WO2015137227A1 - Apparatus and method for inhibiting growth of algae - Google Patents

Apparatus and method for inhibiting growth of algae Download PDF

Info

Publication number
WO2015137227A1
WO2015137227A1 PCT/JP2015/056487 JP2015056487W WO2015137227A1 WO 2015137227 A1 WO2015137227 A1 WO 2015137227A1 JP 2015056487 W JP2015056487 W JP 2015056487W WO 2015137227 A1 WO2015137227 A1 WO 2015137227A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gas
algae
reaction tank
growth
Prior art date
Application number
PCT/JP2015/056487
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 穣
誠一郎 岡本
孝浩 平山
慶行 柴山
衛華 譚
健一 小森
新吾 増木
邦哲 戸島
Original Assignee
独立行政法人土木研究所
松江土建株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人土木研究所, 松江土建株式会社 filed Critical 独立行政法人土木研究所
Priority to JP2016507484A priority Critical patent/JP6508684B2/en
Publication of WO2015137227A1 publication Critical patent/WO2015137227A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • E02B1/003Mechanically induced gas or liquid streams in seas, lakes or water-courses for forming weirs or breakwaters; making or keeping water surfaces free from ice, aerating or circulating water, e.g. screens of air-bubbles against sludge formation or salt water entry, pump-assisted water circulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/206Manganese or manganese compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an algal growth suppression apparatus and method for suppressing the growth of algae in closed water areas such as dam reservoirs and lakes.
  • This method relates to a method of indirectly suppressing the growth of algae by oxidizing and precipitating metals present in the surface of the closed water area and making it unavailable to the algae. It is assumed that the nutrient source for the algae staying in is cut off. However, it has been found that the growth of algae cannot be sufficiently suppressed only by reducing the concentration of the metals present in the surface layer of the closed water area by reducing the concentration thereof.
  • FIG. 1 is an explanatory diagram for explaining the situation when an algal growth suppression device is installed in the bottom layer to suppress the growth of algae according to a conventional method.
  • the eluted metal from the sediment is assumed as an algae nutrient source.
  • the algal growth suppression device 100 is installed on the bottom sediment of the closed water area 40.
  • the algal growth suppression apparatus 100 has a cylindrical reaction tank, and a carrier capable of supporting microorganisms is disposed in the reaction tank.
  • the microorganisms oxidize metal ions in the water using oxygen in the air introduced from the bottom of the reaction tank by supplying air from the air supply device 20 and release the metal oxide.
  • Air introduced into the reaction tank from the bottom of the cylinder becomes bubbles and rises from above the reaction tank toward the water surface, and as the bubbles rise, a vertically upward water flow (vertical upward water flow) is generated.
  • the vertical upward water stream circulates in the closed water area 40 so as to descend from the surface side toward the algae growth suppressing device 100 that is the source of the water flow while diffusing in the closed water area 40, and the circulation layer 50.
  • the metal oxide that has not been used for the algae 30 is entrained in the circulating water stream or descends to the bottom layer due to its own weight.
  • An object of the present invention is to solve the above-mentioned problems in the prior art and to provide an algal growth suppression apparatus and method capable of effectively suppressing the growth of algae in a closed water area using microorganisms.
  • Means for solving the problems are as follows. That is, ⁇ 1> A cylindrical reaction tank in which a gas introduction part capable of introducing gas and a water introduction part capable of introducing water are formed in the lower part, and a gas discharge part for discharging at least the gas is formed in the upper part. A deaeration pipe having one end connected to the gas discharge part and extending the other end so as to protrude from the water surface so that the gas discharged from the gas discharge part is vented into the pipe, and the reaction tank A microorganism carrier that is capable of supporting a microorganism that oxidizes a metal necessary for the growth of algae, and at least one of the reaction tank and one end side of the degassing pipe is in the reaction tank.
  • a device for suppressing algal growth comprising a water flow direction restricting portion for inclining the water flow direction of the vertical upward water flow generated by the gas flow rising above the water from the vertical upper direction and discharging the water flow into the water area.
  • the algae growth suppression device according to ⁇ 1>, wherein the device is connected to a gas discharge unit in a state having a gap between the reaction tank and the gas tank so as to be discharged into the water area.
  • ⁇ 3> The algal growth suppression device according to any one of ⁇ 1> to ⁇ 2>, wherein the whole or a part of the reaction tank body is formed to allow water to flow as the water flow direction regulating unit.
  • ⁇ 4> Algae growth suppression according to any one of ⁇ 1> to ⁇ 3>, wherein the microorganism-supporting body is accommodated in a porous casing that is freely rollable by a water flow and disposed in the reaction tank. apparatus.
  • ⁇ 5> The algae growth suppression device according to any one of ⁇ 1> to ⁇ 4>, wherein the microorganism is a microorganism that oxidizes at least manganese ions into manganese oxide.
  • ⁇ 6> An algal growth suppression method for suppressing algae growth in a closed water area using the algae growth suppression device according to any one of ⁇ 1> to ⁇ 5>, wherein the other end side of the deaeration tube is An installation step of installing the algae growth inhibitor so that the water introduction part of the reaction tank is positioned in the vicinity of the bottom of the closed water area while projecting on the water surface, and a gas containing oxygen from the gas introduction part of the reaction tank And a gas introduction step of bringing the gas into contact with microorganisms together with the water introduced from the water introduction section.
  • the installation step is a step of installing the algal growth inhibitor so that the water introduction part of the reaction tank is located 0.2 to 1.0 m above the bottom of the closed water area
  • the gas introduction step includes a step of spontaneously fixing microorganisms on the microorganism carrier.
  • FIG. 2 is explanatory drawing which shows schematic structure of the algal growth suppression apparatus which concerns on one Embodiment of this invention.
  • the algal growth suppression apparatus 1 includes a reaction tank 3, a deaeration tube 7, and a microorganism carrier (not shown) accommodated in the enclosures 2a to 2c.
  • the support part 4 which supports the reaction tank 3 is formed and the algae growth suppression apparatus 1 is installed on the bottom sediment 60, the support part 4 is not formed but algae growth suppression is performed. It can also be installed by suspending the device from the ship.
  • the reaction tank 3 consists of a substantially cylindrical member composed of a body portion 3a, an upper portion 3b, and a lower portion 3c, and each portion can be formed of stainless steel, a resin material, or the like.
  • the lower part 3 c is, for example, a net-like screen member, and water can be introduced into the reaction tank 3.
  • the gas introduction part 5 which can introduce
  • the gas introduced from the gas introduction part 5 is a gas containing oxygen and may be pure oxygen gas, but it is preferable to use air from the viewpoint of reducing operating costs.
  • the upper part 3b is, for example, a net-like screen member similar to the lower part 3c, and the vertical upward water flow generated by the gas floating in the reaction tank 3 from the gas introduction part 5 and the flow of the rising gas is generated in the reaction tank 3 It can be discharged outside. Further, the upper part 3b makes it possible to prevent the casings 2a to 2c from flowing out of the reaction tank 3.
  • the enclosures 2a to 2c are arranged in the reaction tank 3, and can flow freely by the vertical upward water flow.
  • the casings 2a to 2c are porous, and are formed of, for example, a stainless mesh member. As a result, the gas and the water can be brought into contact with the microorganism carrier accommodated in the basket.
  • the casings 2a to 2c are capable of rolling freely by the vertical upward water flow, the gas and the water come into contact with the microorganism carrier to be accommodated without being biased to a specific part. It is possible.
  • the microorganism carrier is not particularly limited, but is preferably one having irregularities on the surface to some extent or a porous one so that microorganisms can easily adhere. Further, from the viewpoint of allowing the microorganism carrier itself to flow within the casings 2a to 2c, it is preferable that the specific gravity is formed of a resin of about 1. Moreover, what takes the contact area with the said gas and the said water with respect to the volume is preferable, for example, the thing of a hollow cylindrical shape is preferable.
  • the microorganism supported on the microorganism carrier is not particularly limited as long as it is a microorganism that oxidizes a metal necessary for the growth of algae, and a metal oxidation microorganism known to exist is used. Can do.
  • microorganisms can be artificially or spontaneously fixed on the microorganism carrier, and can be proliferated in large quantities by contact with the water in an aerobic environment (under aeration of the gas) for a certain period of time. Can do.
  • the metal involved in the growth of the algae includes manganese, and a microorganism that oxidizes manganese ions eluted from the sediment is preferable.
  • the deaeration pipe 7 is formed of, for example, stainless steel or a resin material, and one end side is connected to the upper part 3b and the other end side so that the gas discharged from the upper part 3b as a gas discharge part is vented into the pipe. (Not shown) is configured to extend so as to protrude from the water surface of the installation water area. Further, in this example, the one end side of the deaeration pipe 7 is a water flow direction restricting portion 6 that is expanded in a taper shape toward the reaction tank 3, and the one end side is the water flow direction restricting portion 6 and the water flow direction is inclined from vertically above.
  • the gas discharged from the upper portion 3 b can be collected and ventilated into the pipe, and once the water has entered the water flow direction restricting portion 6.
  • the water flow direction is regulated so that the upper water flow is inclined downward along the taper shape, and the metal oxide contained in the vertical upper water flow can be easily settled toward the bottom sediment.
  • tube 7 is made variable according to the water depth of the closed water area used as a process target.
  • FIG. 3 is explanatory drawing explaining the condition in case the algal growth suppression apparatus which concerns on one Embodiment of this invention is installed in a bottom layer, and the growth of algae is suppressed.
  • the algal growth suppression device 1 is installed on the bottom sediment 60 of the closed water area 40, and a gas such as air is sent from the air supply device 20 to the gas introduction part 5 formed in the lower part 3 c of the reaction tank 3, Aerate.
  • the gas introduced into the reaction tank 3 floats vertically upward, passes through the deaeration pipe 7 whose tip protrudes from the water surface, and is exhausted out of the closed water area 40.
  • the vertical upward water flow is generated in the reaction tank 3 by the flow of the gas floating in the reaction tank 3, and the bottom layer water of the closed water region 40 is drawn into the reaction tank 3 in the reaction tank 3.
  • the microorganisms carried on the microorganism carrier accommodated in the enclosures 2a to 2c arranged in the reaction tank 3 are the metal ions (manganese) contained in the bottom water in an aerobic environment by aeration. Oxidize.
  • the vertical upward water stream is discharged from the reaction tank 3 while entraining part of the metal oxide of the metal produced by the microorganism.
  • the vertical upward water flow discharged from the reaction tank 3 is discharged into the closed water area 40 in a state where the water flow direction is inclined from the vertical upward direction by the water flow direction regulating portion 6 of the deaeration pipe 7.
  • the water stream after the inclination descends toward the lower part 3c as a water introduction part that is a generation source of the vertical upward water stream while diffusing to the bottom layer of the closed water area 40, thereby forming a circulation layer 50 in the bottom water.
  • the metal oxide contained in the circulation layer 50 circulating in the bottom layer is gradually directed toward the bottom sediment without being eluted into water as the metal ions because the circulation layer 50 is brought into an aerobic environment by dissolved oxygen. And sink.
  • the metal ions eluted from the sediment can be blocked from moving to the surface layer, and also in the bottom layer as a metal oxide in the sediment. Can be depleted by sedimentation. Therefore, the algae 30 staying in the surface layer of the closed water area 40 cannot use the metal ions, and the metal ions that have settled and eluted into the bottom layer at night cannot be used. Thereby, the growth of the algae 30 is effectively suppressed.
  • the water flow restriction section 6 disposed on one end side of the deaeration pipe 7 causes the water flow direction of the vertical upper water flow generated by the gas flow rising in the reaction tank 3 to be inclined from the vertical upper side.
  • the water flow is discharged into the closed water area, but the structure of the water flow control unit is to discharge the water flow into the closed water area by inclining the water flow direction of the vertical upper water flow from vertically above.
  • the water flow guide portion may be formed by inclining the vertical upper water flow in the upper or lower portion of the reaction tank and discharging the water flow into the closed water area.
  • FIG. 4 (a) is an explanatory view showing a schematic configuration of an algal growth suppression device according to another embodiment of the present invention
  • FIG. 4 (b) is an algal growth suppression device shown in FIG. 4 (a). It is the elements on larger scale for demonstrating the characteristic of these.
  • trunk portion 13a of the reaction tank 13 is made water-permeable.
  • drum 13a may be comprised with the water-permeable raw material as a whole, for example, and can also comprise it by forming a water-flow opening in a part of steel materials.
  • a support material for securing the support strength of the upper portion 13b and the like can be additionally provided.
  • the upper part 13 b is configured to seal the upper part of the reaction tank 13 except for the connection port with the deaeration pipe 17.
  • the gas in the algae growth suppression device 10, when a gas such as air is introduced from the gas introduction unit 15 into the reaction tank 13, the gas contacts the microorganism carrier accommodated in the enclosures 12a to 12e.
  • the gas floating in the reaction tank 13 is collected and exhausted from the deaeration pipe 17 to the outside of the closed water area. Due to the flow of the gas floating in the reaction tank 13, the bottom layer water is drawn into the reaction tank 13 from the lower part 13c and a vertical upward water flow is generated, and the bottom layer water containing the metal eluted from the bottom is in an aerobic environment.
  • the metal oxide In contact with the microorganism carrier accommodated in the casings 12a to 12e, the metal oxide is generated.
  • the vertically upward water flow is discharged from the trunk portion 13a in a state where the water flow direction is inclined from the vertically upward direction. Therefore, by operating such an algal growth suppression device 10 for a certain period of time, the metal ions eluted from the sediment can be blocked from moving to the surface layer, and the metal ions are also converted into metal in the bottom layer. It can be depleted by sedimentation to the sediment as an oxide, and by extension, the growth of algae using the metal ions can be effectively suppressed.
  • the algal growth suppression method of the present invention is an algae growth suppression method that suppresses algae growth in a closed water area using the algae growth suppression device of the present invention. Process.
  • the installation step is a step of installing the algal growth inhibitor so that the other end side of the deaeration tube protrudes above the water surface and the water introduction part of the reaction tank is located in the vicinity of the bottom sediment of the closed water area.
