JP5874741B2 - Biological treatment method and apparatus for organic wastewater - Google Patents

Biological treatment method and apparatus for organic wastewater Download PDF

Info

Publication number
JP5874741B2
JP5874741B2 JP2013552420A JP2013552420A JP5874741B2 JP 5874741 B2 JP5874741 B2 JP 5874741B2 JP 2013552420 A JP2013552420 A JP 2013552420A JP 2013552420 A JP2013552420 A JP 2013552420A JP 5874741 B2 JP5874741 B2 JP 5874741B2
Authority
JP
Japan
Prior art keywords
biological treatment
tank
treatment tank
last
organic wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013552420A
Other languages
Japanese (ja)
Other versions
JPWO2013103124A1 (en
Inventor
繁樹 藤島
繁樹 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013552420A priority Critical patent/JP5874741B2/en
Publication of JPWO2013103124A1 publication Critical patent/JPWO2013103124A1/en
Application granted granted Critical
Publication of JP5874741B2 publication Critical patent/JP5874741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、生活排水、下水、食品工場、パルプ工場、半導体製造排水、液晶製造排水といった広い濃度範囲の有機性排水の処理に利用することができる有機性排水の生物処理方法及び装置に関するものであり、特に、処理水質を悪化させることなく、処理効率を向上させ、かつ、余剰汚泥発生量の低減が可能な有機性排水の生物処理方法及び装置に関する。   The present invention relates to a biological treatment method and apparatus for organic wastewater that can be used for treatment of organic wastewater in a wide concentration range such as domestic wastewater, sewage, food factory, pulp factory, semiconductor production wastewater, and liquid crystal production wastewater. In particular, the present invention relates to a biological treatment method and apparatus for organic wastewater that can improve treatment efficiency and reduce the amount of excess sludge generation without deteriorating the quality of treated water.

有機性排水を生物処理する場合に用いられる活性汚泥法は、処理水質が良好で、メンテナンスが容易であるなどの利点から、下水処理や産業廃水処理等に広く用いられている。しかしながら、活性汚泥法におけるBOD容積負荷は一般に0.5〜0.8kg/m/d程度であるため、広い敷地面積が必要となる。また、分解したBODの20〜40%が菌体、即ち汚泥へと変換されるため、大量の余剰汚泥が発生する。活性汚泥法には、汚泥と処理水との固液分離に膜分離装置を利用する膜式活性汚泥法と、沈殿池を用いる沈殿池型の活性汚泥法とがある。The activated sludge method used when biologically treating organic wastewater is widely used for sewage treatment, industrial wastewater treatment, and the like because of its advantages such as good treated water quality and easy maintenance. However, since the BOD volumetric load in the activated sludge method is generally about 0.5 to 0.8 kg / m 3 / d, a large site area is required. Moreover, since 20 to 40% of the decomposed BOD is converted into bacterial cells, that is, sludge, a large amount of excess sludge is generated. The activated sludge method includes a membrane activated sludge method that uses a membrane separator for solid-liquid separation of sludge and treated water, and a sedimentation basin type activated sludge method that uses a sedimentation basin.

有機性排水の高負荷処理に関しては、担体を添加した流動床法が知られている。この方法を用いた場合、3kg/m/d以上のBOD容積負荷で運転することが可能となる。しかしながら、この方法では発生汚泥量は分解したBODの30〜50%程度であり、通常の活性汚泥法より高くなる。For high load treatment of organic waste water, a fluidized bed method with a carrier added is known. When this method is used, it is possible to operate with a BOD volume load of 3 kg / m 3 / d or more. However, in this method, the amount of generated sludge is about 30 to 50% of the decomposed BOD, which is higher than the normal activated sludge method.

特許文献1には、有機性排水をまず、第一処理槽で細菌により処理し、排水に含まれる有機物を酸化分解して非凝集性の細菌の菌体に変換した後、第二処理槽で固着性原生動物に捕食除去させることで余剰汚泥の減量化が可能になることが記載されている。特許文献1には、この方法によると、高負荷運転が可能となり、活性汚泥法の処理効率も向上すると記載されている。   In Patent Document 1, organic wastewater is first treated with bacteria in a first treatment tank, and organic matter contained in the wastewater is oxidatively decomposed and converted into non-aggregating bacterial cells, and then in a second treatment tank. It is described that excess sludge can be reduced by predatory removal of the sticking protozoa. Patent Document 1 describes that according to this method, a high-load operation is possible and the processing efficiency of the activated sludge method is improved.

このように細菌の高位に位置する原生動物や後生動物の捕食を利用した廃水処理方法は、多数考案されている。例えば、特許文献2には、特許文献1の処理方法で問題となる原水の水質変動による処理性能悪化の対策が記載されている。具体的な方法としては、「被処理水のBOD変動を平均濃度の中央値から50%以内に調整する」、「第一処理槽内および第一処理水の水質を経時的に測定する」、「第一処理水の水質悪化時には微生物製剤または種汚泥を第一処理槽に添加する」等の方法をあげている。   In this way, many wastewater treatment methods have been devised that use the predation of protozoa and metazoans located at high levels of bacteria. For example, Patent Document 2 describes a countermeasure against deterioration in processing performance due to fluctuations in the quality of raw water, which is a problem in the processing method of Patent Document 1. As specific methods, “adjust BOD fluctuation of treated water to within 50% from median average concentration”, “measure water quality in first treatment tank and first treated water over time”, The method includes “adding a microbial preparation or seed sludge to the first treatment tank when the quality of the first treated water deteriorates”.

特許文献3は、細菌、酵母、放線菌、藻類、カビ類や廃水処理の初沈汚泥や余剰汚泥を原生動物や後生動物に捕食させる際に超音波処理または機械攪拌により、捕食されるフロックのフロックサイズを動物の口より小さくさせる方法を提案している。   Patent Document 3 discloses that flocs that are preyed by sonication or mechanical stirring when protozoa or metazoans prey on bacteria, yeast, actinomycetes, algae, fungi, or wastewater treatment primary sediment sludge or surplus sludge. A method to make the flock size smaller than the animal's mouth is proposed.

流動床と活性汚泥法の多段処理による有機性排水の生物処理方法としては、特許文献4に記載のものがある。この方法では、後段の活性汚泥法をBOD汚泥負荷0.1kg−BOD/kg−MLSS/dの低負荷で運転することで、汚泥を自己酸化させ、汚泥引き抜き量を低減できる。   There exists a thing of patent document 4 as a biological treatment method of the organic waste_water | drain by the multistage process of a fluidized bed and an activated sludge process. In this method, the activated sludge method at the latter stage is operated at a low load of BOD sludge load 0.1 kg-BOD / kg-MLSS / d, so that the sludge can be self-oxidized and the amount of sludge extraction can be reduced.

特開昭55−20649号公報Japanese Patent Laid-Open No. 55-20649 特開2000−210692号公報JP 2000-210692 A 特開昭55−20649号公報Japanese Patent Laid-Open No. 55-20649 特許第3410699号公報Japanese Patent No. 3410699

上記の微小動物の捕食作用を利用した多段活性汚泥法は、実際に有機性廃水処理に用いられており、対象とする排水によっては処理効率の向上、発生汚泥量の減量化は可能である。しかしながら、この汚泥減量効果は安定しないことが多い。   The above-mentioned multistage activated sludge method using the predatory action of micro animals is actually used for organic wastewater treatment, and depending on the target wastewater, the treatment efficiency can be improved and the amount of generated sludge can be reduced. However, this sludge reduction effect is often not stable.

例えば、図5のように多段活性汚泥法の後段側の槽に流動床担体を添加することにより、微小動物の安定した維持は可能となるが、分離スクリーンが必要になったり、担体により酸素溶解効率が低下する等の課題がある。   For example, as shown in FIG. 5, by adding a fluidized bed carrier to the latter tank of the multistage activated sludge method, it is possible to stably maintain the microanimals, but a separation screen is required, or oxygen is dissolved by the carrier. There are problems such as reduced efficiency.

本発明は上記従来の問題点を解決し、多段活性汚泥法を適用した有機性排水の生物処理において、発生汚泥量を大幅に減量化すると共に、高負荷運転による処理効率の向上と、安定した処理水質を図る有機性排水の生物処理方法及び装置を提供することを課題とする。   The present invention solves the above-mentioned conventional problems, and in the biological treatment of organic wastewater to which the multistage activated sludge method is applied, the amount of generated sludge is greatly reduced and the treatment efficiency is improved by high-load operation and is stable. It is an object of the present invention to provide a biological treatment method and apparatus for organic wastewater for improving the quality of treated water.

本発明の有機性排水の生物処理方法は、CODCr容積負荷1kg/m/d以上の有機性排水を多段に設けられた生物処理槽で生物処理する有機性排水の生物処理方法において、第一段の生物処理槽である曝気槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、最後段の生物処理槽である曝気槽に揺動床担体を設置し、該揺動床担体に生物膜を付着させ、該最後段生物処理槽の最後段生物処理水を最後段生物処理槽の槽内又は槽外においてLV1〜20m/hの上向流で沈降分離し、沈降汚泥をいずれかの生物処理槽へ返送することを特徴とする。 The organic wastewater biological treatment method of the present invention is the organic wastewater biological treatment method in which organic wastewater having a COD Cr volumetric load of 1 kg / m 3 / d or more is biologically treated in a biological treatment tank provided in multiple stages. In the aeration tank , which is the first-stage biological treatment tank , the first biological treatment water with increased dispersal bacteria is generated by the decomposition of organic matter by the dispersal bacteria, and the swing bed carrier is installed in the aeration tank , which is the last-stage biological treatment tank Then, a biofilm is attached to the rocking bed carrier, and the last-stage biological treatment water of the last-stage biological treatment tank is settled in an upward flow of LV1 to 20 m / h in or outside the last-stage biological treatment tank. It is characterized by separating and returning the sedimented sludge to any biological treatment tank.

