire 10A is disposed inside the treated water supply pipe 4B as shown in Fig. 5. A first end of the treated water supply pipe 4B is connected to the lifting pump 3, and a second end of the treated water supply pipe 4B is connected to the inside of the nitrification tank 5.
According to the rocking type biological nitrification apparatus 1B, copper ions can be supplied to the raw well water in the treated water supply pipe 4B. The treated water after the copper ions have been supplied to the raw water in the treated water supply pipe 4B can be passed through the biological holder 6 in the nitrification tank 5.

また、銅の供給方法も特に限定されない。例えば、図6に示す揺動式生物硝化装置1Cにおいては、前処理槽8内の貯留水に銅電極10Cが陽極として浸漬されている。また、該貯留水に陰極16が浸漬されている。銅電極10Cは電源15の正電位側と接続されている。また、陰極16は電源15の負電位側と接続されている。
揺動式生物硝化装置1Cによれば、電気分解によって陽極、すなわち銅電極10Cを溶解させることで被処理水に銅イオンを供給できる。そして、前処理槽8内で原水に銅イオンが供給された後の被処理水を、硝化槽5内の生物保持体6に通水できる。
In addition, the method of supplying copper is not particularly limited. For example, in the rocking type biological nitrification apparatus 1C shown in FIG. 6, a copper electrode 10C is immersed as an anode in the stored water in the pretreatment tank 8. A cathode 16 is immersed in the stored water. The copper electrode 10C is connected to the positive potential side of a power source 15. The cathode 16 is connected to the negative potential side of the power source 15.
According to the rocking type biological nitrification apparatus 1C, copper ions can be supplied to the water to be treated by dissolving the anode, i.e., the copper electrode 10C, through electrolysis. Then, the water to be treated after the copper ions are supplied to the raw water in the pretreatment tank 8 can be passed through the organism holder 6 in the nitrification tank 5.

電源15は、揺動式生物硝化装置の図示略の制御装置と電気的に接続されていることが好ましい。この場合、制御装置の制御部によって以下の制御がなされ得る。
・制御装置の判定部において銅イオン濃度が0.1μg/L未満であると判定されたとき、銅電極10Cに流れる電流値を高くして溶出する銅イオンを多くすることで、銅イオン濃度を高くするように制御すること。
・制御装置の判定部において銅イオン濃度が300μg/L超であると判定されたとき、銅電極10Cに流れる電流値を低くして溶出する銅イオンを少なくすることで、銅イオン濃度を高くするように制御すること。
The power supply 15 is preferably electrically connected to a control device (not shown) of the rocking type biological nitrification device. In this case, the following controls can be performed by a control unit of the control device.
When the judgment unit of the control device judges that the copper ion concentration is less than 0.1 μg/L, the copper ion concentration is controlled to be increased by increasing the current value flowing through the copper electrode 10C to increase the amount of copper ions eluted.
When the judgment unit of the control device judges that the copper ion concentration is greater than 300 μg/L, the current value flowing through the copper electrode 10C is lowered to reduce the amount of copper ions eluted, thereby controlling the copper ion concentration to be higher.

銅供給源の形態は、銅線や銅電極に限定されない。他のバリエーションとしては、例えば、被処理水供給管を銅単体の配管とすることや銅合金の配管とすることが挙げられる。他にも、電源の正電位側と接続された銅電極を被処理水供給管の内部に配置してもよい。図7に示す被処理水供給管4Aの内部には、銅電極10Cおよび陰極16が配置されている。銅電極10Cは電源15の正電位側と接続されている。また、陰極16は電源15の負電位側と接続されている。
いずれのバリエーションにおいても、被処理水または原水に銅イオンを供給できる。
The form of the copper supply source is not limited to a copper wire or a copper electrode. Other variations include, for example, making the treated water supply pipe a pipe of simple copper or a pipe of a copper alloy. Alternatively, a copper electrode connected to the positive potential side of a power source may be disposed inside the treated water supply pipe. A copper electrode 10C and a cathode 16 are disposed inside the treated water supply pipe 4A shown in FIG. 7. The copper electrode 10C is connected to the positive potential side of a power source 15. The cathode 16 is connected to the negative potential side of the power source 15.
In either variation, copper ions can be supplied to the water to be treated or to the raw water.

他にも、銅の水溶性化合物またはその水溶液を、被処理水または原水に添加することにより被処理水または原水に供給してもよい。例えば、図8に示す揺動式生物硝化装置1Dは、銅イオン注入装置10Dを備える。揺動式生物硝化装置1Dにおいて、被処理水供給管4Aの第1の端部は揚水ポンプ3と接続され、第2の端部は硝化槽5の底部近傍と接続されている。 Alternatively, a water-soluble copper compound or an aqueous solution thereof may be added to the water to be treated or the raw water to be treated, thereby supplying the water to be treated or the raw water. For example, the rocking biological nitrification apparatus 1D shown in FIG. 8 includes a copper ion injection device 10D. In the rocking biological nitrification apparatus 1D, the first end of the water to be treated supply pipe 4A is connected to the lifting pump 3, and the second end is connected to the vicinity of the bottom of the nitrification tank 5.