  • the specific installation position of the algal growth suppression device is not particularly limited as long as it is near the bottom sediment, but the position of the water introduction part of the reaction tank is 0.2 m to the bottom sediment of the closed water area. A position of 1.0 m is preferable, and a position of 0.3 m to 0.5 m on the sediment is particularly preferable.
  • bottom mud in the sediment may be drawn into the reaction tank from the water introduction part, and if it exceeds 1.0 m, the metal concentration in the bottom layer water drawn into the reaction tank is It is low, and the metal eluted from the sediment may not be oxidized efficiently.
  • the other end of the deaeration tube was projected on the water surface, but after operating the algal growth inhibitor for a certain period of time and the elution metal ion concentration in the bottom layer was sufficiently reduced, The other end portion of the deaeration pipe may be re-installed at a position below the water surface and arranged according to a conventional shallow aeration method.
  • the gas introduction step is a step of introducing a gas containing oxygen from a gas introduction portion of the reaction tank and bringing the gas into contact with microorganisms together with water introduced from the water introduction portion.
  • the method for carrying out the gas introduction step is not particularly limited, but a method of introducing a gas such as air from the gas introduction unit into the reaction tank from an air supply device such as an air compressor installed outside the closed water area. Is mentioned.
  • the gas introduction step when the microorganism carrier in the algal growth suppression apparatus is of a type that spontaneously fixes microorganisms, the microorganisms are brought into contact with the microorganisms prior to contacting the microorganisms.
  • the method may include a step of bringing the gas into contact with the microorganism carrier not fixed, and fixing the microorganism spontaneously on the microorganism carrier. Examples of the present invention will be described below, but the technical idea of the present invention is not limited to the examples.
  • an algae growth inhibitory apparatus according to the example was produced.
  • This algae growth suppression apparatus is installed on the bottom sediment in a form that is submerged in water, and the reaction tank is formed of an acrylic cylinder.
  • the air supplied from the air supply device is introduced from the gas inlet on the bottom side of the cylinder, and aerated from the lower part toward the upper part, so that the casing installed in the reaction tank is It can flow freely.
  • the casing is formed of a stainless steel net, and a microorganism carrier can be disposed therein.
  • 5 (a) is an explanatory view showing an outline of the casing used in the example, and FIG.
  • FIG. 5 (b) is a case where the casing shown in FIG. 5 (a) is opened at the central opening / closing section. It is explanatory drawing when viewing this structure along the arrow line.
  • symbol 2 in each figure shows a housing.
  • the microorganism carrier is constituted by a hollow and porous cylindrical body based on polypropylene, and microorganisms can be fixed on the cylindrical body. A photograph of the microorganism carrier used in the examples is shown in FIG.
  • the microorganism carrier is sealed about 30% with respect to the volume of the casing, and has a mechanism of flowing inside the casing along with the flow of the casing itself by aeration.
  • the microorganism carrier when the inside of the reaction vessel is brought into an aerobic state by aeration, a biofilm of microorganisms is spontaneously generated on the cylindrical body. This biofilm functions to oxidize, suspend and settle at least manganese ions in water.
  • the gas introduced into the reaction tank is not released into an external closed water area, but is collected in a funnel-shaped water flow restricting portion arranged in an upper portion of the reaction tank, and the water flow restriction It is exhausted onto the water surface through a deaeration pipe connected to the part.
  • the isolated water mass provided with the algae growth inhibiting device is designated as isolated water mass No. Set to 1. In the other isolated water mass, nothing was set up for comparison.
  • the isolated water mass according to this comparison target is designated as isolated water mass No. 2.
  • the wind pipe has a diameter of 1.2 m, and the water depth of the closed water area 41 is about 3 m. Further, in order not to cause a difference in water level between the inside and outside of the wind pipe, four holes having a diameter of about 5 cm were formed at a water depth of 1.5 m so that the water level in the wind pipe followed the water level of the closed water area 41. Isolated water mass No.
  • the algal growth suppression device is installed on the bottom sediment 60, and the gas inlet on the bottom side of the reaction tank is connected to an air compressor installed outside the closed water area 41.
  • the height position of the gas inlet (symbol h in FIG. 7) was 30 cm from the bottom.
  • the gas introduced from the air compressor into the reaction vessel was exhausted onto the water surface through the deaeration pipe so as not to cause an upward flow in the water area above the water flow regulating part.
  • FIG. 8 shows the results of quantification of the algae species (top 3 types)
  • FIG. 9 shows the results of measurement of the algae concentration (Chl.a (mg / L)) on the surface layer.
  • the measurement of the algal concentration (Chl.a (mg / L)) on the surface layer shown in FIG. 9 was performed using a single wavelength absorptiometry. Both the determination of the algal species and the measurement of the algal concentration were carried out by using a column with well-stirred columnar water from the surface layer to 1 m.
  • FIG. 10 shows the daily change in DO concentration in the bottom layer in FIG. Isolated water mass No. In 2, the DO concentration (dissolved oxygen concentration) decreases as the weather stabilizes, and it is confirmed that the bottom layer is almost anaerobic after the end of July.
  • the isolated water mass No. In 1 it is confirmed that the aerobic state is maintained in the bottom layer by aeration by the air compressor.
  • the bottom layer means a layer deeper than the depth of 2.5 m, and the DO concentration was measured at a depth of 2.5 m.
  • the DO concentration shown in FIG. 10 was measured using a multi-item water quality meter (U-50 series: manufactured by HORIBA, Ltd.).
  • Isolated water mass No. 1 and isolated water mass No. 1 11A and 11B show changes over time in the dissolved nitrogen (NH 4 —N, NO 3 —N) concentration in the bottom layer and the surface layer in FIG.
  • Fig.11 (a) shows the daily change of the dissolved nitrogen concentration in the bottom layer (water depth of about 2.5 m)
  • FIG.11 (b) shows the dissolved nitrogen concentration in the surface layer (water depth of about 0.5 m). It shows changes over time. In the beginning of August when cyanobacteria began to grow, the concentration of dissolved nitrogen in the bottom was 1 and isolated water mass No. 1 2 and 0.5 mg / L or more, and the dissolved nitrogen concentration in the surface layer is sufficiently high after August when cyanobacteria began to grow.
  • FIGS. 12 (a) and 12 (b) Changes in orthophosphoric phosphorus (PO 4 -P) concentration in the bottom layer and surface layer in FIG. 2 are shown in FIGS. 12 (a) and 12 (b).
  • FIG. 12 (a) shows the daily change of orthophosphoric phosphorus concentration in the bottom layer (water depth of about 2.5 m)
  • FIG. 12 (b) shows orthophosphoric phosphorus in the surface layer (water depth of about 0.5 m). It shows the daily change in concentration.
  • the isolated water mass No. Compared with 1, the orthophosphoric acid phosphorus concentration is high.
  • the isolated water mass No. 2 The orthophosphoric acid phosphorus concentration in the bottom layer of No. 2 is comparable or higher than that measured in another lake or the like.
  • the isolated water mass No. 1 and isolated water mass No. 1 In both cases, the concentration of orthophosphoric phosphorus is kept low, and phosphorus is depleted. From the above, the isolated water mass No. 2, it can be said that orthophosphoric phosphorus in the bottom layer can be used when the algae grow, and it is considered that phosphorus is not a limiting factor for algae growth. 1 may have been a limiting factor.
  • FIGS. 12 (a) and 12 (b) the measurement of the orthophosphoric acid phosphorus concentration shown in FIGS. 12 (a) and 12 (b) is performed using an automatic nutrient salt analyzer (TRAACS2000 type: manufactured by Blanc-Loube) in accordance with a sewage test method (1997 version). went.
  • TRAACS2000 type manufactured by Blanc-Loube
  • FIG. 13 (a) shows the daily change of the total phosphorus concentration in the bottom layer (around 2.5m in water depth)
  • FIG. 13 (b) shows the daily change in the total phosphorus concentration in the surface layer (around 0.5m water depth). It shows a change.
  • the isolated water mass No. 2 has a total phosphorus concentration of no. It is higher than 1. This is because the isolated water mass No. This is probably because phosphorus was eluted from the bottom sediment that was reduced in an anaerobic environment in No. 2.
  • the isolated water mass No. In No. 1 the total phosphorus concentration in both the bottom layer and the surface layer is always kept low after August. This is thought to be because phosphorus elution from the sediment that was oxidized in an aerobic environment was suppressed. From the above, phosphorus concentration may be a rate-limiting factor for algal growth.
  • the measurement of the total phosphorus concentration shown to Fig.13 (a), (b) was performed using the nutrient salt automatic analyzer (TRAACS2000 type
  • Isolated water mass No. 1 and isolated water mass No. 1 14A and 14B show the results of measurement of changes over time in the dissolved manganese (D-Mn) concentration in the bottom layer and the surface layer in FIG.
  • FIG. 14 (a) shows the change over time in the dissolved manganese concentration in the bottom layer (around 2.5m in water depth)
  • FIG. 14 (b) shows the dissolved manganese concentration in the surface layer (around 0.5m in water depth). It shows changes over time.
  • the isolated water mass No. 1 and isolated water mass No. 1 15A and 15B show the measurement results of changes over time in the total manganese (T-Mn) concentration in the bottom layer and the surface layer in FIG.
  • T-Mn total manganese
  • FIG. 15 (a) shows the daily change in the total manganese concentration in the bottom layer (water depth of about 2.5m), and FIG. 15 (b) shows the daily change in the total manganese concentration in the surface layer (around 0.5m of water depth). It shows a change.
  • the dissolved manganese shown in FIGS. 14 (a) and 14 (b) and the total manganese shown in FIGS. 15 (a) and 15 (b) were measured by ICP-MS according to the river water quality test method (draft) (1997 version). (X7CCT: Thermo Fisher Scientific).
  • the isolated water mass No. The concentration of dissolved manganese in the bottom layer of No. 1 is considered.
  • Isolated water mass No. In 1 the dissolved manganese concentration was maintained at a low value throughout the operation period.
  • the isolated water mass No. The metal adhering to the microorganism carrier in the algal growth inhibitor 1 and its weight were measured as shown in Table 1 below. This value is obtained by calculating the weight of the deposit and converting it to the dry weight per one of the microorganism carriers.
  • the decomposition pretreatment follows the pressure vessel method described in the bottom sediment investigation method (August 2012 Ministry of the Environment Water and Air Environment Bureau), and the analysis of metals is the river water quality test method (draft) (1997 version). The test was performed using ICP-MS (X7CCT: manufactured by Thermo dealer).
  • the microbial carrier has a particularly large amount of manganese component, and after the dissolved manganese is oxidized and suspended, it adheres to the microbial carrier or cannot completely adhere to it. It is suggested that the water is peeled off from the microbial support by the aerated water flow and settles on the sediment. Moreover, the result of having similarly measured the metal in surrounding soil is shown in Table 2 below.
  • the ratio of Fe and Mn is different from that in Table 1 above, and the substance on the microbial support is not the one to which the sediment or water suspension is attached, but the microbial support. It can be seen that manganese was selectively oxidized by the action of microorganisms that naturally settled on the body. Further, from the change in the total manganese concentration in the surface layer shown in FIG. Since August 1st, the total manganese concentration has been kept low. This can be considered as an effect of manganese oxidation and precipitation by the action of the microorganism. From these results, the isolated water mass No. In No. 1, it was found that the manganese concentration in the bottom layer was efficiently reduced by installing the microorganism carrier in the reaction tank and forming an aerobic environment by aeration.
  • the isolated water mass No. The dissolved manganese concentration in the bottom layer of No. 2 is considered. Isolated water mass No. As shown in FIG. 14A, the dissolved manganese concentration in the bottom layer of No. 2 sometimes took a high value considered to be elution from the bottom sediment until the end of July. After that, it can be seen that the value is low after the beginning of August when cyanobacteria began to grow. As seen from the total manganese concentration in the surface layer shown in FIG. 2 is the isolated water mass No. 2. Since it is higher than 1, isolated water mass No. In No. 2, it is considered that manganese elution from the sediment in a reduced state in an anaerobic environment continues. From this, the isolated water mass No.
  • the concentration of dissolved manganese decreased from the beginning of August, probably because cyanobacteria were used for growth.
  • the isolated water mass No. 2 The dissolved manganese concentration in the bottom layer is the isolated water mass no. 1 to about the same value as the isolated water mass No. 1 and isolated water mass No. 1 In both cases, it is considered that dissolved manganese is depleted. Isolated water mass No. For the dissolved manganese in the surface layer of No. 2, the isolated water mass No. It is considered that the concentration is extremely low with 1 and is in a depleted state (see FIG. 14B). From the above, the isolated water mass No. 1 and isolated water mass No. 1 In both cases, the dissolved manganese concentration has been a limiting factor for the growth of algae since August. 1 suggests that the growth of algae is strongly restricted.
  • the isolated water mass No. As shown in FIG. 12 (b), orthophosphoric phosphorus and dissolved manganese, which may be a limiting factor for algal growth in Fig. 1, are shown in FIG. 12 (b). Although the concentration was approximately 0 mg / L from the beginning of the month, the concentration increased rather than the beginning of August when the algal growth was suppressed (see FIG. 9), whereas for dissolved manganese, FIG. As shown in b), the concentration is low during the period when the growth of cyanobacteria is suppressed. Therefore, the isolated water mass No. In No. 1, it is considered that growth of algae could be suppressed by reducing the concentration of dissolved manganese with the algae growth suppression device.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Cleaning Or Clearing Of The Surface Of Open Water (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

[Problem] To provide an apparatus and a method for inhibiting the growth of algae, whereby it becomes possible to effectively inhibit the growth of algae in a closed water area using a microorganism. [Solution] An apparatus for inhibiting the growth of algae according to the present invention is equipped with: a tubular reaction vessel which has, formed at the bottom part thereof, a gas inlet part through which an oxygen-containing gas can be introduced and a water inlet part through which water can be introduced, and also has, formed at the top part thereof, a gas discharge part through which at least the gas can be discharged; a degassing tube in which one end side thereof is connected to the gas discharge part so that the gas discharged through the gas discharge part can pass through the inside of the tube and the other end side thereof extends so as to protrude through water surface; and a microorganism carrier which is placed in the reaction vessel and can carry a microorganism capable of oxidizing a metal that is required for the growth of the algae. In the apparatus, the reaction vessel and/or the above-mentioned one end side of the degassing tube is provided with a water flow direction control part by which the direction of the vertically upward water flow, which is generated by the flow of the gas floating in the reaction vessel, can be inclined from vertically above so that the water flow can be discharged into the water area.