本発明の有機性排水の生物処理装置は、CODCr容積負荷1kg/m/d以上の有機性排水を多段で生物処理する有機性排水の生物処理装置において、第一段の生物処理槽である曝気槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、最後段の生物処理槽である曝気槽に揺動床担体を設置し、該揺動床担体に生物膜を付着させ、最後段生物処理水を生成させる有機性排水の生物処理装置であって、最後段生物処理槽の槽内又は槽外に設けられた、最後段生物処理水をLV1〜20m/hの上向流で沈降分離する沈降分離手段と、沈降汚泥をいずれかの生物処理槽へ返送する返送手段とを備えたことを特徴とする。 Biological treatment apparatus of the organic waste water of the present invention, the COD Cr volumetric loading 1kg / m 3 / d or more organic wastewater in the biological treatment apparatus of an organic waste water to the biological treatment in multiple stages, in the biological treatment tank in the first stage In one aeration tank , the first biological treatment water in which the dispersal bacteria are increased is generated by the decomposition of the organic matter by the dispersal bacteria, and the swing bed carrier is installed in the aeration tank which is the last biological treatment tank. A biological treatment apparatus for organic wastewater that attaches a biofilm to the bottom and generates last-stage biologically treated water, wherein the last-stage biologically treated water provided inside or outside the last-stage biologically treated tank is LV1 to LV1. It is characterized by comprising sedimentation separation means for sedimentation with an upward flow of 20 m / h, and return means for returning the sedimentation sludge to any biological treatment tank.

本発明の一態様では、前記沈降分離を無凝集方式で行う。なお、本発明において「無凝集方式」とは、通常運転時において、生物処理槽から沈降分離手段までに連続的にも間欠的にも凝集剤を添加しない運転方式を表わす。汚泥が少ない装置の立ち上げ時や汚泥解体のトラブル発生時などに一時的に凝集剤を添加することは、「通常運転時の凝集剤添加」に該当しないので、装置の立ち上げ時やトラブル発生時などに一時的に凝集剤を添加しても、「無凝集方式」に含まれる。また、実質的に凝集処理が行われない程度の少量の凝集剤を添加する場合も無凝集方式に含まれるものとする。なお、この実質的に凝集処理が行われない程度の少量の凝集剤の添加量とは、用いる凝集剤の種類によっても異なるが、常時添加に換算して、無機凝集剤100mg/L以下、高分子凝集剤1mg/L以下である。また、本発明は沈降分離で得られた上澄水を凝集処理することを何ら排除するものではない。   In one aspect of the present invention, the sedimentation separation is performed in a non-aggregating manner. In the present invention, the “non-aggregation method” refers to an operation method in which the flocculant is not added continuously or intermittently from the biological treatment tank to the sedimentation separation means during normal operation. Temporary addition of flocculant at the start-up of equipment with little sludge or sludge disassembly trouble does not fall under "addition of flocculant during normal operation". Even if a flocculant is temporarily added at times, it is included in the “non-aggregation method”. In addition, a case where a small amount of an aggregating agent that does not substantially perform the aggregating treatment is added to the non-aggregating method. The addition amount of a small amount of the flocculant that does not substantially perform the flocculant treatment varies depending on the type of flocculant to be used, but in terms of constant addition, the inorganic flocculant is 100 mg / L or less, high The molecular flocculant is 1 mg / L or less. In addition, the present invention does not exclude any coagulation treatment of the supernatant water obtained by sedimentation separation.

本発明の別の一態様では、最後段生物処理水を槽内で沈降分離するために、最後段生物処理槽の排水出口側に仕切りを設けて上昇流路を形成し、この上昇流路に槽内の液をLV1〜20m/hで上向流通水して汚泥を沈降分離し、沈降した汚泥を最後段生物処理槽内に戻し、該上昇流路を上昇した上澄水を槽外に排出する。   In another aspect of the present invention, in order to settle and separate the last-stage biological treatment water in the tank, a partition is provided on the drain outlet side of the last-stage biological treatment tank to form an ascending flow path. The liquid in the tank is circulated upward at LV1 to 20 m / h to settle and separate the sludge, the settled sludge is returned to the last biological treatment tank, and the supernatant water that has risen through the ascending flow path is discharged out of the tank. To do.

前記揺動床担体としては、シート状の発泡プラスチックが好適である。   As the rocking bed carrier, a sheet-like foamed plastic is suitable.

本発明では、微小動物の捕食作用を利用した有機性排水の生物処理方法及び装置において、分散菌を捕食する固着性の濾過捕食型微小動物の足場として揺動床担体を設ける。かかる揺動床担体により、沈降性の良い汚泥が生成されるので、生物処理後の沈降分離で一般的に採用されている0.5m/h以下のLVよりも、高LV(1〜20m/h)で沈降分離する。
この沈降分離を無凝集方式とすることも可能である。無凝集方式の沈降分離によると、沈降性の悪い汚泥を槽外に排出し、沈降性の良い汚泥を選択的に槽内に保持することができる。この結果、揺動床担体だけでなく沈降性の良い汚泥も微小動物の足場として利用し、微生物濃度を高く維持することができる。
In the present invention, in an organic wastewater biological treatment method and apparatus utilizing the predatory action of microanimals, an oscillating bed carrier is provided as a scaffold for fixed filtration predatory microanimals that prey on dispersal bacteria. Such a rocking bed carrier produces sludge with good sedimentation, so that it has a higher LV (1-20 m / h) than the LV of 0.5 m / h or less generally employed in sedimentation separation after biological treatment. The sedimentation is separated in h).
This sedimentation separation can also be a non-aggregation method. According to the non-aggregation type sedimentation separation, sludge with poor sedimentation can be discharged out of the tank, and sludge with good sedimentation can be selectively retained in the tank. As a result, not only the oscillating bed carrier but also sludge with good sedimentation can be used as a scaffold for minute animals to maintain a high microorganism concentration.

沈降分離手段としては、最後段生物処理槽の出口側に仕切りを設け、槽内水をLV1〜20m/hの上向流で通水し、浮上しない沈降性の良い汚泥のみを槽内に残すようすることが好ましい。沈降分離手段として、最後段生物処理槽の後段に沈殿槽を設けてもよい。   As a sedimentation separation means, a partition is provided on the outlet side of the last biological treatment tank, and the water in the tank is passed in an upward flow of LV1 to 20 m / h, and only the sludge with good sedimentation property that does not float is left in the tank. It is preferable to do so. As a sedimentation separation means, a sedimentation tank may be provided after the last biological treatment tank.

揺動床担体をシート状の発泡プラスチックとすることで、より沈降性の良い汚泥を生成させ、槽内に保持することができる。   By making the rocking floor carrier into a sheet-like foamed plastic, sludge with better sedimentation can be generated and held in the tank.

本発明の有機性排水の生物処理方法及び装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the biological treatment method and apparatus of the organic waste water of this invention. 本発明の有機性排水の生物処理方法及び装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the biological treatment method and apparatus of the organic waste water of this invention. 本発明の有機性排水の生物処理方法及び装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the biological treatment method and apparatus of the organic waste water of this invention. 本発明の有機性排水の生物処理方法及び装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the biological treatment method and apparatus of the organic waste water of this invention. 比較例を示す系統図である。It is a systematic diagram which shows a comparative example. 比較例を示す系統図である。It is a systematic diagram which shows a comparative example.

以下に図面を参照して本発明の有機性排水の生物処理方法及び装置の実施の形態を詳細に説明する。図1〜4は本発明の有機性排水の生物処理方法及び装置の実施の形態を示す系統図である。   Embodiments of the organic wastewater biological treatment method and apparatus according to the present invention will be described below in detail with reference to the drawings. 1-4 is a systematic diagram showing an embodiment of a biological treatment method and apparatus for organic wastewater of the present invention.

図1〜4において、1は第一生物処理槽、2は第二生物処理槽、11,21は散気管、12は流動床担体、16は担体分離用スクリーン、22は揺動床担体である。図1〜3において、23は第二生物処理槽2に設けられた仕切板、24は上昇流路であり、この上昇流路24において汚泥が沈降分離される。なお、図1〜4において同一機能を奏する部材には同一符号を付してある。   1-4, 1 is a first biological treatment tank, 2 is a second biological treatment tank, 11 and 21 are air diffusers, 12 is a fluidized bed carrier, 16 is a carrier separation screen, and 22 is a rocking bed carrier. . 1 to 3, reference numeral 23 denotes a partition plate provided in the second biological treatment tank 2, and 24 denotes an ascending flow path. Sludge is settled and separated in the ascending flow path 24. In addition, the same code | symbol is attached | subjected to the member which show | plays the same function in FIGS.