銅イオン注入装置10Dは、銅の水溶性化合物またはその水溶液が貯留されたタンク17と;第1の端部がタンク17と接続され、第2の端部が被処理水供給管4Aの途中と接続された注入管18と;注入管18の途中に設けられた注入ポンプ19と;を有する。
揺動式生物硝化装置1Dによれば、注入ポンプ19を駆動させることでタンク17から銅イオンを被処理水供給管4A内の原水の井戸水に供給できる。そして、被処理水供給管4A内で原水に銅イオンが供給された後の被処理水を、硝化槽5内の生物保持体6に通水できる。
The copper ion injection device 10D comprises: a tank 17 in which a water-soluble copper compound or an aqueous solution thereof is stored; an injection pipe 18 having a first end connected to the tank 17 and a second end connected to the middle of the treated water supply pipe 4A; and an injection pump 19 provided in the middle of the injection pipe 18.
According to the rocking type biological nitrification apparatus 1D, copper ions can be supplied from the tank 17 to the raw well water in the treated water supply pipe 4A by driving the injection pump 19. Then, the treated water after the copper ions have been supplied to the raw water in the treated water supply pipe 4A can be passed through the organism holder 6 in the nitrification tank 5.

注入ポンプ19は、揺動式生物硝化装置の図示略の制御装置と電気的に接続されていることが好ましい。この場合、制御装置の制御部によって以下の制御がなされ得る。
・制御装置の判定部において銅イオン濃度が0.1μg/L未満であると判定されたとき、注入ポンプ19によるタンク17内の液体の供給量を高くすることで、銅イオン濃度を高くするように制御すること。
・制御装置の判定部において銅イオン濃度が300μg/L超であると判定されたとき、注入ポンプ19によるタンク17内の液体の供給量を低くすることで、銅イオン濃度を低くするように制御すること。
The injection pump 19 is preferably electrically connected to a control device (not shown) of the rocking type biological nitrification device. In this case, the following controls can be performed by a control unit of the control device.
When the judgment section of the control device judges that the copper ion concentration is less than 0.1 μg/L, the amount of liquid supplied to the tank 17 by the injection pump 19 is increased, thereby controlling the copper ion concentration to be increased.
When the judgment section of the control device judges that the copper ion concentration exceeds 300 μg/L, the amount of liquid supplied to the tank 17 by the injection pump 19 is reduced, thereby controlling the copper ion concentration to be lower.

また、銅供給源の配置も、銅を被処理水に供給することができる位置であれば特に限定されない。銅供給源と原水または被処理水とを接触させて銅を供給する場合は、銅供給源が原水または被処理水と接する位置にあることが好ましい。
図9に例示する揺動式生物硝化装置1Eのように、硝化槽5内の被処理水に銅線10Aが浸漬されてもよい。また、図示は省略するが、電源の正電位側と接続された銅電極10Cが硝化槽5内の被処理水に浸漬されてもよい。
The location of the copper supply source is not particularly limited as long as it is a location where copper can be supplied to the water to be treated. When copper is supplied by contacting the copper supply source with the raw water or the water to be treated, it is preferable that the copper supply source is located in a position where it contacts the raw water or the water to be treated.
9, a copper wire 10A may be immersed in the water to be treated in a nitrification tank 5. Although not shown, a copper electrode 10C connected to the positive potential side of a power source may be immersed in the water to be treated in the nitrification tank 5.

銅供給源を被処理水または原水に接触させて銅を溶出させる場合、銅供給源の形態も特に限定されるものではない。例えば、図1の銅線10Aのように銅の単体または合金を線状に成形したものを用いてもよいが、他の例では、銅の単体または合金を板状に成形したものを用いてもよい。銅供給源を被処理水または原水に接触させて銅を溶出させる場合、溶存酸素濃度が高いほど銅の溶出が促進される傾向がある。 When copper is eluted by contacting a copper source with the water to be treated or raw water, the form of the copper source is not particularly limited. For example, a copper element or an alloy formed into a wire shape, such as the copper wire 10A in FIG. 1, may be used, but in another example, a copper element or an alloy formed into a plate shape may be used. When copper is eluted by contacting a copper source with the water to be treated or raw water, the higher the dissolved oxygen concentration, the more the copper elution tends to be promoted.