Description

藻類増殖抑制装置及び方法Algae growth suppression apparatus and method
 本発明は、ダム貯水池や湖沼などの閉鎖性水域における藻類の増殖を抑制する藻類増殖抑制装置及び方法に関する。 The present invention relates to an algal growth suppression apparatus and method for suppressing the growth of algae in closed water areas such as dam reservoirs and lakes.
 閉鎖性水域に藻類が増殖すると、景観が悪くなるほか、腐敗により、悪臭を放ったり、その閉鎖性水域を水道水の水源としているような場合には、水道水から異臭味がしたりする問題が生ずる。 When algae grows in closed water areas, the landscape becomes worse, and when it smells bad due to decay, or when the closed water area is used as a source of tap water, there is a problem that the tap water gives off a strange odor. Will occur.
 こうしたことから、閉鎖性水域における藻類の増殖を抑制する手法が種々提案されている。
 例えば、ダム貯水池内で浅層曝気循環を行い、曝気の気泡により、水温躍層を動的に破壊して、表層の水温を低下させるとともに、藻類を有光層よりも深い位置に引き込むことにより、藻類の異常増殖を抑制する手法が提案されている。しかしながら、このような手法では、十分な効果を挙げていない例が多く見られる。
For these reasons, various methods for suppressing the growth of algae in a closed water area have been proposed.
For example, by shallow aeration circulation in a dam reservoir, the aeration bubbles dynamically destroy the water temperature rise layer, lower the surface water temperature, and draw algae deeper than the lighted layer A method for suppressing abnormal growth of algae has been proposed. However, there are many examples in which such a method does not give a sufficient effect.
 そのため、本発明者らは、これまで藻類の増殖に必要な金属類を酸化させる微生物を自然発生的に担持させることが可能な担持体を収容する反応槽と、該反応槽を曝気する曝気手段とを有する処理装置を閉鎖性水域の表層に設置する方法を提案している(特許文献1参照)。
 この手法は、閉鎖性水域の表層に存在する金属類を酸化して沈降させ、これを藻類が利用できなくすることにより、間接的に藻類の増殖を抑制する方法に係り、閉鎖性水域の表層に滞在する藻類への栄養源を断つことを想定している。しかしながら、閉鎖性水域の表層に存在する金属類の酸化により、その濃度を低下させることだけでは、藻類の増殖を十分に抑制できないことが分かってきた。即ち、閉鎖性水域において、水温躍層により表層との水混合が妨げられている底層は、嫌気性になると底泥から金属類が溶出して高濃度に蓄積するが、藻類の中には、夜間に閉鎖性水域の底層に沈降していると考えられる生態を有するものがあり、閉鎖性水域の表層で利用できない金属類を閉鎖性水域の底層に沈降して利用することが可能となる。
Therefore, the present inventors have heretofore provided a reaction vessel containing a carrier capable of spontaneously carrying a microorganism that oxidizes metals necessary for algae growth, and an aeration means for aerating the reaction vessel. Has been proposed (see Patent Document 1).
This method relates to a method of indirectly suppressing the growth of algae by oxidizing and precipitating metals present in the surface of the closed water area and making it unavailable to the algae. It is assumed that the nutrient source for the algae staying in is cut off. However, it has been found that the growth of algae cannot be sufficiently suppressed only by reducing the concentration of the metals present in the surface layer of the closed water area by reducing the concentration thereof. That is, in a closed water area, when the bottom layer where water mixing with the surface layer is hindered by the hot water layer becomes anaerobic, metals elute from the bottom mud and accumulate at a high concentration, but in algae, Some have ecology that seems to sink to the bottom of the closed water area at night, and metals that cannot be used on the surface layer of the closed water area can sink to the bottom layer of the closed water area.
 ところで、閉鎖性水域の底質が有機質、窒素、リンなどを多く含むことに着目し、底質近傍に溶存酸素を供給することで底質からの栄養塩の溶出を抑制して水域全体が富栄養化することを抑制する方法が提案されている。また、微生物が定着可能な担持体等を有する構造体を閉鎖性水域の底層に配し、この構造体に水面上から取り入れた空気を送気する方法が提案されている(特許文献2参照)。 By the way, paying attention to the fact that the bottom sediment of the closed water area contains a lot of organic matter, nitrogen, phosphorus, etc., supplying dissolved oxygen to the vicinity of the bottom sediment suppresses the elution of nutrient salts from the bottom sediment and enriches the whole water body. A method for suppressing nutrition is proposed. In addition, a method has been proposed in which a structure having a carrier or the like on which microorganisms can be fixed is disposed on the bottom layer of a closed water area, and air taken from above the water surface is supplied to the structure (see Patent Document 2). .
特開2009-207986号公報JP 2009-207986 A 特開2003-236583号公報JP 2003-236583 A
 しかしながら、溶存酸素を供給して底層での栄養塩の酸化還元状態を制御する方法に関しては、高出力の送気装置が必要となり、運転コストが嵩む問題がある。また、微生物を用いた方法に関しては、水域全体で水流が循環し、藻類の増殖を十分に抑制できない問題がある。後者の問題について図1を用いてより詳しく説明する。図1は、従来の方法に準じて、底層に藻類増殖抑制装置を設置して藻類の増殖を抑制する場合の状況を説明する説明図である。なお、ここでは、藻類の栄養源として、底質からの溶出金属を想定する。 However, the method for supplying the dissolved oxygen to control the redox state of the nutrients in the bottom layer requires a high output air supply device, which increases the operation cost. Moreover, regarding the method using microorganisms, there is a problem that the water flow circulates in the entire water area and the growth of algae cannot be sufficiently suppressed. The latter problem will be described in more detail with reference to FIG. FIG. 1 is an explanatory diagram for explaining the situation when an algal growth suppression device is installed in the bottom layer to suppress the growth of algae according to a conventional method. In addition, here, the eluted metal from the sediment is assumed as an algae nutrient source.
 図1に示すように藻類増殖抑制装置100は、閉鎖性水域40の底質上に設置される。また、藻類増殖抑制装置100は、筒状の反応槽を有し、反応槽内には、微生物を担持可能な担持体が配される。前記微生物は、送気装置20の送気により前記反応槽の筒底から導入される空気中の酸素を利用して水中の金属イオンを酸化させ、その金属酸化物を放出する。前記筒底から前記反応槽内に導入される空気は、気泡となって前記反応槽の上方から水面に向かって浮上し、この気泡の浮上に伴い、鉛直上方への水流(鉛直上方水流)を形成する。
 この際、前記微生物から放出された前記金属酸化物の多くは、自重により底質に向けて沈降することなく、前記鉛直上方水流とともに藻類30が滞留する水面側に連行され、水面側が富栄養化する。
As shown in FIG. 1, the algal growth suppression device 100 is installed on the bottom sediment of the closed water area 40. Moreover, the algal growth suppression apparatus 100 has a cylindrical reaction tank, and a carrier capable of supporting microorganisms is disposed in the reaction tank. The microorganisms oxidize metal ions in the water using oxygen in the air introduced from the bottom of the reaction tank by supplying air from the air supply device 20 and release the metal oxide. Air introduced into the reaction tank from the bottom of the cylinder becomes bubbles and rises from above the reaction tank toward the water surface, and as the bubbles rise, a vertically upward water flow (vertical upward water flow) is generated. Form.
At this time, most of the metal oxides released from the microorganisms are entrained to the water surface side where the algae 30 stay together with the vertical upward water flow without being settled toward the sediment due to their own weight, and the water surface side is eutrophication. To do.
 その後、前記鉛直上方水流は、閉鎖性水域40内に拡散しつつ水流の発生源である藻類増殖抑制装置100に向けて表面側から下降するように閉鎖性水域40内を循環し、循環層50を形成する。
 この際、藻類30に利用されなかった前記金属酸化物は、循環する水流に連行されるか自重により底層側に下降するが、底層に近づくにつれて貧酸素状態となるため、再び金属イオンに還元され、底質に沈降することなく、底質から溶出する金属イオンとともに再び藻類増殖抑制装置100による処理対象として循環するか、金属イオンとして表層側に拡散して藻類30の栄養源となり得る。いずれにしても、底質から溶出する金属イオンを金属酸化物として底質に沈降させることが不十分となる。
Thereafter, the vertical upward water stream circulates in the closed water area 40 so as to descend from the surface side toward the algae growth suppressing device 100 that is the source of the water flow while diffusing in the closed water area 40, and the circulation layer 50. Form.
At this time, the metal oxide that has not been used for the algae 30 is entrained in the circulating water stream or descends to the bottom layer due to its own weight. However, as it approaches the bottom layer, it becomes hypoxic and is reduced again to metal ions. Without being settled on the bottom sediment, it can be circulated again with the metal ions eluted from the bottom sediment as a treatment target by the algae growth suppression apparatus 100, or diffused as metal ions to the surface layer side to become a nutrient source for the algae 30. In any case, it is insufficient to cause metal ions eluted from the sediment to settle to the sediment as a metal oxide.
 本発明は、従来技術における前記諸問題を解決し、微生物を用いて閉鎖性水域中の藻類の増殖を効果的に抑制可能な藻類増殖抑制装置及び方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems in the prior art and to provide an algal growth suppression apparatus and method capable of effectively suppressing the growth of algae in a closed water area using microorganisms.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 下部に気体を導入可能とされる気体導入部及び水を導入可能とされる水導入部が形成され、上部に少なくとも前記気体を排出する気体排出部が形成される筒状の反応槽と、前記気体排出部から排出される前記気体が管内に通気されるように一端側が前記気体排出部に接続されるとともに他端側が水面から突出可能に延在される脱気管と、前記反応槽内に配設され、藻類の増殖に必要な金属を酸化させる微生物を担持可能な微生物担持体と、を有し、前記反応槽及び前記脱気管の一端側の少なくともいずれかが、前記反応槽内を浮上する前記気体の流れにより発生する鉛直上方水流の水流方向を鉛直上方から傾斜させて前記水流を水域中に排出する水流方向規制部を有することを特徴とする藻類増殖抑制装置。
 <2> 脱気管の一端側が反応槽に向けてテーパ状に拡開される水流方向規制部とされるとともに、前記一端側が前記水流方向規制部で水流方向が鉛直上方から傾斜された鉛直上方水流が水域中に排出されるように前記反応槽との間に隙間を有する状態で気体排出部と接続される前記<1>に記載の藻類増殖抑制装置。
 <3> 反応槽胴部の全部又は一部が水流方向規制部として通水可能に形成される前記<1>から<2>のいずれかに記載の藻類増殖抑制装置。
 <4> 微生物担持体が水流により転動自在に流動する多孔質性の籠体に収容されて反応槽内に配設される前記<1>から<3>のいずれかに記載の藻類増殖抑制装置。
 <5> 微生物が少なくともマンガンイオンを酸化させて酸化マンガンとする微生物である前記<1>から<4>のいずれかに記載の藻類増殖抑制装置。
 <6> 前記<1>から<5>のいずれかに記載の藻類増殖抑制装置を用いて、閉鎖性水域内の藻類増殖を抑制する藻類増殖抑制方法であって、脱気管の他端側を水面上に突出させるとともに反応槽の水導入部が前記閉鎖性水域の底質近傍に位置するように前記藻類増殖抑制装置を設置する設置工程と、前記反応槽の気体導入部から酸素を含む気体を導入して、前記気体を前記水導入部から導入される水とともに微生物に接触させる気体導入工程と、を含むことを特徴とする藻類増殖抑制方法。
 <7> 設置工程が、反応槽の水導入部が前記閉鎖性水域の底質上0.2m~1.0mに位置するように前記藻類増殖抑制装置を設置する工程である前記<6>に記載の藻類増殖抑制方法。
 <8> 気体導入工程が、微生物担持体に微生物を自然発生的に定着させる工程を含む前記<6>から<7>のいずれかに記載の藻類増殖抑制方法。
Means for solving the problems are as follows. That is,
<1> A cylindrical reaction tank in which a gas introduction part capable of introducing gas and a water introduction part capable of introducing water are formed in the lower part, and a gas discharge part for discharging at least the gas is formed in the upper part. A deaeration pipe having one end connected to the gas discharge part and extending the other end so as to protrude from the water surface so that the gas discharged from the gas discharge part is vented into the pipe, and the reaction tank A microorganism carrier that is capable of supporting a microorganism that oxidizes a metal necessary for the growth of algae, and at least one of the reaction tank and one end side of the degassing pipe is in the reaction tank. A device for suppressing algal growth, comprising a water flow direction restricting portion for inclining the water flow direction of the vertical upward water flow generated by the gas flow rising above the water from the vertical upper direction and discharging the water flow into the water area.
<2> A vertical upper water flow in which one end side of the deaeration pipe is a water flow direction restricting portion that is expanded in a tapered shape toward the reaction tank, and the one end side is the water flow direction restricting portion and the water flow direction is inclined from vertically above. The algae growth suppression device according to <1>, wherein the device is connected to a gas discharge unit in a state having a gap between the reaction tank and the gas tank so as to be discharged into the water area.
<3> The algal growth suppression device according to any one of <1> to <2>, wherein the whole or a part of the reaction tank body is formed to allow water to flow as the water flow direction regulating unit.
<4> Algae growth suppression according to any one of <1> to <3>, wherein the microorganism-supporting body is accommodated in a porous casing that is freely rollable by a water flow and disposed in the reaction tank. apparatus.
<5> The algae growth suppression device according to any one of <1> to <4>, wherein the microorganism is a microorganism that oxidizes at least manganese ions into manganese oxide.
<6> An algal growth suppression method for suppressing algae growth in a closed water area using the algae growth suppression device according to any one of <1> to <5>, wherein the other end side of the deaeration tube is An installation step of installing the algae growth inhibitor so that the water introduction part of the reaction tank is positioned in the vicinity of the bottom of the closed water area while projecting on the water surface, and a gas containing oxygen from the gas introduction part of the reaction tank And a gas introduction step of bringing the gas into contact with microorganisms together with the water introduced from the water introduction section.
<7> In the above <6>, wherein the installation step is a step of installing the algal growth inhibitor so that the water introduction part of the reaction tank is located 0.2 to 1.0 m above the bottom of the closed water area The method for inhibiting algal growth described.
<8> The method for inhibiting algal growth according to any one of <6> to <7>, wherein the gas introduction step includes a step of spontaneously fixing microorganisms on the microorganism carrier.
 本発明によれば、従来技術における前記諸問題を解決することができ、微生物を用いて閉鎖性水域中の藻類の増殖を効果的に抑制可能な藻類増殖抑制装置及び方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the said various problems in a prior art can be solved, and the algal growth suppression apparatus and method which can suppress the growth of the algae in a closed water area effectively using microorganisms can be provided. .
従来の方法に準じて、底層に藻類増殖抑制装置を設置して藻類の増殖を抑制する場合の状況を説明する説明図である。It is explanatory drawing explaining the condition in the case of suppressing the growth of algae by installing an algae growth suppression device in the bottom layer according to a conventional method. 本発明の一実施形態に係る藻類増殖抑制装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the algal growth suppression apparatus which concerns on one Embodiment of this invention. 底層に本発明の一実施形態に係る藻類増殖抑制装置を設置して藻類の増殖を抑制する場合の状況を説明する説明図である。It is explanatory drawing explaining the condition in the case of installing the algal growth suppression apparatus which concerns on one Embodiment of this invention in a bottom layer, and suppressing the growth of algae. 本発明の他の実施形態に係る藻類増殖抑制装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the algal growth suppression apparatus which concerns on other embodiment of this invention. 図4(a)に示す藻類増殖抑制装置の特徴を説明するための部分拡大図である。It is the elements on larger scale for demonstrating the characteristic of the algal growth suppression apparatus shown to Fig.4 (a). 実施例で用いた籠体の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the housing used in the Example. 図5(a)に示す籠体を中央の開閉部で開封したときの構造を、矢印線上に沿って視たときの説明図である。It is explanatory drawing when a structure when opening the housing shown in Fig.5 (a) in the center opening / closing part is seen along the arrow line. 実施例で用いた微生物担持体の写真を示す図である。It is a figure which shows the photograph of the microorganisms carrier used in the Example. 実験の概要を説明する図である。It is a figure explaining the outline | summary of experiment. 藻類種の定量結果を示す図である。It is a figure which shows the quantification result of algae species. 表層での藻類濃度の測定結果を示す図である。It is a figure which shows the measurement result of the algae density | concentration in a surface layer. 底層でのDO濃度の経日変化を示す図である。It is a figure which shows the daily change of DO density | concentration in a bottom layer. 底層での溶存態窒素濃度の経日変化を示す図である。It is a figure which shows the daily change of the dissolved-state nitrogen density | concentration in a bottom layer. 表層での溶存態窒素濃度の経日変化を示す図である。It is a figure which shows the daily change of the dissolved-state nitrogen density | concentration in a surface layer. 底層でのオルトリン酸態リン濃度の経日変化を示す図である。It is a figure which shows the daily change of the orthophosphoric acid state phosphorus density | concentration in a bottom layer. 表層でのオルトリン酸態リン濃度の経日変化を示す図である。It is a figure which shows the daily change of the orthophosphoric acid state phosphorus density | concentration in a surface layer. 底層での全リン濃度の経日変化を示す図である。It is a figure which shows the daily change of the total phosphorus density | concentration in a bottom layer. 表層での全リン濃度の経日変化を示す図であるIt is a figure which shows the daily change of the total phosphorus concentration in a surface layer. 底層での溶存態マンガン濃度の経日変化を示す図である。It is a figure which shows the daily change of the dissolved-type manganese density | concentration in a bottom layer. 表層での溶存態マンガン濃度の経日変化を示す図である。It is a figure which shows the time-dependent change of the dissolved manganese concentration in a surface layer. 底層での全マンガン濃度の経日変化を示す図である。It is a figure which shows the daily change of the total manganese density | concentration in a bottom layer. 表層での全マンガン濃度の経日変化を示す図である。It is a figure which shows the daily change of the total manganese density | concentration in a surface layer.