図1の態様では、BOD容積負荷1kg/m/d以上例えば1〜20kg/m/dにて原水(有機性排水)を第一生物処理槽1に導入し、散気管11で曝気し、分散性細菌(非凝集性細菌)により、有機成分(溶解性BOD)の70%以上、望ましくは80%以上、さらに望ましくは85%以上を酸化分解する。この第一生物処理槽1のpHは好ましくは6〜8.5とする。ただし、食品製造排水など原水中に油分を多く含む場合や、半導体製造排水や液晶製造排水など原水中に有機性の溶媒や洗浄剤を多く含む場合には分解速度を高くするため、pHは8〜9としても良い。In the embodiment of FIG. 1, is introduced in BOD volume load 1kg / m 3 / d or more for example 1~20kg / m 3 / d raw water (organic wastewater) is first biological treatment tank 1, and aerated with aeration tube 11 In addition, 70% or more, desirably 80% or more, more desirably 85% or more of the organic component (soluble BOD) is oxidatively decomposed by dispersible bacteria (non-aggregating bacteria). The pH of the first biological treatment tank 1 is preferably 6 to 8.5. However, when the raw water such as food manufacturing wastewater contains a lot of oil, or when the raw water such as semiconductor manufacturing wastewater or liquid crystal manufacturing wastewater contains a lot of organic solvent or cleaning agent, the pH is 8 It is good also as ~ 9.

第一生物処理槽1への通水は、一過式とする。第一生物処理槽1のBOD容積負荷を1kg/m/d以上、例えば1〜20kg/m/d、HRT(原水滞留時間)を24h以下、好ましくは8h以下、例えば0.5〜8hとすることにより、分散性細菌が優占化した処理水を得ることができ、また、HRTを短くすることでBOD濃度の低い排水を高負荷で処理することができる。The water flow to the 1st biological treatment tank 1 shall be a transient type. The BOD volumetric load of the first biological treatment tank 1 is 1 kg / m 3 / d or more, for example 1 to 20 kg / m 3 / d, HRT (raw water retention time) is 24 h or less, preferably 8 h or less, for example 0.5 to 8 h By doing so, it is possible to obtain treated water predominated by dispersible bacteria, and by shortening the HRT, wastewater having a low BOD concentration can be treated with a high load.

第一生物処理槽1には、後段の生物処理槽からの汚泥の一部を返送したり、この第一生物処理槽1を二槽以上の多段構成としたり、流動床担体を添加したりすることにより、BOD容積負荷5kg/m/d以上の高負荷処理も可能となる。A part of the sludge from the subsequent biological treatment tank is returned to the first biological treatment tank 1, the first biological treatment tank 1 is composed of two or more tanks, or a fluidized bed carrier is added. As a result, high load processing with a BOD volumetric load of 5 kg / m 3 / d or more is also possible.

流動床担体の形状は、球状、ペレット状、中空筒状、糸状、板状等の任意であり、大きさ(径)は0.1〜10mm程度である。担体の材料は、天然素材、無機素材、高分子素材等任意であり、ゲル状物質を用いても良い。   The shape of the fluidized bed carrier is any shape such as a spherical shape, a pellet shape, a hollow cylindrical shape, a thread shape, and a plate shape, and the size (diameter) is about 0.1 to 10 mm. The material of the carrier is arbitrary such as a natural material, an inorganic material, or a polymer material, and a gel material may be used.

第一生物処理槽1に添加する担体の充填率が過度に高い場合、分散菌は生成せず、細菌は担体に付着するか、糸状性細菌が増殖する。そこで、第一生物処理槽1に添加する担体の充填率を10%以下、望ましくは5%以下、例えば0.5〜5%とすることで、濃度変動に影響されず、捕食しやすい分散菌の生成が可能になる。担体の充填率は、第一生物処理槽1内の液の容積に対する担体の容積の比率を表わす。   When the filling rate of the carrier added to the first biological treatment tank 1 is excessively high, dispersal bacteria are not generated, and bacteria adhere to the carrier or filamentous bacteria grow. Therefore, by setting the filling rate of the carrier to be added to the first biological treatment tank 1 to 10% or less, desirably 5% or less, for example 0.5 to 5%, dispersible bacteria that are not affected by concentration fluctuation and are easy to prey. Can be generated. The filling rate of the carrier represents the ratio of the volume of the carrier to the volume of the liquid in the first biological treatment tank 1.

第一生物処理槽1の溶存酸素(DO)濃度を1mg/L以下、好ましくは0.5mg/L以下として、糸状性細菌の増殖を抑制しても良い。   The dissolved oxygen (DO) concentration in the first biological treatment tank 1 may be 1 mg / L or less, preferably 0.5 mg / L or less to suppress the growth of filamentous bacteria.

第一生物処理槽1の処理水(第一生物処理水)を、後段の第二生物処理槽2に通水し、曝気し、残存している有機成分の酸化分解、分散性細菌の自己分解及び微小動物の捕食による余剰汚泥の減量化を行う。微小動物としては、ヒルガタワムシ類、ツリガネムシなどの濾過捕食型微小動物が好適である。   Treated water from the first biological treatment tank 1 (first biological treated water) is passed through the second biological treatment tank 2 at the subsequent stage, aerated, and oxidative decomposition of remaining organic components, self-degradation of dispersible bacteria. And reduce excess sludge by predation of micro-animals. As the microanimals, filtration predation type microanimals such as stag beetles and stag beetles are suitable.

最後段の生物処理槽(この実施の形態では第二生物処理槽2)には、その出口部を囲むように仕切板23が設けられ、上昇流路24と生物処理室とに区画されている。この仕切板23の上端は第二生物処理槽2の水面から突出している。仕切板23の下端は第二生物処理槽2の水面から2m以上、特に3〜4m下方に位置している。仕切板23は第二生物処理槽2の一部の側壁と対面しており、この側壁と仕切板23との間が上昇流路24となっている。上昇流路24の下部は第二生物処理槽2内の生物処理室に連通している。上昇流路24の上部から、槽2の出口部を介して上澄水が槽2外に流出する。散気管21は上昇流路24から離れて設置されており、上昇流路24の下方には散気管21は存在しない。これは、散気管21からの気泡が直接に上昇流路24に流入しないようにするためである。   In the last biological treatment tank (second biological treatment tank 2 in this embodiment), a partition plate 23 is provided so as to surround the outlet portion, and is divided into an ascending flow path 24 and a biological treatment chamber. . The upper end of the partition plate 23 protrudes from the water surface of the second biological treatment tank 2. The lower end of the partition plate 23 is located 2 m or more, particularly 3 to 4 m below the water surface of the second biological treatment tank 2. The partition plate 23 faces a part of the side wall of the second biological treatment tank 2, and a rising channel 24 is formed between the side wall and the partition plate 23. The lower part of the ascending channel 24 communicates with the biological treatment chamber in the second biological treatment tank 2. From the upper part of the ascending flow path 24, the supernatant water flows out of the tank 2 through the outlet part of the tank 2. The air diffuser 21 is installed away from the ascending channel 24, and the air diffuser 21 does not exist below the ascending channel 24. This is to prevent bubbles from the diffuser tube 21 from directly flowing into the ascending flow path 24.

第二生物処理槽2内の汚泥混合水がこの上昇流路24を上昇する間に汚泥が沈降する。本発明では、この上昇流路24における上昇流のLVを1〜20m/h好ましくは3〜15m/hとする。なお、第二生物処理槽2の生物処理室には余剰汚泥の取出管25が設けられている。上昇流路24内で沈降した汚泥は第二生物処理槽2内に戻る。上昇流路24を上昇して汚泥が分離された上澄水が出口部から槽2外に流出する。流出する上澄水には、沈降性の悪い汚泥が含まれることがある。   Sludge settles while the sludge mixed water in the second biological treatment tank 2 rises in the ascending flow path 24. In the present invention, the LV of the upward flow in the upward flow path 24 is 1 to 20 m / h, preferably 3 to 15 m / h. A surplus sludge take-out pipe 25 is provided in the biological treatment chamber of the second biological treatment tank 2. The sludge settled in the ascending flow path 24 returns to the second biological treatment tank 2. The supernatant water from which the sludge is separated by ascending the ascending channel 24 flows out of the tank 2 from the outlet. The supernatant water that flows out may contain sludge with poor sedimentation.

第二生物処理槽2の溶存酸素(DO)濃度は1〜4mg/L程度が好適である。
第二生物処理槽2では、細菌に比べ増殖速度の遅い微小動物の働きと細菌の自己分解を利用するため、微小動物と細菌が系内に留まるような運転条件及び処理装置を用いる必要がある。そこで第二生物処理槽2には、揺動床担体22を設置し、その表面に汚泥を付着させて生物膜を形成する。この揺動床担体を設置することにより、微小動物の槽内保持量が多くなる。揺動床担体22は散気管21の上方に配置されることが望ましい。
The dissolved oxygen (DO) concentration in the second biological treatment tank 2 is preferably about 1 to 4 mg / L.
In the second biological treatment tank 2, it is necessary to use an operation condition and a treatment apparatus that allow the microanimal and the bacteria to remain in the system in order to use the action of the microanimal having a slower growth rate than the bacteria and the autolysis of the bacteria. . Therefore, the second biological treatment tank 2 is provided with a rocking bed carrier 22, and sludge is adhered to the surface to form a biological film. By installing this rocking bed carrier, the amount of micro-animal retained in the tank increases. The swing bed carrier 22 is preferably disposed above the air diffuser 21.