上述の実施形態例においては、被処理水が上向流として生物保持体領域11の複数の生物保持体6に通水されるが、他の例では、生物保持体領域11の上側から下側に向かって被処理水を下向流として生物保持体6に通水してもよい。
下向流として被処理水を通水する場合でも、同様の作用効果が得られるため、高い硝化速度を実現できる。
In the above-described embodiment, the water to be treated is passed through the multiple biological retainers 6 in the biological retainer region 11 as an upward flow, but in other examples, the water to be treated may be passed through the biological retainers 6 as a downward flow from the top to the bottom of the biological retainer region 11.
The same effect can be obtained even when the water to be treated is passed through the system in a downward flow, so that a high nitrification rate can be achieved.

硝化槽の数は1つに限定されず、複数でもよい。例えば、被処理水のアンモニア性窒素の含有量が2mg/L以下の場合、硝化槽の数は1つでもよい。ただし、被処理水のアンモニア性窒素の含有量が2~6mg/Lの場合、硝化槽の数を増やして複数としてもよい。また、硝化反応を促進するために散気装置を設ける硝化槽の数は1つでもよい。例えば、アンモニア性窒素の含有量が6mg/L程度増える毎に、散気装置を設ける硝化槽を1つずつ増やしてもよい。 The number of nitrification tanks is not limited to one, and may be multiple. For example, if the ammonia nitrogen content of the water to be treated is 2 mg/L or less, the number of nitrification tanks may be one. However, if the ammonia nitrogen content of the water to be treated is 2 to 6 mg/L, the number of nitrification tanks may be increased to multiple. Also, the number of nitrification tanks equipped with an aeration device to promote the nitrification reaction may be one. For example, the number of nitrification tanks equipped with an aeration device may be increased by one for every increase of about 6 mg/L in the ammonia nitrogen content.

硝化槽5内の貯留水の溶存酸素濃度(DO)を測定するDOメータを用いてもよい。
複数の生物硝化槽がある場合、前処理槽8における曝気装置は、各生物硝化槽の間に設けられたほうがよい。生物硝化槽内の生物保持体の揺動状態に直接影響しないようにするためである。
A dissolved oxygen (DO) meter for measuring the dissolved oxygen concentration in the water stored in the nitrification tank 5 may be used.
When there are multiple biological nitrification tanks, it is better to provide an aeration device in the pretreatment tank 8 between each biological nitrification tank, in order not to directly affect the shaking state of the biological retainer in the biological nitrification tank.

硝化槽5から流出する処理水に後段処理を施す後段処理装置を用いてもよい。後段処理装置は、被処理水の水質、処理水の水質等に応じて適宜設置され得る。
後段処理装置としては、例えば、イオン交換処理槽、凝集剤添加装置、酸化剤添加装置、砂ろ過塔、膜ろ過装置、殺菌剤添加装置が挙げられる。
後段処理が施された後の最終処理水の用途は特に限定されない。例えば、生活用水、飲用水としての用途が挙げられるが、これらに限定されるものではない。
A post-treatment device may be used for subjecting treated water flowing out of the nitrification tank 5 to post-treatment. The post-treatment device may be installed appropriately depending on the quality of the water to be treated and the quality of the treated water, etc.
Examples of downstream treatment devices include an ion exchange treatment tank, a flocculant addition device, an oxidant addition device, a sand filtration tower, a membrane filtration device, and a disinfectant addition device.
The use of the final treated water after the second stage treatment is not particularly limited, and examples thereof include, but are not limited to, use as domestic water and drinking water.

以上、本発明をいくつかの具体的な実施形態に即して説明したが、各実施形態は例として提示されたものであり、本発明の範囲を限定するものではない。本明細書に記載された各実施形態は、発明の効果が奏される範囲内で、様々に変形することができ、かつ、実施可能な範囲内で、他の実施形態により説明された特徴と組み合わせることができる。 The present invention has been described above with reference to several specific embodiments, but each embodiment is presented as an example and does not limit the scope of the present invention. Each embodiment described in this specification can be modified in various ways within the scope of the effects of the invention, and can be combined with features described in other embodiments within the scope of feasibility.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は以下の記載に限定されない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following description.

<被処理水の調製>
原水水質:採取した地下水に硫酸鉄七水和物を加えて鉄イオンの濃度が0.3~3.0mg/Lである模擬地下水を調製した。さらに採取した地下水に塩化アンモニウム、硫酸銅5水和物を加え、アンモニア性窒素濃度、銅濃度を調整した。採取したときの地下水水温は17±1℃であり、アルカリ度は85mg/Lであり、pHは7.6±0.2であった。
<Preparation of treated water>
Raw water quality: Ferrous sulfate heptahydrate was added to the collected groundwater to prepare simulated groundwater with an iron ion concentration of 0.3 to 3.0 mg/L. Ammonium chloride and copper sulfate pentahydrate were further added to the collected groundwater to adjust the ammoniacal nitrogen concentration and copper concentration. The groundwater temperature at the time of collection was 17±1°C, the alkalinity was 85 mg/L, and the pH was 7.6±0.2.