(藻類増殖抑制装置)
 本発明の一実施形態に係る藻類増殖抑制装置について図2を参照して説明する。なお、図2は、本発明の一実施形態に係る藻類増殖抑制装置の概略構成を示す説明図である。
 図2に示すように藻類増殖抑制装置1は、反応槽3と脱気管7と籠体2a~2cに収容された微生物担持体(不図示)とを有する。
 なお、藻類増殖抑制装置1では、反応槽3を支持する支持部4を形成し、藻類増殖抑制装置1を底質60上に設置しているが、支持部4を形成せず、藻類増殖抑制装置を船上から吊下げ等することにより設置することもできる。
(Algae growth suppression device)
An algae growth inhibitor according to an embodiment of the present invention will be described with reference to FIG. In addition, FIG. 2 is explanatory drawing which shows schematic structure of the algal growth suppression apparatus which concerns on one Embodiment of this invention.
As shown in FIG. 2, the algal growth suppression apparatus 1 includes a reaction tank 3, a deaeration tube 7, and a microorganism carrier (not shown) accommodated in the enclosures 2a to 2c.
In addition, in the algal growth suppression apparatus 1, although the support part 4 which supports the reaction tank 3 is formed and the algae growth suppression apparatus 1 is installed on the bottom sediment 60, the support part 4 is not formed but algae growth suppression is performed. It can also be installed by suspending the device from the ship.
 反応槽3は、胴部3a、上部3b及び下部3cで構成される全体略筒状の部材からなり、各部は、ステンレス鋼、樹脂材などで形成することができる。
 下部3cは、例えば、網状のスクリーン部材とされ、反応槽3内に水を導入可能とされる。また、下部3cには、気体を導入可能な気体導入部5が形成される。この気体導入部5から導入される前記気体は、酸素を含む気体であり、純酸素ガスであってもよいが、運転コストを抑える観点から空気を用いることが好ましい。
 上部3bは、例えば、下部3cと同様に網状の前記スクリーン部材とされ、気体導入部5から反応槽3内を浮上する前記気体及び浮上する前記気体の流れによって発生する鉛直上方水流を反応槽3外に排出可能とされる。また、上部3bは、反応槽3内から籠体2a~2cが流出することを防止可能とする。
The reaction tank 3 consists of a substantially cylindrical member composed of a body portion 3a, an upper portion 3b, and a lower portion 3c, and each portion can be formed of stainless steel, a resin material, or the like.
The lower part 3 c is, for example, a net-like screen member, and water can be introduced into the reaction tank 3. Moreover, the gas introduction part 5 which can introduce | transduce gas is formed in the lower part 3c. The gas introduced from the gas introduction part 5 is a gas containing oxygen and may be pure oxygen gas, but it is preferable to use air from the viewpoint of reducing operating costs.
The upper part 3b is, for example, a net-like screen member similar to the lower part 3c, and the vertical upward water flow generated by the gas floating in the reaction tank 3 from the gas introduction part 5 and the flow of the rising gas is generated in the reaction tank 3 It can be discharged outside. Further, the upper part 3b makes it possible to prevent the casings 2a to 2c from flowing out of the reaction tank 3.
 籠体2a~2cは、反応槽3内に配され、前記鉛直上方水流により転動自在に流動可能とされる。また、籠体2a~2cは、多孔質性とされ、例えば、ステンレス製の網状部材により形成される。これにより籠内に収容される前記微生物担持体に前記気体及び前記水が接触可能とされる。また、籠体2a~2cが前記鉛直上方水流により転動自在に流動可能とされることで、収容される前記微生物担持体に対して、特定の部位に偏ることなく前記気体及び前記水が接触可能とされる。 The enclosures 2a to 2c are arranged in the reaction tank 3, and can flow freely by the vertical upward water flow. The casings 2a to 2c are porous, and are formed of, for example, a stainless mesh member. As a result, the gas and the water can be brought into contact with the microorganism carrier accommodated in the basket. In addition, since the casings 2a to 2c are capable of rolling freely by the vertical upward water flow, the gas and the water come into contact with the microorganism carrier to be accommodated without being biased to a specific part. It is possible.
 前記微生物担持体としては、特に制限はないが、微生物が付着し易いようにある程度表面に凹凸があるものや多孔質のものが好ましい。また、籠体2a~2c内で前記微生物担持体自身も流動させる観点から、比重が1程度の樹脂で形成されることが好ましい。また、体積に対して前記気体及び前記水との接触面積を大きくとるものが好ましく、例えば、中空円筒状の形状のものが好ましい。
 また、前記微生物担持体に担持される微生物としては、藻類の増殖に必要な金属を酸化させる微生物であれば、特に制限はなく、従来から存在することが知られている金属酸化微生物を用いることができる。こうした微生物としては、人為的又は自然発生的に前記微生物担持体に定着させることができ、一定期間、好気環境下(前記気体の曝気下)で前記水と接触させることで大量に増殖させることができる。特に、前記藻類の増殖に関与する金属としては、マンガンが挙げられ、底質から溶出するマンガンイオンを酸化させる微生物が好ましい。
The microorganism carrier is not particularly limited, but is preferably one having irregularities on the surface to some extent or a porous one so that microorganisms can easily adhere. Further, from the viewpoint of allowing the microorganism carrier itself to flow within the casings 2a to 2c, it is preferable that the specific gravity is formed of a resin of about 1. Moreover, what takes the contact area with the said gas and the said water with respect to the volume is preferable, for example, the thing of a hollow cylindrical shape is preferable.
The microorganism supported on the microorganism carrier is not particularly limited as long as it is a microorganism that oxidizes a metal necessary for the growth of algae, and a metal oxidation microorganism known to exist is used. Can do. Such microorganisms can be artificially or spontaneously fixed on the microorganism carrier, and can be proliferated in large quantities by contact with the water in an aerobic environment (under aeration of the gas) for a certain period of time. Can do. In particular, the metal involved in the growth of the algae includes manganese, and a microorganism that oxidizes manganese ions eluted from the sediment is preferable.
 脱気管7は、例えば、ステンレス鋼や樹脂材等から形成され、気体排出部としての上部3bから排出される前記気体が管内に通気されるように一端側が上部3bに接続されるとともに他端側(不図示)が設置水域の水面から突出可能に延在されて構成される。
 また、本例では、脱気管7の前記一端側が反応槽3に向けてテーパ状に拡開される水流方向規制部6とされ、前記一端側が水流方向規制部6で水流方向が鉛直上方から傾斜された前記鉛直上方水流が水域中に排出されるように反応槽3との間に隙間を有する状態で上部3bと接続される。このような水流方向規制部6を形成することで、上部3bから排出される前記気体を集気して管内に通気させることができるとともに、一旦、水流方向規制部6の内部まで侵入した前記鉛直上方水流がテーパ形状に沿って下方側に傾斜するように水流方向が規制され、前記鉛直上方水流に含まれる前記金属酸化物を底質に向けて沈降させ易くすることができる。なお、脱気管7の長さは、処理対象となる閉鎖性水域の水深に応じて可変とされることが好ましい。
The deaeration pipe 7 is formed of, for example, stainless steel or a resin material, and one end side is connected to the upper part 3b and the other end side so that the gas discharged from the upper part 3b as a gas discharge part is vented into the pipe. (Not shown) is configured to extend so as to protrude from the water surface of the installation water area.
Further, in this example, the one end side of the deaeration pipe 7 is a water flow direction restricting portion 6 that is expanded in a taper shape toward the reaction tank 3, and the one end side is the water flow direction restricting portion 6 and the water flow direction is inclined from vertically above. It connects with the upper part 3b in the state which has a clearance gap between the reaction tank 3 so that the said perpendicular | vertical upper water flow may be discharged | emitted in a water area. By forming such a water flow direction restricting portion 6, the gas discharged from the upper portion 3 b can be collected and ventilated into the pipe, and once the water has entered the water flow direction restricting portion 6. The water flow direction is regulated so that the upper water flow is inclined downward along the taper shape, and the metal oxide contained in the vertical upper water flow can be easily settled toward the bottom sediment. In addition, it is preferable that the length of the deaeration pipe | tube 7 is made variable according to the water depth of the closed water area used as a process target.
 以上のように構成される藻類増殖抑制装置1の作用について図2及び図3を参照しつつ説明をする。なお、図3は、底層に本発明の一実施形態に係る藻類増殖抑制装置を設置して藻類の増殖を抑制する場合の状況を説明する説明図である。
 藻類増殖抑制装置1を閉鎖性水域40の底質60上に設置し、送気装置20から反応槽3の下部3cに形成された気体導入部5に空気等の気体を送り込み、反応槽3内を曝気する。反応槽3内に導入された前記気体は、鉛直上方に浮上し、先端が水面から突出した脱気管7を通り、閉鎖性水域40外へと排気される。
The operation of the algal growth suppression apparatus 1 configured as described above will be described with reference to FIGS. 2 and 3. In addition, FIG. 3 is explanatory drawing explaining the condition in case the algal growth suppression apparatus which concerns on one Embodiment of this invention is installed in a bottom layer, and the growth of algae is suppressed.
The algal growth suppression device 1 is installed on the bottom sediment 60 of the closed water area 40, and a gas such as air is sent from the air supply device 20 to the gas introduction part 5 formed in the lower part 3 c of the reaction tank 3, Aerate. The gas introduced into the reaction tank 3 floats vertically upward, passes through the deaeration pipe 7 whose tip protrudes from the water surface, and is exhausted out of the closed water area 40.
 この際、反応槽3内を浮上する前記気体の流れにより反応槽3内に前記鉛直上方水流が発生し、反応槽3内に閉鎖性水域40の底層水が反応槽3内に引き込まれる。反応槽3内に配された籠体2a~2c内に収容された前記微生物担持体に担持される前記微生物は、曝気による好気環境下で、前記底層水に含まれる前記金属イオン(マンガン)を酸化させる。前記鉛直上方水流は、前記微生物により生成された前記金属の金属酸化物の一部を連行しつつ反応槽3から排出される。反応槽3から排出された前記鉛直上方水流は、脱気管7の水流方向規制部6により、その水流方向が鉛直上方から傾斜させられた状態で、閉鎖性水域40中に排出される。傾斜後の水流は、閉鎖性水域40の底層に拡散しつつ、前記鉛直上方水流の発生源である水導入部としての下部3cに向けて下降し、底層水中での循環層50を形成する。また、底層を循環する循環層50に含まれる前記金属酸化物は、循環層50が溶存酸素により好気環境下とされるため、前記金属イオンとして水中に溶出することなく、次第に底質に向けて沈降する。このような藻類増殖抑制装置1を一定期間稼働することで、底質から溶出した前記金属イオンが表層に移動することを遮断することができるとともに、また、底層においても金属酸化物として底質に沈降させて枯渇することができる。
 したがって、閉鎖性水域40の表層に滞留する藻類30が前記金属イオンを利用することができず、また、夜間に底層に沈降して底層に溶出した前記金属イオンを利用することができなくなる。これにより、藻類30の増殖が効果的に抑制される。
At this time, the vertical upward water flow is generated in the reaction tank 3 by the flow of the gas floating in the reaction tank 3, and the bottom layer water of the closed water region 40 is drawn into the reaction tank 3 in the reaction tank 3. The microorganisms carried on the microorganism carrier accommodated in the enclosures 2a to 2c arranged in the reaction tank 3 are the metal ions (manganese) contained in the bottom water in an aerobic environment by aeration. Oxidize. The vertical upward water stream is discharged from the reaction tank 3 while entraining part of the metal oxide of the metal produced by the microorganism. The vertical upward water flow discharged from the reaction tank 3 is discharged into the closed water area 40 in a state where the water flow direction is inclined from the vertical upward direction by the water flow direction regulating portion 6 of the deaeration pipe 7. The water stream after the inclination descends toward the lower part 3c as a water introduction part that is a generation source of the vertical upward water stream while diffusing to the bottom layer of the closed water area 40, thereby forming a circulation layer 50 in the bottom water. In addition, the metal oxide contained in the circulation layer 50 circulating in the bottom layer is gradually directed toward the bottom sediment without being eluted into water as the metal ions because the circulation layer 50 is brought into an aerobic environment by dissolved oxygen. And sink. By operating such an algae growth inhibitor 1 for a certain period, the metal ions eluted from the sediment can be blocked from moving to the surface layer, and also in the bottom layer as a metal oxide in the sediment. Can be depleted by sedimentation.
Therefore, the algae 30 staying in the surface layer of the closed water area 40 cannot use the metal ions, and the metal ions that have settled and eluted into the bottom layer at night cannot be used. Thereby, the growth of the algae 30 is effectively suppressed.
 図2に示す例では、脱気管7の一端側に配された水流規制部6により、反応槽3内を浮上する前記気体の流れにより発生する前記鉛直上方水流の水流方向を鉛直上方から傾斜させて前記水流を前記閉鎖性水域中に排出することとしたが、水流規制部の構成としては、前記鉛直上方水流の水流方向を鉛直上方から傾斜させて前記水流を前記閉鎖性水域中に排出することができる限り、このような例に限定されない。
 例えば、反応槽の上部又は下部に前記鉛直上方水流を傾斜させて前記閉鎖性水域中に排出する前記水流の案内部を形成して、これを水流規制部としてもよい。
 また、前記反応槽の胴部に前記水流規制部を形成してもよい。以下に、このような水流規制部を形成した藻類増殖抑制装置の一例を図4(a),(b)を用いて説明する。なお、図4(a)は、本発明の他の実施形態に係る藻類増殖抑制装置の概略構成を示す説明図であり、図4(b)は、図4(a)に示す藻類増殖抑制装置の特徴を説明するための部分拡大図である。
In the example shown in FIG. 2, the water flow restriction section 6 disposed on one end side of the deaeration pipe 7 causes the water flow direction of the vertical upper water flow generated by the gas flow rising in the reaction tank 3 to be inclined from the vertical upper side. The water flow is discharged into the closed water area, but the structure of the water flow control unit is to discharge the water flow into the closed water area by inclining the water flow direction of the vertical upper water flow from vertically above. It is not limited to such an example as long as it can.
For example, the water flow guide portion may be formed by inclining the vertical upper water flow in the upper or lower portion of the reaction tank and discharging the water flow into the closed water area.
Moreover, you may form the said water flow control part in the trunk | drum of the said reaction tank. Below, an example of the algal growth suppression apparatus which formed such a water flow control part is demonstrated using Fig.4 (a), (b). FIG. 4 (a) is an explanatory view showing a schematic configuration of an algal growth suppression device according to another embodiment of the present invention, and FIG. 4 (b) is an algal growth suppression device shown in FIG. 4 (a). It is the elements on larger scale for demonstrating the characteristic of these.
 これらの図に示す藻類増殖抑制装置10では、反応槽13の胴部13aの全部又は一部が通水性とされる。このような胴部13aは、例えば、全体が通水性の素材で構成されていてもよく、また、鋼材の一部に通水口を形成して構成することもできる。なお、前者の場合、更に上部13b等の支持強度を確保するための支持材を別途配することができる。
 また、上部13bは、脱気管17との接続口を除き、反応槽13の上方を密閉する構成とされる。
 この藻類増殖抑制装置10では、気体導入部15から空気等の気体が反応槽13内に導入されると、籠体12a~12e内に収容される前記微生物担持体に前記気体が接触する。また、反応槽13内を浮上する前記気体は、集気されて脱気管17から閉鎖性水域外に排気される。