揺動床担体は、微小動物が産卵・生育しやすい程度に広い見かけ表面積を有することが好ましい。また、揺動床担体は、たわみ性を有し、通水を阻害せず、生物膜が剥がれやすいものが好ましい。揺動床担体としては、次の条件を満たす軟質シート状物が好ましい。
1)シート寸法は、槽の深さ方向の長さが100〜400cmであり、槽の水平方向の奥行が5〜200cmであり、厚みが0.5〜5cmであることが好ましい。
2)見かけ表面積500cm以上の面を少なくとも2面有することが好ましい。
3)素材は発泡合成樹脂(発泡プラスチック)特に軟質ポリウレタンフォームが好ましい。
4)汚泥が付着しやすく且つ適度に剥がれ易くするために、孔径が0.05〜10mmであることが好ましい。また、発泡セルのセル数が5〜125個/25mmであることが好ましい。さらに、多孔質担体としては、発泡セルの分布が均一なものが好ましい。
多孔質担体の発泡セルが多すぎたり、セル径が大きすぎたりすると、多孔質担体の機械的強度が小さくなるため、上記の通り、セル数/25mm(25mmの長さの範囲に存在するセル数)として、上限値が125個/25mm程度であることが好ましい。逆に、発泡セルが少な過ぎたり、セル径が小さすぎたりすると、多孔質担体としての機能を十分に得ることができないことから、多孔質担体の機能を十分に発揮させるために、このセル数/25mmの下限値は5個/25mm程度であることが好ましい。なお、このセル数/25mmについては、走査型電子顕微鏡により撮影した多孔質担体の写真を用い、長さ方向の直線25mmに対して交差する発泡セル数を計測する作業を複数箇所について行い、計測結果の平均値を算出して求めることができる。
The swing bed carrier preferably has an apparent surface area that is large enough for a micro animal to lay eggs and grow easily. Moreover, the rocking bed carrier is preferably one that has flexibility, does not inhibit water flow, and easily peels off the biofilm. As the swing bed carrier, a soft sheet that satisfies the following conditions is preferable.
1) It is preferable that the length of the tank in the depth direction is 100 to 400 cm, the depth of the tank in the horizontal direction is 5 to 200 cm, and the thickness is 0.5 to 5 cm.
2) It is preferable to have at least two surfaces having an apparent surface area of 500 cm 2 or more.
3) The material is preferably a foamed synthetic resin (foamed plastic), particularly a flexible polyurethane foam.
4) It is preferable that the pore diameter is 0.05 to 10 mm in order to allow sludge to adhere easily and to be easily removed. Moreover, it is preferable that the cell number of a foam cell is 5-125 pieces / 25mm. Furthermore, as a porous support | carrier, a thing with uniform distribution of a foam cell is preferable.
If there are too many foamed cells in the porous carrier or if the cell diameter is too large, the mechanical strength of the porous carrier will be reduced. Therefore, as described above, the number of cells / 25 mm (cells existing in a 25 mm length range) Number) is preferably about 125/25 mm. Conversely, if the number of foamed cells is too small or the cell diameter is too small, the function as a porous carrier cannot be obtained sufficiently. The lower limit of / 25 mm is preferably about 5/25 mm. For the number of cells / 25 mm, a photo of the porous carrier taken with a scanning electron microscope was used to measure the number of foamed cells intersecting the straight line 25 mm in the length direction at a plurality of locations. The average value of the results can be calculated and obtained.

第二生物処理槽2にこのような薄い板状ないし短冊状の軽量ポリウレタンフォームのような多孔質のシート状揺動床担体を設置すると、揺動床担体が、十分な弾力性を有し、槽内の水の流れの中でたわむことにより、薄くても十分な機械的強度を持ち、破損することがない。また、たわむことで槽内の通水を阻害することなく均一に混合され、担体の多孔質構造内にも均等に汚泥含有液が通水されるようになる。   When a porous sheet-like oscillating bed carrier such as a thin plate-like or strip-like lightweight polyurethane foam is installed in the second biological treatment tank 2, the oscillating bed carrier has sufficient elasticity, Even if it is thin, it has sufficient mechanical strength and is not damaged by bending in the water flow in the tank. Moreover, by bending, it mixes uniformly, without inhibiting the water flow in a tank, and a sludge containing liquid comes to flow uniformly also into the porous structure of a support | carrier.

揺動床担体の好ましい設置形態は次の通りである。
(i)揺動床担体を設置する生物処理槽において、〔揺動床担体の見かけ表面積〕/〔生物処理槽容積〕が1〜50[m−1]である。(負荷増加に合わせて担体量を増加させる。)
なお、見かけ表面積は多孔質の内部の表面積を考慮しない外面の表面積であり、例えば直方体であれば6面の表面積の合計(長さ×幅×2+長さ×厚さ×2+厚さ×幅×2)でる。
(ii)揺動床担体の充填率は、微小動物による生物処理槽以降の生物処理槽(返送ラインに生物処理槽がある場合はそれも含む)の総容積の0.1〜20%である。(負荷増加に合わせて担体量増加)
(iii)揺動床担体として短冊状シートを、揺動床担体の長手方向が槽の深さ方向(鉛直下向き)となるように槽内に設置する。このとき揺動床担体の短手方向の向きは特に限定されず、例えば、槽への流入側から流出側への通水方向と略垂直となるように槽内に設置することができる。
(iv)第二生物処理槽の容量が担体の寸法に対し大きい場合には、担体の上下面に留め具を取り付けたものを複数枚用意し、これを第二生物処理槽の深さ方向および/又は幅方向に所定の枚数を並列させ、SUS等の材質よりなる枠材に担体を取り付けた留め具を固定してユニット化し、更に、この担体ユニットを必要に応じて第二生物処理槽内の水の流れ方向に複数枚設けるようにする。
A preferred installation form of the swing bed carrier is as follows.
(I) In the biological treatment tank in which the rocking bed carrier is installed, [apparent surface area of the rocking bed carrier] / [biological treatment tank volume] is 1 to 50 [m −1 ]. (Increase the amount of carrier as the load increases.)
The apparent surface area is the surface area of the outer surface that does not take into account the internal surface area of the porous body. 2)
(Ii) The filling rate of the rocking bed carrier is 0.1 to 20% of the total volume of the biological treatment tank (including the biological treatment tank in the return line) after the biological treatment tank with micro animals. . (Increased carrier amount with increasing load)
(Iii) A strip-shaped sheet is installed in the tank as the rocking bed carrier so that the longitudinal direction of the rocking bed carrier is the depth direction of the tank (vertically downward). At this time, the direction in the short direction of the swing bed carrier is not particularly limited, and for example, it can be installed in the tank so as to be substantially perpendicular to the direction of water flow from the inflow side to the outflow side.
(Iv) When the capacity of the second biological treatment tank is larger than the size of the carrier, prepare a plurality of pieces with fasteners attached to the upper and lower surfaces of the carrier, and use them in the depth direction of the second biological treatment tank and / Or a predetermined number in parallel in the width direction, fixing a fastener with a carrier attached to a frame material made of SUS or the like to form a unit, and further, this carrier unit in the second biological treatment tank as needed Provide multiple sheets in the direction of water flow.

第二生物処理槽2には、揺動床担体のほかにさらに流動床担体を充填してもよい。流動床担体としては、第一生物処理槽に用いられる前述のものが好適である。   The second biological treatment tank 2 may be further filled with a fluidized bed carrier in addition to the rocking bed carrier. As the fluidized bed carrier, the aforementioned one used for the first biological treatment tank is suitable.

第二生物処理槽2では、微小動物を維持するための多量の足場が必要となるが、過度に担体の充填率が多いと槽内の混合不足、汚泥の腐敗などが起こるため、添加する担体の充填率は、0.5〜30%、特に1〜10%程度とすることが望ましい。   In the second biological treatment tank 2, a large amount of scaffolding for maintaining micro-animals is required. However, if the filling rate of the carrier is excessively high, mixing in the tank, sludge decay, etc. may occur. The filling rate is preferably 0.5 to 30%, particularly preferably about 1 to 10%.

微小動物による捕食を促進させるため、第二生物処理槽2のpHを7.0以下としても良い。   In order to promote predation by the minute animals, the pH of the second biological treatment tank 2 may be 7.0 or less.

第二生物処理槽2では、分散状態の菌体を捕食する濾過捕食型微小動物だけでなく、フロック化した汚泥を捕食できる凝集体捕食型微小動物も増殖する。後者は遊泳しながらフロックを捕食するため、優先化した場合、汚泥は、食い荒らされ、微細化したフロック片が散在する汚泥(沈降性の悪い汚泥)となる。また、このフロック片により、特に後段で膜分離を行う膜式活性汚泥法では膜の目詰まりが発生する。そこで、凝集体捕食型微小動物を間引くため、SRT(汚泥滞留時間)を60日以下望ましくは45日以下の範囲内で一定に制御することが望ましい。ただしSRTが15日未満では不必要に頻繁すぎて凝集体捕食型微小動物だけでなく濾過捕食型微小動物の数が減少しすぎるのでSRTを15日以上とするのが好ましい。   In the second biological treatment tank 2, not only the filtration predation type micro-animal that prey on the dispersed cells, but also the aggregate predation type micro-animal that can prey on the flocked sludge grows. Since the latter prey on flocs while swimming, if prioritized, sludge is eaten and becomes sludge in which fine floc pieces are scattered (sludge with poor sedimentation). In addition, this floc piece causes clogging of the membrane particularly in the membrane activated sludge method in which membrane separation is performed in the latter stage. Therefore, in order to thin out aggregate predation type micro-animals, it is desirable to control SRT (sludge retention time) to be constant within a range of 60 days or less, preferably 45 days or less. However, if the SRT is less than 15 days, it is unnecessarily frequent and the number of not only the aggregate predation type micro-animals but also the filter predation type micro-animals is reduced too much.