<試験装置の構築>
図10に示す試験装置50を構築した。試験装置50は、硝化槽5と被処理水供給管14とスクリーン28と処理水流出管7とを有する。被処理水供給管14の吐出口14aは、硝化槽5内で下向きに開口している。
<Construction of test equipment>
A test apparatus 50 shown in Fig. 10 was constructed. The test apparatus 50 has a nitrification tank 5, a water-to-be-treated supply pipe 14, a screen 28, and a treated water outlet pipe 7. A discharge port 14a of the water-to-be-treated supply pipe 14 opens downward in the nitrification tank 5.

(生物保持体)
スポンジ担体として、5mm角の立方体状のポリウレタン製スポンジ担体(株式会社テクノフォームジャパン製「ウォーターフレックスAQ-15」)を用意した。通水培養する前のスポンジ担体の密度は0.044g/cmであった。これらのスポンジ担体を既存の生物硝化装置の硝化槽で通水培養し、約10kg(約6500個)の生物保持体を調製した。通水培養後、硝化槽から生物保持体をすくい出して水面上に保持し、水滴が5秒間以上滴り落ちなくなったとき、生物保持体が湿潤状態にあると判断し、10Lの目盛り付き容器に装填した。
(Biological Support)
As the sponge carrier, a 5 mm square cubic polyurethane sponge carrier ("Waterflex AQ-15" manufactured by Technoform Japan Co., Ltd.) was prepared. The density of the sponge carrier before the water-passing culture was 0.044 g/cm 3. These sponge carriers were subjected to water-passing culture in the nitrification tank of an existing biological nitrification device, and about 10 kg (about 6,500 pieces) of biological holders were prepared. After the water-passing culture, the biological holders were scooped out of the nitrification tank and held on the water surface. When the water droplets stopped dripping for 5 seconds or more, the biological holders were judged to be in a wet state, and were loaded into a 10 L graduated container.

生物保持体を10Lの目盛り付き容器に装填し終えたとき、生物保持体の質量mは、5785gであった。その後、生物保持体が装填された目盛り付き容器内に、別途用意したビーカーから水を注いで生物保持体同士の間を水で満たし、水面が10Lの目盛りに到達したとき注水を止めた。このとき別途用意したビーカーから注いだ水量は、4770cmであった。生物保持体の体積Vを10000cm(10L)-4770cm=5230cmとした。
よって、生物保持体の平均密度は5785g/5230cm≒1.1g/cmと算出した。
When the loading of the bioretainers into the 10 L graduated container was completed, the mass m of the bioretainers was 5785 g. Thereafter, water was poured from a separately prepared beaker into the graduated container in which the bioretainers had been loaded to fill the spaces between the bioretainers with water, and when the water level reached the 10 L mark, the water pouring was stopped. The amount of water poured from the separately prepared beaker at this time was 4770 cm3. The volume V of the bioretainers was set to 10000 cm3 (10 L) - 4770 cm3 = 5230 cm3 .
Therefore, the average density of the bioretainer was calculated to be 5785 g/5230 cm 3 ≈1.1 g/cm 3 .

(硝化槽)
断面形状が長方形の透明アクリル製の水槽を使用した。この水槽の上面は大気開放されている。水槽の正面の幅は500mmであり、側面の奥行は150mmであり、高さは2300mmである。水槽の有効水量は150Lとした。通水時には被処理水を水槽の下部から供給し、水槽上部に出口を設置し、通水時に被処理水が上向流となるように設計した。
(Nitrification tank)
A transparent acrylic tank with a rectangular cross section was used. The top of the tank was open to the atmosphere. The front width of the tank was 500 mm, the side depth was 150 mm, and the height was 2300 mm. The effective water volume of the tank was 150 L. When passing water, the water to be treated was supplied from the bottom of the tank, and an outlet was installed at the top of the tank, so that the water to be treated would flow upward when passing water.

被処理水の供給水量は12.5L/min(LV通水:10[m/h])とした。水槽の高さ800mmの位置に穴をあけ、90度垂直下向き方向に水槽側面に這わせるように被処理水供給管を延ばした。被処理水供給管の長さは500mmであり、管の内径は71mmである。
被処理水供給管14の出口は水槽の底面から高さ300mmの位置になるように設置した。また、水槽の底部には水槽内に均一に気体が供給されるように散気管を配置した。気体供給量は3.8~75L/min(LVガス3~240m/h)とした。
実施例では、気体として、特段の前処理を行っていない空気(大気)を用いた。
The supply rate of the water to be treated was 12.5 L/min (LV water flow : 10 [m3/h]). A hole was drilled at a height of 800 mm in the water tank, and the water supply pipe was extended so as to run along the side of the water tank in a vertical downward direction at 90 degrees. The length of the water supply pipe to be treated was 500 mm, and the inner diameter of the pipe was 71 mm.
The outlet of the treated water supply pipe 14 was installed at a height of 300 mm from the bottom of the tank. An aeration pipe was also placed at the bottom of the tank so that gas was supplied uniformly into the tank. The gas supply rate was 3.8 to 75 L/min (LV gas 3 to 240 m/h).
In the examples, air (atmospheric air) that had not been subjected to any particular pretreatment was used as the gas.