 反応槽13内を浮上する前記気体の流れにより、底層水が下部13cから反応槽13内に引き込まれるとともに鉛直上方水流が発生し、底質から溶出した金属を含む前記底層水が好気環境下で籠体12a~12e内に収容される前記微生物担持体と接触し、前記金属の酸化物が生成される。
 前記鉛直上方水流は、水流方向が鉛直上方から傾斜された状態で胴部13aから排出される。
 したがって、このような藻類増殖抑制装置10を一定期間稼働することで、底質から溶出した前記金属イオンが表層に移動することを遮断することができるとともに、また、底層においても前記金属イオンを金属酸化物として底質に沈降させて枯渇することができ、延いては、前記金属イオンを利用する藻類の増殖を効果的に抑制することができる。
In the algal growth suppression apparatus 10 shown in these drawings, all or part of the trunk portion 13a of the reaction tank 13 is made water-permeable. Such a trunk | drum 13a may be comprised with the water-permeable raw material as a whole, for example, and can also comprise it by forming a water-flow opening in a part of steel materials. In the former case, a support material for securing the support strength of the upper portion 13b and the like can be additionally provided.
Further, the upper part 13 b is configured to seal the upper part of the reaction tank 13 except for the connection port with the deaeration pipe 17.
In the algae growth suppression device 10, when a gas such as air is introduced from the gas introduction unit 15 into the reaction tank 13, the gas contacts the microorganism carrier accommodated in the enclosures 12a to 12e. The gas floating in the reaction tank 13 is collected and exhausted from the deaeration pipe 17 to the outside of the closed water area.
Due to the flow of the gas floating in the reaction tank 13, the bottom layer water is drawn into the reaction tank 13 from the lower part 13c and a vertical upward water flow is generated, and the bottom layer water containing the metal eluted from the bottom is in an aerobic environment. In contact with the microorganism carrier accommodated in the casings 12a to 12e, the metal oxide is generated.
The vertically upward water flow is discharged from the trunk portion 13a in a state where the water flow direction is inclined from the vertically upward direction.
Therefore, by operating such an algal growth suppression device 10 for a certain period of time, the metal ions eluted from the sediment can be blocked from moving to the surface layer, and the metal ions are also converted into metal in the bottom layer. It can be depleted by sedimentation to the sediment as an oxide, and by extension, the growth of algae using the metal ions can be effectively suppressed.
(藻類増殖抑制方法)
 本発明の藻類増殖抑制方法は、本発明の前記藻類増殖抑制装置を用いて、閉鎖性水域内の藻類増殖を抑制する藻類増殖抑制方法であり、前記藻類増殖抑制装置の設置工程と、気体導入工程とを含む。
(Algae growth suppression method)
The algal growth suppression method of the present invention is an algae growth suppression method that suppresses algae growth in a closed water area using the algae growth suppression device of the present invention. Process.
 前記設置工程は、脱気管の他端側を水面上に突出させるとともに反応槽の水導入部が前記閉鎖性水域の底質近傍に位置するように前記藻類増殖抑制装置を設置する工程である。
 具体的な前記藻類増殖抑制装置の設置位置としては、底質近傍であれば、特に制限はないが、前記反応槽の前記水導入部の位置が前記閉鎖性水域の底質上0.2m~1.0mとされる位置が好ましく、底質上0.3m~0.5mとされる位置が特に好ましい。
 0.2m未満であると、前記水導入部から底質中の底泥が前記反応槽内に引き込まれることがあり、1.0mを超えると、前記反応槽内に引き込む底層水中の金属濃度が低く、底質から溶出する金属を効率的に酸化させることができないことがある。
 なお、前記設置工程では、前記脱気管の他端側を水面上に突出させることとしたが、一定期間、前記藻類増殖抑制装置を稼働し、底層における溶出金属イオン濃度が十分低下した後は、前記脱気管の他端部を水面下の位置に設置し直し、従来の浅層曝気方法に準じた配置としてもよい。
The installation step is a step of installing the algal growth inhibitor so that the other end side of the deaeration tube protrudes above the water surface and the water introduction part of the reaction tank is located in the vicinity of the bottom sediment of the closed water area.
The specific installation position of the algal growth suppression device is not particularly limited as long as it is near the bottom sediment, but the position of the water introduction part of the reaction tank is 0.2 m to the bottom sediment of the closed water area. A position of 1.0 m is preferable, and a position of 0.3 m to 0.5 m on the sediment is particularly preferable.
If it is less than 0.2 m, bottom mud in the sediment may be drawn into the reaction tank from the water introduction part, and if it exceeds 1.0 m, the metal concentration in the bottom layer water drawn into the reaction tank is It is low, and the metal eluted from the sediment may not be oxidized efficiently.
In the installation step, the other end of the deaeration tube was projected on the water surface, but after operating the algal growth inhibitor for a certain period of time and the elution metal ion concentration in the bottom layer was sufficiently reduced, The other end portion of the deaeration pipe may be re-installed at a position below the water surface and arranged according to a conventional shallow aeration method.
 前記気体導入工程は、前記反応槽の気体導入部から酸素を含む気体を導入して、前記気体を前記水導入部から導入される水とともに微生物に接触させる工程である。
 前記気体導入工程の実施方法としては、特に制限はないが、前記閉鎖性水域外に設置されたエアコンプレッサ等の送気装置から空気等の気体を前記気体導入部から前記反応槽に導入する方法が挙げられる。
 また、前記気体導入工程としては、前記藻類増殖抑制装置中の微生物担持体が微生物を自然発生的に定着させるタイプのものである場合、前記微生物に前記気体を接触させることに先立ち、前記微生物が定着していない前記微生物担持体に前記気体を接触させ、前記微生物担持体に前記微生物を自然発生的に定着させる工程を含むこととしてもよい。
 以下、本発明の実施例について説明するが、本発明の技術的思想は、実施例に限定されるものではない。
The gas introduction step is a step of introducing a gas containing oxygen from a gas introduction portion of the reaction tank and bringing the gas into contact with microorganisms together with water introduced from the water introduction portion.
The method for carrying out the gas introduction step is not particularly limited, but a method of introducing a gas such as air from the gas introduction unit into the reaction tank from an air supply device such as an air compressor installed outside the closed water area. Is mentioned.
In addition, as the gas introduction step, when the microorganism carrier in the algal growth suppression apparatus is of a type that spontaneously fixes microorganisms, the microorganisms are brought into contact with the microorganisms prior to contacting the microorganisms. The method may include a step of bringing the gas into contact with the microorganism carrier not fixed, and fixing the microorganism spontaneously on the microorganism carrier.
Examples of the present invention will be described below, but the technical idea of the present invention is not limited to the examples.
 図2に示す藻類増殖抑制装置1の構成に準じて、実施例に係る藻類増殖抑制装置を作製した。この藻類増殖抑制装置は、水中に沈める形で底質上に設置され、反応槽は、アクリル製の筒で形成される。前記反応槽では、送気装置から送気される空気が筒底側の気体導入口から導入され、下部から上部に向けて曝気されることで、前記反応槽内に設置される前記籠体が転動自在に流動される。
 前記籠体は、図5(a)、(b)に示すように、ステンレス製の網体で構成され、内部に微生物担持体が配設可能とされる。なお、図5(a)は、実施例で用いた籠体の概要を示す説明図であり、図5(b)は、図5(a)に示す籠体を中央の開閉部で開封したときの構造を、矢印線上に沿って視たときの説明図である。また、各図中の符号2は、籠体を示す。
 微生物担持体は、ポリプロピレンを基材とした中空で多孔質の円筒体で構成され、円筒体に微生物が定着可能とされる。実施例で用いた微生物担持体の写真を図6に示す。この微生物担持体は、前記籠体の容積に対して30%程度封入されており、曝気により前記籠体自身の流動とともに、前記籠体内部で流動する仕組みとなっている。なお、前記微生物担持体では、曝気により前記反応槽内を好気状態とすると、前記円筒体上に、微生物の生物膜が自然発生的に生じる。この生物膜は、少なくとも水中のマンガンイオンを酸化、懸濁化して沈降させる働きをする。
 前記反応槽内に導入された気体は、外部の閉鎖性水域に放出されず、前記反応槽の上部に配されたテーパ状に拡開された漏斗状の水流規制部に集められ、前記水流規制部に連接された脱気管を通じて、水面上に排気される。
In accordance with the configuration of the algae growth inhibitory apparatus 1 shown in FIG. 2, an algae growth inhibitory apparatus according to the example was produced. This algae growth suppression apparatus is installed on the bottom sediment in a form that is submerged in water, and the reaction tank is formed of an acrylic cylinder. In the reaction tank, the air supplied from the air supply device is introduced from the gas inlet on the bottom side of the cylinder, and aerated from the lower part toward the upper part, so that the casing installed in the reaction tank is It can flow freely.
As shown in FIGS. 5 (a) and 5 (b), the casing is formed of a stainless steel net, and a microorganism carrier can be disposed therein. 5 (a) is an explanatory view showing an outline of the casing used in the example, and FIG. 5 (b) is a case where the casing shown in FIG. 5 (a) is opened at the central opening / closing section. It is explanatory drawing when viewing this structure along the arrow line. Moreover, the code | symbol 2 in each figure shows a housing.
The microorganism carrier is constituted by a hollow and porous cylindrical body based on polypropylene, and microorganisms can be fixed on the cylindrical body. A photograph of the microorganism carrier used in the examples is shown in FIG. The microorganism carrier is sealed about 30% with respect to the volume of the casing, and has a mechanism of flowing inside the casing along with the flow of the casing itself by aeration. In the microorganism carrier, when the inside of the reaction vessel is brought into an aerobic state by aeration, a biofilm of microorganisms is spontaneously generated on the cylindrical body. This biofilm functions to oxidize, suspend and settle at least manganese ions in water.
The gas introduced into the reaction tank is not released into an external closed water area, but is collected in a funnel-shaped water flow restricting portion arranged in an upper portion of the reaction tank, and the water flow restriction It is exhausted onto the water surface through a deaeration pipe connected to the part.
 このように作製した実施例に係る藻類増殖抑制装置を閉鎖性水域の底質上に設置して運転することで、底質から溶出する栄養塩類が低減されることにより、藻類の発生状況がどのように変化するかの実験を行った。なお、実験は、霞ヶ浦において行ったが、霞ヶ浦の中でも特に閉鎖性の高い船だまりで実施した。その閉鎖性水域では、底泥の有機物含有量が高く、夏季には水が滞留して底層が貧酸素化するとともに、夏季には藍藻類が異常発生するサイトである。
 図7を用いて実験の概要を説明する。閉鎖性水域41内に蛇腹状の風管で形成される仕切りを2つ設置して、2つの隔離水塊を形成した。2つの隔離水塊の一方に、前記藻類増殖抑制装置を設置した。この前記藻類増殖抑制装置が設置された隔離水塊を隔離水塊No.1とする。他方の隔離水塊には、何も設置せず比較対象とした。この比較対象に係る隔離水塊を隔離水塊No.2とする。前記風管は、直径1.2mであり、閉鎖性水域41の水深は3mほどである。また、前記風管内外の水位差を生じさせないため、水深1.5mの位置に直径5cm程の穴を4箇所開け、前記風管内の水位が閉鎖性水域41の水位に追随するようにした。
 隔離水塊No.1において、前記藻類増殖抑制装置は、底質60上に設置され、前記反応槽筒底側の前記気体導入口が閉鎖性水域41外に設置されるエアコンプレッサと接続される。前記気体導入口の高さ位置(図7中の符号h)は、底質から30cmとした。前記エアコンプレッサから前記反応槽内に導入される気体は、前記脱気管を通じて水面上に排気させ、水流規制部より上層の水域に上昇流を生じさせないようにした。
By installing and operating the algae growth inhibitory device according to the embodiment prepared in this way on the sediment in the closed water area, the amount of nutrients eluted from the sediment is reduced. An experiment was conducted to see how it changed. The experiment was carried out in Kasumigaura, but it was conducted in a highly closed vessel pool in Kasumigaura. In the closed water area, the organic matter content of the bottom mud is high, water stays in the summer, the bottom layer becomes hypoxic, and cyanobacteria are abnormally generated in the summer.
The outline of the experiment will be described with reference to FIG. Two partitions formed by bellows-like wind tubes were installed in the closed water area 41 to form two isolated water bodies. The algae growth suppression device was installed in one of the two isolated water masses. The isolated water mass provided with the algae growth inhibiting device is designated as isolated water mass No. Set to 1. In the other isolated water mass, nothing was set up for comparison. The isolated water mass according to this comparison target is designated as isolated water mass No. 2. The wind pipe has a diameter of 1.2 m, and the water depth of the closed water area 41 is about 3 m. Further, in order not to cause a difference in water level between the inside and outside of the wind pipe, four holes having a diameter of about 5 cm were formed at a water depth of 1.5 m so that the water level in the wind pipe followed the water level of the closed water area 41.
Isolated water mass No. 1, the algal growth suppression device is installed on the bottom sediment 60, and the gas inlet on the bottom side of the reaction tank is connected to an air compressor installed outside the closed water area 41. The height position of the gas inlet (symbol h in FIG. 7) was 30 cm from the bottom. The gas introduced from the air compressor into the reaction vessel was exhausted onto the water surface through the deaeration pipe so as not to cause an upward flow in the water area above the water flow regulating part.
 以上の実験設備が準備完了した後、藻類の増殖が懸念される夏場の7月上旬から8月下旬までを運転期間として前記藻類増殖抑制装置を稼働させた。以下、実験結果について説明を行う。 After the above experimental facilities were prepared, the algae growth suppression apparatus was operated during the operation period from early July to late August in the summer when there is concern about the growth of algae. Hereinafter, experimental results will be described.
<藻類分析結果>
 藻類の増殖に関する実験結果として、図8に、藻類種(上位3種)の定量結果を、図9に、表層での藻類濃度(Chl.a(mg/L))の測定結果を示す。
 天候が安定してきた7月末以降では、図8に示すように、隔離水塊No.1及び隔離水塊No.2で藍藻類の割合が多くなっているが、図9に示すように、隔離水塊No.1の方は、隔離水塊No.2と比較して藻類濃度の低下が確認され、藻類の増殖を抑制できていることが確認できる。
 なお、図8に示す藻類種の定量は、光学顕微鏡を用いて行った。また、図9に示す表層での藻類濃度(Chl.a(mg/L))の測定は、単波長吸光光度法を用いて行った。藻類種の定量と藻類濃度の測定は、ともにカラムを用いて表層から1mまでの柱状水をよく攪拌したものを分析に供した。
<Algae analysis results>
As experimental results on the growth of algae, FIG. 8 shows the results of quantification of the algae species (top 3 types), and FIG. 9 shows the results of measurement of the algae concentration (Chl.a (mg / L)) on the surface layer.
After the end of July when the weather has stabilized, as shown in FIG. 1 and isolated water mass No. 1 2, the ratio of cyanobacteria is increased, but as shown in FIG. No. 1 is an isolated water mass No. 1. It is confirmed that the algal concentration is reduced as compared with 2, and the growth of algae can be suppressed.
The algae species shown in FIG. 8 was quantified using an optical microscope. Moreover, the measurement of the algal concentration (Chl.a (mg / L)) on the surface layer shown in FIG. 9 was performed using a single wavelength absorptiometry. Both the determination of the algal species and the measurement of the algal concentration were carried out by using a column with well-stirred columnar water from the surface layer to 1 m.
<水質分析結果>
 隔離水塊No.1及び隔離水塊No.2における底層でのDO濃度の経日変化を図10に示す。隔離水塊No.2では、天候が安定するにつれて、DO濃度(溶存酸素濃度)が低下しており、7月末以降で底層がほぼ嫌気化していることが確認される。一方、隔離水塊No.1では、前記エアコンプレッサによる曝気により、底層で好気状態が保たれているのが確認される。ここで、底層とは、水深2.5m付近より以深の層のことを指し、DO濃度の測定は、水深2.5m付近で行った。
 なお、図10に示すDO濃度の測定は、多項目水質計(U-50シリーズ:堀場製作所製)を用いて行った。
<Water quality analysis results>
Isolated water mass No. 1 and isolated water mass No. 1 FIG. 10 shows the daily change in DO concentration in the bottom layer in FIG. Isolated water mass No. In 2, the DO concentration (dissolved oxygen concentration) decreases as the weather stabilizes, and it is confirmed that the bottom layer is almost anaerobic after the end of July. On the other hand, the isolated water mass No. In 1, it is confirmed that the aerobic state is maintained in the bottom layer by aeration by the air compressor. Here, the bottom layer means a layer deeper than the depth of 2.5 m, and the DO concentration was measured at a depth of 2.5 m.
The DO concentration shown in FIG. 10 was measured using a multi-item water quality meter (U-50 series: manufactured by HORIBA, Ltd.).
 隔離水塊No.1及び隔離水塊No.2における底層と表層とでの溶存態窒素(NH-N、NO-N)濃度の経日変化を図11(a),(b)に示す。なお、図11(a)が底層(水深2.5m付近)での溶存態窒素濃度の経日変化を示し、図11(b)が表層(水深0.5m付近)での溶存態窒素濃度の経日変化を示している。