第一生物処理槽1では有機物の大部分、すなわち排水BODの70%以上、望ましくは80%以上を分解し、菌体へと変換しておく必要があるが、第一生物処理槽1で溶解性有機物を完全に分解した場合、第二生物処理槽2ではフロックが形成されず、また、微小動物増殖のための栄養も不足し、圧密性の低い汚泥(沈降性の悪い汚泥)のみが優占化した生物処理槽となる。そこで、図2の通り、原水の一部をバイパスして第二生物処理槽2に供給し、第二生物処理槽2への溶解性BODによる汚泥負荷が0.025kg−BOD/kg−MLSS/d以上となるように運転してもよい。この時のMLSSには担体付着分のMLSSも含む。   In the first biological treatment tank 1, it is necessary to decompose most of the organic matter, that is, 70% or more of the wastewater BOD, desirably 80% or more, and convert it into microbial cells. When the organic substances are completely decomposed, flocs are not formed in the second biological treatment tank 2, and there is not enough nutrients for the growth of micro-animals. Only sludge with poor compaction (sludge with poor sedimentation) is excellent. It becomes an occupied biological treatment tank. Therefore, as shown in FIG. 2, a part of raw water is bypassed and supplied to the second biological treatment tank 2, and the sludge load due to the soluble BOD in the second biological treatment tank 2 is 0.025 kg-BOD / kg-MLSS / You may drive | work so that it may become d or more. The MLSS at this time includes MLSS for the carrier adhering.

LV1〜20m/hの上向流で沈降分離した分離水に対して、より高度な処理水水質を得るために固液分離として膜分離、凝集沈殿、加圧浮上のいずれを行ってもよい。なお、凝集沈殿(図3)や加圧浮上を行うときは、凝集剤の添加量の低減することができる。図3では、第二生物処理槽2からの沈降分離後の上澄水を凝集槽4で凝集処理し、次いで固液分離槽(沈殿槽)5で沈殿処理して処理水と沈降汚泥とに分離する。   In order to obtain a higher quality of treated water, the separated water separated and settled by the upward flow of LV1 to 20 m / h may be subjected to any of membrane separation, coagulation sedimentation, and pressurized flotation as solid-liquid separation. In addition, when performing coagulation sedimentation (FIG. 3) or pressure levitation, the amount of coagulant added can be reduced. In FIG. 3, the supernatant water after sedimentation from the second biological treatment tank 2 is coagulated in the coagulation tank 4, and then precipitated in the solid-liquid separation tank (sedimentation tank) 5 to be separated into treated water and sedimented sludge. To do.

凝集剤としては無機凝集剤又は無機凝集剤と有機高分子凝集剤を用いるのが好ましい。   As the flocculant, it is preferable to use an inorganic flocculant or an inorganic flocculant and an organic polymer flocculant.

無機凝集剤としては、特に制限はなく、従来、排水の凝集沈殿処理に用いられている無機凝集剤をいずれも用いることができる。   There is no restriction | limiting in particular as an inorganic flocculant, Any inorganic flocculant conventionally used for the coagulation sedimentation processing of waste_water | drain can be used.

具体的には、硫酸第一鉄、硫酸第二鉄、塩化第一鉄、塩化第二鉄、ポリ硫酸第二鉄等の鉄系凝集剤、硫酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム等のアルミニウム系凝集剤等が挙げられる。   Specifically, ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride, ferric sulfate and other iron-based flocculants, aluminum sulfate, aluminum chloride, polyaluminum chloride and other aluminum-based A flocculant etc. are mentioned.

これらの無機凝集剤は、1種を単独で用いても良く、2種以上を混合して用いても良い。   These inorganic flocculants may be used individually by 1 type, and 2 or more types may be mixed and used for them.

無機凝集剤の添加量は、無機凝集剤の種類や原水の性状により異なり、一概には言えないが、通常50〜500mg/L程度である。   The amount of the inorganic flocculant added varies depending on the type of the inorganic flocculant and the properties of the raw water, and cannot be generally specified, but is usually about 50 to 500 mg / L.

なお、無機凝集剤を添加する凝集処理においては、当該無機凝集剤に好適なpH条件に調整することが好ましい。その場合、pH調整のために水酸化ナトリウム等のアルカリや硫酸、塩酸等の酸を用いることができる。   In the agglomeration treatment in which the inorganic flocculant is added, it is preferable to adjust the pH conditions suitable for the inorganic flocculant. In that case, an alkali such as sodium hydroxide or an acid such as sulfuric acid or hydrochloric acid can be used for pH adjustment.

このような無機凝集剤による凝集処理においては、凝集反応槽を70〜200rpm程度で攪拌することが好ましい。   In such a coagulation treatment with an inorganic coagulant, it is preferable to stir the coagulation reaction tank at about 70 to 200 rpm.

無機凝集剤による凝集処理で形成された凝集フロックの粗大化に用いる有機高分子凝集剤としては、特に限定はなく、排水の凝集処理で通常使用される有機高分子凝集剤であれば採用可能である。例えば、アニオン系であれば、ポリ(メタ)アクリル酸、(メタ)アクリル酸と(メタ)アクリルアミドの共重合物、及びそれらのアルカリ金属塩等が挙げられる。ノニオン系であれば、ポリ(メタ)アクリルアミド等が挙げられる。カチオン系であれば、ジメチルアミノエチル(メタ)アクリレートもしくはその4級アンモニウム塩やジメチルアミノプロピル(メタ)アクリルアミドもしくはその4級アンモニウム塩等のカチオン性モノマーからなるホモポリマー、あるいはそれらカチオン性モノマーと共重合可能なノニオン性モノマーとの共重合体等が挙げられる。これらの有機高分子凝集剤は、1種を単独で用いても良く、2種以上を混合して用いても良い。   There is no particular limitation on the organic polymer flocculant used to coarsen the flocs formed by the flocculant treatment with the inorganic flocculant, and any organic polymer flocculant usually used in wastewater flocculation can be used. is there. For example, poly (meth) acrylic acid, a copolymer of (meth) acrylic acid and (meth) acrylamide, and alkali metal salts thereof may be used as long as they are anionic. If it is nonionic, poly (meth) acrylamide etc. are mentioned. In the case of a cationic system, a homopolymer composed of a cationic monomer such as dimethylaminoethyl (meth) acrylate or a quaternary ammonium salt thereof, dimethylaminopropyl (meth) acrylamide or a quaternary ammonium salt thereof, or a copolymer with these cationic monomers. Examples thereof include a copolymer with a polymerizable nonionic monomer. These organic polymer flocculants may be used alone or in combination of two or more.

有機高分子凝集剤の添加量は、有機高分子凝集剤の種類や原水の性状に応じて適宜決定されるが、通常、0.5〜5mg/L程度である。   The addition amount of the organic polymer flocculant is appropriately determined according to the type of organic polymer flocculant and the properties of the raw water, but is usually about 0.5 to 5 mg / L.

このような有機高分子凝集剤による凝集処理においては、凝集反応槽を30〜100rpm程度で攪拌することが好ましい。   In such a coagulation treatment with an organic polymer flocculant, it is preferable to stir the coagulation reaction tank at about 30 to 100 rpm.

図1〜3では、第二生物処理槽2内の上昇流路24で汚泥を沈降分離させているが、図4のように、第二生物処理槽2内の汚泥混合水を取り出し、固液分離槽3に導入して固液分離し、処理水と沈降汚泥とに分離し、沈降した汚泥(槽汚泥)の一部を第二生物処理槽2に返送し、残部を余剰汚泥として系外に取り出すようにしてもよい。この固液分離槽3の下部に汚泥混合水を導入し、LV1〜20m/hで上昇させて固液分離する。上澄水は槽3の上部から取り出される。沈降した汚泥は槽3の底部から取り出される。なお、図4では、第二生物処理槽2の流出部に仕切板23、トラフのいずれも設けられていない。   1-3, although sludge is settled and separated by the ascending flow path 24 in the second biological treatment tank 2, the sludge mixed water in the second biological treatment tank 2 is taken out as shown in FIG. Introduced into the separation tank 3 and separated into solid and liquid, separated into treated water and settled sludge, a part of the settled sludge (tank sludge) is returned to the second biological treatment tank 2 and the remainder as extra sludge You may make it take out. Sludge mixed water is introduced into the lower part of the solid-liquid separation tank 3 and is raised at LV1 to 20 m / h for solid-liquid separation. The supernatant water is taken out from the upper part of the tank 3. The settled sludge is taken out from the bottom of the tank 3. In FIG. 4, neither the partition plate 23 nor the trough is provided in the outflow part of the second biological treatment tank 2.

図1〜4は、本発明の実施の形態の一例を示すものであり、本発明は何ら図示のものに限定されない。例えば、第一生物処理槽1、第二生物処理槽2の後段に第三生物処理槽を設けるなどして、生物処理槽を3段以上に設けてもよい。また、各槽は独立して設けられてもよく、1つのタンク内を仕切板で区画して各槽を形成してもよい。   1 to 4 show an example of an embodiment of the present invention, and the present invention is not limited to the illustrated one. For example, the biological treatment tank may be provided in three or more stages by providing a third biological treatment tank after the first biological treatment tank 1 and the second biological treatment tank 2. In addition, each tank may be provided independently, or each tank may be formed by partitioning one tank with a partition plate.