(揺動式生物硝化装置)
硝化反応後の処理水のアンモニア性窒素濃度を測定しながら、被処理水への塩化アンモニウムの添加量を徐々に増やした。処理水のアンモニア性窒素濃度が0.1mg/Lに到達したときの、被処理水のアンモニア性窒素濃度を測定した。このようにして処理水のアンモニア性窒素濃度値が0.1mg/L以下に維持できる硝化速度の最大値を求めた。硝化速度の計算方法は以下の通りである。
(Swing-type biological nitrification device)
The amount of ammonium chloride added to the water to be treated was gradually increased while measuring the ammonia nitrogen concentration of the treated water after the nitrification reaction. The ammonia nitrogen concentration of the treated water was measured when the ammonia nitrogen concentration of the treated water reached 0.1 mg/L. In this way, the maximum nitrification rate at which the ammonia nitrogen concentration of the treated water could be maintained at 0.1 mg/L or less was determined. The nitrification rate was calculated as follows.

<測定方法>
(硝化速度)
通水開始後原水への塩化アンモニウム添加量を徐々に上げていくと、生物硝化反応が追い付かず、処理水中に0.1mg/Lを超えるアンモニア性窒素濃度が検出されるようになった。その時の硝化槽当たりの硝化速度[kgN/m/d]は、以下のように算出した。
硝化速度[kgN/m/d]=(被処理水のアンモニア性窒素濃度[kg/m]-処理水のアンモニア性窒素濃度[kg/m])×通水量[m/d]÷水槽体積[m]
<Measurement method>
(Nitrification rate)
When the amount of ammonium chloride added to the raw water was gradually increased after the start of water flow, the biological nitrification reaction could not keep up, and the ammoniacal nitrogen concentration in the treated water exceeded 0.1 mg/L. The nitrification rate [kgN/ m3 /d] per nitrification tank at that time was calculated as follows:
Nitrification rate [kgN/m 3 /d]=(ammonia nitrogen concentration in water to be treated [kg/m 3 ]−ammonia nitrogen concentration in treated water [kg/m 3 ])×water flow rate [m 3 /d]÷water tank volume [m 3 ]

硝化速度の評価基準は以下の通りである。
◎:硝化速度が0.8kgN/m/d以上である。
〇:硝化速度が0.5kgN/m/d超0.8kgN/m/d未満である。
△:硝化速度が0.22kgN/m/d超0.5kgN/m/d以下である。
×:硝化速度が0.22kgN/m/d以下である。
The evaluation criteria for nitrification rate are as follows:
⊚: The nitrification rate is 0.8 kgN/m 3 /d or more.
◯: The nitrification rate is more than 0.5 kgN/m 3 /d and less than 0.8 kgN/m 3 /d.
Δ: The nitrification rate is more than 0.22 kgN/m 3 /d and 0.5 kgN/m 3 /d or less.
×: The nitrification rate is 0.22 kgN/m 3 /d or less.

(銅イオン濃度)
ICP発光分光分析装置(Thermo Fisher Scientific社製品「iCAP RQ ICP-MS」)を用いて水槽に供給する前の被処理水について測定した。
(Copper ion concentration)
The treated water was measured before being supplied to the water tank using an ICP optical emission spectrometer ("iCAP RQ ICP-MS" manufactured by Thermo Fisher Scientific).

(充填率)
前記式(1)から生物保持体の充填率を算出した。
(Filling rate)
The loading rate of the bioretainer was calculated from the above formula (1).

(LVガス
前記式(2)からLVガスを算出した。
(LV gas )
The LV gas was calculated from the above formula (2).

(LV通水
前記式(3)からLV通水[m/h]を算出した。
(LV water flow )
The LV water flow rate [m/h] was calculated from the above formula (3).

(膨張率)
前記式(4)から生物保持体の膨張率を算出した。
(Expansion rate)
The expansion rate of the bioretainer was calculated from the above formula (4).

<実施例1~8、比較例1、2>
表1に示す条件で被処理水を水槽内の生物保持体に通水した。各例においては、被処理水に添加する銅イオン量を変更することで、銅イオン濃度を変更した。結果を表1に示す。
<Examples 1 to 8, Comparative Examples 1 and 2>
The water to be treated was passed through the organism retainer in the tank under the conditions shown in Table 1. In each example, the copper ion concentration was changed by changing the amount of copper ions added to the water to be treated. The results are shown in Table 1.