 藍藻類が増殖し始めた8月初旬には、底層での溶存態窒素濃度が隔離水塊No.1及び隔離水塊No.2で0.5mg/L以上となっており、また、表層での溶存態窒素濃度も藍藻類が増殖し始めた8月以降で十分高くなっている。したがって、窒素が藻類増殖の制限因子になったとは考えにくい。
 なお、図11(a),(b)に示す溶存態窒素濃度の測定は、下水試験方法(1997年度版)に従い、栄養塩自動分析装置(TRAACS2000型:ブラン・ルーベ社製)を用いて行った。
Isolated water mass No. 1 and isolated water mass No. 1 11A and 11B show changes over time in the dissolved nitrogen (NH 4 —N, NO 3 —N) concentration in the bottom layer and the surface layer in FIG. In addition, Fig.11 (a) shows the daily change of the dissolved nitrogen concentration in the bottom layer (water depth of about 2.5 m), and FIG.11 (b) shows the dissolved nitrogen concentration in the surface layer (water depth of about 0.5 m). It shows changes over time.
In the beginning of August when cyanobacteria began to grow, the concentration of dissolved nitrogen in the bottom was 1 and isolated water mass No. 1 2 and 0.5 mg / L or more, and the dissolved nitrogen concentration in the surface layer is sufficiently high after August when cyanobacteria began to grow. Therefore, it is unlikely that nitrogen has become a limiting factor for algae growth.
In addition, the measurement of the dissolved nitrogen concentration shown to Fig.11 (a), (b) is performed using the nutrient salt automatic analyzer (TRAACS2000 type | mold: made by Blanc-Loube) according to a sewage test method (1997 version). It was.
 隔離水塊No.1及び隔離水塊No.2における底層と表層とでのオルトリン酸態リン(PO-P)濃度の経日変化を図12(a)、(b)に示す。なお、図12(a)が底層(水深2.5m付近)でのオルトリン酸態リン濃度の経日変化を示し、図12(b)が表層(水深0.5m付近)でのオルトリン酸態リン濃度の経日変化を示している。
 隔離水塊No.1の底層では、好気的環境下でオルトリン酸態リン濃度が低く抑えられているが、隔離水塊No.2の底層では、隔離水塊No.1と比較してオルトリン酸態リン濃度が高くなっている。これは、嫌気的環境下で還元状態になった底質からオルトリン酸態リンが溶出することの影響と考えられる。なお、隔離水塊No.2の底層でのオルトリン酸態リン濃度は、別の湖沼等で測定した場合と比較して同程度か、それよりも高くなっている。
 一方、表層では、隔離水塊No.1及び隔離水塊No.2のいずれもオルトリン酸態リン濃度が低く抑えられており、リンが枯渇している状況である。
 以上から、隔離水塊No.2では、藻類が増殖する際に底層のオルトリン酸態リンを利用可能といえ、リンが藻類増殖の制限因子とはなっていないと考えられるが、隔離水塊No.1では、制限因子となっていた可能性がある。
 なお、図12(a),(b)に示すオルトリン酸態リン濃度の測定は、下水試験方法(1997年度版)に従い、栄養塩自動分析装置(TRAACS2000型:ブラン・ルーベ社製)を用いて行った。
Isolated water mass No. 1 and isolated water mass No. 1 Changes in orthophosphoric phosphorus (PO 4 -P) concentration in the bottom layer and surface layer in FIG. 2 are shown in FIGS. 12 (a) and 12 (b). FIG. 12 (a) shows the daily change of orthophosphoric phosphorus concentration in the bottom layer (water depth of about 2.5 m), and FIG. 12 (b) shows orthophosphoric phosphorus in the surface layer (water depth of about 0.5 m). It shows the daily change in concentration.
Isolated water mass No. In the bottom layer of No. 1, the concentration of orthophosphoric phosphorus was kept low in an aerobic environment. In the bottom layer of No. 2, the isolated water mass No. Compared with 1, the orthophosphoric acid phosphorus concentration is high. This is considered to be the effect of the elution of orthophosphoric phosphorus from the sediment that has been reduced in an anaerobic environment. The isolated water mass No. The orthophosphoric acid phosphorus concentration in the bottom layer of No. 2 is comparable or higher than that measured in another lake or the like.
On the other hand, in the surface layer, the isolated water mass No. 1 and isolated water mass No. 1 In both cases, the concentration of orthophosphoric phosphorus is kept low, and phosphorus is depleted.
From the above, the isolated water mass No. 2, it can be said that orthophosphoric phosphorus in the bottom layer can be used when the algae grow, and it is considered that phosphorus is not a limiting factor for algae growth. 1 may have been a limiting factor.
In addition, the measurement of the orthophosphoric acid phosphorus concentration shown in FIGS. 12 (a) and 12 (b) is performed using an automatic nutrient salt analyzer (TRAACS2000 type: manufactured by Blanc-Loube) in accordance with a sewage test method (1997 version). went.
 隔離水塊No.1及び隔離水塊No.2における底層と表層とでの全リン(TP)濃度の経日変化を図13(a)、(b)に示す。なお、図13(a)が底層(水深2.5m付近)での全リン濃度の経日変化を示し、図13(b)が表層(水深0.5m付近)での全リン濃度の経日変化を示している。
 底層、表層ともに、隔離水塊No.2の全リン濃度が、隔離水塊No.1よりも高くなっている。これは、隔離水塊No.2において嫌気的環境下で還元状態になった底質からリンが溶出したためであると考えられる。
 一方、隔離水塊No.1においては、底層、表層とも、8月以降において全リン濃度が常に低く抑えられている。これは、好気的環境下で酸化状態になった底質からのリン溶出が抑制されたためと考えられる。
 以上から、リン濃度は、藻類増殖の律速因子となっている可能性がある。
 なお、図13(a),(b)に示す全リン濃度の測定は、下水試験方法(1997年度版)に従い、栄養塩自動分析装置(TRAACS2000型:ブラン・ルーベ社製)を用いて行った。
Isolated water mass No. 1 and isolated water mass No. 1 The changes over time in the total phosphorus (TP) concentration in the bottom layer and the surface layer in Fig. 2 are shown in Figs. FIG. 13 (a) shows the daily change of the total phosphorus concentration in the bottom layer (around 2.5m in water depth), and FIG. 13 (b) shows the daily change in the total phosphorus concentration in the surface layer (around 0.5m water depth). It shows a change.
For both the bottom and surface layers, the isolated water mass No. 2 has a total phosphorus concentration of no. It is higher than 1. This is because the isolated water mass No. This is probably because phosphorus was eluted from the bottom sediment that was reduced in an anaerobic environment in No. 2.
On the other hand, the isolated water mass No. In No. 1, the total phosphorus concentration in both the bottom layer and the surface layer is always kept low after August. This is thought to be because phosphorus elution from the sediment that was oxidized in an aerobic environment was suppressed.
From the above, phosphorus concentration may be a rate-limiting factor for algal growth.
In addition, the measurement of the total phosphorus concentration shown to Fig.13 (a), (b) was performed using the nutrient salt automatic analyzer (TRAACS2000 type | mold: made by Blanc-Loube) according to the sewage test method (1997 version). .
 隔離水塊No.1及び隔離水塊No.2における底層と表層とでの溶存態マンガン(D-Mn)濃度の経日変化測定結果を図14(a),(b)に示す。なお、図14(a)が底層(水深2.5m付近)での溶存態マンガン濃度の経日変化を示し、図14(b)が表層(水深0.5m付近)での溶存態マンガン濃度の経日変化を示している。
 また、隔離水塊No.1及び隔離水塊No.2における底層と表層とでの全マンガン(T-Mn)濃度の経日変化測定結果を図15(a),(b)に示す。なお、図15(a)が底層(水深2.5m付近)での全マンガン濃度の経日変化を示し、図15(b)が表層(水深0.5m付近)での全マンガン濃度の経日変化を示している。
 なお、図14(a),(b)に示す溶存態マンガンと図15(a),(b)に示す全マンガンの測定は、河川水質試験方法(案)(1997年版)に従い、ICP-MS(X7CCT:サーモフィッシャーサイエンティフィック社)を用いて行った。
Isolated water mass No. 1 and isolated water mass No. 1 14A and 14B show the results of measurement of changes over time in the dissolved manganese (D-Mn) concentration in the bottom layer and the surface layer in FIG. FIG. 14 (a) shows the change over time in the dissolved manganese concentration in the bottom layer (around 2.5m in water depth), and FIG. 14 (b) shows the dissolved manganese concentration in the surface layer (around 0.5m in water depth). It shows changes over time.
In addition, the isolated water mass No. 1 and isolated water mass No. 1 15A and 15B show the measurement results of changes over time in the total manganese (T-Mn) concentration in the bottom layer and the surface layer in FIG. FIG. 15 (a) shows the daily change in the total manganese concentration in the bottom layer (water depth of about 2.5m), and FIG. 15 (b) shows the daily change in the total manganese concentration in the surface layer (around 0.5m of water depth). It shows a change.
Note that the dissolved manganese shown in FIGS. 14 (a) and 14 (b) and the total manganese shown in FIGS. 15 (a) and 15 (b) were measured by ICP-MS according to the river water quality test method (draft) (1997 version). (X7CCT: Thermo Fisher Scientific).
 先ず、隔離水塊No.1の底層での溶存態マンガン濃度について考察する。隔離水塊No.1では、溶存態マンガン濃度が、運転期間を通して低い値が維持されていた。
 ここで、隔離水塊No.1の前記藻類増殖抑制装置内の前記微生物担持体に付着していた金属とその重量を測定したところ、下記表1の通りであった。この値は、付着物の重量を算出して、前記微生物担持体の1個当たりでの乾燥重量に換算したものである。なお、分解前処理は、底質調査方法(平成24年8月環境省水・大気環境局)に記載の圧力容器法に従い、金属類の分析は、河川水質試験方法(案)(1997年版)に従い、ICP-MS(X7CCT:サーモフィッシャーサイエンティフィック社製)を用いて行った。
First, the isolated water mass No. The concentration of dissolved manganese in the bottom layer of No. 1 is considered. Isolated water mass No. In 1, the dissolved manganese concentration was maintained at a low value throughout the operation period.
Here, the isolated water mass No. The metal adhering to the microorganism carrier in the algal growth inhibitor 1 and its weight were measured as shown in Table 1 below. This value is obtained by calculating the weight of the deposit and converting it to the dry weight per one of the microorganism carriers. The decomposition pretreatment follows the pressure vessel method described in the bottom sediment investigation method (August 2012 Ministry of the Environment Water and Air Environment Bureau), and the analysis of metals is the river water quality test method (draft) (1997 version). The test was performed using ICP-MS (X7CCT: manufactured by Thermo Fisher Scientific).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上掲表1に示すように、前記微生物担持体には、マンガン成分が特に多く、溶存態のマンガンが酸化されて懸濁化した後、前記微生物担持体に付着することや、付着しきれないものは、曝気水流により前記微生物担持体から剥がれて底質に沈降することが示唆される。
 また、周辺土壌中の金属を同様に測定した結果を下記表2に示す。
As shown in Table 1 above, the microbial carrier has a particularly large amount of manganese component, and after the dissolved manganese is oxidized and suspended, it adheres to the microbial carrier or cannot completely adhere to it. It is suggested that the water is peeled off from the microbial support by the aerated water flow and settles on the sediment.
Moreover, the result of having similarly measured the metal in surrounding soil is shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上掲表2に示すように、上掲表1とのFeとMnの比率が異なっており、前記微生物担持体上の物質は、底質や水中の懸濁物が付着したものではなく、前記微生物担持体上に自然に定着した微生物の働きにより、マンガンが選択的に酸化されたことが分かる。
 また、図15(b)に示す表層での全マンガン濃度変化から、隔離水塊No.1の8月以降において全マンガン濃度が低く抑えられている。これは、前記前記微生物の働きによるマンガンの酸化と沈殿の効果であると考えることができる。
 これらの結果から、隔離水塊No.1では、前記微生物担持体を前記反応槽内に設置し、曝気により好気的環境を形成することで、底層でのマンガン濃度が効率的に低下していたことが分かる。
As shown in Table 2 above, the ratio of Fe and Mn is different from that in Table 1 above, and the substance on the microbial support is not the one to which the sediment or water suspension is attached, but the microbial support. It can be seen that manganese was selectively oxidized by the action of microorganisms that naturally settled on the body.
Further, from the change in the total manganese concentration in the surface layer shown in FIG. Since August 1st, the total manganese concentration has been kept low. This can be considered as an effect of manganese oxidation and precipitation by the action of the microorganism.
From these results, the isolated water mass No. In No. 1, it was found that the manganese concentration in the bottom layer was efficiently reduced by installing the microorganism carrier in the reaction tank and forming an aerobic environment by aeration.
 次に、隔離水塊No.2の底層での溶存態マンガン濃度について考察する。隔離水塊No.2の底層での溶存態マンガン濃度は、図14(a)に示すように、7月末までは底質からの溶出と考えられる高い値をとることがあった。その後、藍藻類が増殖し始めた8月初旬以降では、値が低くなっていることが分かる。
 図15(b)に示す表層での全マンガン濃度で見ると、全リンの場合と同じように、隔離水塊No.2の方が隔離水塊No.1よりも高くなっていることから、隔離水塊No.2においては、嫌気環境下で還元状態になった底質からのマンガン溶出が継続していると考えられる。
 このことから、隔離水塊No.2の底層において、図14(a)に示すように8月初旬以降、溶存態マンガン濃度が低下したのは、藍藻類が増殖に使用したためと考えられる。これにより、隔離水塊No.2底層の溶存態マンガン濃度は、隔離水塊No.1とほぼ同じ値にまで低下し、隔離水塊No.1及び隔離水塊No.2ともに溶存態マンガンが枯渇状態になっていると考えられる。
 隔離水塊No.2の表層での溶存態マンガンについては、隔離水塊No.1とともにごく低濃度であり、枯渇状況にあると考えられる(図14(b)参照)。
 以上のことから、隔離水塊No.1及び隔離水塊No.2のいずれも、8月以降に溶存態マンガン濃度が藻類増殖の制限因子となっており、前記藻類増殖抑制装置により、隔離水塊No.1において、藻類の増殖が強く制限されていることが示唆される。
Next, the isolated water mass No. The dissolved manganese concentration in the bottom layer of No. 2 is considered. Isolated water mass No. As shown in FIG. 14A, the dissolved manganese concentration in the bottom layer of No. 2 sometimes took a high value considered to be elution from the bottom sediment until the end of July. After that, it can be seen that the value is low after the beginning of August when cyanobacteria began to grow.
As seen from the total manganese concentration in the surface layer shown in FIG. 2 is the isolated water mass No. 2. Since it is higher than 1, isolated water mass No. In No. 2, it is considered that manganese elution from the sediment in a reduced state in an anaerobic environment continues.
From this, the isolated water mass No. In the bottom layer of 2, as shown in FIG. 14 (a), the concentration of dissolved manganese decreased from the beginning of August, probably because cyanobacteria were used for growth. As a result, the isolated water mass No. 2 The dissolved manganese concentration in the bottom layer is the isolated water mass no. 1 to about the same value as the isolated water mass No. 1 and isolated water mass No. 1 In both cases, it is considered that dissolved manganese is depleted.
Isolated water mass No. For the dissolved manganese in the surface layer of No. 2, the isolated water mass No. It is considered that the concentration is extremely low with 1 and is in a depleted state (see FIG. 14B).
From the above, the isolated water mass No. 1 and isolated water mass No. 1 In both cases, the dissolved manganese concentration has been a limiting factor for the growth of algae since August. 1 suggests that the growth of algae is strongly restricted.
 以上を総合して、隔離水塊No.1で藻類増殖の制限因子となる可能性があるオルトリン酸態リンと溶存態マンガンを表層濃度で比較すると、オルトリン酸態リンについては、図12(b)に示すように、7月下旬から8月初旬にかけてほぼ0mg/Lであったものが、藻類増殖が抑制されていた8月上旬以降(図9参照)にむしろ濃度が増加しているのに対し、溶存態マンガンについては、図14(b)に示すように、藍藻の増殖が抑制されていた時期において低い濃度となっている。
 したがって、隔離水塊No.1では、前記藻類増殖抑制装置により、溶存態マンガンの濃度を低下させることで、藻類の増殖が抑制できたものと考えられる。
In summary, the isolated water mass No. As shown in FIG. 12 (b), orthophosphoric phosphorus and dissolved manganese, which may be a limiting factor for algal growth in Fig. 1, are shown in FIG. 12 (b). Although the concentration was approximately 0 mg / L from the beginning of the month, the concentration increased rather than the beginning of August when the algal growth was suppressed (see FIG. 9), whereas for dissolved manganese, FIG. As shown in b), the concentration is low during the period when the growth of cyanobacteria is suppressed.
Therefore, the isolated water mass No. In No. 1, it is considered that growth of algae could be suppressed by reducing the concentration of dissolved manganese with the algae growth suppression device.
   1,10,100  藻類増殖抑制装置
  2,2a~2c,12a~12e 籠体
   3,13   反応槽
  3a,13a  胴部
  3b,13b  上部
  3c,13c  下部
   4   支持部
   5,15   気体導入部
   6   水流方向規制部
   7,17   脱気管
   20   送気装置
   30   藻類
   40,41   閉鎖性水域
   50   循環層
   60   底質
1,10,100 Algal growth suppression device 2,2a-2c, 12a- 12e Body 3,13 Reaction tank 3a, 13a Body 3b, 13b Upper part 3c, 13c Lower part 4 Support part 5,15 Gas introduction part 6 Water flow direction Regulatory part 7, 17 Deaeration pipe 20 Air supply device 30 Algae 40, 41 Closed water area 50 Circulating layer 60 Bottom sediment