図1〜4のいずれの態様においても、最終段の生物処理槽に揺動床担体22を設けると共に、最後段生物処理水を最後段生物処理槽の槽内又は槽外においてLV1〜20m/hで沈降分離し、沈降汚泥をいずれかの生物処理槽へ返送することにより、凝集体捕食型微小動物の優先化を抑制し、汚泥減量と処理水水質の向上とを両立させることができ、安定した高負荷処理が可能となる。   1-4, the final stage biological treatment tank is provided with the rocking bed carrier 22, and the final stage biological treatment water is supplied at LV1 to 20 m / h in or outside the final stage biological treatment tank. By sedimentation and returning the sludge to one of the biological treatment tanks, it is possible to suppress the prioritization of aggregate predation type micro-animals, achieve both reduction of sludge and improvement of treated water quality, and stability. High load processing is possible.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

[実施例1(フロー:図1)]
図1において、容量が88Lの第一生物処理槽1(汚泥返送なし)と、150Lの第二生物処理槽2を用い、CODCr1250mg/L(BOD800mg/L)の有機性廃水(食品製造廃水)の処理を実施した。第二生物処理槽2には、図示の通り、仕切板23によって区画された上昇流路24が設けられている。この上昇流路24に槽内の液をLV5m/hにて上向流にて流通させ、汚泥を沈降分離させた。沈降した汚泥は第二生物処理槽2内に戻り、上澄水は第二生物処理槽2から流出する。第二生物処理槽2内の余剰汚泥は取出管25から取り出した。第一生物処理槽1のDOを0.5mg/Lとし、第二生物処理槽2はDOが2〜3mg/Lとなるように運転した。
[Example 1 (flow: FIG. 1)]
In FIG. 1, COD Cr 1250 mg / L (BOD 800 mg / L) organic wastewater (food manufacturing wastewater) using a first biological treatment tank 1 (no sludge return) having a capacity of 88 L and a second biological treatment tank 2 having a capacity of 150 L ) Was carried out. As illustrated, the second biological treatment tank 2 is provided with an ascending flow path 24 partitioned by a partition plate 23. The liquid in the tank was circulated through the ascending flow path 24 at an LV of 5 m / h, and the sludge was settled and separated. The settled sludge returns to the second biological treatment tank 2 and the supernatant water flows out of the second biological treatment tank 2. Excess sludge in the second biological treatment tank 2 was taken out from the take-out pipe 25. The DO of the first biological treatment tank 1 was set to 0.5 mg / L, and the second biological treatment tank 2 was operated so that the DO was 2 to 3 mg / L.

第一生物処理槽1には充填率5%で5mm角の流動床担体12を添加し、第二生物処理槽2には板状のポリウレタンフォーム(長さ100cm、幅30cm、厚さ1cm)よりなる揺動床担体22を1枚設置した。第一生物処理槽に対するCODCr容積負荷は8.6kg−CODCr/m/d、HRT3.5h、全体でのCODCr容積負荷2kg−CODCr/m/d、HRT9.5hの条件で運転した。A fluidized bed carrier 12 having a filling rate of 5% and 5 mm square is added to the first biological treatment tank 1, and a plate-like polyurethane foam (length 100 cm, width 30 cm, thickness 1 cm) is added to the second biological treatment tank 2. One swing bed carrier 22 was installed. COD Cr volumetric load on the first biological treatment tank 8.6kg-COD Cr / m 3 /d,HRT3.5h , under conditions of COD Cr volumetric loading 2kg-COD Cr / m 3 /d,HRT9.5h throughout Drove.

その結果、処理水のSSは30mg/Lであり、SRT=30dで第二生物処理槽から引き抜いた余剰汚泥分と合わせた汚泥転換率は0.15kg−SS/kg−CODCrとなった。As a result, SS in the treated water is 30 mg / L, the sludge conversion rate combined with excess sludge fraction was withdrawn from the second biological treatment tank in SRT = 30d became 0.15kg-SS / kg-COD Cr .

[実施例2(フロー:図3)]
図3の通り、第二生物処理槽2からの第2生物処理水に対し、凝集剤としてPACを50mg/L及びアニオン系高分子凝集剤(栗田工業株式会社製 クリフロックPA331)を1mg/L添加し、凝集槽4及び沈殿槽5によって、凝集沈殿処理を行った。図3の通り、第二生物処理槽2には仕切板23及び上昇流路24は設けられていない。それ以外は実施例1と同様の条件で運転した。
[Example 2 (flow: FIG. 3)]
As shown in FIG. 3, 50 mg / L of PAC as an aggregating agent and 1 mg / L of an anionic polymer aggregating agent (Cliff Rock PA331 manufactured by Kurita Kogyo Co., Ltd.) are added to the second biologically treated water from the second biological treatment tank 2. After the addition, the coagulation tank 4 and the precipitation tank 5 were subjected to coagulation sedimentation treatment. As shown in FIG. 3, the second biological treatment tank 2 is not provided with the partition plate 23 and the ascending flow path 24. Otherwise, the operation was performed under the same conditions as in Example 1.

その結果、処理水のSSは5mg/L以下で、凝集沈殿由来の汚泥とSRT=30dで第二生物処理槽から引き抜いた余剰汚泥分と合わせた汚泥転換率は0.15kg−SS/kg−CODCr(PAC分は除く)となった。As a result, the SS of the treated water is 5 mg / L or less, and the sludge conversion rate combined with the sludge derived from coagulation sediment and the excess sludge extracted from the second biological treatment tank at SRT = 30d is 0.15 kg-SS / kg- COD Cr (excluding PAC).

[実施例3(フロー:図1)]
上昇流路24のLVが1m/hとなるように仕切板23の位置を調整して上昇流路24の水平断面積を5倍に大きくしたこと以外は実施例1と同一条件にて処理を行った。
[Example 3 (flow: FIG. 1)]
The process is performed under the same conditions as in Example 1 except that the position of the partition plate 23 is adjusted so that the LV of the ascending channel 24 becomes 1 m / h and the horizontal sectional area of the ascending channel 24 is increased five times. went.

その結果、処理水のSSは35mg/Lで、SRT=30dで第二生物処理槽から引き抜いた余剰汚泥分と合わせた汚泥転換率は0.16kg−SS/kg−CODCrとなった。As a result, SS in the treated water is 35 mg / L, the sludge conversion rate combined with excess sludge fraction was withdrawn from the second biological treatment tank in SRT = 30d became 0.16kg-SS / kg-COD Cr .

[実施例4(フロー:図1)]
上昇流路24のLVが15m/hとなるように仕切板23の位置を調整して上昇流路24の水平断面積を1/3に小さくしたこと以外は実施例1と同一条件にて処理を行った。
[Example 4 (flow: FIG. 1)]
The process is performed under the same conditions as in Example 1 except that the position of the partition plate 23 is adjusted so that the LV of the ascending channel 24 becomes 15 m / h and the horizontal sectional area of the ascending channel 24 is reduced to 1/3. Went.

その結果、処理水のSSは40mg/Lで、SRT=30dで第二生物処理槽から引き抜いた余剰汚泥分と合わせた汚泥転換率は0.16kg−SS/kg−CODCrとなった。As a result, SS in the treated water is 40 mg / L, the sludge conversion rate combined with excess sludge fraction was withdrawn from the second biological treatment tank in SRT = 30d became 0.16kg-SS / kg-COD Cr .

[実施例5(フロー:図1)]
上昇流路24のLVが20m/hとなるように仕切板23の位置を調整して上昇流路24の水平断面積を1/4に小さくしたこと以外は実施例1と同一条件にて処理を行った。
[Example 5 (flow: FIG. 1)]
The process is performed under the same conditions as in Example 1 except that the position of the partition plate 23 is adjusted so that the LV of the ascending channel 24 is 20 m / h and the horizontal sectional area of the ascending channel 24 is reduced to ¼. Went.

その結果、処理水のSSは50mg/Lで、SRT=30dで第二生物処理槽から引き抜いた余剰汚泥分と合わせた汚泥転換率は0.16kg−SS/kg−CODCrとなった。As a result, SS in the treated water is 50 mg / L, the sludge conversion rate combined with excess sludge fraction was withdrawn from the second biological treatment tank in SRT = 30d became 0.16kg-SS / kg-COD Cr .

[実施例6(フロー:図4)]
図4において、容量が36Lの第一生物処理槽1、150Lの第二生物処理槽2、及びLV=5m/hの固液分離槽3を用いた。第二生物処理槽2には仕切板23及び上昇流路24は設けられていない。その代り、固液分離槽3の沈降汚泥の一部を第二生物処理槽2に返送した。第一生物処理槽1には沈降汚泥を返送しなかった。その他は実施例1と同一条件にて処理を行った。
[Example 6 (flow: FIG. 4)]
In FIG. 4, a first biological treatment tank 1 having a capacity of 36 L, a second biological treatment tank 2 having a capacity of 150 L, and a solid-liquid separation tank 3 having an LV = 5 m / h were used. The second biological treatment tank 2 is not provided with the partition plate 23 and the ascending flow path 24. Instead, a part of the settled sludge in the solid-liquid separation tank 3 was returned to the second biological treatment tank 2. The sedimentation sludge was not returned to the first biological treatment tank 1. The other processes were performed under the same conditions as in Example 1.

その結果、処理水のSSは30mg/Lで、SRT=30dで第二生物処理槽から引き抜いた余剰汚泥分と合わせた汚泥転換率は0.15kg−SS/kg−CODCrとなった。As a result, SS in the treated water is 30 mg / L, the sludge conversion rate combined with excess sludge fraction was withdrawn from the second biological treatment tank in SRT = 30d became 0.15kg-SS / kg-COD Cr .