Figure 2024057221000002
Figure 2024057221000002

表1に示す結果から、銅イオン濃度が0.1~300μg/Lの範囲内であれば、従来の流動床混合流れ方式より高い硝化速度を実現できることを確認した。 The results shown in Table 1 confirm that if the copper ion concentration is within the range of 0.1 to 300 μg/L, a higher nitrification rate can be achieved than with the conventional fluidized bed mixed flow method.

<実施例9~13>
表2に示す条件に変更したうえで、被処理水を水槽内の生物保持体に通水した。結果を表2に示す。表2には参考のため実施例3の結果を併せて示す。
<Examples 9 to 13>
The water to be treated was passed through the organism holder in the water tank under the conditions shown in Table 2. The results are shown in Table 2. Table 2 also shows the results of Example 3 for reference.

Figure 2024057221000003
Figure 2024057221000003

表2に示す結果から、線速度比(LVガス/LV通水)を0.3~6.0の範囲内とすることで、従来の流動床混合流れ方式より高い硝化速度を実現できることを確認した。 From the results shown in Table 2, it was confirmed that by setting the linear velocity ratio (LV gas /LV water flow ) within the range of 0.3 to 6.0, a higher nitrification rate can be achieved than in the conventional fluidized bed mixed flow method.

<実施例14~17>
表3に示す条件に変更したうえで、被処理水を水槽内の生物保持体に通水した。結果を表3に示す。表3には参考のため実施例3の結果を併せて示す。
<Examples 14 to 17>
The water to be treated was passed through the organism holder in the water tank after changing the conditions shown in Table 3. The results are shown in Table 3. Table 3 also shows the results of Example 3 for reference.

Figure 2024057221000004
Figure 2024057221000004

表3に示す結果から、被処理水の鉄濃度が1.0mg/Lより高い場合、線速度比(LVガス/LV通水)を2.0以上とすることで、高い硝化速度を実現できることが分かった。 From the results shown in Table 3, it was found that when the iron concentration of the treated water is higher than 1.0 mg/L, a high nitrification rate can be achieved by setting the linear velocity ratio (LV gas /LV water flow ) to 2.0 or more.

<実施例18~20>
表4に示す条件に変更したうえで、被処理水を水槽内の生物保持体に通水した。結果を表4に示す。表4には参考のため実施例3の結果を併せて示す。
<Examples 18 to 20>
After changing the conditions shown in Table 4, the water to be treated was passed through the organism holder in the water tank. The results are shown in Table 4. Table 4 also shows the results of Example 3 for reference.

Figure 2024057221000005
Figure 2024057221000005

表4に示す結果から、生物保持体の充填率が高ければ高いほど、硝化速度が増加する傾向にあることが分かった。これは、多くの硝化菌を担持できるためと考えられる。 The results shown in Table 4 indicate that the higher the loading rate of the bioretainer, the higher the nitrification rate tends to be. This is thought to be because it is able to support a large number of nitrifying bacteria.

<比較例3、4>
表5に示す条件に変更したうえで、被処理水を水槽内の生物保持体に通水した。結果を表5に示す。
<Comparative Examples 3 and 4>
After changing the conditions as shown in Table 5, the water to be treated was passed through the organism holder in the water tank. The results are shown in Table 5.

Figure 2024057221000006
Figure 2024057221000006

比較例3ではスポンジが揺動しなかった。また、硝化菌への基質拡散速度も低い。さらに酸素律速があるため、硝化速度は低くなったと考えられる。
比較例4でもスポンジが揺動状態にならず、完全混合流れとなった。被処理水の押出流れを維持できないため、硝化性能は低くなったと考えられる。
In Comparative Example 3, the sponge did not shake. In addition, the substrate diffusion rate to the nitrifying bacteria was also low. Furthermore, it is considered that the nitrification rate was low due to the oxygen rate limitation.
In Comparative Example 4, the sponge did not oscillate and a completely mixed flow was obtained. It is considered that the nitrification performance was reduced because the extrusion flow of the water to be treated could not be maintained.

以上示した実施例、比較例の結果から、(i)生物保持体の大きさ、(ii)銅イオン濃度、(iii)線速度比(LVガス/LV通水)、および(iv)生物保持体の充填率を全て所定の範囲内とすることで、従来の流動床混合流れ方式より高い硝化速度を実現できることが分かった。生物保持体の充填率が75%未満の場合(比較例4)や、線速度比(LVガス/LV通水)が0の場合(比較例3)、硝化速度が低下することを確認した。
よって、高濃度のアンモニア性窒素の処理において、高い硝化速度の実現のために硝化槽を2つ以上に増設する必要性が低いため、処理装置の小型化も可能である。
From the results of the above-mentioned examples and comparative examples, it was found that by setting (i) the size of the bioretainer, (ii) the copper ion concentration, (iii) the linear velocity ratio (LV gas /LV water flow ), and (iv) the packing rate of the bioretainer within a predetermined range, a higher nitrification rate can be achieved than in the conventional fluidized bed mixed flow method. It was confirmed that the nitrification rate decreased when the packing rate of the bioretainer was less than 75% (Comparative Example 4) or when the linear velocity ratio (LV gas /LV water flow ) was 0 (Comparative Example 3).
Therefore, in treating a high concentration of ammoniacal nitrogen, there is little need to add two or more nitrification tanks in order to achieve a high nitrification rate, and the treatment device can be made smaller.