Claims (8)

  1.  下部に気体を導入可能とされる気体導入部及び水を導入可能とされる水導入部が形成され、上部に少なくとも前記気体を排出する気体排出部が形成される筒状の反応槽と、
     前記気体排出部から排出される前記気体が管内に通気されるように一端側が前記気体排出部に接続されるとともに他端側が水面から突出可能に延在される脱気管と、
     前記反応槽内に配設され、藻類の増殖に必要な金属を酸化させる微生物を担持可能な微生物担持体と、を有し、
     前記反応槽及び前記脱気管の一端側の少なくともいずれかが、前記反応槽内を浮上する前記気体の流れにより発生する鉛直上方水流の水流方向を鉛直上方から傾斜させて前記水流を水域中に排出する水流方向規制部を有することを特徴とする藻類増殖抑制装置。
    A cylindrical reaction vessel in which a gas introduction part capable of introducing gas at the bottom and a water introduction part capable of introducing water are formed, and a gas discharge part for discharging at least the gas is formed at the top,
    A deaeration pipe having one end connected to the gas discharge part and the other end extended so as to protrude from the water surface so that the gas discharged from the gas discharge part is vented into the pipe;
    A microorganism carrier that is disposed in the reaction vessel and is capable of carrying a microorganism that oxidizes a metal necessary for the growth of algae,
    At least one of the reaction tank and one end side of the degassing pipe inclines the water flow direction of the vertical upper water flow generated by the gas flow rising in the reaction tank from the upper vertical direction and discharges the water flow into the water area. An apparatus for suppressing algal growth, comprising a water flow direction regulating portion.
  2.  脱気管の一端側が反応槽に向けてテーパ状に拡開される水流方向規制部とされるとともに、前記一端側が前記水流方向規制部で水流方向が鉛直上方から傾斜された鉛直上方水流が水域中に排出されるように前記反応槽との間に隙間を有する状態で気体排出部と接続される請求項1に記載の藻類増殖抑制装置。 One end side of the deaeration pipe is a water flow direction restricting portion that is expanded in a taper shape toward the reaction tank, and the one end side is the water flow direction restricting portion, and the water flow direction is inclined from above vertically. The algae growth suppressing device according to claim 1, wherein the device is connected to a gas discharge unit in a state having a gap between the reaction vessel and the reaction vessel so as to be discharged.
  3.  反応槽胴部の全部又は一部が水流方向規制部として通水可能に形成される請求項1から2のいずれかに記載の藻類増殖抑制装置。 The algae growth suppression device according to any one of claims 1 to 2, wherein all or a part of the reaction tank body is formed to allow water to flow as a water flow direction regulating portion.
  4.  微生物担持体が水流により転動自在に流動する多孔質性の籠体に収容されて反応槽内に配設される請求項1から3のいずれかに記載の藻類増殖抑制装置。 The algae growth-suppressing device according to any one of claims 1 to 3, wherein the microorganism-supporting body is accommodated in a porous casing that can freely roll by a water flow and is disposed in the reaction tank.
  5.  微生物が少なくともマンガンイオンを酸化させて酸化マンガンとする微生物である請求項1から4のいずれかに記載の藻類増殖抑制装置。 The algae growth suppression device according to any one of claims 1 to 4, wherein the microorganism is a microorganism that oxidizes at least manganese ions into manganese oxide.
  6.  請求項1から5のいずれかに記載の藻類増殖抑制装置を用いて、閉鎖性水域内の藻類増殖を抑制する藻類増殖抑制方法であって、
     脱気管の他端側を水面上に突出させるとともに反応槽の水導入部が前記閉鎖性水域の底質近傍に位置するように前記藻類増殖抑制装置を設置する設置工程と、
     前記反応槽の気体導入部から酸素を含む気体を導入して、前記気体を前記水導入部から導入される水とともに微生物に接触させる気体導入工程と、
     を含むことを特徴とする藻類増殖抑制方法。
    An algal growth suppression method for suppressing algae growth in a closed water area using the algae growth suppression device according to any one of claims 1 to 5,
    An installation step of installing the algae growth inhibitor so that the other end side of the deaeration pipe protrudes above the water surface and the water introduction part of the reaction tank is located near the bottom sediment of the closed water area;
    A gas introduction step of introducing a gas containing oxygen from the gas introduction portion of the reaction tank and bringing the gas into contact with microorganisms together with water introduced from the water introduction portion;
    A method for inhibiting algae growth, comprising:
  7.  設置工程が、反応槽の水導入部が前記閉鎖性水域の底質上0.2m~1.0mに位置するように前記藻類増殖抑制装置を設置する工程である請求項6に記載の藻類増殖抑制方法。 The algae growth according to claim 6, wherein the installation step is a step of installing the algae growth suppression device so that the water introduction part of the reaction tank is located 0.2 m to 1.0 m above the bottom of the closed water area. Suppression method.
  8.  気体導入工程が、微生物担持体に微生物を自然発生的に定着させる工程を含む請求項6から7のいずれかに記載の藻類増殖抑制方法。 The method for inhibiting algal growth according to any one of claims 6 to 7, wherein the gas introduction step includes a step of spontaneously fixing microorganisms on the microorganism carrier.
PCT/JP2015/056487 2014-03-14 2015-03-05 Apparatus and method for inhibiting growth of algae WO2015137227A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016507484A JP6508684B2 (en) 2014-03-14 2015-03-05 Algal growth control device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-050970 2014-03-14
JP2014050970 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015137227A1 true WO2015137227A1 (en) 2015-09-17