[比較例1(フロー:図1)]
上昇流路24のLVが0.5m/hとなるように仕切板23の位置を調整して上昇流路24の水平断面積を10倍大きくしたこと以外は実施例1と同一条件にて処理を行った。
[Comparative Example 1 (flow: FIG. 1)]
The process is performed under the same conditions as in Example 1 except that the position of the partition plate 23 is adjusted so that the LV of the ascending channel 24 becomes 0.5 m / h and the horizontal sectional area of the ascending channel 24 is increased 10 times. Went.

この比較例1では、仕切板23で囲まれた上昇流路24の水平断面積が、第二生物処理槽2の全体の水平断面積の約40%を占めたので、相対的に生物処理室の容積が小さくなり、生物処理が十分に進行しなかった。処理水のSSは90mg/Lで、SRT=30dで第二生物処理槽から引き抜いた余剰汚泥分と合わせた汚泥転換率は0.22kg−SS/kg−CODCrとなった。In the comparative example 1, the horizontal cross-sectional area of the ascending flow path 24 surrounded by the partition plate 23 occupies about 40% of the entire horizontal cross-sectional area of the second biological treatment tank 2. As a result, the biological treatment did not proceed sufficiently. SS in the treated water is 90 mg / L, the sludge conversion rate combined with excess sludge fraction was withdrawn from the second biological treatment tank in SRT = 30d became 0.22kg-SS / kg-COD Cr .

[比較例2(フロー:図1)]
上昇流路24のLVが25m/hとなるように仕切板23の位置を調整して上昇流路24の水平断面積を1/5に小さくしたこと以外は実施例1と同一条件にて処理を行った。
[Comparative Example 2 (flow: FIG. 1)]
The processing is performed under the same conditions as in Example 1 except that the position of the partition plate 23 is adjusted so that the LV of the ascending channel 24 is 25 m / h and the horizontal sectional area of the ascending channel 24 is reduced to 1/5. Went.

この比較例2では、上昇流路24の上向流速が大きく、汚泥の沈降分離が不十分となり、第二生物処理槽2から処理水と共に流出する汚泥量が増加した。その結果、処理水のSSは100mg/Lとなり、SRT=30dで第二生物処理槽から引き抜いた余剰汚泥分と合わせた汚泥転換率は0.22kg−SS/kg−CODCrとなった。In Comparative Example 2, the upward flow velocity of the ascending flow path 24 is large, the sludge sedimentation is insufficient, and the amount of sludge flowing out from the second biological treatment tank 2 together with the treated water is increased. As a result, SS in the treated water is 100 mg / L, and the sludge conversion rate combined with excess sludge fraction was withdrawn from the second biological treatment tank in SRT = 30d became 0.22kg-SS / kg-COD Cr .

[比較例3(フロー:図5)]
図5の通り、第二生物処理槽2に揺動床担体22を設けなかった。第二生物処理槽2には充填率5%で5mm角の流動床担体(第一生物処理槽1に充填したものと同一の流動床担体)を添加し、流動床担体を分離するための担体分離スクリーン26を設けた。それ以外は実施例6と同一条件で運転した。
[Comparative Example 3 (flow: FIG. 5)]
As shown in FIG. 5, the swing bed carrier 22 was not provided in the second biological treatment tank 2. A carrier for separating the fluidized bed carrier by adding a 5 mm square fluidized bed carrier (the same fluidized bed carrier as filled in the first biological treatment tank 1) to the second biological treatment tank 2 at a filling rate of 5%. A separation screen 26 was provided. Otherwise, the operation was performed under the same conditions as in Example 6.

その結果、処理水のSSは200mg/Lで、SRT=30dで第二生物処理槽から引き抜いた余剰汚泥分と合わせた汚泥転換率は0.23kg−SS/kg−CODCrとなった。As a result, SS in the treated water is 200 mg / L, the sludge conversion rate combined with excess sludge fraction was withdrawn from the second biological treatment tank in SRT = 30d became 0.23kg-SS / kg-COD Cr .

[比較例4(フロー:図6)]
固液分離槽を具備しないことを除き図4と同等である図6のフローに従って原水を処理した。図6の通り、第二生物処理槽からの流出液の固液分離及び余剰汚泥の返送を行わなかった。それ以外は実施例6と同一条件にて処理を行った。
[Comparative Example 4 (flow: FIG. 6)]
Raw water was treated according to the flow of FIG. 6 which is the same as FIG. 4 except that the solid-liquid separation tank is not provided. As shown in FIG. 6, the solid-liquid separation of the effluent from the second biological treatment tank and the return of excess sludge were not performed. Otherwise, the process was performed under the same conditions as in Example 6.

その結果、処理水のSSは300mg/Lで、槽内からの汚泥引き抜きは行わず、汚泥転換率は0.24kg−SS/kg−CODCrとなった。As a result, SS in the treated water is 300 mg / L, the sludge withdrawal from the bath is not carried out, the sludge conversion rate was 0.24kg-SS / kg-COD Cr .

本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、2012年1月6日付で出願された日本特許出願(特願2012−001288)に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
In addition, this application is based on the Japanese patent application (Japanese Patent Application No. 2012-001288) for which it applied on January 6, 2012, The whole is used by reference.

1 第一生物処理槽
2 第二生物処理槽
3 固液分離槽
12 流動床担体
16,26 担体分離スクリーン
22 揺動床担体
23 仕切板
24 上昇流路
DESCRIPTION OF SYMBOLS 1 1st biological treatment tank 2 2nd biological treatment tank 3 Solid-liquid separation tank 12 Fluidized bed carrier 16,26 Carrier separation screen 22 Oscillating bed carrier 23 Partition plate 24 Ascending flow path

Claims (15)