本発明の一態様によれば、従来の流動床混合流れ方式より高い硝化速度で、高濃度のアンモニア性窒素を含む被処理水を処理できる揺動式生物硝化方法および揺動式生物硝化装置が提供される。 According to one aspect of the present invention, there is provided an agitated biological nitrification method and an agitated biological nitrification device that can treat water containing a high concentration of ammonia nitrogen at a nitrification rate higher than that of the conventional fluidized bed mixed flow method.

1 揺動式生物硝化装置
4 被処理水供給管
5 硝化槽
6 生物保持体
7 処理水流出管
10A 銅線(銅供給源)
12 ブロア(気体(空気)供給装置)
13 気体供給管(気体(空気)供給装置)
1 Swing-type biological nitrification device 4 Treated water supply pipe 5 Nitrification tank 6 Biological holder 7 Treated water outflow pipe 10A Copper wire (copper supply source)
12 Blower (gas (air) supply device)
13 Gas supply pipe (gas (air) supply device)

Claims (7)

被処理水のアンモニア性窒素を処理する揺動式生物硝化方法であり、
硝化槽内に装填された複数の生物保持体に前記被処理水を通水する際に、下記の要件1、要件2、要件3および要件4を満たす、揺動式生物硝化方法。
要件1:1つの前記生物保持体の立体的な大きさが、最大長さ方向が5mmを超えて、かつ、直径20mmの球体に収まること。
要件2:前記被処理水の銅イオン濃度が、0.1~300μg/Lであること。
要件3:前記被処理水の線速度LV通水[m/h]と前記硝化槽内の貯留水中の気体の線速度LVガス[m/h]との線速度比(LVガス/LV通水)が、0.3~6.0であること。
要件4:下式(1)で算出される充填率が、75%以上であること。
充填率(%)=(複数の生物保持体のかさ体積)/(硝化槽内の有効水量体積)×100 ・・・式(1)
A shaking biological nitrification method for treating ammonia nitrogen in treated water,
A rocking biological nitrification method, which satisfies the following requirements 1, 2, 3 and 4 when the water to be treated is passed through a plurality of biological retainers loaded in a nitrification tank.
Requirement 1: The three-dimensional size of one of the bioretainers exceeds 5 mm in the maximum length direction and fits into a sphere having a diameter of 20 mm.
Requirement 2: The copper ion concentration of the water to be treated is 0.1 to 300 μg/L.
Requirement 3: The linear velocity ratio (LV gas /LV water flow) between the linear velocity LV water flow [m/h] of the water to be treated and the linear velocity LV gas [m/h] of the gas in the stored water in the nitrification tank is 0.3 to 6.0.
Requirement 4: The filling rate calculated by the following formula (1) is 75% or more.
Filling rate (%) = (bulk volume of multiple biological retainers) / (available water volume in nitrification tank) × 100 ... formula (1)
前記生物保持体が、多孔質の担体と、前記担体に保持された硝化菌とを有する、請求項1に記載の揺動式生物硝化方法。 The shaking biological nitrification method according to claim 1, wherein the biological support has a porous carrier and nitrifying bacteria supported on the carrier. 前記被処理水を上向流として通水する、請求項1または2に記載の揺動式生物硝化方法。 The shaking biological nitrification method according to claim 1 or 2, in which the water to be treated is passed through as an upward flow. 前記被処理水の前記銅イオン濃度が、0.5~50μg/Lである、請求項1または2に記載の揺動式生物硝化方法。 The shaking biological nitrification method according to claim 1 or 2, wherein the copper ion concentration in the water to be treated is 0.5 to 50 μg/L. 複数の生物保持体が装填された硝化槽と、
前記硝化槽内に被処理水を供給する被処理水供給管と、
前記被処理水に、銅イオンを供給し得る銅供給源と、
前記硝化槽内に供給される前記被処理水の流量を調整する通水量調整手段と、
前記硝化槽内の貯留水に気体を供給する気体供給装置と、
前記通水量調整手段および前記気体供給装置と電気的に接続された制御装置と、
を備え、
前記制御装置は、下記の要件3および要件4を満たす制御を実行し、
下記の要件1および要件2を満たす、揺動式生物硝化装置。
要件1:1つの前記生物保持体の立体的な大きさが、最大長さ方向が5mmを超えて、かつ、直径20mmの球体に収まること。
要件2:前記被処理水の銅イオン濃度が、0.1~300μg/Lであること。
要件3:前記被処理水の線速度LV通水[m/h]と前記硝化槽内の貯留水中の気体の線速度LVガス[m/h]との線速度比(LVガス/LV通水)が、0.3~6.0であること。
要件4:下式(1)で算出される充填率が、75%以上であること。
充填率(%)=(複数の生物保持体のかさ体積)/(硝化槽内の有効水量体積)×100 ・・・式(1)
a nitrification tank loaded with a plurality of biological retainers;
a water-to-be-treated supply pipe for supplying water to be treated into the nitrification tank;
A copper supply source capable of supplying copper ions to the water to be treated;
a water flow rate adjusting means for adjusting the flow rate of the water to be treated supplied to the nitrification tank;
a gas supplying device that supplies gas to the stored water in the nitrification tank;
a control device electrically connected to the water flow rate adjusting means and the gas supply device;
Equipped with
The control device executes control that satisfies the following requirements 3 and 4,
A rocking biological nitrification device that satisfies the following requirements 1 and 2.
Requirement 1: The three-dimensional size of one of the bioretainers exceeds 5 mm in the maximum length direction and fits into a sphere having a diameter of 20 mm.
Requirement 2: The copper ion concentration of the water to be treated is 0.1 to 300 μg/L.
Requirement 3: The linear velocity ratio (LV gas /LV water flow) between the linear velocity LV water flow [m/h] of the water to be treated and the linear velocity LV gas [m/h] of the gas in the stored water in the nitrification tank is 0.3 to 6.0.
Requirement 4: The filling rate calculated by the following formula (1) is 75% or more.
Filling rate (%) = (bulk volume of multiple biological retainers) / (available water volume in nitrification tank) × 100 ... formula (1)
前記銅供給源が、前記被処理水と接触している、請求項5に記載の揺動式生物硝化装置。 The oscillating biological nitrification apparatus according to claim 5, wherein the copper source is in contact with the water to be treated. 前記制御装置が、前記被処理水の前記銅イオン濃度が0.1~300μg/Lとなる制御を実行する、請求項5または6に記載の揺動式生物硝化装置。 The oscillating biological nitrification device according to claim 5 or 6, wherein the control device executes control so that the copper ion concentration of the water to be treated is 0.1 to 300 μg/L.
JP2022163814A 2022-10-12 2022-10-12 Rocking biological nitrification method and rocking biological nitrification device Pending JP2024057221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022163814A JP2024057221A (en) 2022-10-12 2022-10-12 Rocking biological nitrification method and rocking biological nitrification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022163814A JP2024057221A (en) 2022-10-12 2022-10-12 Rocking biological nitrification method and rocking biological nitrification device