Family

ID=54071673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056487 WO2015137227A1 (en) 2014-03-14 2015-03-05 Apparatus and method for inhibiting growth of algae

Country Status (2)

Country Link
JP (1) JP6508684B2 (en)
WO (1) WO2015137227A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160257577A1 (en) * 2015-03-02 2016-09-08 Harper Biotech Llc D/B/A Simbuka Energy, Llc Method for treating dense deepwater from lake kivu
CN106630193A (en) * 2017-01-05 2017-05-10 北京清水生态环境工程股份有限公司 Biological comprehensive prevention and control method for controlling cyanobacterial bloom by microbial preparation
CN108385598A (en) * 2018-03-22 2018-08-10 河海大学 Disturb library tail water flow apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863644A (en) * 1988-11-04 1989-09-05 Enviroquip, Inc. Gas diffuser
JPH0716592A (en) * 1993-06-30 1995-01-20 Marsima Aqua Syst Corp Aerator for reservoir, etc.
JPH0957286A (en) * 1995-08-21 1997-03-04 Kaiyo Kensetsu Kk Water purifying device
JP2007125529A (en) * 2005-11-07 2007-05-24 Yokogawa Electric Corp Method and device for removing iron and manganese
JP2009095803A (en) * 2007-10-18 2009-05-07 Kaiyo Kensetsu Kk Water purification apparatus
JP2010264384A (en) * 2009-05-14 2010-11-25 Matsue Doken Kk Method for removing water bloom
JP2011098256A (en) * 2009-11-04 2011-05-19 Japan Water Agency Submerged combined aerator
JP2012184470A (en) * 2011-03-04 2012-09-27 Hiroshima Univ Method and device for recovering rare metal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207986A (en) * 2008-03-04 2009-09-17 Public Works Research Institute Method for suppressing propagation of algae in sewage treatment water and device therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863644A (en) * 1988-11-04 1989-09-05 Enviroquip, Inc. Gas diffuser
JPH0716592A (en) * 1993-06-30 1995-01-20 Marsima Aqua Syst Corp Aerator for reservoir, etc.
JPH0957286A (en) * 1995-08-21 1997-03-04 Kaiyo Kensetsu Kk Water purifying device
JP2007125529A (en) * 2005-11-07 2007-05-24 Yokogawa Electric Corp Method and device for removing iron and manganese
JP2009095803A (en) * 2007-10-18 2009-05-07 Kaiyo Kensetsu Kk Water purification apparatus
JP2010264384A (en) * 2009-05-14 2010-11-25 Matsue Doken Kk Method for removing water bloom
JP2011098256A (en) * 2009-11-04 2011-05-19 Japan Water Agency Submerged combined aerator
JP2012184470A (en) * 2011-03-04 2012-09-27 Hiroshima Univ Method and device for recovering rare metal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"WEP System, Public Works Research Institute", Retrieved from the Internet <URL:https://www.pwri.go.jp/jpn/seika/newtech/kiekiyoukai_r/pdf/p_wep.pdf> [retrieved on 20150320] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160257577A1 (en) * 2015-03-02 2016-09-08 Harper Biotech Llc D/B/A Simbuka Energy, Llc Method for treating dense deepwater from lake kivu
US9718702B2 (en) * 2015-03-02 2017-08-01 Harper Biotech LLC Method for treating dense deepwater from Lake Kivu
CN106630193A (en) * 2017-01-05 2017-05-10 北京清水生态环境工程股份有限公司 Biological comprehensive prevention and control method for controlling cyanobacterial bloom by microbial preparation
CN106630193B (en) * 2017-01-05 2020-05-05 北京清水生态环境工程股份有限公司 Biological comprehensive control method for treating cyanobacterial bloom by using microbial preparation
CN108385598A (en) * 2018-03-22 2018-08-10 河海大学 Disturb library tail water flow apparatus

Also Published As

Publication number Publication date
JPWO2015137227A1 (en) 2017-04-06
JP6508684B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP6022536B2 (en) Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
PL182535B1 (en) Method of treating sewages with oxygen
US10570040B2 (en) Water treatment reactor
WO2015137227A1 (en) Apparatus and method for inhibiting growth of algae
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP5883698B2 (en) Wastewater treatment method
JP5992807B2 (en) Waste water treatment apparatus and waste water treatment method
JP5874741B2 (en) Biological treatment method and apparatus for organic wastewater
JP4476976B2 (en) Device for predominating Bacillus bacteria
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
JP2015054260A (en) Effluent processing device, effluent processing method, effluent processing system, control device, control method, and program
JP2011200767A (en) Wastewater treating method and wastewater treatment system
JP2012228645A (en) Water treatment apparatus, water treating method, and program for the method
JP6049544B2 (en) Wastewater treatment equipment
Kutty et al. Degradation of organic matter using a submerged micro bubble diffuser in a biological wastewater treatment system
JP2015192949A (en) Installation and method for water treatment
JP2007326030A (en) Operation method of oxidation ditch
JP2003103294A (en) Method and apparatus for removing nitrate nitrogen in water
JP2013081945A (en) Waste water processor and waste water processing method
TW202202454A (en) Aerobic biological processing method and device
JP6461408B1 (en) Water treatment method and water treatment apparatus
JPS60183096A (en) Treatment of waste water
JP6207067B2 (en) Algae growth suppression method
WO2014066524A1 (en) Method and apparatus for the treatment of water with a gas or nutrient infused liquid
JP2003033795A (en) Biological denitration equipment and biological denitration method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761143

Country of ref document: EP

Kind code of ref document: A1