CODCr容積負荷1kg/m/d以上の有機性排水を多段に設けられた生物処理槽で生物処理する有機性排水の生物処理方法において、
第一段の生物処理槽である曝気槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、
最後段の生物処理槽である曝気槽に揺動床担体を設置し、該揺動床担体に生物膜を付着させ、
該最後段生物処理槽の最後段生物処理水を最後段生物処理槽の槽内又は槽外においてLV1〜20m/hの上向流で沈降分離し、沈降汚泥をいずれかの生物処理槽へ返送することを特徴とする有機性排水の生物処理方法。
In a biological treatment method for organic wastewater, wherein organic wastewater having a COD Cr volumetric load of 1 kg / m 3 / d or more is biologically treated in a biological treatment tank provided in multiple stages,
In the aeration tank , which is the first-stage biological treatment tank , the first biological treatment water in which the dispersal bacteria increased is generated by the decomposition of the organic matter by the dispersal bacteria,
Install the swing bed carrier in the aeration tank which is the last biological treatment tank , and attach the biofilm to the swing bed carrier,
The last-stage biological treatment water in the last-stage biological treatment tank is settled and separated in an upward flow of LV1 to 20 m / h in or outside the last-stage biological treatment tank, and the sedimented sludge is returned to any biological treatment tank. A method for biological treatment of organic wastewater.
請求項1において、前記最後段生物処理水を最後段生物処理槽の槽内又は槽外において無凝集方式で沈降分離することを特徴とする有機性排水の生物処理方法。   2. The biological treatment method for organic wastewater according to claim 1, wherein the last-stage biological treatment water is settled and separated in a non-flocculating manner inside or outside the last-stage biological treatment tank. 請求項1又は2において、最後段生物処理水を最後段生物処理槽内で沈降分離するために、最後段生物処理槽の排水出口側に仕切りを設けて上向流の流路を形成し、最後段生物処理水をLV1〜20m/hで該流路に上向流通水し、沈降汚泥を最後段生物処理槽に戻し、該流路を上昇した上澄水を槽外に排出することを特徴とする有機性排水の生物処理方法。   In claim 1 or 2, in order to settle and separate the last-stage biological treatment water in the last-stage biological treatment tank, a partition is provided on the drainage outlet side of the last-stage biological treatment tank to form an upward flow channel, The last-stage biologically treated water is circulated upward into the flow path at LV1 to 20 m / h, the sedimented sludge is returned to the last-stage biologically treated tank, and the supernatant water that has risen through the flow path is discharged outside the tank. Biological treatment method for organic wastewater. 請求項1ないし3のいずれか1項において、揺動床担体が、シート状の発泡プラスチックであることを特徴とする有機性排水の生物処理方法。   The biological treatment method for organic wastewater according to any one of claims 1 to 3, wherein the rocking floor carrier is a sheet-like foamed plastic. 請求項4において、前記発泡プラスチックのセルの孔径が0.05〜10mmであり、セル数が5〜125個/25mmであることを特徴とする有機性排水の生物処理方法。   5. The organic wastewater treatment method according to claim 4, wherein the cell diameter of the foamed plastic cell is 0.05 to 10 mm, and the number of cells is 5 to 125/25 mm. 請求項1ないし5のいずれか1項において、第一生物処理槽の溶存酸素濃度が1mg/L以下であり、第二生物処理槽の溶存酸素濃度が1〜4mg/Lであることを特徴とする有機性排水の生物処理方法。   In any 1 item | term of Claim 1 thru | or 5, The dissolved oxygen concentration of a 1st biological treatment tank is 1 mg / L or less, The dissolved oxygen concentration of a 2nd biological treatment tank is 1-4 mg / L, It is characterized by the above-mentioned. Biological treatment method for organic wastewater. 請求項1ないし6のいずれか1項において、第一生物処理槽のBOD容積負荷を1〜20kg/m/dとすることを特徴とする有機性排水の生物処理方法。 The biological treatment method for organic wastewater according to any one of claims 1 to 6, wherein the BOD volumetric load of the first biological treatment tank is 1 to 20 kg / m 3 / d. 請求項1ないし7のいずれか1項において、第一生物処理槽の原水滞留時間(HRT)が0.5〜24hであることを特徴とする有機性排水の生物処理方法。   The biological treatment method for organic wastewater according to any one of claims 1 to 7, wherein the raw water retention time (HRT) of the first biological treatment tank is 0.5 to 24 h. 請求項1ないし8のいずれか1項において、第二生物処理槽のSRTを15〜60日とすることを特徴とする有機性排水の生物処理方法。   The biological treatment method for organic waste water according to any one of claims 1 to 8, wherein the SRT of the second biological treatment tank is 15 to 60 days. CODCr容積負荷1kg/m/d以上の有機性排水を多段で生物処理する有機性排水の生物処理装置において、
第一段の生物処理槽である曝気槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、
最後段の生物処理槽である曝気槽に揺動床担体を設置し、該揺動床担体に生物膜を付着させ、最後段生物処理水を生成させる有機性排水の生物処理装置であって、
最後段生物処理槽の槽内又は槽外に設けられた、最後段生物処理水をLV1〜20m/hの上向流で沈降分離する沈降分離手段と、
沈降汚泥をいずれかの生物処理槽へ返送する返送手段と
を備えたことを特徴とする有機性排水の生物処理装置。
In an organic wastewater biological treatment apparatus for biologically treating organic wastewater with a COD Cr volumetric load of 1 kg / m 3 / d or more in multiple stages,
In the aeration tank , which is the first-stage biological treatment tank , the first biological treatment water in which the dispersal bacteria increased is generated by the decomposition of the organic matter by the dispersal bacteria,
A biological treatment apparatus for organic wastewater that installs a swing bed carrier in an aeration tank that is the last biological treatment tank , attaches a biofilm to the swing bed carrier, and generates last biological treatment water,
A sedimentation / separation means provided within or outside the last-stage biological treatment tank, for separating and separating the last-stage biological treatment water with an upward flow of LV1 to 20 m / h;
A biological treatment apparatus for organic wastewater, comprising: return means for returning the settled sludge to any biological treatment tank.
請求項10において、前記沈降分離手段は、前記最後段生物処理水を無凝集方式で沈降分離する手段であることを特徴とする有機性排水の生物処理装置。   11. The organic wastewater biological treatment apparatus according to claim 10, wherein the sedimentation separation means is means for sedimentation and separation of the last-stage biological treatment water by a non-flocculation method. 請求項10又は11において、最後段生物処理水を最後段生物処理槽内で沈降分離するために、前記沈降分離手段として最後段生物処理槽の排水出口側に仕切りを設けて上向流の流路を形成し、LV1〜20m/hで該流路に上向流通水し、沈降汚泥を最後段生物処理槽に戻し、該流路を上昇した上澄水を槽外に排出することを特徴とする有機性排水の生物処理装置。   In Claim 10 or 11, in order to settle and separate the last-stage biological treatment water in the last-stage biological treatment tank, a partition is provided on the drain outlet side of the last-stage biological treatment tank as the sedimentation separation means, and the upward flow A path is formed, water flows upward into the flow path at LV1 to 20 m / h, the sedimented sludge is returned to the last biological treatment tank, and the supernatant water that has risen through the flow path is discharged outside the tank. Organic wastewater biological treatment equipment. 請求項10ないし12のいずれか1項において、揺動床担体が、シート状の発泡プラスチックであることを特徴とする有機性排水の生物処理装置。   The biological treatment apparatus for organic wastewater according to any one of claims 10 to 12, wherein the rocking floor carrier is a sheet-like foamed plastic. 請求項13において、発泡プラスチックのセルの孔径が0.05〜10mmであり、セル数が5〜125個/25mmであることを特徴とする有機性排水の生物処理装置。   14. The organic wastewater biological treatment apparatus according to claim 13, wherein the pore diameter of the cell of the foamed plastic is 0.05 to 10 mm, and the number of cells is 5 to 125/25 mm. 請求項10ないし14のいずれか1項において、第一生物処理槽及び第二生物処理槽にそれぞれ散気管が設けられていることを特徴とする有機性排水の生物処理装置。   The biological treatment apparatus for organic wastewater according to any one of claims 10 to 14, wherein a diffuser pipe is provided in each of the first biological treatment tank and the second biological treatment tank.
JP2013552420A 2012-01-06 2012-12-27 Biological treatment method and apparatus for organic wastewater Active JP5874741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013552420A JP5874741B2 (en) 2012-01-06 2012-12-27 Biological treatment method and apparatus for organic wastewater

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012001288 2012-01-06
JP2012001288 2012-01-06
PCT/JP2012/083883 WO2013103124A1 (en) 2012-01-06 2012-12-27 Biological treatment method and device for organic wastewater
JP2013552420A JP5874741B2 (en) 2012-01-06 2012-12-27 Biological treatment method and apparatus for organic wastewater

Publications (2)

Publication Number Publication Date
JPWO2013103124A1 JPWO2013103124A1 (en) 2015-05-11
JP5874741B2 true JP5874741B2 (en) 2016-03-02

Family

ID=48745184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013552420A Active JP5874741B2 (en) 2012-01-06 2012-12-27 Biological treatment method and apparatus for organic wastewater

Country Status (4)

Country Link
JP (1) JP5874741B2 (en)
CN (1) CN104039715B (en)
MY (1) MY167611A (en)
WO (1) WO2013103124A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786998B1 (en) * 2014-03-31 2015-09-30 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
JP5850097B2 (en) * 2014-07-01 2016-02-03 栗田工業株式会社 Biological treatment method and biological treatment apparatus for organic wastewater
SG11201702607XA (en) * 2014-10-10 2017-04-27 Organo Corp Waste water treatment method and waste water treatment device
JP2019048254A (en) * 2017-09-08 2019-03-28 オルガノ株式会社 Method and device for treating organic wastewater
JP2022122572A (en) * 2021-02-10 2022-08-23 オルガノ株式会社 Water treatment method and water treatment apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4474930B2 (en) * 2004-02-02 2010-06-09 栗田工業株式会社 Biological treatment method for organic wastewater
JPWO2006057249A1 (en) * 2004-11-24 2008-06-05 日立造船株式会社 Reverse osmosis membrane seawater desalination system
EP1878706A4 (en) * 2005-04-12 2013-03-27 Kurita Water Ind Ltd Method for biological disposal of organic wastewaer and biological disposal apparatus
JP2008238026A (en) * 2007-03-27 2008-10-09 Matsushita Electric Ind Co Ltd Wastewater treatment apparatus
CN101279809B (en) * 2008-05-30 2011-01-19 北京碧水源科技股份有限公司 Biological filler shimmying-bed
CN102209689A (en) * 2008-11-11 2011-10-05 株式会社神钢环境舒立净 Water treatment device and water treatment method
JP2011092811A (en) * 2009-10-27 2011-05-12 Asahi Kasei Engineering Kk Waste water treatment apparatus and waste water treatment method
WO2011122217A1 (en) * 2010-03-31 2011-10-06 栗田工業株式会社 Method and device for biologically treating organic wastewater
JP5935236B2 (en) * 2010-03-31 2016-06-15 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater

Also Published As

Publication number Publication date
CN104039715B (en) 2016-07-13
CN104039715A (en) 2014-09-10
MY167611A (en) 2018-09-20
JPWO2013103124A1 (en) 2015-05-11
WO2013103124A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
JP5994253B2 (en) Biological treatment apparatus and method for organic wastewater
US7897048B2 (en) Membrane bioreactor and sewage treatment method
JP5874741B2 (en) Biological treatment method and apparatus for organic wastewater
JP3434438B2 (en) Wastewater treatment method and wastewater treatment device
JP5786998B1 (en) Biological treatment method and apparatus for organic wastewater
WO2013084711A1 (en) Oscillating support, and method and device for biologically treating organic wastewater using the oscillating support
JP5772337B2 (en) Biological treatment method and apparatus for organic wastewater
JP5895663B2 (en) Biological treatment method for organic wastewater
US6773596B2 (en) Activated sludge method and device for the treatment of effluent with nitrogen and phosphorus removal
JP6136699B2 (en) Biological treatment method for organic wastewater
KR100839035B1 (en) Biological wastewater treatment apparatus using diffuser-mediated sludge flotation and treatment method using the same
KR20180031085A (en) Method and device for biologically treating organic wastewater
WO2015045094A1 (en) Organic wastewater biological treatment method
JP2011224544A (en) Method and device for biologically treating organic wastewater
WO2018055793A1 (en) Biological treatment method for organic wastewater
JP6020620B2 (en) Biological treatment method and apparatus for organic wastewater
WO2017064982A1 (en) Method for biologically treating organic waste water
WO2011122217A1 (en) Method and device for biologically treating organic wastewater
JP5850097B2 (en) Biological treatment method and biological treatment apparatus for organic wastewater
Ghangrekar Aerobic Wastewater Treatment Systems
WO2000001623A1 (en) Apparatus and process for sewage and wastewater treatment
AU2006315091A1 (en) Sewage treatment
JP6613043B2 (en) Waste water treatment method and waste water treatment equipment
CN105523688A (en) Device and method for processing waste water

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R150 Certificate of patent or registration of utility model

Ref document number: 5874741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250