Publications (1)

Publication Number Publication Date
JP2024057221A true JP2024057221A (en) 2024-04-24

Family

ID=90779090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022163814A Pending JP2024057221A (en) 2022-10-12 2022-10-12 Rocking biological nitrification method and rocking biological nitrification device

Country Status (1)

Country Link
JP (1) JP2024057221A (en)

Similar Documents

Publication Publication Date Title
Zhou et al. Optimizing granules size distribution for aerobic granular sludge stability: effect of a novel funnel-shaped internals on hydraulic shear stress
CN202688032U (en) Efficient air floatation water-purification reaction device
CN108911136A (en) A kind of processing method of heavy metal wastewater thereby
JP2006218371A (en) Wastewater treatment apparatus and method
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP2024057221A (en) Rocking biological nitrification method and rocking biological nitrification device
US8728310B1 (en) Water processing system
JP7016623B2 (en) Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
JP6811031B2 (en) Bio-nitrification method and bio-nitrification system
WO2015137227A1 (en) Apparatus and method for inhibiting growth of algae
JP2024057217A (en) Rocking biological nitrification method and rocking biological nitrification device
JP6941439B2 (en) Membrane separation activated sludge treatment equipment, membrane separation activated sludge treatment method and raw water supply equipment
US11034601B1 (en) System and method for treating wastewater
JP2022153861A (en) Biological nitrification method and biological nitrification system
KR101788574B1 (en) Submerged anaerobic membrane bioreactor
JP6461408B1 (en) Water treatment method and water treatment apparatus
JP2003071453A (en) Water treatment apparatus and biological/ electrochemical hybrid water treatment method
JP7016622B2 (en) Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
JP2017202473A (en) Water treatment method and system
JP7220740B2 (en) MEMBRANE ACTIVATED SLUDGE TREATMENT APPARATUS AND MEMBRANE ACTIVATED SLUDGE TREATMENT METHOD
JP2021027814A (en) Anammox bacteria culture apparatus and anammox bacteria culture method
JP7479998B2 (en) Biological Nitrification Equipment
JP2020018966A (en) Water treatment method and water treatment apparatus
JP2013005754A (en) Aeration method and aeration apparatus
JP2021115542A (en) Denitrifying treatment device and denitrifying treatment method